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Abstract

We present estimates of magnetic field in a number of AGNs
from the Spectropolarimetric atlas of Smith, Young & Robin-
son (2002) from the observed degrees of linear polarization
and the positional angles of spectral lines (Hα) (broad line
regions of AGNs) and nearby continuum. The observed de-
gree of polarization is lower than the Milne value in a non-
magnetized atmosphere. We hypothesize that the polarized
radiation escapes from optically thick magnetized accretion
discs and is weakened by the Faraday rotation effect. The
Faraday rotation depolarization effect is able to explain both
the value of the polarization and the position angle. We esti-
mate the required magnetic field in the broad line region by
using simple asymptotic analytical formulas for Milne’s prob-
lem in magnetized atmosphere, which take into account the
last scattering of radiation before escaping from the accretion
disc. The polarization of a broad spectral line escaping from
disc is described by the same mechanism. The characteristic
features of polarization of a broad line is the minimum of the
degree of polarization in the center of the line and continu-
ous rotation of the position angle from one wing to another.
These effects can be explained by existence of clouds in the left
(keplerian velocity is directed to an observer) and the right
(keplerian velocity is directed from an observer) parts of the
orbit in a rotating keplerian magnetized accretion disc. The
base of explanation is existence of azimuthal magnetic field
in the orbit. The existence of normal component of magnetic
field (usually weak) makes the picture of polarization asym-
metric. The existence of clouds in left and right parts of the
orbit with different emissions also give the contribution in
asymmetry effect. Assuming a power-law dependence of the
magnetic field inside the disc, we obtain the estimate of the
magnetic field strength at first stable orbit near the central
supermassive black hole (SMBH) for a number of AGNs from
the mentioned Spectropolarimetric atlas.
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active galactic nuclei.
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1 Introduction

Smith et al. (2002) presented optical spectropolarimetric at-
las of 36 nuclei of Seyfert 1 Galaxies. The data were obtained
with the William Herschel and the Anglo–Australian Tele-
scopes from 1996 to 1999. It is well-known that spectropo-
larimetry is an important tool in studies of active galactic nu-
clei (AGN). The spectropolarimetric data provide the detailed
view into the inner regions of active galactic nuclei, including
an accretion disc and accretion flows around a supermassive
black hole (SMBH), thus allowing one to probe the structure
and kinematics of the polarizing material around the accret-
ing SMBH.

Smith et al. (2002) objects exhibit a variety of character-
istics with the average degree of polarization ranging from
0.2 to 5 percent. They show many variations both in the de-
gree pline(λ) and position angle χline(λ) of polarization across
the broad Hα emission line. The characteristic feature of
pline(λ) is the minimum in the line centre, which is usually
less than the polarization degree pc(λ) in nearby continuum.
The second feature is the monotonic increase of positional
angle from one line wing to the other. Note also that there
exists little difference in the mean polarization degrees and
position angles of nearby continuum and Hα line for nine of
Seyfert galaxies (Mrk 6, Akn 120, Mrk 896, Mrk 926, NGC
4051, NGC 6814, NGC 7603, UGC 3478, ESO 012-G21). For
22 measurements out of 45, the mean positional angles χline

and χc are practically the same. It should be emphasized
that the position angles of polarized continuum and Hα line
coincide more frequently than their polarization degrees. The
mean value of the polarization degree in continuum over all
sources is 0.68%, and the same value for Hα lines is 0.66%. A
position angle is most sensitive to the geometry of emitting re-
gion. For that reason, it is most probable that both emitting
regions are located near one another, i.e. they located in an
accretion disc and their scale sizes are similar: RBLR ≈ Rλ,
where Rλ corresponds to the scale size of an accretion disc
for the continuum radiation with given wavelength λ.

It is generally accepted that AGNs are powered by the re-
lease of gravitational energy from gas accreted onto super-
massive black holes (SMBH). The well-known anti-correlation
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between the radius of the broad-line region (BLR) and the ve-
locity width of broad emission lines for AGNs supports the
idea that the BLR gas is virialized and that its velocity is
dominated by the gravity of the SMBH (Peterson & Wandel
2000; Onken & Peterson 2002).

Most of the recent results lead to the conclusion that BLR
presents a flattened rotating system. Many authors (Vester-
gaard et al. 2000; Nikolajuk et al. 2006; Sulentic et al. 2006;
La Mura et al. 2009; Bon et al. 2009; Punsly & Zhang 2010)
pointed out that considerable flattening and a predominantly
planar orientation are likely to be the intrinsic property of the
BLR structure. This conclusion allows us to consider BLR as
an outer part of geometrically thin accretion disc that is op-
tically thick with respect to the electron Thomson and the
Rayleigh scattering processes.

Seyfert galaxies were traditionally divided into two classes
according to the presence or absence of broad optical lines.
Antonucci & Miller (1985) explained this phenomenon by ob-
scuration by a dusty torus with different orientation with re-
spect to an observer. The orientation-based unification model
has become quite popular, but it has also been confronted
by more specialized observations (see, for example, Zhang &
Wang 2006; Wang & Zhang 2007); in particular, there is evi-
dence for the existence of a special subclass of Seyfert 2 lack-
ing hidden broad-line regions (Zhang & Wang 2006). Thus,
the paradigm of unification scheme for all Seyfert galaxies
remains a matter of debate (Miller & Goodrich 1990; Tran
2001, 2003).

The basic feature of Smith et al. (2002, 2004, 2005) mod-
els is that the polarization plane for most of Seyfert galaxies
is parallel to the direction of the radio jet. Simultaneously,
these models postulate that the radio jet direction is per-
pendicular to the accretion plane. The latter assumption is
questionable. In reality, the radio jets frequently have sig-
nificant bends near the radio core. The angle of the bend
depends on the ratio of radial and toroidal magnetic fields in
the accretion disc. Besides, the direction of the jet appears
to change with time (see, for example, Britzen et al. 2009;
Rastorgueva et al. 2011). Therefore, the coincidence of the
direction of the radio jet and the polarization plane does not
mean that the electrical vector of the polarized radiation E is
perpendicular to the accretion disc. Of course, one can intro-
duce the angle between the radio jet and the electric field E
as an additional characteristic of AGNs. But, strictly speak-
ing, this angle is not necessarily related to the real inclination
of E with respect to the accretion disc. As a last resort, this
angle may be considered in a probabilistic sense.

The existence of many cases when the position angle of
radiation has intermediate value between parallel or perpen-
dicular to the direction of the radio jet also demonstrates that
real direction of E does not correlate with the jet direction.
As a result, we conclude that the models describing the polar-
ization behavior in AGNs should not assume that the radio
jets are perpendicular to accretion discs; instead, the explicit
dependence on the inclination angle i of the accretion disc
needs to be taken into account.

It is commonly accepted (see, for example, Blaes, 2003)
that the accretion discs are magnetized. The existence of ra-
dio jets is usually associated with strong magnetic fields in

centers of AGNs and quasars. Numerous theoretical mod-
els demonstrate the power-law dependence of the magnetic
field distribution in an accretion disc. Usually accretion discs
are considered as geometrically thin slabs with Thomson opti-
cally depth τ ≫ 1. The scattering-induced linear polarization
can be as high as ∼ 12% for edge-on viewing (Chandrasekhar
1960). However, in the real situation of a magnetized accre-
tion disc, the degree of polarization p will be reduced due to
Faraday rotation of the radiation polarization plane while a
free photon travels between the consequent scatterings. Re-
call that the angle of Faraday rotation Ψ at the Thomson
optical length τ is equal to

Ψ =
1

2
δτ cosΘ, δ = 0.8λ2B, (1)

where the wavelength of radiation λ is measured in microns
and the magnetic field B is measured in Gauss. The angle Θ
is the angle between the direction of light propagation n and
the direction of B.

The decrease of the polarization degree due to Faraday ro-
tation occurs as a result of summation of chaotic angles of
rotations in the multiple scattering process. This process has
been considered in many papers (for example, Silant’ev 1994;
Agol & Blaes 1996; Gnedin & Silant’ev 1997). Clearly, the
value Ψ ∼ 1 at the mean free path τ ∼ 1 can decrease con-
siderably the standard Chandrasekhar’s polarization degree.
Besides, the dependence of Ψ on the wavelength and mag-
netic field gives rise to characteristic dependencies of the po-
larization degree p and the position angle χ of radiation on
λ, which allows us to estimate the strength and direction of
the magnetic field in the scattering region.

Below we develop a new model for the formation of polar-
ization in AGNs, which does not use the assumption of the
position angle of observed radiation being correlated with the
direction of the radio jet. We hypothesize that the observed
polarization is due to intrinsic polarization of radiation out-
going from the magnetized optically thick accretion disc (the
Milne problem in magnetized atmosphere). In our model, the
characteristic features of polarization mentioned above are ex-
plained by the topology of the magnetic field in the accretion
disc, when the Faraday rotation of the polarization plane is
taken into account. Primarily, we suppose that the whole ra-
diating surface of the magnetized accretion disc is observed,
i.e. that the inclination angle i is such that the obscuring
torus (if it really exists) does not intersect the line of sight.
We also consider the case when we observe only a part of
total surface of accretion disc, i.e. we take into account the
obscuring torus. It appears that our model and the usual pure
geometrical model of Smith et al. (2002, 2004, 2005), which
takes into account single scattering of BLR-photons in nearby
clouds, are two competing explanations for the polarization
properties of the accretion discs.

All actually observed polarization degrees pc are much
smaller than the value in the Milne problem in non-
magnetized atmosphere at the same inclination angle. Re-
call that the Milne problem deals with the radiative transfer
in an optically thick atmosphere, where the sources of ther-
mal radiation are located far from the surface, at depth with
τ ≫ 1. In optically thick accretion discs the main source
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of thermal radiation is found at the midplane of the disc,
and the outgoing radiation is described by the solution of the
Milne problem. The mean value of pc in the atmosphere with
pure electron scattering is equal to 3.1%, and the maximum
value is 11.7%. The outgoing radiation in case of an absorb-
ing atmosphere has a much greater polarization, because the
intensity peaks near the surface. In this case, most of polar-
ization arises analogously to the process of a single scattering
of a radiation beam near the surface. For the Milne problem
in spectral lines, the value pline is less than in continuum (see,
for example, Ivanov et al. 1997).

For the accretion disc models, the main challenge is to de-
termine the scale length of the disc - i.e. the radius where the
disc temperature matches the rest frame wavelength of the
monitoring band. A semi-empirical method for measuring the
disc scale length has been developed (Kochanek et al. 2006;
Morgan et al. 2006, 2008; Poindexter, Morgan & Kochanek
2008). These authors used microlensing variability, observed
for gravitationally lensed quasars, to find the accretion disc
scale length for a given observed (or rest-frame) wavelength.
Clearly, such a scaling has to be consistent with the most
popular accretion disc model of Shakura & Sunyaev (1973).
As a result, Poindexter et al. (2008) presented the following
relation for the scale length of a standard geometrically thin
accretion disc:

Rλ = 109.987
(

λrest

µm

)4/3(
MBH

M⊙

)2/3(
Lbol

εLEdd

)1/3

cm. (2)

The wavelength dependence, Rλ ∼ λ
4/3
rest, corresponds to

the typical (for Shakura–Sunyaev disc model) effective tem-
perature: Te = Tin(R/Rin)

−3/4, where Rin is the inner radius
of an accretion disc and Tin is the temperature corresponding
to that radius. Here LEdd = 1.3 · 1038(MBH/M⊙) erg s−1 is
the Eddington luminosity, MBH is the black hole mass, ε is
the rest-mass radiation conversion efficiency, and Lbol is the
bolometric luminosity.

Numerous papers provided measurements of BLR sizes for
AGNs (see, for example, Peterson et al. 1994, 2004; Wu et
al. 2004; Bentz et al. 2009; Shen & Loeb 2010; Greene et al.
2010). Kaspi et al. (2007) have compiled the observational
data for Seyfert galaxies and nearby quasars with black hole
masses estimated with the reverberation mapping technique.

Most recently Shen & Loeb (2010) have suggested an empir-
ical analytic formula for RBLR that is very useful for various
estimates and applications:

RBLR = 2.1 · 1017M1/2
8

(

Lbol

LEdd

)1/2

. (3)

Here M8 = MBH/108M⊙. We will use this formula in our
further calculations.

Below we estimate the magnetic field strength in BLR of
AGN and QSO from the data from the spectropolarimetric
atlas presented by Smith et al. (2002). The λ – dependence of
the observed polarization degree and position angle in Hα line
is very complicated. It appears to be produced by large-scale
chaotic motions in the accretion disc.

2 Basic equations

To estimate the degree of polarization p and the position an-
gle χ of radiation escaping from the magnetized atmosphere
we use the standard radiative transfer equations for Stokes
parameters I,Q and U (see, for example, Silant’ev 1994; Dol-
ginov, Gnedin & Silant’ev 1995; Silant’ev 2002, 2005). This
system of equations has a fairly complicated form. Numeri-
cal solutions have so far been obtained only for the case when
magnetic field B is parallel to the normal N to an atmo-
sphere (see Silant’ev 1994; Agol and Blaes 1996; Shternin et
al. 2003).
For our purpose, however, it is sufficient to use a simple

asymptotic theory, which can be presented in an analytical
form for an arbitrary direction of the magnetic field in the at-
mosphere (Silant’ev 2002, 2005; Silant’ev et al. 2009). In this
approximation, the intensity of the radiation I(z, µ) obeys a
usual transfer equation with the Rayleigh phase function, and
the system of equations for parameters Q and U can be pre-
sented in the following form:

µ
d

dz
(−Q+ iU) =

= −α[1 + C + i(1− q)δ cosΘ](−Q+ iU) +BQ(z, µ), (4)

where BQ(z, µ) describes the source function for parameter
Q due to the contribution of intensity scattering in non-
magnetized atmosphere (in this case BU ≡ 0), µ = nN is
the cosine of the angle between the direction of light propa-
gation n and the normal N to the atmosphere, α is the total
extinction factor due to Thomson scattering and pure absorp-
tion on dust particles, the value q = σa/(σa + σs) (Silant’ev
et al., 2009) is the degree of absorption, C describes the addi-
tional extinction of polarized radiation due to the fluctuating
component B′ of the magnetic field in the atmosphere (see
below). Eq.(4) is valid in the limit of large Faraday rotation
parameter δ ≥ 1.
A solution of Eq.(4) results in the following expression for

parameters Q(n,B) and U(n,B) for the radiation escaping
from the magnetized atmosphere:

−Q(n,B) + iU(n,B) =

= −
∫ ∞

0

dτ

µ
BQ(τ, µ) exp

(

−[1 + C + i(1− q)δ cosΘ]
τ

µ

)

(5)
At δ ≥ 1, the first non-zero term of integrating by parts of
Eq.(5) gives rise to the asymptotic expression which has an
analytical form and can be used for an arbitrary direction of
the magnetic field. For example, for the case BQ(0, µ) 6= 0
we have:

Q(n,B) ≃ BQ(0, µ)(1 + C)

(1 + C)2 + (1− q)2δ2 cos2 Θ
,

U(n,B) ≃ BQ(0, µ)(1 − q)δ cosΘ

(1 + C)2 + (1− q)2δ2 cos2 Θ
. (6)
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For the Milne problem in absorbing atmosphere, a more
sophisticated theory (see Silant’ev 1994, 2002) gives rise to
the following expressions:

Q(n,B) ≃ I(0, µ) p(1)(µ)(1 − sµ)

(1 + C − sµ)2 + (1− q)2δ2 cos2 Θ
,

U(n,B)

Q(n,B)
≃ (1 − q)δ cosΘ

1 + C − sµ
. (7)

Here p(1)(µ) is the polarization degree of outgoing radiation,
which takes into account only the last scattering before es-
caping the atmosphere. The value p(1)(µ) gives the main
contribution to p(µ) - exact polarization degree of outgoing
radiation for a non-magnetized atmosphere. For this reason,
below we use the value p(µ) instead of p(1)(µ), which for q = 0
is presented in Chandrasekhar (1960), and for the absorbing
atmosphere in Silant’ev (1980). The value s is the root of the
characteristic equation, tabulated by Silant’ev (1980). If the
degree of the true absorption is small (q ≪ 1), the parameter
s =

√
3q.

First, let us consider the case when the whole surface of a
radiating accretion disc is observed. In this case, the Stokes
polarization parameters of continuum radiation Qc(ϕ) and
Uc(ϕ) must be averaged over all azimuthal angles ϕ, charac-
terizing the position of a radiating surface element on a circu-
lar orbit in the accretion disc (−π ≤ ϕ ≤ π). The normal N
and the direction to an observer n are the same for all parts
of the accretion disc surface. Therefore, the reference frame
of the accretion disc is common to all parameters Qc(ϕ) and
Uc(ϕ) of radiation escaping from the disc. In this case, the
averaging procedure consists of integrating these parameters
over the azimuthal angle ϕ. Note, that cosΘ depends on ϕ
and the integral over ϕ can be taken analytically only over
the interval (−π, π). As a result, the observed values for the
degree of polarization and the position angle can be derived
analytically. Silant’ev et al. (2009) presented the detailed
description of the behavior of these quantities for continuum
radiation. The degree of linear polarization of continuum pc
and the position angle χc for an accretion disc can be ex-
pressed in the analytical form:

pc(B, µ) =
pc(µ)(1 − sµ)

[g4c + 2g2c(a
2 + b2) + (a2 − b2)2]

1/4
, (8)

tan 2χc =
Uc

Qc
=

=
2agc

(pc(µ)(1 − sµ)/pc(B, µ))
2
+ (g2c + b2 − a2)

. (9)

Here µ = cos i, where i is the inclination angle (angle between
the light propagation direction n and the normal N to the
accretion disc). The degree of polarization pc(µ) corresponds
to a non-magnetized accretion disc. The value of pc(µ) for the
continuum radiation presents the classical solution of Milne
problem (Chandrasekhar 1960) with p(0) = 11.7%. The value
of the position angle χc = 0 corresponds to oscillations of the
wave electric vector perpendicular to the plane (nN).
For spectral lines in isotropic medium the value pline(µ) de-

pends on the specific quantum numbers of the transitions (see,

for example, Chandrasekhar 1960) and on the shape of the
line. For a dipole type transition and the Doppler line shape,
pline(µ) in the atmosphere with pure electron scattering has
the same functional form as Chandrasekhar value pc(µ), with
maximum value of 9.44% instead of 11.71% (see Ivanov et al.
1997). In isotropic medium we have to average an atom over
all orientations. For such medium the transfer equation coin-
cides with the usual system for Rayleigh scattering with an
additional term, which describes unpolarized radiation. Such
average naturally occurs due to usual thermal motions. Con-
sidering various quantum numbers for Hα line, we see that
this additional term is larger than the Rayleigh scattering
term (see Chandrasekhar 1960), and the maximum degree of
polarization becomes ∼ 3% instead of 9.44%. Therefore, the
observed polarization can be explained if the atmosphere also
has pure absorption of Hα line (the existence of dust). In ab-
sorbing atmosphere the polarization degree pline can be larger
than that in the non-absorbing atmosphere.
Broad Hα lines presented in atlas Smith et al. (2002) have

very high widths, laying in the interval 50 – 200 angstroms. In
such situations the total line (sum of 5 sub levels) can be de-
scribed by one absorption coefficient with the Doppler shape
(see, for example, Varshalovich, Ivanchik & Babkovskaya
2006; Lekht et al. 2008). Our technique takes into account
the Faraday rotation during propagation of polarized radia-
tion after the last scattering before escaping from the atmo-
sphere. The region of broad-line emission is too far from the
center of an accretion disc and has low magnetic fields. For
this reason, one does not need to take into account the known
Zeeman effect.
The parameter

gc = 1 + C − sµ, (10)

where the negative term (−sµ) arises in the Milne problem in
absorbing atmosphere (see Chandrasekhar 1960). For small
degree of true absorption q = σabsorb/(σscattering+σabsorb) ≪
1 the factor s ≃ √

3q. The regions of the line emission are
different from those of continuum radiation. Usually one as-
sumes that the parameter gc ≃ 1 in most of areas of the
accretion disc. To explain polarization of the line emission,
we have to consider that this emission escapes from optically
thick clouds with its own dimensionless parameters gline.
The dimensionless parameters a and b describe the Faraday

depolarization of radiation:

a = 0.8λ2µBz , b = 0.8λ2
√

1− µ2B⊥, (11)

where Bz ≡ B‖ is the component of the magnetic field
directed perpendicular to the accretion disc surface, and

B⊥ =
√

B2
ρ +B2

ϕ is the magnetic field in the accretion disc

plane. The component B⊥ is perpendicular to B‖. Due to
axial symmetry, the inclination angle ϕ∗ (Bϕ/Bρ = tanϕ∗) is
constant along a circular orbit. The value 0.8λ2B is numer-
ically equal to the Faraday rotation angle at the Thomson
optical depth of τ = 2, if the polarized radiation propagates
along the magnetic field direction. Here and in what follows,
we take magnetic field in Gauss and wavelengths in microns.
The dimensionless parameter C describes the real situa-

tion in a turbulent magnetized plasma and characterizes a
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new effect – additional extinction of the polarized radiation
(parameters Q and U) due to incoherence of the Faraday ro-
tation in small-scale turbulent eddies (see Silant’ev 2005):

C = 0.64τλ4〈(B′)
2〉fB

3
, (12)

where τ is the Thomson optical depth of a turbulent eddy
(τ ≪ 1), 〈(B′)2〉 is the mean value of fluctuations of the
magnetic field, and fB ≈ 1 is a parameter describing the
integrated correlation of the B′ values at two-closely spaced
points in the accretion disc.
It should be noted that the diffusion of radiation in the

inner regions of the accretion disc also produces depolariza-
tion due to multiple scatterings. Presence of magnetic field
and, therefore, the Faraday rotation effect, only increases the
depolarization process. As a result, the polarized radiation
emitted by a plane-parallel atmosphere at a specific inclina-
tion angle is considerably lower as compared to the classical
Chandrasekhar–Sobolev value (see, for example, Gnedin &
Silant’ev 1997). But the main feature of Faraday depolar-
ization is the explicit wavelength dependence for both the
polarization degree and the position angle.
It is interesting to note that at a = b the polarization degree

pc(B, µ) takes a maximum value (the term (a2 − b2)2 is zero
in expression (8)). This effect takes place due to the opposite
Faraday rotations from magnetic fields B‖ and B⊥ in some
places along an orbit.
All formulas presented above show that polarimetric ob-

servations allow us to derive the magnetic field strength and
its topology in the BLR region, where the polarized radiation
escapes the accretion disc. Using various models connecting
magnetic field BH at the black hole horizon with the mag-
netic field Bms at the first stable orbit Rms nearest to the
centre of the system, and then using the power law depen-
dence of the magnetic field from Rms up to RBLR, we can
estimate the magnetic field strength and the parameters that
control it, such as the spin of the black hole a∗, the con-
version efficiency of kinetic into radiative energy ε, and the
magnetization parameter k = Pmagn/Pgas (Pmagn and Pgas

are magnetic pressure and gas pressure, in accreting plasma,
respectively).
Frequently one uses simple formulas for pc and χc, corre-

sponding to particular cases of pure normal B‖ and of pure
perpendicular B⊥:

pc(B‖, µ) =
pc(µ)(1 − sµ)
√

g2c + a2
, tan 2χc =

a

gc
, (13)

pc(B⊥, µ) =
pc(µ)(1 − sµ)
√

g2c + b2
, χc ≡ 0. (14)

In the latter case χc ≡ 0 due to the axial symmetry of the
problem.
Now let us consider the case when the radiating gas along

a particular orbit in the accretion disc is partly obscured by
some dust cloud (an obscuring torus). Clearly, for pure nor-
mal magnetic field B ‖ N, the unobscured part of the orbit
has the same polarization degree pc(B‖) and the position an-
gle χc(B‖) as in the case of completely unobscured orbit (see
Eq. (13)). If the magnetic field is toroidal Bϕ, i.e. is tangent
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Figure 1: Dependence of pc(Bϕ)/pc(µ)(1− sµ) on ϕ0.

to the orbit, we can derive the following analytical expres-
sions:

pc(Bϕ) =
pc(µ)(1 − sµ)
√

g2c + b2ϕ

fQ(ϕ0), χc ≡ 0,

fQ(ϕ0) =
1

ϕ0
arctan





√

g2c + b2ϕ

gc
tanϕ0



. (15)

Here the parameter bϕ = 0.8λ2Bϕ

√

1− µ2, the angle ϕ0

describes the unobscured part of the orbit (we see the or-
bit within azimuthal angles −ϕ0 ≤ ϕ ≤ ϕ0). At ϕ0 = π
(complete orbit), Eq.(15) coincides with Eq.(14). Eq.(15) for
fQ(ϕ0) is valid for ϕ0 ≤ π/2. For π/2 ≤ ϕ0 ≤ π one can use
the relation fQ(ϕ0) = [πfQ(π/2) − (π − ϕ0)fQ(π − ϕ0)]/ϕ0.
A more detailed derivation of these formulas is given below,
in subsection 2.2 (for a spectral line case).
Dependence of pc(Bϕ)/pc(µ)(1 − sµ) on ϕ0 is presented

in Fig.1 for values gc = 1, bϕ = 1, 2, 3, 4, 5, and s = 0. It is
interesting that for ϕ0 = π/2 (half of the full orbit is observed)
the polarization degree coincides with the result (14) for the
fully unobscured orbit (fQ(π/2) = fQ(π) = 1).

2.1 The case of a spectral emission line

In the catalog of Smith et al. (2002) the polarimetric data
both in the continuum and in the Hα emission line are pre-
sented. In our model of a rotating accretion disc (with the
Keplerian velocity uk) one part (the right side) of the disc
(ϕ = 0 ÷ π) corresponds to motion from an observer and
the second part (the left side) moves towards the observer
(ϕ = π÷2π). According to the Doppler formula, wavelengths
of radiation from the first part are greater than the central
value λ0, and from the second part are smaller than λ0. The
value λ0 = (1 + z)λrest, where z is redshift parameter of the
system and λrest = 0.6563µm is the rest frame wavelength of
the Hα line.
Here we restrict ourselves to a specific case of a spectral line

with the Doppler shape. The line is described by following
normalized shape function:
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φ(λ) =
1√

π∆λT
exp

[

−
(

λ− λ0

∆λT

)2
]

. (16)

As in the previous case of continuum radiation, we assume
that the X-axis is perpendicular to plane (nN). The Ke-
plerian velocity uk corresponds to the radius RBLR: uk =
√

GMBH/RBLR, where G is gravitation constant. The usual
Doppler line width ∆λT = (uturb/c)λ0 is mainly due to
chaotic turbulent velocities. The displacement of the line
centre for radiation emitted from the part of the disc with
the azimuthal angle ϕ is (uk/c)λ0

√

1− µ2 sinϕ. Thus, the
normalized shape function of radiation emitted from ϕ-part
of the orbit has the form:

φ(λ, ϕ) =

=
1√

π∆λT
exp



−
(

λ− λ0 − uk

c λ0

√

1− µ2 sinϕ

∆λT

)2


.

(17)
Observed radiation flux Fλ from a surface element dS of the

ring with the radius RBLR is proportional to dϕ. The flux
from the total radiating circular orbit can be obtained by
integration over all azimuthal angles ϕ. If we suppose that
all sources are distributed uniformly along the orbit, this flux
is described by the following expression:

F (λ) = dSµI(µ)
1

2π

∫ π

−π

dϕφ(λ, ϕ). (18)

Observed fluxes of linearly polarized radiation differ from the
continuum radiation case by an additional factor φ(λ, ϕ):

FQ(λ) =

= dSµI(µ)pline(µ)(1 − sµ)
1

2π

∫ π

−π

dϕ
φ(λ, ϕ)gline

g2line + δ2 cos2 Θ
,

(19)

FU (λ) =

= dSµI(µ)pline(µ)(1−sµ)
1

2π

∫ π

−π

dϕ
φ(λ, ϕ)δ cosΘ

g2line + δ2 cos2 Θ
. (20)

Here Θ is the angle between the magnetic field B and the
light propagation direction n, I(µ) is total intensity of the
spectral line escaping from the surface dS. The azimuthal
angle ϕ = 0 corresponds to a surface element dS perpendic-
ular to the plane (nN). Faraday depolarization term δ cosΘ
has the form:

δ cosΘ = 0.8λ2Bn = a+ b cos(ϕ+ ϕ∗) =

= a+ bρ cosϕ− bϕ sinϕ, (21)

where the parameters bρ and bϕ are:

bρ = 0.8λ2
√

1− µ2Bρ ≡ b cosϕ∗,

bϕ = 0.8λ2
√

1− µ2Bϕ ≡ b sinϕ∗. (22)

Here angle ϕ∗ is the angle between B⊥ and the radius-vector
ρ, lying in the disc plane. The sign minus before bϕ sinϕ

corresponds to the right-hand screw rotation of the accretion
disc with the frozen magnetic field Bϕ directed along the
rotation velocity. If the rotation of the disc is opposite, we
have to change bϕ to -bϕ.
If we take the factor φ(λ, ϕ) = 1 and gline → gc, all the

formulas will describe the case of the continuum radiation. In
this case the integrals over ϕ can be evaluated analytically (for
the combination −FQ + iFU the ϕ-integral can be evaluated
by the complex residue method, and we obtain Eqs.(8) and
(9)). Note, that these formulas are approximate, they take
into account only the last scattering before the escape from
the atmosphere. This is a rather satisfactory approximation
(see Silant’ev 2002). It describes the main contribution to the
polarization. The main merit of these analytical formulas is
that they describe the polarization for any direction of the
magnetic field. For our purpose this approach is sufficient.
We note that ϕ-integration in Eqs.(18) – (20) gives rise to

rather low polarization effects. For this reason they hardly
can be used for describing the polarization data presented in
the atlas (Smith et al. 2002). Below we present two models
that are more acceptable for explaining the data.

2.2 The model of Hα line polarization with

parameters p and χ, averaged over the

right and left parts of an orbit

It is clear from Eqs.(18), (19) and (20) that the right parts
of circular orbits mostly contribute to gaussian shape lines at
wavelengths λ > λ0, and the left parts mostly contribute to
λ < λ0. Qualitatively, we can consider that these contribu-
tions are equivalent to sum of two gaussian shaped polarized
lines. We assume that the effective polarizations and position
angles of these lines correspond to mean values from the right
side (pright, χright) and the left side (pleft, χleft) of the orbit.
These values follow from Eqs.(19) and (20) if we take there
the factor φ(λ, ϕ) = 1.
Unlike the situation described by Eqs.(19) and (20), in this

model we assume that a part of the accretion disc is invis-
ible due to obscuring torus. The right part corresponds to
integration over ϕ = 0 ÷ ϕ0, and the left part corresponds
to integration in the interval ϕ = 0 ÷ −ϕ0. Here the angle
ϕ0 characterizes the boundary azimuthal angle for the visible
part of the BLR orbit. The mean values 〈Q〉 and 〈U〉 for
visible right part are described by the integrals:

〈Qright(n,B)〉 =

= Ilinepline(µ)(1 − sµ)
1

ϕ0

∫ ϕ0

0

dϕ
gline

g2line + δ2 cos2 Θ
,

〈Uright(n,B)〉 =

= Ilinepline(µ)(1 − sµ)
1

ϕ0

∫ ϕ0

0

dϕ
δ cosΘ

g2line + δ2 cos2 Θ
, (23)

where δ cosΘ is given in Eqs. (21) and (22). The correspond-
ing mean values for the left part of the BLR orbit are given
by integrals in the interval (0,−ϕ0).
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These integrals cannot be evaluated analytically in a gen-
eral case. We present below the cases (a 6= 0, bρ = 0, bϕ = 0)
and (a = 0, bρ = 0, bϕ 6= 0). The first case corresponds to the
magnetic field B‖ parallel to normal N. Clearly, in this case
the polarization degree and the position angle are the same
in the right and left parts of the orbit, and can be obtained
from Eqs.(8) and (9) (see Eq.(13)).
The second case corresponds to a toroidal magnetic field

B⊥, laying in the plane of the accretion disc and tangen-
tial to the radiating circular orbit. In this case the Faraday
rotations are opposite in the right and the left parts of the
orbit. This gives the same value for the polarization degree
pright = pleft and the opposite values for the position angles
χright = −χleft. We present below the results for the right
part of the orbit:

〈Qright〉 =
Irightpline(µ)(1 − sµ)

√

g2line + b2ϕ

fQ(ϕ0),

fQ(ϕ0) =
1

ϕ0
arctan





√

g2line + b2ϕ

gline
tanϕ0



 , (24)

〈Uright〉 =
Irightpline(µ)(1 − sµ)

√

g2line + b2ϕ

fU (ϕ0).

fU (ϕ0) =

− 1

2ϕ0
ln

∣

∣

∣

∣

∣

∣

√

g2line + b2ϕ + bϕ
√

g2line + b2ϕ − bϕ
·

√

g2line + b2ϕ − bϕ cosϕ0
√

g2line + b2ϕ + bϕ cosϕ0

∣

∣

∣

∣

∣

∣

. (25)

The expression for fQ is valid only for ϕ0 ≤ π/2, and the
formula for fU is valid for total interval 0 ≤ ϕ0 ≤ π. The
integrands in Eqs. (23) are symmetric relative to the angle
ϕ0 = π/2. This gives equalities fQ(π/2) = fQ(π) = 1 and
fU (π/2) = fU (π). Due to the aforementioned symmetry, we
can calculate values fQ and fU for π/2 ≤ ϕ0 ≤ π from the
values for interval 0 ≤ ϕ0 ≤ π/2: fQ,U (ϕ0) = [fQ,U (π)π −
fQ,U (π − ϕ0)(π − ϕ0)]/ϕ0.
It is interesting to note that fQ(ϕ0) monotonically grows

from fQ(π/2) = 1 to fQ =
√

g2line + b2ϕ/gline ≥ 1 as ϕ0 → 0.

The mean polarization degree pright(Bϕ) and the position
angle χright(Bϕ) can be derived from the following expres-
sions:

pright(Bϕ) =
pline(µ)(1 − sµ)
√

g2line + b2ϕ

√

f2
Q + f2

U ,

tan 2χright =
fU
fQ

. (26)

In Fig.2 we present the values pright(Bϕ)/p(µ)(1 − sµ) and
|χright| at bϕ = 1, 2, 3, 4, 5 and gline = 1, s = 0. Comparison
of pright(Bϕ) with pc(Bϕ) in Fig.1 shows that pright > pc.
This is evident, because pc corresponds to the sum of radia-
tion from the right and the left parts of the observed areas
(in this sum U = 0), and pright corresponds to the half of this
area, where parameter U 6= 0. It means that in the wings of
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Figure 2: The values pright(Bϕ)/p(µ)(1 − sµ) and |χright|
(dotted lines) at bϕ = 1, 2, 3, 4, 5 and gline = 1, s = 0.

the emitting lines the polarization is greater than in nearby
continuum.
Let us consider the behavior of the polarization degree

pline(Bϕ, λ) and the position angle χline(Bϕ, λ) inside the
broad spectral line in more detail, using our simple model
of two equal gaussian lines with the equal right and left dis-
placements from the central wavelength λ0. We label the
intensities of these lines as Iright and Ileft. According to
Eqs.(24) and (25), we present the total observed Stokes pa-
rameters I,Q and U in the form:

I(µ) = Iright(λ) + Ileft(λ), (27)

Q(Bϕ, λ) = (Iright(λ) + Ileft(λ))
pline(µ)(1 − sµ)
√

g2line + b2ϕ

fQ, (28)

U(Bϕ, λ) = (Iright(λ)− Ileft(λ))
pline(µ)(1 − sµ)
√

g2line + b2ϕ

fU . (29)

Recall that due to the displacement of the centers of the right
and left lines with the gaussian shape the intensities Iright(λ)
and Ileft(λ) are different at a particular considered wave-
length inside the full line. Only at the central wavelength
λ0 these intensities are equal due to the axial symmetry of
our model.
Using Eqs.(27), (28) and (29), we obtain the following ex-

pressions for the total observed polarization degree p(Bϕ, λ)
and the position angle χ(Bϕ, λ):

p(Bϕ, λ) =
pline(µ)(1− sµ)fQ
√

g2line + b2ϕ(µ)
×

×

√

1 +
(Iright − Ileft)2

(Iright + Ileft)2

(

fU
fQ

)2

, (30)

tan 2χ(Bϕ, λ) =
Iright − Ileft
Iright + Ileft

· fU
fQ

. (31)
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Figure 3: The schematic illustration of the model of two emitting clouds.

Taking in Eqs.(30) and (31) Ileft = 0, we revert to Eq.(26)
for the right part of the orbit.

The total rotation of the position angle inside the line width
is equal to the difference of ∆χ ≡ χright −χleft, where χright

corresponds to the right-hand wing of line with Iright ≫ Ileft.
The χleft corresponds to the left-hand wing with Ileft ≫
Iright. As a result, we have:

|∆χ| = arctan

∣

∣

∣

∣

fU
fQ

∣

∣

∣

∣

. (32)

Note that the difference ∆χ does not depend on the choice
of the observer’s reference frame. A non-zero value of ∆χ is
observed in many objects presented in the catalog of Smith
et al. (2002) and is due to two reasons – the presence of the
magnetic field Bϕ and the Keplerian rotation of the mag-
netized accretion disc. Fig.2 shows that ∆χ depends on
the parameter bϕ and the angle ϕ0. Thus, for bϕ = 5 and
ϕ0 ≃ (140◦ − 160◦) the value |∆χ| ≃ 60◦.

Now let us discuss shortly the polarization degree p inside
the broad line. First of all, we notice that in the centre of
the line λ = λ0 the polarization is less than in the wings (c.f.
Eq.(30) with Iright = Ileft). The polarization grows with the
departure from λ0. This behavior of pline(λ) is observed in
many objects from the catalog of Smith et al.(2002). Ac-
cording to Eq.(30), the ratio of pwing(Bϕ, λ) to pcenter(Bϕ, λ)
becomes

pwing(Bϕ, λ)

pcentre(Bϕ, λ)
=
√

1 + (tan |∆χ|)2. (33)

For ∆χ = 60◦ this ratio is equal to 2.

Clearly, it is not possible to explain all details of p and χ
in the our model of the sum of two spectral lines. But, above
considerations tell us that the main characteristic features can
be explained.

2.3 The model of Hα line as two emitting

compact clouds located in the right and

left part of the orbit

The spectra of Hα lines in the atlas of Smith et al.(2002) for
many objects have sufficiently complicated structure – the
existence of separate peaks and asymmetric shapes. There
are only a few objects with symmetric shapes. They have
comparatively small widths as compared to other, more com-
plicated spectra.
A line with a complicated shape frequently can be approx-

imated as a sum of two or more lines with gaussian shapes.
For this reason we present the model of two compact opti-
cally thick clouds located in the opposite parts of an orbit
in the accretion disc (Fig.3). The advantage of this model
compared with the previous one is that we can take into ac-
count all the depolarizing Faraday parameters a, bϕ and bρ in
a simple analytical form.
Let us take the first cloud in the right part of the orbit,

characterized by the azimuthal angle ϕ, and the second cloud
in the left part, characterized by -ϕ. If it is necessary, loca-
tions of the emitting clouds can be chosen at arbitrary angles
along the orbit. Our choice is the simplest for consideration.
As usually, we write the Stokes parameters in the coordinate
system with X-axis being perpendicular to the plane (nN),
where the formulas have the simplest form. Further we will
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use the observed polarization degree p and the total differ-
ence of the position angles between right and left parts of the
spectral line ∆χ, which do not depend on the choice of the
reference frame. We also include in our formulas the contri-
bution of the continuum radiation (Ic, Qc, Uc) in the region
of spectral line. Then, the observed Stokes parameters are:

I = Ic + Iright + Ileft, ξ =
Iright
Ileft

, (34)

Q = Qc +
Irightpline(µ)(1− sµ)gline

A+
+

+
Ileftpline(µ)(1− sµ)gline

A−
, (35)

U = Uc +
Irightpline(µ)(1 − sµ)(a+ bϕ)

A+
+

+
Ileftpline(µ)(1 − sµ)(a− bϕ)

A−
, (36)

A+ = g2line + (a+ bϕ)
2,

A− = g2line + (a− bϕ)
2 (37)

The explicit formulas for Qc and Uc are as follows:

Qc =

√

r + (g2c + b2 − a2)√
2r

Icpc(µ)(1 − sµ),

Uc =

√

r − (g2c + b2 − a2)√
2r

Icpc(µ)(1 − sµ). (38)

Here r2 = (g2c+b2−a2)2+4a2g2c = g4c+2g2c(a
2+b2)+(a2−b2)2.

Introducing the notation ηc = pc(µ)(1 − sµ)/pc(B, µ), and
using expressions (8) and (9), we can present formulas for Qc

and Uc in a simpler form:

Qc =

√

√

√

√

1 +

√

1−
(

2agc
η2c

)2
Icpc(B, µ)√

2
→ Icpc(B, µ),

Uc =

√

√

√

√

1−

√

1−
(

2agc
η2c

)2
Icpc(B, µ)√

2
→ 0. (39)

The last expressions are valid in the limit (2agc)/η
2
c → 0.

In most sources from the catalog of Smith et al. (2002), the
intensity Ic is much smaller than Iright+Ileft. For these cases
one can neglect the contribution of the continuum radiation
and the formulas for pline and χline acquire fairly simple form:

tan 2χline =
Uline

Qline
=

a

gline
+

bϕ
gline

· 1− ξA+/A−

1 + ξA+/A−
, (40)

pline =
pline(µ)(1 − sµ)gline(1 + ξA+/A−)

(1 + ξ)A+
×

×
√

1 + (tan 2χline)2. (41)

In the right wing, where ξ ≃ 0, we have

tan 2χright =
a+ bϕ
gline

. (42)

For the left wing one finds the same expression with (−bϕ)
instead of bϕ. Using formula (42), we can obtain expression
for the difference of the position angles between the right and
left wings of the line:

∆χ = χright − χleft =

=
1

2

(

arctan
a+ bϕ
gline

− arctan
a− bϕ
gline

)

. (43)

For the polarization degree in the right wing we derive the
formula:

pright =
pline(µ)(1 − sµ)
√

g2line + (a+ bϕ)2
. (44)

Analogously, for the left wing one replaces bϕ with (−bϕ).

For the left wing the polarization degree is higher because
the Faraday depolarization parameter |a−bϕ| is lower than in
the right wing. If a = 0, the polarization degree pright = pleft
and χright = −χleft. Presence of the magnetic field B‖ (pa-
rameter a 6= 0) diminishes the polarization degree both in the
right and left wings of the line, and also diminishes the differ-
ence |∆χ| = |χright − χleft|. Besides, the functions pline(λ)
and χline(λ) become asymmetric relative to the center of the
line λ0 (if the intensities of lines Iright(λ) and Ileft(λ) are the
same gaussian functions).

It is interesting to compare the polarization degrees in the
wings and in the center of line. The general formula for ratio
pwing/pcenter is very complex and we consider only the case
a = 0, where this ratio reaches a maximum value. Taking
ξ = 1 for the center of the line and ξ = 0 for the line wing,
we obtain the following expression from the general formula
(41):

pwing

pcenter
=
√

g2line + b2ϕ. (45)

For bϕ = 5 and gline = 1 this ratio is equal to 5.1, i.e. is
considerably greater than the value from formula (33). It is
quite natural, because formula (33) describes the mean value
of the effect. Clearly, the averaging procedure diminishes the
effect. Physically this effect arises as a consequence of the
Faraday rotation of the polarization plane. In the center of
the line the rotations from the right and the left lines have
opposite directions and the parameter Qcenter reaches a lower
value than that in the line wing.

The most important conclusion from the theoretical consid-
eration of the structure of broad lines in AGN is the treatment
of the symmetry of the polarization degree pline(λ) as the re-
sult of the azimuthal magnetic field Bϕ. If the symmetry of
p(λ) is considerably broken, one can consider that Bϕ ∼ B‖,
or the intensities of the right and the left emitting clouds are
different.
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3 The magnetic field strength in a

broad line region of AGN

The standard Unified Sheme for AGN includes a central
source of continuum (accreting SMBH); a region close to the
outer radius of the accretion disc emitting broad emission
lines (broad line region – BLR); a dusty rotating ”torus” on
parsec scales; and gas emitting narrow emission lines on a
scale of tens to hundreds of parsecs, ionized through the open
cone defined by the torus edge (Antonucci & Miller 1985;
Krolik & Begelman 1988; Urry & Padovani 1995).
The main unknown is the mechanism for the generation of

the magnetic field during the process of accretion onto SMBH.
Li (2002), Wang et al. (2002, 2003), Zhang et al. (2005) have
studied the magnetic coupling process (MC) as an affective
mechanism for transforming the kinetic energy of accreting
gas into the magnetic energy. It is assumed that the disc
is stable, perfectly conducting and Keplerian. The magnetic
field on the black hole horizon is poloidal and varying as a
power law with the distance from the central region.
Since the magnetic field on the horizon BH is brought and

held by its surrounding magnetized matter of the accretion
disc, there must exist the relation between the magnetic field
strength near the BH horizon and the accretion rate Ṁ .
As a result, the magnetic field strength on the event horizon

RH = RG(1+
√

1− a2∗) is determined by the relation between
the magnetic energy and the accretion kinetic energy densities
(see Li 2002; Wang et al. 2002):

BH =

√

2kṀc

RH
=

(2kLbol/εc)
1/2

RG

[

1 +
√

1− a2∗

] . (46)

Here RG = GMBH/c2, the bolometric luminosity Lbol =
εṀc2, Ṁ is the accretion rate, c is the light velocity and
ε is the radiative efficiency calculated by numerical simu-
lations of Novikov & Thorne 1973, Krolik 2007, Shapiro
2007. The coefficient k presents the inverse plasma parameter
k = Pmagn/Pgas = 1/β, where Pgas and Pmagn are the gas
and the magnetic pressures, respectively. For the equiparti-
tion case β = 1 and k = 1.
Eq.(46) is easily transformed into:

BH = 6.3 · 108
(

M⊙

MBH

)1/2 (
klE
ε

)1/2
1

1 +
√

1− a2∗
, (47)

where lE = Lbol/LEdd and the Eddington luminosity LEdd =
1.3 · 1038 (MBH/M⊙).
The basic problem is the relation between the magnetic

fields strengths at the first stable circular orbit Rms and the
event horizon RH . The value of the radius Rms depends on
the radius RG and the spin a∗, and can be presented in a
form:

Rms = q(a∗)RG, (48)

where parameter q > 1. For example, for a Schwarzschild
black hole q = 6 and for the Kerr BH with the spin a∗ = 0.998
q = 1.22 (Murphy et al. 2009).

Reynolds, Garofalo & Begelman (2006) argued that the
plunging inflow can greatly enhance the trapping of large scale
magnetic field on the black hole. Blandford (1990) has shown
that the interaction of the large-scale magnetic field with the
event horizon of rotating black hole can enhance the trap-
ping of large-scale poloidal magnetic field on the horizon of
the black hole, compared with the inner accretion flow and
compared to the magnetic field strength derived from the re-
lation between magnetic energy and accretion kinetic energy
(Eq.(47)).
Recently Garofalo (2009) has showed that the dynamics of

the plunge region of a thin black hole accretion disc and mag-
netic flux trapping can enhance the strength of the magnetic
field threading the horizon by a significant factor. The results
of his calculations were presented in fig.7 of Garofalo paper.
It means that we obtain the following relation between the
magnetic field strength at the first stable orbit Bms and the
magnetic field strength at the event horizon of a black hole
BH :

BH = η(a∗)Bms. (49)

The coefficient η can be obtained from fig.7 of the paper by
Garofalo (2009). From this figure it follows that for a∗ = 0.5
the value is η = 5 and for a∗ = 0.0 and a∗ = 0.998 we have
η = 7.5.
Numerical simulations have been used to study magnetic

field generation in astrophysical objects. For example, the
existence of large-scale dynamos in magneto-convection un-
der the influence of shear and rotation has been studied by
Käpylä, Korpi & Brandenburg (2008). These authors have
shown that the saturation field strength reaches, practically,
the equipartition level B ≈ 0.7Beq, i.e. k ≈ 0.5. Taking into
account the shear flows can increase the magnetic field level.
It means that the magnetization parameter can be equal to
k ≈ 1.
We suggest that the magnetic field far inside in the accre-

tion disc, and, especially, in the Broad Line Region (BLR)
takes the toroidal form. Namely, the differential rotation in
the accretion disc leads to an increase of the azimuthal field
by winding up the poloidal field lines into the toroidal field
lines (Bonanno & Urpin 2007).
In astrophysical objects differential rotation is often asso-

ciated with magnetic fields of various strength and geometry.
If the poloidal field has a component parallel to the gradient
of the angular velocity, then differential rotation can stretch
toroidal field lines from the poloidal ones. In the presence of
the magnetic field, differential rotation can be a reason for
various MHD instabilities, especially if the field geometry is
complex.
Mayer & Pringle (2006) assumed that a dynamo process

generates a local poloidal field Bz in the accretion disc, and
the magnitude of the poloidal component is small: Bz ≪ B⊥.
Usually one assumes that regular dependence of the mag-

netic field on the radius R in the accretion disc exists from
the first stable orbit Rms, and that dependence has a power
law form:

B⊥(R) = Bms

(

Rms

R

)n

. (50)
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We assume two values for the parameter n. The value
n = 1 derives the toroidal topology of the magnetic field (see
Bonanno & Urpin 2007). The value n = 5/4 corresponds
to the accretion process with hot accretion flows (Medvedev
2000).
For pure toroidal topology of the magnetic field in the ac-

cretion disc we have the depolarization parameter a = 0, and
in this case Eqs.(8) and (9) for non-turbulent case (C = 0)
are transformed into Eq.(14). Recall that, according to def-
initions (11), magnetic field B(RBLR) can be determined, if
the parameter b is known from the observed polarization:

B(RBLR) =
b

0.8λ2
√

1− µ2
. (51)

This field can be related to Bms. In the case of a power-law
dependence (50) with n = 1, this relation becomes

B(RBLR) = Bms
Rms

RBLR
= 2.22 · 10−4

(

M9

lE

)1/2

q(a∗)Bms.

(52)
We used here Eq.(3) for determining RBLR. Note that M9 =
MBH/109M⊙. In this situation the depolarization parameter
b for Hα wavelength (λ = 0.6563µm) is:

b = 7.7
√

1− µ2q(a∗)

(

M9

lE

)1/2(
Bms

105G

)

. (53)

For hot accretion flows n = 5/4 and the depolarization pa-
rameter b becomes

b = 0.93
√

1− µ2

(

M9

lE

)5/8

q5/4(a∗)

(

Bms

105G

)

, (54)

where q(a∗) = Rms/RG and RG = GMBH/c2. The explicit
form of q(a∗) is given, for example, in Zhang et al. (2005).
Below we shall also consider the case of the equipartition

between the gas and the magnetic pressures, i.e. k ≈ 1.
Namely, the magnetic coupling process corresponds to this
case (Li 2002; Wang et al. 2003; Zhang et al. 2005; Ma,
Wang & Zuo 2006).
Using Eqs.(47) and (49), we transform relations (53) and

(54) into the following forms:

b = 1.53
√

1− µ2

√

k

ε

q(a∗)

η(a∗)(1 +
√

1− a2∗ )
, (55)

and for n = 5/4:

b = 0.19
√

1− µ2

(

M9

lE

)1/8

q1/4(a∗)

√

k

ε
×

× q(a∗)

η(a∗)(1 +
√

1− a2∗ )
. (56)

Eqs.(55) and (56) allow us to estimate the radiation effi-
ciency and therefore the rotation rate a∗ of an accreting black
holes. Below we use the spectropolarimetric atlas of AGNs
by Smith et al. (2002) for specific estimates.

4 Magnetic field strength of Akn 120

According to Smith et al. (2002) the mean polarization degree
in the continuum of Akn 120 is equal to pc ≃ 0.35%, and is
equal to ≃ 0.4% in the Hα line emission. We use here the
data obtained by Smith et al. (2002) in 1998 October. The
mean observed position angle have the same value for the
continuum and line emission χ ≃ 76◦. The inclination angle
i = 48◦, µ ≃ 0.67. Its value has been derived by Braatz &
Gugliucci (2008) from water maser observations. The central
black hole mass in Akn 120 is equal to MBH ≃ 107.74M⊙ (see
Peterson et al. 2004).
For the inclination angle i = 48◦ the polarization in the

continuum from the accretion disc without magnetic field is
expected at the level pc(µ) = 1.26% (Chandrasekhar 1960).
This value is higher than the observed polarization degree
and it means that the Faraday depolarization effect is really
acting. The Hα line spectrum shows the two-peak structure
and can be represented as sum of two intensities with gaus-
sian shapes. The difference of the positional angles ∆χ is
estimated to be between 70◦ and 80◦. The intensity of the
continuum radiation reaches ≈ 18% of the maximum line in-
tensity near the centre. The behaviour of polarization in the
continuum is very complex. It seems this behaviour occurs
due to the existence of large-scale turbulent curls along the
observed orbit. For that reason, it is more convenient to use
the continuum - subtracted spectrum of Akn 120, presented
in fig.24 of the mentioned Atlas by Smith et al. (2002).
We used formulas (31)–(37) to find the estimates for the pa-

rameters a, bϕ, pline(µ) and gline. Attempts to estimate these
parameters under the assumption pc(µ) ≃ pline(µ) were un-
successful. We propose that in the line radiating clouds there
is true absorption of radiation (the existence of dust parti-
cles). As it is known (see, for example, Silant’ev 1980), the
existence of absorption gives rise to a considerable increase
of polarization escaping from the optically thick atmosphere.
This effect is the consequence of absorption creating a peak
like form of escaping emission.

gc ≃ 1,
a

gline
≃ 0,

bϕ
gline

≃ 3.55,
pline(µ)

gline
≃ 4.07%. (57)

Introducing first three parameters in Eq.(8), we obtain gline ≃
0.975. The estimate gline = 0.975 = 1 + C − sµ gives the
relation between C and s. It means that the clouds are ab-
sorbing and the small scales are turbulent. The existence
of large scale turbulence in clouds directly follows from very
high line width. For the rest of radiation from the accretion
disc outside the compact clouds we assume that absorption
is absent and small scale turbulence is negligible (C ≈ 0).
From Eq.(57) it follows that pline ≃ 3.97% and bϕ ≃ 3.46.
The estimated value pline ≃ 3.97% corresponds to the case
when one takes into account the pure absorption of radiation
by dust particles existing into emitting clouds. From Eq.(11)
one can obtain an estimate of magnetic fields B‖ ≃ 0 G and
Bϕ ≃ 14 G.
In Fig.4 we present the observed intensity, polarization

degree and variation of the azimuthal angle χ, and our
model results. It is seen that the model curves practi-
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Figure 4: The comparison of observed (solid curves) and
model data (dot curves) for Akn 120

cally coincide with the observed values. The observed in-
tensity is approximated as sum of two gaussian intensities
from symmetrically located clouds. The Doppler widths of
these intensities are taken equal to ∆λT =70Å, the value
(uk/uturb) sinϕ

√

1− µ2 = 0.3, the ratio of maximum inten-
sities of gaussians is Ileft/Iright = 20/18. The centers of
gaussian curves coincide with the observed places in Fig.24 of
Smith et al. (2002).

The main problem is that the exact value of index n is un-
known and its value depends strongly on the model of the
accretion disc. Pariev, Blackman & Boldyrev (2003) suggest
the following interval of values of this index 1 ≤ n ≤ 2. The
value n = 1 corresponds to toroidal magnetic field (see Bo-
nanno & Urpin 2007).

To estimate the magnetic field strength at the last inner
circular orbit Bms we need to know the rotation rate of
the central supermassive black hole (parameter a∗). For a
Schwarzschild black hole with a∗ = 0 and q = 6 and for
the toroidal magnetic field (n = 1) we obtain from Eq.(49)
Bms = 14.5 · 103G. Now we can estimate the magnetic field
strength BH at the horizon of the central black hole using
the results of calculations by Garofalo (2009). He has cal-
culated the ratio of the horizon-threading magnetic field and
the magnetic field in the accretion disc as a function of the
black hole spin. According to this calculations, for a∗ = 0 the
ratio BH/Bms = 7.5 and BH = 10.7 · 104G.

For the spin value of a∗ = 0.5, ε = 0.081, q = 4.25 (Novikov
& Thorne 1973) we obtain Bms = 6.8 · 103G and BH = 3.4 ·
104G. At last, for a∗ = 0.998, q = 1.22, ε = 0.32 we have
Bms = 2.8 · 104G and BH = 14 · 104G.

Our results demonstrate that for a given value of the polar-
ization degree the magnetic field strength at the inner radius
rms (and therefore on the horizon radius) is stronger for a
Kerr black hole compared to Schwarzschild one. This result
means also that for black holes with the same magnetic field
strengths the degree of polarization for Kerr black holes is

larger than for Schwarzschild black holes (see Silant’ev et al.
2011).

5 Magnetic field strength of Mrk 6

According to Ho, Darling & Greene (2008), the mass of the
central black hole in Mrk 6 is log(MBH/M⊙) = 7.97 ± 0.5,
the ratio of the bolometric luminosity to the Eddington
value is log(Lbol/LEdd) = −1.72. The inclination angle is
i = 62◦.7, µ = 0.46 (Ho et al. 2008). It means that the stan-
dard (Sobolev–Chandrasekhar) magnitude of the polarization
degree is pc(µ) = 2.52%. The observed mean polarization has
been found at the level of pc = 0.90±0.03, p(Hα) = 0.85±0.04
(Smith et al. 2002). The most remarkable fact is the jump of
the mean position angle for two observational seasons of Feb
97 and Oct 98: ∆χ ≈ 25◦. It is interesting that the value
of the mean polarization remained the same. This jump oc-
curred over 1-2 years, which is too short a time for such a
large object as the accretion disc near the supermassive black
hole. Thus, this problem remains unsolved.
Let us return now to the analysis of the data in the Hα line.

First of all, we see that the polarization degrees in the right
and the left sides of the spectrum are practically equal - the
left side has pline ≃ 1.5%, and in the right side pline ≃ 1.4%.
From the theoretical considerations in section 2, it is clear
that such a symmetrical form of the polarization degree can
occur if the magnetic field B‖ is much less than the azimuthal
magnetic field Bϕ. A small decrease of polarization in the
right-hand part is due to the reason that small value of the B‖

component, directed to an observer, coincides with direction
of Bϕ. In this situation the polarization of radiation slightly
decreases compared to the left-hand part of the orbit, where
the aforementioned magnetic fields are directed opposite to
each other. Considering polarization near the line center,
we assume pline(centre) ≃ 0.5%. We also assume that in the
center of the line the intensity from the left part of the orbit is
approximately equal to that from the right part. The value of
the intensity of the continuum radiation in Mrk 6 is relatively
small, and we neglect it in our computation. Using formulas
(34)–(36), one obtain:

gc ≃ 1,
a

gline
≃ 0.1,

bϕ
gline

≃ 2.615,
pline(µ)

gline
≃ 3.9%.

(58)
Substitution of these parameters in Eq.(8) gives gline ≃
1.0006, i.e. practically 1. As in the case of Akn 120, the po-
larization pline ≃ 3.9% implies that in Hα-clouds there exists
the absorption of radiation. Under the assumption of dipole
radiation we have qc ≃ 0.01 and the parameter s ≃ 0.17. Be-
cause gline = 1.0006 ≃ 1 = 1+C−0.17 ·0.46 we find that the
small scale turbulent parameter C ≃ 0.08. For the difference
∆χ of the position angles between the left and the right wings
of the spectral line the expression (43) gives ∆χ = 42◦. This
value is consistent with the observational results. Eqs.(11)
and (58) give estimate: B‖ ≃ 0.6G and Bϕ ≃ 8.5G. Note
that expression (58) supposes that Icpc ≪ Iright,left pline(µ).
Now let us estimate the magnetic field strength in the accre-

tion disc of Mrk 6 using the results of the polarimetric obser-
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vations from Smith et al. (2002). Eqs. (53)–(56) allow us to
derive the magnetic field strength Bms at the inner radius of
the accretion disc: Bms = (1.72×104/q)G. For a Swarzschild
black hole, when q = 6, the magnetic field Bms = 2.9 · 103G.
For a Kerr black hole with a∗ = 0.998 the parameter q = 1.22
and the magnetic field strength Bms = 1.4 · 104G. According
to Garofalo (2009, fig.7) the magnetic field strength at the
horizon of the supermassive black hole is BH = 1.4 · 104G for
a∗ = 0 and BH = 105G for a∗ = 0.998.

6 Magnetic fields of Mrk 985 and

IZw1

The intensity spectrum of Mrk 985 has a two-peak shape and
the spectrum of the polarization degree pline(λ) is quite sym-
metric (the pline(left) ≃ 1.27% and pline(right) ≃ 1.16%).
In the centre of line pline(centre) ≃ 0.5%. The mean polar-
ization of the continuum radiation is 1.12%. Using formulas
(33)–(37), we find that

gc ≃ 1,
a

gline
≃ 0.114,

bϕ
gline

≃ 2.035,
pline(µ)

gline
≃ 2.75%. (59)

We see that a nearly symmetric form of pline(λ) implies that
a ≪ bϕ, i.e. B‖ ≪ Bϕ.

In the atlas of Smith et al. (2002) there is no informa-
tion on the inclination angle i. It is interesting to estimate
this angle assuming that gline ≃ 1. Substituting parame-
ters gc = 1, a = 0.114 and bϕ = 2.035 into formula (8)
gives the value pc(µ) = 2.54%. This implies an estimate
i ≃ 64◦, µ ≃ 0.44. Using the value pc(µ) = 2.54% we can
calculate the value gline, corresponding to this polarization.
This calculation demonstrates that the parameter gline ac-
quires the value gline ≃ 1.0013. The value pline(µ) = 2.75
at µ = 0.44 takes place at qa ≃ 0.01 (s = 0.17). The value
gline ≃ 1.0013 = 1 + C − 0.17 · 0.44 occurs at C ≃ 0.08. Us-
ing Eq.(11) and the value µ ≃ 0.44, we find the estimates:
B‖ ≃ 0.75 G and Bϕ ≃ 6.6 G.

From Fig.15 in the atlas of Smith et al. (2002) we see that
the difference of position angles between the right wing and
the centre of line is equal ∆χ ≃ 31−33◦. From general theory
one finds that tan 2∆χ = a/gline + bϕ/gline. Our estimates
(59) give this value for the angle difference. The estimates
of magnetic fields at distances Rms and RH can be obtained
analogously as in the previous sections.

Now let consider the AGN IZw1. This object has pc ≃
0.67%, pline(left) ≃ 0.7%, pline(centre) ≃ 0.2% and
pline(right) ≃ 0.9%. The form of the polarization spectrum
is slightly more asymmetric than in Mrk 985. Using general
formulas (33)–(35) we find the following estimates:

gc ≃ 1,
a

gline
≃ 0.52,

bϕ
gline

≃ 3.905,
pline(µ)

gline
≃ 3.18%. (60)

Table 1: The obtained estimates of the magnetic field
strengths.

AGN B‖[G] B⊥ = Bϕ [G]
Akn 120 0 14
Mrk 6 0.6 8.5
Mrk 985 0.75 6.6
IZw 1 3.42 12.7

As in the case of Mrk 985, we found, that gline ≃ 1 and
pc(µ) ≃ 2.68%. This corresponds to µ ≃ 0.44. The value
pline ≃ 3.9% occurs at the absorption degree qa ≃ 0.01, s ≃
0.17. As a result, the small scale turbulence parameter C ≃
0.08.
As in the previous cases, using Eq.(11) and the value µ =

0.44 we can estimate the magnetic field strength for IZw 1:
B‖ = 3.42G and B⊥ = 12.7G. It should be noted that in these
cases we estimated the inclination angle i from the analysis
of the polarization data.
The obtained estimates of the magnetic field strengths in

BLR of these AGNs are presented in Table 1. The last value
in the table is close to the one estimated by Afanasiev et
al.(2011) where the polarimetric observations were made only
for the continuum emission and did not include the emission
from the broad line region.

7 Conclusions

For many objects of Smith et al. (2002) spectropolarimet-
ric atlas the polarization spectra of a broad Hα-line pline(λ)
have a characteristic minimum at the center of the line and
different maxima at the left and right wings. Usually the
wing polarizations are higher than those in the nearby con-
tinuum. For many objects the position angle changes con-
tinuously from the left wing to the right one. We develop a
new theoretical explanation for these features, different from
the original explanation of Smith et al. (2002, 2004, 2005),
taking into account that accretion discs can be magnetized.
Smith et al. explain the characteristic features of the Hα-

line assuming that the observed polarization is due to single
scattering of non-polarized radiation from the BLR on two
types of scattering clouds - a polar cloud around the radio
jet, and clouds in the equatorial region. It appears (see Smith
et al. 2005) that their mechanism has two characteristic fea-
tures: a relatively low amplitude (|∆χ| ≤ 20 − 40◦) of the
position angle rotation from one line wing to the other one,
and the need for a very high electron temperature (T ∼ 106

K) in a nearby scattering cloud. In their atlas there are cases
with both low ∆χ < 20◦ and high ∆χ ∼ 80◦ position an-
gle rotations. The need for the high electron temperature
arises from the observed polarization minimum in the line
core. Besides, they neglect the intrinsic linear polarization of
the radiation in BLR.
In our mechanism both effects can be explain by a single

cause - the Faraday rotation of the polarization plane. The
wide line width results from turbulence, which is related to
the Keplerian rotation in the orbit. Clearly both explanations
take place in reality.
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The basis of our explanation is the assumption that both
the continuum radiation and the spectral line emission orig-
inate in an optically thick magnetized accretion disc around
the center of an AGN. The observed characteristic shape of
the line polarization appears as a result of the Faraday rota-
tion of the polarization plane in the accretion disc having a
normal magnetic field B‖ and an azimuthal field Bϕ.

We propose that the regions of the line emission can be rep-
resented as a comparatively dense absorbing turbulent clouds
rotating with the Keplerian velocity around the center of the
AGN. These clouds are flattened, optically thick and magne-
tized. They emit the polarized radiation in accordance with
the Milne problem law. The observed emission line is a sum of
radiation from clouds rotating in the right and the left sides
of the orbit. Due to Doppler displacements, emission from
the one side is, as a whole, reddened (λ ≥ λ0), and emission
from the other side has the opposite λ-displacement. The
Faraday rotations by azimuthal magnetic field Bϕ in the left
and the right sides of the orbit are opposite and, as a result,
in the center of line the sum of emissions is less polarized than
in the wings. The continuous rotation of the position angle
χ from one wing of line to the opposite wing arises for the
same reason. The projection of the normal magnetic field B‖

along the line of sight gives an additional Faraday rotation.
It is the same in both sides of the radiating orbit. This addi-
tional rotation in one side of orbit increases the total Faraday
rotation, and in opposite side decreases the total rotation.
For this reason B‖ magnetic field gives rise to an asymmetric
(relative to the central wavelength λ0) profiles for both the
polarization degree pline(λ) and the position angle χline(λ).
The presented theory allows us to estimate the components
Bϕ and B‖ in the broad line emission regions, and also in
nearby regions of the continuum radiation.

If the polarizations in the left and the right wings are
slightly different, then the value B‖ ≪ Bϕ. This helps us
to estimate the Bϕ-component from more simple formulas for
continuum polarization. Objects in which this is the case
are ESO 141-635, IZw1, Mrk 6, Mrk 290, Mrk 985 and NGC
5548. The objects with a strong asymmetry of pline(λ) are
characterized by magnetic fields Bϕ ∼ B‖. Such objects are
Akn 120, Akn 564,KUV 18217+6419, Mrk 304, Mrk 335, Mrk
841, MS1849.2-7832 and NGC 4593. Other objects have fairly
complex polarization spectra, they appear to be distorted by
large-scale turbulent motions.

Using the estimated values of the magnetic field in broad
line regions (usually B‖ ≪ Bϕ and Bϕ ∼ 10 G), one can
estimate the magnetic field Bms at the last stable orbit near
the black hole, and then the field BH at the radius of the
event horizon. These estimates are dependent on the different
assumptions about the slope of the power-law distribution of
the magnetic field inside the accretion disc. We have used
the most common assumptions to obtain the values of the
magnetic field ∼ 104 − 105 G. These values of the magnetic
field are in a good agreement with other estimates. Thus,
we determined the magnetic field strengths in various places
in the accretion discs of AGNs from the real observational
polarization data.
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