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Physical properties of scattering amplitudes are mapped to the Riemann zeta function. Specifically,
a closed-form amplitude is constructed, describing the tree-level exchange of a tower with masses
m2

n = µ2
n, where ζ

(
1
2 ± iµn

)
= 0. Requiring real masses corresponds to the Riemann hypothesis,

locality of the amplitude to meromorphicity of the zeta function, and universal coupling between
massive and massless states to simplicity of the zeros of ζ. Unitarity bounds from dispersion relations
for the forward amplitude translate to positivity of the odd moments of the sequence of 1/µ2

n.

Introduction.—The Riemann zeta function, an object
of central interest in number theory, is defined as

ζ(z) =
∞∑
n=1

1
nz

=
∏

p prime

1
1− p−z (1)

for Re(z) > 1, and by analytic continuation to the rest of
the complex plane. The function is analytic everywhere
except for a simple pole at z = 1 corresponding to the
divergent harmonic series. Despite the importance of the
zeta function in mathematics and physics, from number
theory to path integrals, many questions remain. Of
particular interest is the location of its zeros. While
ζ(z) exhibits trivial zeros at negative even integers by
the functional equation,

ζ(z) = 2zπz−1 sin(πz/2)Γ(1− z)ζ(1− z), (2)

it also possesses infinitely more zeros. The known ex-
amples of these nontrivial zeros, which number in the
trillions [1], all lie on the critical line, ζ

( 1
2 ± iµ

)
= 0 for

µ real. (Throughout, we take Re(µ) > 0: µ1 ' 14.135,
µ2 ' 21.022, etc.) The conjecture that µ is real for all
nontrivial zeros of ζ(z) is the Riemann hypothesis, one
of the most celebrated and fundamental extant problems
in mathematics, with important consequences for the
asymptotic distribution of the primes [2]. Other open
questions include whether all nontrivial zeros are simple
ones [3, 4], as well as statistical properties of the zeros
and asymptotic behavior of ζ on the critical line.
In this Letter, we will connect properties of the zeta

function, including the Riemann hypothesis, to scatter-
ing amplitudes. The idea of relating mathematical prop-

erties of the zeta function to a physical system dates back
a century to the Hilbert-Pólya conjecture [4, 5] that the
µn correspond to the eigenvalues of some quantum me-
chanical Hamiltonian. Much work has been done to at-
tempt to find such an operator (see, e.g., Refs. [6–8])
or to identify other connections to physics, including
Dyson’s observation of the relation between the two-
point function of the Gaussian unitary ensemble and
Montgomery’s pair correlation conjecture [4], as well as
interpretations of the phase of ζ in quantum chaotic non-
relativistic scattering [9, 10].

Despite this progress, however, there has been rela-
tively little work on the zeta function in the context
of relativistic scattering amplitudes. The program of
reinterpreting a compelling mathematical object as an
amplitude—before a Hamiltonian is found, and as a
guide toward developing new and interesting physics—
has notable precedent. In casting Euler’s beta function
as a scattering amplitude, Veneziano’s expression [11],
and the search for a system producing this amplitude, led
to the development of string theory. In fact, as shown by
Freund and Witten [12], the Veneziano amplitude itself
can be written in terms of ratios of Riemann zeta func-
tions, but in such a way that the nontrivial zeros cancel
out [13]. This leaves open the question of a scattering
amplitude whose structure depends on the nontrivial ze-
ros of ζ.

This is the question that will be answered in this
work. In particular, we will build a scattering ampli-
tudeM(s, t), written in compact, closed form, for which
there is an elegant correspondence between various phys-
ical properties and (known or conjectured) attributes of
the Riemann zeta function:

M(s, t)
∣∣ ζ(z)

Poles at s, u = m2
n for mn real ←→ Riemann hypothesis

Locality (simple poles) ←→ Meromorphicity
Universal coupling ←→ Simple zero conjecture

Dispersive bounds from analyticity/unitarity ←→ Positive odd moments of µ−2
n sequence

On-shell constructibility ←→ Hadamard product expansion
CPT invariance ←→ Reflection of zeros across critical line
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The existence of such an amplitude reframes the Hilbert-
Pólya problem and suggests that seeking a theory that
naturally reproduces the form of ourM(s, t) could lead
to a solution of this conjecture, as well as interesting
physical insights in their own right.

The purpose of this Letter will therefore be to
construct such an amplitude M(s, t) and—without
proving the Riemann hypothesis—map out the relations
between its properties and features of the zeta function
summarized above. This Letter is structured as follows.
First we construct an amplitude with the desired prop-
erties and study its analytic structure and uniqueness.
We next examine the forward limit of our amplitude in
the context of analytic dispersion relations, both as a
verification of its analytic and asymptotic structure and
as a means of physically deriving identities involving the
nontrivial zeros of ζ. After proving that the amplitude
is on-shell constructible and relating this construction
to the product form of the zeta function, we explore
connections of the symmetry of the zeros across the
critical line with CPT symmetry and comment on
potential future directions.

Building the amplitude.—Let us define a function of
a single complex variable s,

A(s) = − i

4
√
s

[
ψ
( 1

4 + i
2
√
s
)

+
2ζ ′
( 1

2 + i
√
s
)

ζ
( 1

2 + i
√
s
) ]

+ i log π
4
√
s
− 1
s+ 1

4
,

(3)

where ζ ′(z) = dζ(z)/dz and ψ(z) is the digamma func-
tion; see Fig. 1. In terms of the Landau-Riemann (capi-
tal) xi function Ξ(z) = ξ

( 1
2 + iz

)
, where ξ(z) is defined

as 1
2z(z−1)π−z/2Γ

(
z
2
)
ζ(z), application of the functional

relation (2) allows us to write A(s) very compactly:

A(s) = −d log Ξ(
√
s)

ds . (4)

We then use A to define an amplitude describing the
four-point scattering of massless particles in terms of the
Mandelstam variables, s = −(p1 +p2)2, t = −(p1 +p3)2,
and u = −s− t [14]:

M(s, t) = A(s) +A(u). (5)

As we will see, unlike an arbitrary complex function,
M(s, t) possesses all of the standard properties of a scat-
tering amplitude—unitarity, analyticity, and locality—
and describes the tree-level exchange of heavy states in
the s and u channels, with spectrum mn = µn.

Let us see how these properties come about from our
definition of A(s). One can show that Ξ(z) is every-
where analytic (i.e., entire), with roots corresponding to
the zeros of the zeta function, Ξ(µn) = 0, and that the

�

0

+⇡
Arg A(s)

|A(s)| s

⇡

Figure 1. Illustration of A(s) defined in Eq. (3). As shown
in text, A(s) is meromorphic, with poles at s = µ2

n corre-
sponding to the nontrivial zeros of the Riemann zeta func-
tion, ζ

(
1
2 ± iµn

)
= 0.

functional equation (2) becomes Ξ(z) = Ξ(−z). As a
result, even though

√
s has a branch cut at real s < 0,

Ξ(
√
s) is entire [15], and so A(s) from Eq. (4) is mero-

morphic, with simple poles at s = µ2
n.

More explicitly, starting from Eq. (3), direct evalua-
tion of this limit forA yields limε→0A(s+iε)−A(s−iε) =
0 for real s, using the reality of ζ and ψ on the real line.
Since the digamma and zeta functions are meromorphic,
we therefore have that A(s) is meromorphic as well, i.e.,
M(s, t) is analytic except for poles. It thus remains to
examine the behavior of A near the poles/zeros of ψ and
ζ. The arguments of the digamma function and zeta
function in Eq. (3) are chosen such that the simple ze-
ros of ζ(z) at z = −2n coincide with the simple poles of
ψ(z) at z = −n, at s = −(4n + 1)2/4 for positive inte-
ger n, with the result that the poles cancel and A(s) is
analytic there. The only other digamma pole, ψ(0), oc-
curs at s = −1/4, which is also the location of the pole
in the 1/(s + 1

4 ) term; explicit evaluation shows that
lims→−1/4A(s) is finite and equal to (2 + γ − log 4π)/2,
where γ is the Euler-Mascheroni constant. Finally, the
s→ 0 limit is finite:

c0

2 = lim
s→0
A(s) = −4 + π2

8 +G+
ζ ′′
( 1

2
)

2ζ
( 1

2
)

− 1
8

(
γ + π

2 + log 8π
)2
,

(6)

writing G for Catalan’s constant
∑∞
k=0(−1)k/(2k + 1)2

and defining c0 =M(0, 0).
Using the Hadamard product form for the zeta func-

tion, along with differentiation of the functional equa-
tion (2) (which allows for computation of odd deriva-
tives of ζ at 1/2) and various gamma function relations,
one can find an identity for ζ ′′(1/2) in terms of a sum
over the nontrivial zeros of ζ, which yields the beautiful
result:

c0 =
∞∑
n=1

2
µ2
n

' 4.6210× 10−2. (7)
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As we will see, sums of this form, containing powers of
the sequence 1/µ2

n, will have important connections to
analytic dispersion relations.

The only remaining candidate poles in A(s) cor-
respond to the nontrivial zeros of the zeta function,
ζ
( 1

2 + iµn
)

= 0 at s = µ2
n. If the Riemann hypothe-

sis is true, then all of these poles occur on the real s
axis. Further, we find that each positive-s residue sat-
isfies

¸
s=µ2

n
iA(s)ds > 0, as required by unitarity for a

physical pole in an amplitude, i.e., if we move each pole
at s = µ2

n to s = µ2
n−iε in Feynman’s iε formalism, then

we have ImA(s) > 0. Specifically, if the nth nontrivial
zero of ζ has order gn, i.e., ζ(z) ∼ (z − zn)gn near zn,
then lims→µ2

n
(µ2
n − s)A(s) = gn, so
˛
s=µ2

n

iA(s)ds = 2πgn. (8)

Our amplitude behaves as a tower of tree-level ex-
changes, with spectrum of masses mn in one-to-one cor-
respondence with the nontrivial zeros of the Riemann
zeta function,

mn = µn. (9)

For a theory with scattering described by M(s, t), the
Riemann hypothesis then becomes the physical require-
ment of real masses for the on-shell states in the spec-
trum.

If all of the zeros of the Riemann zeta function are
simple as has been conjectured [3, 4], then gn = 1 for
all n, in which case the massive states in the amplitude
enjoy a universal coupling to the scattering states; if not,
then the couplings are controlled by the order gn. We
can parameterize gn 6= 1 by allowing multiple redundant
µn in any sum or product (e.g., Eq. (7)), which we will
do henceforth. Our amplitude exhibits locality, i.e., near
each pole, A(s) ∼ 1/(−s + µ2

n). A failure of locality in
A(s) via a pole ∼ 1/(−s+µ2

n)k for some k > 1 would re-
quire ζ(z) ∼ exp[α/(z − zn)k−1] near the corresponding
zero zn, for some α. This would be an essential singular-
ity: depending on the direction of approach, ζ could go
to zero or infinity as z → zn. Hence, locality in A(s) is
enforced by the fact that the zeta function is meromor-
phic and therefore lacks essential singularities.

Before exploring other interesting properties ofM, we
first argue that this is the simplest candidate amplitude
satisfying the following requirements: i.) M is analytic
everywhere except poles corresponding to the nontrivial
zeros of the Riemann zeta function, and these poles
are real if the Riemann hypothesis holds; ii.) each
pole has positive residue as in Eq. (8); and iii.) the
forward amplitude satisfies d2

ds2M(s, 0) 6= 0 in the limit
s → 0. Taking the ansatz that M is separable into
channels A(s) and A(u) is a natural choice that enforces
crossing symmetry. To satisfy condition i.) on the

nontrivial zeros, one could take A(s) ∼ 1/ζ
( 1

2 + is
)
.

However, this choice runs afoul of requirement ii.),
which can be simply corrected by multiplying by the
derivative of the zeta function, which guarantees that
each pole at a nontrivial zero has a residue of the
same sign. Canceling the trivial zeros in ζ and the
pole at z = 1 necessitates adding an infinite tower of
other terms, which result in digamma and algebraic
terms as in Eq. (3). Finally, the radicals in Eq. (3) are
necessary, since if we take the forward amplitude and
send s → s2 to eliminate the square roots, we find that
M(s2, 0) −M(0, 0) ∝ s4 near s = 0; this is too soft to
satisfy condition iii.)—which as we will discuss in the
next section comes from dispersion relation bounds [16]
(cf. the Galileon [17])—so we resolve this problem by
introducing

√
s, resulting in A(s) as given in Eq. (3).

Hence, our form for M(s, t) is arguably the simplest
possible amplitude relevant to the Riemann hypothe-
sis, up to adding or multiplying by an entire function.

Analytic dispersion relations.—Forward amplitudes
in an infrared effective field theory coming from a well
behaved ultraviolet completion are known to possess pos-
itivity properties coming from analytic dispersion rela-
tions. In particular, if M(s, t) is indeed an amplitude,
we should find that

lim
s→0

d2k

ds2kM(s, 0) > 0 (10)

for all k > 0. This is a classic consequence of analyticity
and unitarity [16].

Computing a contour integral

c2k = 1
2πi

˛
C

ds
s2k+1M(s, 0) (11)

for C a small contour around the origin, analyticity of
M allows C to be deformed to a new contour running
just above and below the real s axis, plus a circle at
infinity. We note that the definitions of c0 match in
Eqs. (6) and (11). The optical theorem (i.e., unitarity)
and crossing symmetry imply that c2k = 2

π

´∞
0

ds
s2k σ(s)+

c
(2k)
∞ , where σ(s) is the (positive) cross section associ-
ated with the scattering in the amplitude and c

(2k)
∞ =

1
2πi
¸
|s|=∞

ds
s2k+1M(s, 0) is a boundary term. A nonzero

boundary term for some k ≥ 0 would imply that Ξ(z)
grows at least as fast as exp(αz4k+2) for some α (i.e.,
growth order at least 4k+ 2), which is inconsistent with
the fact that Ξ(z) has a known growth order of unity [15];
thus, all of the c(2k)

∞ must vanish. For example, since we
have already shown thatM(s, 0) is analytic everywhere
in the complex s plane except for the poles at s = ±µ2

n,
using the value of the residue at each pole in Eq. (8) we
find that

c0 = c(0)
∞ + 1

2πi
∑
n

˛
s=µ2

n

ds
s
M(s,0) = c(0)

∞ +
∑
n

2
µ2
n

, (12)
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Figure 2. Taylor series of M(s, 0) near s = 0. All even
derivatives of M(s, 0) at s = 0 are positive, as required by
analyticity/unitarity for a forward amplitude or alternatively
by the Riemann hypothesis.

so Eq. (7) implies that c(0)
∞ = 0. The coefficients in

Eq. (11) define an expansion M(s, 0) =
∑∞
k=0 c2ks

2k

near s = 0. Analogously with Eq. (12), we have the
explicit prediction for the value of c2k:

c2k =
∞∑
n=1

2
µ

2(2k+1)
n

. (13)

The Riemann hypothesis would imply the positivity
of the c2k required by unitarity and analyticity. See
Fig. 2 for an illustration. This is a nontrivial check
of the analytic and asymptotic structure of M(s, 0),
confirming that it indeed behaves like a forward ampli-
tude. Our amplitude construction allows for the deriva-
tion of further remarkable identities akin to the c0 rela-
tion in Eq. (7). Defining the normalized nth derivative
ζn(z) = ζ(n)(z)/ζ(z) and ζkn(z) = [ζn(z)]k, we have:

c2 = 1
2 lim
s→0

d2

ds2M(s, 0)

= −128 + 1
7680ψ

(5) ( 1
4
)
− ζ6

1
( 1

2
)

+ 3ζ4
1
( 1

2
)
ζ2
( 1

2
)
− 9

4ζ
2
1
( 1

2
)
ζ2

2
( 1

2
)

+ 1
4ζ

3
2
( 1

2
)
− ζ3

1
( 1

2
)
ζ3
( 1

2
)

+ ζ1
( 1

2
)
ζ2
( 1

2
)
ζ3
( 1

2
)
− 1

12ζ
2
3
( 1

2
)

+ 1
4ζ

2
1
( 1

2
)
ζ4
( 1

2
)
− 1

8ζ2
( 1

2
)
ζ4
( 1

2
)

− 1
20ζ1

( 1
2
)
ζ5
( 1

2
)

+ 1
120ζ6

( 1
2
)

=
∞∑
n=1

2
µ6
n

.

(14)

Like Eq. (7), Eq. (14) can be proven exactly albeit
laboriously, without appeal to our amplitude, using
repeated differentiation of the functional equation and
the Hadamard product form of the zeta function, as well
as various polygamma identities; the same should hold

for all other c2k. As a check, the prediction in Eq. (13)
can be confirmed to within a relative precision of one
part in 1030 for k = 2, 3, 4, 5 by summing over numerical
values of the zeros µn given in Ref. [18]. While each
order in Eq. (13) can be checked mathematically, what
is remarkable is that our amplitude construction allows
for much simpler, physical derivations of these identities.

On-shell constructibility.—Given the properties we
have found for A(s), our amplitude M(s, t) describes
two massless scalars exchanging a tower of massive states
in the s and u channels with constant, momentum-
independent coupling. For example, we could have two
species of scalars, φ1 and φ2, scattering via φ1φ2 →
φ1φ2. Alternatively, we could have instead definedM in
Eq. (5) with full Bose symmetry as A(s) +A(t) +A(u)
to describe the four-point scattering of a single scalar.
If there is a coupling ∝ φ1φ2X, where X is a tower of
states with masses m2

n = µ2
n, then the tree-level ampli-

tude for this theory will match Eq. (5). That is, our
amplitudeM(s, t) is on-shell constructible [19] from the
three-point φ1φ2X amplitudes, which are all a constant
(and universal for all X if the simple zero conjecture
holds). The function defined in Eq. (3) is equivalent to

A(s) =
∑
n

1
−s+ µ2

n

, (15)

and hence

M(s, t) =
∑
n

(
1

−s+ µ2
n − iε

+ 1
−u+ µ2

n − iε

)
. (16)

This equality can be seen as follows. Define ∆(s) as
the difference between the right-hand sides of Eqs. (3)
and (15). As we have shown, since A(s) as defined in
Eq. (3) has poles only at s = µ2

n with unit residue (writ-
ing any instance of multiple zeros as distinct µn), it fol-
lows that ∆ is entire. Expanding in a Laurent series
around s = ∞, the form of Eq. (15) at large s and our
previous result that Eq. (3) possesses no pole at infinity
together then imply that ∆ is bounded, so by Liouville’s
theorem ∆ is constant. By the direct evaluation of A(0)
in Eq. (7), ∆(0) = 0, yielding Eq. (15). As a result of the
form in Eq. (16),M will automatically satisfy the EFT-
hedron constraints [20], beyond the dispersion relation
bounds discussed above, which we expect would lead to
streamlined derivations of more zeta function identities
analogous to Eq. (14).

Comparing Eq. (15) with the form ofA in terms of Ξ in
Eq. (4), we see that the on-shell constructible expression
for the amplitude gives Ξ(z) = Ξ(0)

∏
n[1 − (z2/µ2

n)],
the Hadamard product expansion of the xi function.

Discussion.—The zeta function possesses various other
properties that can be mapped to physical features of the

4



scattering amplitude. For example, its zeros are sym-
metric both across the real axis and across the critical
line at Re(z)=1/2 as a consequence of the Schwarz reflec-
tion principle ζ(z̄) = ζ(z) and Eq. (2). Hence, ImM(s, 0)
is nonzero only by virtue of the iε terms, going as a
sum of πδ(±s−µ2

n). This allows the optical theorem
ImM(s, 0) = s σ(s) to respect momentum conservation,
with nonzero σ only when the external momenta pro-
duce an on-shell intermediate massive state. A con-
sequence is that we can write the zeta zero-counting
function N(T )—the number of z for which ζ(z) = 0
and 0< Im(z)≤T—in terms of the cross section as
N(s2

0) = 1
π

´ s0
0 σ(s) ds. Complex µn = M − iW , vi-

olating the Riemann hypothesis, would contribute an
additional imaginary part to the forward amplitude ∝
W for W �M . Symmetry of zeros about the critical
line ensures that such terms would come in pairs with
±W , eliminating this extra contribution to ImM(s, 0).
As a resonance, these zeros represent a pair of decay-
ing/growing modes, and the reflection of zeros about the
critical line ensures thatM obeys the CPT theorem.

Our construction ofM(s, t) suggests various interest-
ing generalizations. The construction of higher-point
or loop amplitudes by gluing together copies of M
merits investigation. Moreover, while the momentum-
independent coupling evident in Eq. (15) implies that
the states exchanged in M are scalars, we could gener-
alize A by introducing momentum dependence into the
propagator numerators, thus encoding spin for the mas-
sive states. Another compelling direction would be to
construct the analogue of A from an arbitrary Dirichlet
L-function, of which ζ is a special case. Doing so would
modify the spectrum, and the generalized Riemann hy-
pothesis would relate reality of the masses and zeros on
the critical line. More broadly, replacing Ξ(

√
s) with an

arbitrary entire function possessing real, positive zeros
and the requisite boundary conditions could generalize
the amplitude construction to other functions of mathe-
matical interest. Finally, the universality property of the
zeta function [21] and its consequences for the amplitude
are worthy of study. We leave such questions to future
investigation.
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