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Preface

As with the earlier editions of this book, the primary goal of this new edition is to  provide 
the reader with a thorough knowledge of mathematical modeling and analysis of dynamic 
systems. MATLAB, Simulink, and Simscape are introduced at the outset and are utilized 
throughout the book to perform symbolic, graphical, numerical, and simulation tasks. The 
textbook, written at the junior level, meticulously covers techniques for modeling dynamic 
systems, methods of response analysis, and an introduction to vibration and control 
systems.

This book consists of 10 chapters and 2 appendices. Chapter 1 provides an introduction of 
MATLAB, Simulink, and Simscape to the reader. The essential mathematical background 
is covered in Chapters 2 and 3. Different forms of system model representation (state-space 
form, transfer function, input–output equation, block diagram, etc.) and linearization are 
discussed in Chapter 4. Each topic is also handled using MATLAB, and block diagrams are 
constructed and analyzed using Simulink.

Chapter 5 discusses translational, rotational, and mixed mechanical systems. Free-body 
diagram approach is emphasized in the derivation of the systems’ equations of motion. 
Electrical and electromechanical systems are covered in Chapter 6 and operational 
 amplifiers and impedance methods are also included in Chapter 6. Chapter 7 presents 
pneumatic, liquid-level, and thermal systems. Modeling and analysis of dynamic systems 
ranging from mechanical to thermal using Simulink and Simscape are fully integrated in 
Chapters 5 through 7.

Time-domain and frequency-domain analyses of dynamic systems are introduced in 
Chapter 8. Time-domain analysis entails transient response of first-, second-, and higher-
order systems. The sinusoidal transfer function (frequency response function) is intro-
duced and utilized in obtaining the system’s frequency response as well as Bode diagram. 
Analytical solution of the state equation is also included in this chapter. MATLAB and 
Simulink play significant roles in determining and simulating system response and are 
used throughout the chapter.

Chapter 9 presents an introduction to vibrations and includes free and forced vibrations 
of single and multiple degrees-of-freedom systems, vibration suppression including vibra-
tion isolators and absorbers, modal analysis, and vibration testing. Some applications of 
vibrations are also included: logarithmic decrement for experimental determination of the 
damping ratio, rotating unbalance, and harmonic base excitation.

Chapter 10 gives an introduction to control systems analysis and design in the time 
and frequency domains. Basic concepts and terminology are presented first, followed by 
stability analysis, system identification, types of control, root-locus analysis, Bode plot, 
and full-state feedback. These techniques are subsequently implemented using MATLAB, 
Simulink, and Simscape.
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Appendices

Appendix A includes a summary of systems of units and conversion tables. Appendix B 
contains useful formulas such as trigonometric identities and integrals.

Examples and Exercises

Each covered topic is followed by at least one example for a better understanding of the 
subject matter. More complex topics are accompanied by multiple, thoroughly worked-out 
examples. Each section of each chapter is followed by several exercises so that the reader 
can immediately apply the ideas that are just learned. The end-of-chapter review exercises 
help to learn how a combination of different ideas can be used to analyze a problem.

Chapter Summaries

Chapter summaries provide concise reviews of the key aspects of each chapter.

Instructor’s Solutions Manual

A solutions manual, featuring complete solution details of all exercises, is prepared by the 
authors and will be available to instructors adopting the book.

New to This Edition

The main new features of this edition are as follows: 

 1. System identification is introduced and utilized to construct models of dynamic 
systems from observed input–output data.

 2. The end-of-chapter exercises (Chapters 4  through 10) now include case studies 
that involve the application of most of the concepts and methods covered in the 
chapter to real-world problems.
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 3. At least 50% of the examples and exercises throughout the book are either new or 
have been dramatically revised. The problem sets also include more challenging 
exercises.

Ramin S. Esfandiari
Bei Lu

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, 
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

mailto:info@mathworks.com
http://www.mathworks.com
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Introduction to MATLAB, Simulink, and Simscape

This chapter introduces the fundamental features of MATLAB®, Simulink®, and Simscape™ 
that are pertinent to modeling and analysis of dynamic systems. These include the 
descriptions and applications of several commonly used built-in functions (commands) 
in MATLAB and the basics of building block diagrams for the purpose of simulation of 
dynamic systems by using Simulink and Simscape. MATLAB, Simulink, and Simscape 
are fully integrated throughout the book, and the fundamental features and capabilities 
presented in this chapter will play an important role in better understanding the more 
advanced applications in the subsequent chapters.

1.1 MATLAB Command Window and Command Prompt

Once a MATLAB session is opened, commands can be entered at the MATLAB command 
prompt ">>"; see Figure 1.1. For example, cos( )1

6 π   may be calculated as

>> sqrt(cos(pi/6))
ans =
    0.9306

The outcome of a calculation can be stored under a variable name and suppressed by using 
a semicolon at the end of the statement:

>> sc = sqrt(cos(pi/6));

Commands such as sqrt (square root) and cos (cosine of an angle in radians) are MATLAB 
built-in functions. Each of these functions is accompanied by a brief but sufficient descrip-
tion through the help command. For example,

>> help sqrt
 sqrt   Square root.
    sqrt(X) is the square root of the elements of X. Complex 
    results are produced if X is not positive. 
    See also sqrtm, realsqrt, hypot.
    Overloaded methods:
       sym/sqrt
    Reference page in Help browser
       doc sqrt

For a variable "x," other elementary functions include abs(x) for x , sin(x) for sin x, 
log(x) for ln x, log10(x) for log x, exp(x) for ex, and many more. Descriptions of these 
functions are available through the help command.
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1.2 Vectors and Matrices

Vectors can be created and handled in various ways in MATLAB. A row vector is created 
as

>> v = [-2 3 0 4 8];

Commas may be used instead of spaces between elements. Column vectors are created 
when semicolons separate the vector components.

>> w = [-2;3;0;4;8];

The length of a (row or column) vector is determined by using the length command:

>> length(v)
ans =
 5

FIGURE 1.1
Screen capture of a MATLAB session.
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The size of a vector is determined by the size command. For the column vector w defined 
earlier,

>> size(w)
ans =
     5     1

Arrays of evenly spaced numbers can be created more effectively as follows. For example, 
a row vector whose first element is 0 and last element is 20, with a spacing of 4, is created as

>> v = [0:4:20]     or      >> v = 0:4:20
v =
     0     4     8    12    16    20

To create a column vector with the same properties:

>> w = [0:4:20]'     or     >> w = v'
w =
     0
     4
     8
    12
    16
    20

Specific component(s) of a vector can be easily retrieved. For example, the fourth compo-
nent of vector v or w is retrieved by typing

>> v(4)     or     >> w(4)
ans =
     12

A group of components may also be retrieved. For example, the last four components of v 
are recovered as

>> v(end-3:end)
ans =
     8    12    16    20

1.2.1 Linspace

Vectors with equally spaced elements may also be created by using the linspace 
command.

>> x = linspace(1,10,5) % Five equally spaced points between 1 and 10
x =
   1.0000  3.2500  5.5000  7.7500  10.0000

The default value for the number of points is 100. Therefore, x = linspace(1,10) generates 
100 equally spaced points between 1 and 10.
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1.2.2 Matrices

A matrix is created by using brackets enclosing all of its elements; rows are separated by 
a semicolon.

>> A = [2 0 -4;1 3 5;-3 2 6]

A =
     2     0    -4
     1     3     5
    -3     2     6

A matrix entry is accessed by using the row and column number of the location of that 
entry.

>> A(2,3)  % Entry at the intersection of the second row and third column

ans =
     5

An entire row or column of a matrix is accessed by using a colon.

>> Row_3 = A(3,:)     % Third row of A

Row_3 =

    -3     2     6

>> Col_2 = A(:,2)     % Second column of A

Col_2 =

     0
     3
     2

To replace an entire row of matrix A by a given vector v, we proceed as follows:

>> v = [3 1 7];
>> A_new = A;          % Pre-allocate the new matrix
>> A_new(2,:) = v      % Replace the second row with v

A_new =

     2     0    -4
     3     1     7
    -3     2     6

The m n×  zero matrix is created by using zeros(m,n); for instance, the 2 3×  zero matrix:

>> Z = zeros(2,3);



5Introduction to MATLAB, Simulink, and Simscape

The m n×  zero matrix is commonly used for pre-allocation of matrices to save memory 
space. In the zero matrix Z defined earlier, any entry can be altered, whereas others remain 
unchanged.

>> Z(1,3) = 3; Z(2,1) = -1

Z =
     0     0     3
    -1     0     0

Size of a matrix is determined by using the size command:

>> size(Z)

ans =

     2     3

The n n×  identity matrix is created by eye(n). Matrix operations can be easily performed 
in MATLAB. If the sizes are not compatible, or the operations are not defined, MATLAB 
returns an error message to that effect.

>> A = [1 -1 1;2 0 4]; B = [-3 1;5 2;0 6];     % A is 2-by-3, B is 3-by-2
>> C = A*B   % Operation is valid

C =
    -8     5
    -6    26

1.2.3 Determinant, Transpose, and Inverse

The determinant of an n n×  matrix is calculated by the det command. The transpose of a 
matrix A is found as

>> A = [0 1 0;0 0 1;-1 -2 -3]; At = A.'

At =
     0     0    -1
     1     0    -2
     0     1    -3

The inverse of a nonsingular (non-zero determinant) matrix is handled by the inv 
command.

1.2.4 Slash Operators

There are two slash operators in MATLAB: backslash (\) and slash (/).

>> help \

 \   Backslash or left matrix divide.

    A\B is the matrix division of A into B, which is roughly the
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    same as INV(A)*B , except it is computed in a different way.
    If A is an N-by-N matrix and B is a column vector with N
    components, or a matrix with several such columns, then
    X = A\B is the solution to the equation A*X = B. A warning 
    message is printed if A is badly scaled or nearly singular.
    A\EYE(SIZE(A)) produces the inverse of A.

The solution of a linear system of algebraic equations Ax b=  is ordinarily found via 
x A b= −1 . However, instead of performing x = inv(A)*b, it is more efficient to find it via 
x = A\b. The description of the slash (/) operator is given in the following.

>> help /

 /   Slash or right matrix divide.

    A/B is the matrix division of B into A, which is roughly the
    same as A*INV(B) , except it is computed in a different way.
    More precisely, A/B = (B'\A')'. See MLDIVIDE for details.

1.2.5 Element-by-Element Operations

Element-by-element operations are summarized in Table 1.1. These are used when opera-
tions are performed on each element of a vector or matrix.

For example, consider the vector

>> v = [1 -2 3];

To raise each element of v to power of 2,

>> v.^2        % If v^2 is used, an error message is returned by MATLAB

ans =

     1     4    9

Now, consider ( )/( )2 1+ +v v , where vector v is defined previously. This fraction is to be 
evaluated for each component of v:

>> (2.+v)./(1.+v)

ans =
    1.5000         0    1.2500

TABLE 1.1

Element-by-Element Operations

MATLAB Symbol Description

.* Multiplication

./ (Right) Division

.^ Exponentiation
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Arrays of the same size can be handled in the element-by-element operation.

>> v = [1;2;-3]; w = [4;-2;2];
>> v.*w
ans =
     4
    -4
    -6

1.3 Symbolic Math Toolbox

The symbolic math toolbox allows for the manipulation of symbols to perform operations 
symbolically. Symbolic variables are created by using the syms command. For example, 
the function g e ba= +−2 1

2 3sin  can be defined symbolically as follows:

>> syms a b
>> g = exp(-2*a)+sin(3*b)/2  
g =
exp(-2*a) + sin(3*b)/2   

This function may also be defined symbolically via

>> g = sym('exp(-2*a)+sin(3*b)/2');

In this situation, variables a and b do not need to be declared symbols, as this is handled 
automatically by sym in the definition of g. Assignment of specific values to variables 
will not be taken into account when using sym. Instead, we can use the subs command 
at this stage:

>> a = 1.6; b = 2.4; g1 = subs(g)
g1 =
exp(-16/5) + sin(36/5)/2

In symbolic expressions, numbers are converted to the ratio of two integers, as it is observed 
here as well. For decimal representation of numbers, we use the double command to con-
vert to double precision.

>> a = 1.6; b = 2.4; g1 = double(subs(g))
g1 =
    0.4376

1.3.1 Anonymous Functions

An anonymous function offers a way to create a function for simple expressions. 
Anonymous functions can only contain one expression and cannot return more than one 
output variable. The generic form is

My_function = @(arguments)(expression)
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As an example, the function Q e ax= + −2 3/  may be created as

>> Q = @(a,x)(sqrt(2+exp(-a*x/3)));

This creates Q(a,x), which may then be evaluated for specific values of a and x. For 
example,

>> Q(1,-2)
ans =
    1.9869

1.3.2 MATLAB Function

The built-in matlabFunction allows us to generate a MATLAB file or an anonymous 
function from sym object. The generic form G = matlabFunction(F) converts the sym-
bolic expression or function F to a MATLAB function with the handle G.

The function Q e ax= + −2 3/ , considered earlier, can now be created via

>> syms a x
>> Q = matlabFunction(sqrt(2+exp(-a*x/3)))
Q = 
    @(a,x)sqrt(exp(a.*x.*(-1.0./3.0))+2.0)  % Variables arranged in 
alphabetical order

>> Q(1,-2)
ans =
    1.9869

As expected, this agrees with the earlier result using the anonymous function. Note 
that if the desired order of variables is not specified by the user, MATLAB will list them 
in an alphabetical order. In the above-mentioned example, omitting the list of variables 
would still result in Q(a, x). However, if Q(x, a) is desired, the 'vars' option is 
utilized as follows:

>> Q = matlabFunction(sqrt(2+exp(-a*x/3)),'vars',[x a])
Q = 
    @(x,a)sqrt(exp(a.*x.*(-1.0./3.0))+2.0) 

1.3.3 Differentiation

In order to find the derivative of a function with respect to any of its variables, the function 
must be defined symbolically. For example, consider f t t t( ) cos= −2 2

3 , a function of a single 
variable. To determine df dt/ , we proceed as follows:

>> f = sym('t^2-2*cos(t)/3');
>> dfdt = diff(f)
dfdt =
2*t + (2*sin(t))/3
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The second derivative d f dt2 2/  is found as

>> dfdt2 = diff(f,2)
dfdt2 =
 (2*cos(t))/3 + 2

The symbolic derivatives can be converted to MATLAB functions for convenient evalua-
tion. For example, to evaluate df dt/  when t = 2.14,

>> f = sym('t^2-2*cos(t)/3');      % Define function symbolically
>> fd = matlabFunction(diff(f));  % Convert derivative to MATLAB function

>> fd(2.14) % Evaluate the derivative 
ans =

    4.8416

1.3.4 Integration

Indefinite and definite integrals are calculated symbolically via the int command.

int    Integrate
    int(S) is the indefinite integral of S with respect to its symbolic
      variable as defined by SYMVAR. S is a SYM (matrix or scalar).
      If S is a constant, the integral is with respect to 'x'.
 
    int(S,v) is the indefinite integral of S with respect to v. v is a
      scalar SYM.
 
    int(S,a,b) is the definite integral of S with respect to its
      symbolic variable from a to b. a and b are each double or
      symbolic scalars. 
 
    int(S,v,a,b) is the definite integral of S with respect to v
      from a to b.

For example, the indefinite integral ( )/a e dtt+ −∫ 2 , where a is a parameter, is calculated as

>> f = sym('a+exp(-t/2)');
>> int(f)
ans =
a*t - 2*exp(-t/2)

The definite integral ∫−
−+1

2 2( )/a e dtt  is calculated as follows:

>> f = sym('a+exp(-t/2)');
>> syms t
>> I = int(f,t,-1,2) 
I =
3*a + 2*exp(-1)*(exp(3/2) - 1)
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To evaluate the integral when a = 0.36, we proceed as follows:

>> a = 0.36; double(subs(I))
ans =
    3.6417

Note that the default integration variable here is t. Thus, in the above-mentioned example, 
it could have been omitted to yield the correct result:

>> int(f,-1,2);

Definite integrals can also be handled by the integral command.

>> help integral
 integral  Numerically evaluate integral.
    Q = integral(FUN,A,B) approximates the integral of function FUN from A
    to B using global adaptive quadrature and default error tolerances.
 
    FUN must be a function handle. A and B can be -Inf or Inf. If both are
    finite, they can be complex.

The integral command requires that the integrand be a function handle, and limits of 
integration specified. Therefore, to evaluate ∫−

−+1
2 2( )/a e dtt  when a = 0.36, we proceed as 

follows:

>> f = @(a,t)(a+exp(-t/2));
>> integral(@(t)f(0.36,t),-1,2) 

ans =

    3.6417

Of course, this agrees with the earlier result using the int command.

1.3.5 Differential Equations

Differential equations and initial-value problems can be solved by the dsolve function. 
For example, the solution of the differential equation xy x y′ + + =( )1 0 is obtained as

>> y = dsolve('x*Dy+(x+1)*y=0','x')
y =
(C3*exp(-x))/x % C3 is some constant

Note that the default independent variable in dsolve is t. Since in our example the 
 independent variable was x, we needed to specify that in single quotes. The initial-value 
problem   x x x e x xt+ + = = =−2 2 0 0 0 13/ , ( ) , ( )  , with t as the independent variable, is solved as

>> x = dsolve('D2x+2*Dx+2*x=exp(-t/3)','x(0)=0, Dx(0)=1'); x = 
simplify(x)
x =
 (exp(-t)*(9*exp((2*t)/3) - 9*cos(t) + 7*sin(t)))/13

The solution thus obtained is symbolic and hence must be converted into a MATLAB func-
tion before it can be evaluated for specific values of the independent variable.
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1.4 Plotting

Plotting a vector of values versus another vector of values is handled by the plot command.

plot   Linear plot. 
    plot(X,Y) plots vector Y versus vector X. If X or Y is a matrix,
    then the vector is plotted versus the rows or columns of the matrix,
    whichever line up.  If X is a scalar and Y is a vector, disconnected
    line objects are created and plotted as discrete points vertically at
    X.

For example, we plot the function x t e t tt( ) (sin cos )/= +− 2  over the interval [ , ]0 10  as follows. 
Note that the default number of points to be used to generate a smooth curve is 100.

>> t = linspace(0,10); % 100 values for 0 ≤ t ≤ 10
>> x = exp(-t/2).*(sin(t)+cos(t)); % Corresponding 100 values for x
>> plot(t,x) %Figure 1.2

The Figure Window can be used to edit the figure. Its functions include adding grid, adjust-
ing the thickness of lines and curves, adding text and legend, axes titles, and much more.

1.4.1 Subplot

The built-in function subplot is designed to create multiple figures in tiled positions. 
Suppose we want to plot the function y x t e t xx( , ) cos( )= +−2  versus 0 2≤ ≤ x  for t = 0 1 2 3, , , . 
Let us generate the four plots and arrange them in a 2 2×  formation.

x = linspace(0,2); t = 0:1:3;
for i = 1:4,
    for j = 1:100,
     y(j,i) = exp(-2*x(j))*cos(t(i)+x(j));   % Generate 100 values of y for each t

    end
end
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FIGURE 1.2
Plot of a function versus its variable.
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% Initiate Figure 1.3
subplot(2,2,1), plot(x,y(:,1)), title('t = 0')
subplot(2,2,2), plot(x,y(:,2)), title('t = 1')
subplot(2,2,3), plot(x,y(:,3)), title('t = 2')
subplot(2,2,4), plot(x,y(:,4)), title('t = 3')

1.4.2 Plotting Analytical Expressions

An alternative way to plot a function is to use the ezplot command, which plots the function 
without requiring data generation. As an example, consider the function x t e t tt( ) (sin cos )/= +− 2  
that we previously plotted over the interval [ , ]0 10 . The plot in Figure 1.2 can be re-generated 
as follows:

>> x = sym('exp(-t/2)*(cos(t)+sin(t))');
>> ezplot(x,[0,10])

The default variable range in ezplot is [ , ]−2 2π π .

1.4.3 Multiple Plots

Multiple plots can be created using plot (which handles vectors of values versus vectors 
of values) and ezplot (which handles analytical expressions). Suppose the two functions 
x e tt

1
2 3 2= −0.8 / sin  and x e tt

2
3 3= − / sin  are to be plotted versus 0 5≤ ≤ t  in the same graph.

>> x1 = sym('0.8*exp(-2*t/3)*sin(2*t)');
>> x2 = sym('exp(-t/3)*sin(3*t)');
>> ezplot(x1,[0,5]) % Initiate Figure 1.4
>> hold on
>> ezplot(x2,[0,5]) % Complete Figure 1.4
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FIGURE 1.3
Multiple figures in tiled positions.
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Executing the preceding script generates a figure that does not exactly match with 
Figure 1.4. To enable the interactive plot editing mode in the MATLAB Figure Window, 
click the Edit Plot button () or select Tools > Edit Plot from the main menu. If you enable 
plot editing mode in the MATLAB Figure Window, you can perform point-and-click edit-
ing of your graph. In this mode, you can modify the appearance of a graphic object by 
double-clicking the object and changing the values of its properties.

1.5 User-Defined Functions and Script Files

User-defined M file functions and scripts may be created, saved, and edited in MATLAB 
by using the edit command. For example, suppose we want to create a function called 
Cyl_SV that returns the surface area S and the volume V of a cylinder with radius r and 
height h. The function can be saved in a folder on the MATLAB path or in the current 
directory. The current directory can be viewed and/or changed using the dropdown menu 
at the top of the MATLAB command window. Once the current directory has been prop-
erly selected, type

>> edit Cyl_SV

A new window (Editor Window) will be opened, where the function can be created. The 
generic structure of a function is

function [output variables] = FunctionName(input variables)
% Comments
% Expressions/statements
% Calculation of all output variables

Our user-defined function Cyl_SV is specifically created as follows:

function [S,V] = Cyl_SV (r,h)
S = 2*pi*r^2 + 2*pi*r*h; 
V = pi*r^2*h;
end
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FIGURE 1.4
Multiple plots in a single figure.
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Executing this function for a cylinder of radius r = 0.4 and height h = 1.5 returns

[S,V] = Cyl_SV(0.4,1.5)
S =
    4.7752
V =
    0.7540

1.5.1 Creating a Script File

A script file comprises a list of commands, as if they were typed at the command line. 
Script files can be created in the MATLAB Editor and saved as an M file. For example, 
typing

>> edit My_script_file

opens the Editor Window, where the script can be created and saved under the name 
My_script_file. It is recommended that a script start with the functions clear 
and clc. The first one clears all the previously generated variables, and the second 
one clears the Command Window. Suppose we type the following lines in the Editor 
Window:

clear
clc
a = -1; b = 5;
C = sqrt(abs(3^a*cos(b)));

While in the Editor Window, select "Run My_script_file.m" under the Debug pull-
down menu. This will execute the lines in the script file and return the command prompt. 
Simply type C at the prompt to see the result.

>> My_script_file
>> C
C =
    0.3075

This can also be done by highlighting the contents and selecting “Evaluate Selection.” An 
obvious advantage of creating a script file is that it allows us to simply make changes to the 
contents, without having to re-type all the commands.

1.6 Simulink

Simulink is a powerful software package widely used in academia and industry for the 
modeling, analysis, and simulation of dynamic systems. In the modeling phase, models 
are built as block diagrams (Section 4.5) via a graphical user interface (GUI). Once a model 
is built, it can be simulated with the aid of Simulink menus or by entering commands in 
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MATLAB’s command window. One of the greatest advantages of Simulink is the fact that 
it allows for the analysis and simulation of the more realistic nonlinear models, in addition 
to the idealized linear ones.

1.6.1 Block Library

Typing Simulink at the MATLAB command prompt opens a new window labeled 
Simulink Library Browser (Figure 1.5), which includes a complete block library of sinks, 
sources, components, and connectors. Clicking on any of the categories reveals the list 
of blocks it contains. For instance, clicking on Commonly Used Blocks results in the 
window shown in Figure 1.6.

FIGURE 1.5
Simulink library browser.
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1.6.2 Building a New Model

To create a new model, select File > New > Model in the Simulink library window or 
simply press the New Model button (the icon underneath the File menu button) on the 
Library Browser’s toolbar. This will open a new model window (Figure 1.7). Suppose we 
want to build a model that integrates a sine wave (amplitude 1 and frequency 1 rad/sec) 
and displays the result, along with the sine wave signal itself. The block diagram of this 
model will resemble Figure 1.8. To create this model, we will need to copy (drag and drop) 
the following blocks into our new model: 

• The Sine Wave signal (from Sources library)
• The Integrator block (from Continuous library)
• The Mux block (from Signal Routing library)
• The Scope block (from Sinks library)

This results in what is shown in Figure 1.9. Note that double-clicking on each block reveals 
more detailed properties for that block. For instance, double-clicking on the Sine Wave 
block reveals that the amplitude has a default value of 1 and the frequency has a default 

FIGURE 1.6
Commonly used blocks.
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value of 1 rad/sec. Since these happen to be the desired parameter values for our current 
example, no modifications are necessary. The ">" symbol pointing out of a block is an 
output port. The symbol ">" pointing to a block is an input port. A signal travels through 
a connecting line out of an output port of a block and into an input port of another block. 
The port symbols disappear as soon as the blocks are connected. Let us now connect 
the blocks in Figure 1.9. First, connect the Sine Wave block to the top input port of the 

Original signal

Integrated
signal

Sine wave
Amplitude = 1

Frequency = 1 rad/s

Integrator

Scope

1
s

FIGURE 1.8
New Simulink model.

FIGURE 1.7
A new model window.
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Mux block. Place the pointer over the output port of the Sine Wave block, and note that 
the cursor shape changes to crosshairs. Hold down the mouse button and move the cursor 
to the top input port of the Mux block. Then, release the mouse button. If the connecting 
line is not straight, simply drag the Sine Wave block up or down, until the ports are lined 
up (Figure 1.10). The signal going from the Sine Wave block to the Mux block must also 
go through the integrator. This may be done by means of a branch line. Place the pointer 
on the connecting line between the Sine Wave and Mux blocks. Press and hold down the 
Ctrl key. Press the mouse button, and drag the pointer to the Integrator block’s input 
port. Then, release the mouse button. This results in Figure 1.11. Finally, connect from the 
output port of the Integrator to the bottom input port of the Mux block, and draw a con-
necting line from the output port of the Mux to the input port of the Scope. The completed 
block diagram will look like the original Figure 1.8.

Mux
Sine wave

1
s

Integrator

Scope

FIGURE 1.9
Basic blocks involved in a new model.

Mux
Sine wave

1
s

Integrator

Scope

FIGURE 1.10
Connecting line.

Mux
Branch lineSine wave

1
s

Integrator

Scope

FIGURE 1.11
Branch line.
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1.6.3 Simulation

The simulation parameters can be set by choosing Model Configuration Parameters 
from the Simulation menu. Note that the default stop time is 10.0. Next, choose 
Run from the Simulation menu. Double-click the Scope block to see the sine wave 
signal as well as its integral (Figure 1.12). Obviously, the simulation stops when the 
stop  time of 10.0 is reached. The simulation thus obtained cannot be copied and 
pasted into a document and is only for observation while in a MATLAB session. To 
gain access to the actual output data, the following needs be done. Select the Out1 
block from Commonly Used Blocks library, and copy it onto the existing model. 
Then, draw the appropriate branch line to obtain the completed diagram shown in 
Figure 1.13. Once again, run the simulation. As a result, the time vector is automatically 
saved in tout, whereas the output is saved in yout. Next, at the MATLAB command 
prompt, type

>> plot(tout, yout)

This yields Figure 1.14. Note that this is the same result as observed in the simulation.

FIGURE 1.12
Simulation of a model.
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1.7 Simscape

Simscape is a powerful software package that extends the Simulink product line with 
tools for modeling and simulation of physical systems, such as those with mechanical, 
electrical, hydraulic, thermal, and pneumatic components. Unlike other Simulink blocks, 
which represent mathematical operations or operate on signals, Simscape blocks directly 
represent physical components or relationships. With Simscape blocks, a system model is 
built in the same way as a physical system is assembled.

Simscape models use a Physical Network approach to model building: components 
(blocks) corresponding to physical elements, such as pumps, motors, and op-amps, are 
joined by lines corresponding to the physical connections that transmit power. This 
approach allows for the description of the physical structure of a system rather than the 
causal mathematics. Simscape automatically constructs, from the model, equations that 
characterize the system behavior, which are in turn integrated with the rest of the Simulink 
model. Simscape functions and utilities support functionality common to other Simulink 
products that use physical connections between their blocks. Simscape serves as the plat-
form product for these add-on products of the Physical Modeling family: 

• SimHydraulics®, for modeling and simulating hydraulic systems
• SimDriveline™, for modeling and simulating powertrain systems

Original signal

Integrated
signal

Sine wave
Amplitude = 1

Frequency = 1 rad/s
1
s

Integrator

Scope

1
Out1

FIGURE 1.13
Storing output data.

0 1 2 3 4 5 6 7 8 9 10
−5
−4
−3
−2
−1
0
1
2
3
4
5

t

Integrated signal (output)

Sine wave (input)

FIGURE 1.14
Output data.
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• SimMechanics™, for modeling and simulating general mechanical systems
• SimElectronics®, for modeling and simulating electromechanical and electronic 

systems
• SimPowerSystems™, for modeling and simulating electrical power systems

These products can be used together to model physical systems in the Simulink 
environment.

1.7.1 Block Library

Type Simulink at the MATLAB command prompt to view the Simulink Library 
Browser, as previously shown in Figure 1.5. Next, expand the Simscape entry in the 
contents tree (Figure 1.15). The Simscape block library contains two top-level libraries: 
Foundation Library and Utilities. If any add-on Physical Modeling products have 
been installed, they will appear under Simscape library. Each library can be expanded by 
double-clicking its icon. Double-clicking the Foundation Library icon and Utilities 
icon results in the menus displayed in Figures 1.16 and 1.17, respectively.

FIGURE 1.15
Simscape libraries.
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1.7.2 Building a New Model

A physical model can be built by using a combination of blocks from the Simscape 
Foundation and Utilities libraries. Each Simscape diagram must contain a Solver 
Configuration block from the Simscape Utilities library (Figure 1.17). Regular 
Simulink blocks (such as sources or scopes) can be connected to the physical network dia-
gram by using connector blocks: the Simulink-PS Converter block is used to connect 
Simulink outports to Physical Signal inports, and the PS-Simulink Converter block 
is used to connect Physical Signal outports to Simulink inports. Physical Signals, unlike 
Simulink signals, have units, which may be specified via the Simscape block dialogs. Input 
and output signal units can be specified through the converter blocks.

Suppose we want to create a Simscape diagram representing the RLC electrical circuit 
in Figure 1.18, which consists of a resistor, an inductor, and a capacitor and is driven by an 
applied voltage. We can vary the model parameters, such as the resistance or the applied 
voltage, and view the subsequent changes to the electric current. Suppose the input 
(applied voltage) is a unit pulse between t = 1 and t = 2, and the physical parameter values 
are R = Ω1 , L = 1 H, and C = 0.2 F.

FIGURE 1.16
Simscape Foundation library contents.
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The completed block diagram of this model will resemble Figure 1.19. As before, to create 
a new model, select File > New > Model in the Simulink library window or simply press 
the New Model button (the icon underneath the File menu button) on the Library Browser’s 
toolbar. This will open a new model editor window. Open the Simscape > Foundation 
Library > Electrical > Electrical Elements library. Drag the Capacitor, 

FIGURE 1.17
Simscape Utilities library contents.

L

R

C
+
−v i

FIGURE 1.18
An RLC circuit.
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Resistor, Inductor, and (one) Electrical Reference blocks into the model win-
dow. Note that the capacitor must be rotated 90 degrees clockwise to agree with what is 
shown in Figure 1.19. This can be done by selecting the capacitor and choosing Diagram > 
Rotate & Flip > Clockwise. The representation of the applied voltage can be added by open-
ing the Simscape > Foundation Library > Electrical > Electrical Sources 
library and adding the Controlled Voltage Source to the diagram. The current  sensor 
can be added by opening the Simscape > Foundation Library > Electrical > 
Electrical Sensors library. Note that the current  sensor must be connected with the elec-
trical elements in series. The Solver Configuration block and the PS-Simulink and 
Simulink-PS converters are found in the Simscape Utilities library. For simulation 
purposes, a Signal Builder block from the Sources menu of Simulink is added to the model. 
This block will be used to define the input signal, which, in this case, is a unit pulse between 
t = 1 and t = 2. Double-click the Signal Builder block and then select, drag, and place 
the two vertical lines at t = 1 and t = 2. Make sure that the amplitude is 1 over this specified 
range. The completed model is shown in Figure 1.19. Detailed information on modeling and 
analysis of electrical networks by using Simscape is presented in Chapter 6.

1.7.3 Simulation

Select a Simulink solver. On the top menu bar of the model window, select Simulation > 
Model Configuration Parameters. The Configuration Parameters dialog box opens. 
Under Solver options, set Solver to ode15s (Stiff/NDF), which is recommended for 
solving stiff differential equations, and set maximum step size to 0.2. Choose Run from 
the Simulation menu. Double-click the Scope block to see the output (Figure 1.20). As 
explained in Section 1.6, the simulation thus obtained cannot be copied and pasted into 
a document and is only for observation while in a MATLAB session. To gain access to 
the actual output data, the Out1 block from the Commonly Used Blocks library must 
be added to the existing model. Typing plot(tout, yout) at the MATLAB command 
prompt yields Figure 1.21.

A wide range of dynamic systems can be modeled and analyzed using Simscape. As 
mentioned earlier, Chapter 6 gives detailed coverage of Simscape modeling of electrical 
circuits. Simscape modeling of mechanical and thermal systems is presented in Chapters 5 
and 7, respectively.
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FIGURE 1.19
Simscape model for an RLC circuit.
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FIGURE 1.20
Simulation of the RLC circuit.
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FIGURE 1.21
Output of the simulation of the RLC circuit.
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Review Problems

 1. Evaluate the function f x y e yx( , ) cos( )/= −−2
3

2 1  for x y= − =0.23 .7, 2  by:
 a. Using the subs command.
 b. Conversion into a MATLAB function.
 2. Evaluate the function g x y x y( , ) sin( )tan( )= + −2 1 1

2  for x y= = −0.45 .17, 1  by:
 a. Using the subs command.
 b. Conversion into a MATLAB function.

 3. Evaluate the vector function v x y
xy
x y

( , ) =
+

−








1
2

 for x y= =1 2.54 .28,  by:
 a. Using the subs command.
 b. Conversion into a MATLAB function.

 4. Evaluate the matrix function m x y
y x y

x y
( , )

sin
=

−
+











3
1 2

 for x y= − =2 3 35, .  by:
 a. Using the subs command.
 b. Conversion into a MATLAB function.
 5. If f t e t tt( ) ln( )/= + +−3 5 1 , evaluate df dt/  when t = 4.4, by:
 a. Using the subs command.
 b. Conversion into a MATLAB function.
 6. If g x e xx x( ) cos= +− −23 1 , evaluate dg dx/  when x = 1.37, by:
 a. Using the subs command.
 b. Conversion into a MATLAB function.
 7. Solve the following initial-value problem, and evaluate the solution at x = 3.5.

 ( ) , ( )x y xy x y− ′ + = =1 2 2 1    

 8. Solve the following initial-value problem, and evaluate the solution at t = 2.8.

 tx x e xt
 + = = −   , ( )1 1 

 9. Plot y t e tt
1

3 1
2( ) cos( )/= −  and y t t e t

2 1( ) ( )= + −  versus 0 10≤ ≤ t  in the same graph. 
Adjust the limits on the vertical axis to −0.3 and 1.1. Add grid and label.

 10. Plot x t e tat
1 2 3

2 1
3, ,

/( ) sin( )= − , corresponding to a = 1 2 3, , , versus 0 5≤ ≤ t  in the same 
graph. Adjust the limits on the vertical axis to −0.05 and 0.3. Add grid and label.

 11. Plot ∫ −
1
t x te x dxsin  versus − ≤ ≤1 3t . Add grid and label.

 12. Plot ∫ + − −
0

2 2t t xx t e dx( ) ( )  versus 1 3≤ ≤ t . Add grid and label.
 13. Plot z x t x e t( , ) ( cos ) ( )= + − −1 1  versus 0 10≤ ≤ x  for two values of t = 1.5  2.5,  in a 1 2×  

tile. Add grid and title.
 14. Plot z x t x t( , ) sin( )cos( )= 2.7 .23  versus 0 5≤ ≤ x  for four values of t = 1 2, , , 1.5   2.5 in 

a 2 2×  tile. Add grid and title.
 15. Given f x e xx( ) cos( )/= + −−3 2 1 , plot ′f x( ) versus 0 8≤ ≤ x . Add grid and title.
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 16. Write a user-defined function with function call F=temp_conv(C) that converts 
the temperature from Celsius C to Fahrenheit F. Execute the function for the case 
of C = 27.

 17. Write a user-defined function with function call s=speed_calc(x,t0) that cal-
culates the speed of a moving object, whose position is described by a symbolic 
function x, at a specified time t0. Execute the function to find the speed (at t = 2.5) 
of an object whose position is described by x t t t( ) = − +0.75 1.43 22 .

 18. Write a user-defined function with function call fval = f_eval(f,a,b), 
where f  is an anonymous function and a and b are constants such that a b< . The 
function calculates the midpoint m of the interval [ , ]a b  and returns the value of 
1
2

1
2f a f m f b( ) ( ) ( )+ + . Execute f_eval for f xe x= − , a = −3, b = 4.

 19. Repeat the example considered in this chapter involving a signal and its integral, 
but this time, the sine wave has amplitude 0.8 and frequency 1.5 rad/sec and the 
integrated signal gets amplified by a factor of 2; see Figure 1.22. Build the model, 
run the simulation, and generate a plot that can be imported into a document.

 20. Create the Simulink model shown in Figure 1.23. Select the signal generator as a 
square wave with amplitude 0 5.  and frequency 0.5 rad/sec. To flip the gain block, 
right click on it, then go to Rotate & Flip, and choose the “Flip Block” option. 
Double-clicking the Sum (Commonly Used Blocks) allows control over the list 
of desired signs. Run simulation and generate a figure that can be imported into a 
document.

Integrated signal
amplified by 2

Sine wave
Amplitude = 0.8

Frequency = 1.5 rad/s 1
s

Integrator

Scope

1
Out1

2

Gain

FIGURE 1.22
Problem 19.
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1
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1
s

Integrator

5

Feedback gain

Square wave
Amplitude = 0.5

Frequency = 0.5 rad/s

FIGURE 1.23
Problem 20.
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 21. Build the Simulink model shown in Figure 1.24. Select the signal generator as a 
square wave with amplitude 1 and frequency 0.5 rad/sec. To flip the gain block, 
right click on it, then go to Rotate & Flip, and choose the “Flip Block” option. Double-
clicking the Sum (Commonly Used Blocks) allows control over the list of desired 
signs. Run simulation and generate a figure that can be imported into a document.

 22. Build the Simulink model shown in Figure 1.25. To flip the gain block, right click 
on it, then go to Rotate & Flip, and choose the “Flip Block” option. Double-clicking 
the Sum allows control over the list of desired signs. Run simulation and generate 
the response plot.

 23. Build the Simulink model shown in Figure 1.26. Transfer function represents the 
ratio of the Laplace transforms of the output and the input signals associated with 
a block; see Chapter 4. The Transfer Fcn block is located in the Continuous 
library. Run simulation and generate the response plot.
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1
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FIGURE 1.26
Problem 23.
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FIGURE 1.24
Problem 21.
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FIGURE 1.25
Problem 22.
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 24. Build the Simulink model shown in Figure 1.27. The Step signal has a step time of 
1 and a final value of 1; that is, it assumes a value of 1 immediately after t = 1 and 
a value of 0 otherwise. The Transfer Fcn block is located in the Continuous 
library. Run simulation and generate the response plot.

 25. Build and simulate a Simulink model that integrates a sawtooth signal (amplitude 
1 and frequency 1 rad/sec) and displays the result, along with the sawtooth signal 
itself.

 26. Build the model shown in Figure 1.28, which is the Simulink model of the RLC cir-
cuit considered in this chapter and is equivalent to the Simscape model presented 
in Figure 1.19. Perform the simulation to confirm that both models yield the same 
response.

 27. Build a Simscape model for an RL circuit (R = Ω5 , L = 0.5 H), driven by an applied 
voltage represented by a pulse (amplitude 0.6 for 1 3< <t ). Run the simulation and 
generate the response (electric current) plot.

 28. Build a Simscape model for an RC circuit (R = Ω2 , C = 0.35 F), driven by an applied 
voltage represented by a pulse (amplitude 1.4 for 1.5 2.5< <t ). Run the simulation 
and generate the response (electric current) plot.
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FIGURE 1.28
Problem 26.
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Problem 24.
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2
Complex Analysis, Differential Equations, 
and Laplace Transformation

This chapter presents a review of complex analysis, differential equations, and Laplace 
transformation, providing the necessary background for a better understanding of vari-
ous ideas and implementation of methods involved in the analysis of dynamic systems. 
Complex analysis comprises the study of complex numbers, complex variables, and com-
plex functions. Ordinary differential equations (ODEs) arise in situations where the rate 
of change of a function with respect to its independent variable is involved. Differential 
equations are generally very difficult to solve, even for the simplest case of constant coeffi-
cients. To that end, Laplace transformation is used to solve initial-value problems (IVPs)—
ODEs subjected to initial conditions—by transforming the data from time domain to the 
s-domain, where equations are algebraic and hence easier to work with. Transformation of 
the information from the s-domain back to time domain ultimately describes the solution 
of the IVP.

2.1 Complex Analysis

Complex analysis consists of the study of complex numbers, complex variables, and com-
plex functions and plays an important role in a wide range of areas in the analysis of 
dynamic systems, from the calculation of a system’s natural frequencies to the analysis of 
a system’s frequency response.

2.1.1 Complex Numbers in Rectangular Form

A complex number z in rectangular (Cartesian) form is expressed as 

 z x jy j= + = − =,     imaginary number1  (2.1)

where x and y are real numbers, known as the real and imaginary parts of z, respectively, 
and are denoted by x z= { }Re  and y z= { }Im . For example, if z = 2 − 3j, then x z= { } =Re 2 
and y z= { } = −Im 3. A complex number with zero real part is called pure imaginary, for 
example, z = 2j. Two complex numbers are equal if and only if their respective real and 
imaginary parts are equal. Addition of complex numbers is performed component-wise, 
that is, if z1 = x1 + jy1 and z2 = x2 + jy2, then 

 
  

            

z z x jy x jy

x x j y y

1 2 1 1 2 2

1 2 1 2

+ = +( ) + +( )

= +( ) + +( )
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Multiplication of two complex numbers is performed in the same way as two binomials, 
with the provision that j2 = −1, that is, 

 
  

           

z z x jy x jy x x jy x jx y j y y1 2 1 1 2 2 1 2 1 2 1 2
2

1 2= +( ) +( ) = + + +

                                 = −( ) + +( )x x y y j x y x y1 2 1 2 1 2 2 1

 

Complex numbers have a two-dimensional character, because they consist of a real part 
and an imaginary part. Therefore, they may be represented geometrically as points in a 
Cartesian coordinate system, known as the complex plane. The x-axis of the complex plane 
is the real axis, and the y-axis is the imaginary axis (Figure 2.1). Since z = x + jy is uniquely 
identified by an ordered pair (x,y) of real numbers, it can be represented as a position vec-
tor in the complex plane, with initial point 0 and terminal point z = x + jy. The concept 
of vector addition therefore applies to the addition of complex numbers. For example, if 
z1 = 1 + 3j and z2 = −2 + j, as in Figure 2.2, then z1 + z2 = −1 + 4j agrees with the resultant 
of the position vectors of z1 and z2.

2.1.1.1 Magnitude

The magnitude (or modulus) of a complex number z  =  x + jy is denoted by z  and is 
defined as 

 z x y= +2 2  (2.2)

Real axis

Imaginary axis

0 x

y z = x + jy

FIGURE 2.1
Geometry of a complex number.

Real axis

Imaginary axis

0

−2 + j

−1 + 4j

1 + 3j

FIGURE 2.2
Addition of complex numbers as vectors.
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Referring to Figure 2.1, the magnitude of z is simply the distance from the origin to z. If z is 
a real number (z = x), it is located on the real axis and its magnitude is equal to its absolute 
value. If z is pure imaginary (z = jy), it is on the imaginary axis and z y= . The distance 
between two complex numbers z1 and z2 is given by z z1 2− . Addition of complex numbers 
follows the triangle inequality rule, 

 z z z z1 2 1 2+ ≤ +  (2.3)

Example 2.1: Magnitude

Let z j1 2 3= − + , z j2 1 4= + .

 a. Find the distance between z1 and z2.
 b. Verify the triangle inequality.
 c.  Confirm the results of (a) and (b) in MATLAB®.

Solution

 a. Noting that z1 − z2 = −3 − j, we find z z1 2
2 23 1 10− = − + − =( ) ( ) .

 b. To verify the triangle inequality, Equation 2.3, we first calculate

 z j z j z z j1 2 1 22 3 13 1 4 17 1 7 50= − + = = + = + = − + =,    ,     

 It is then readily seen that 50 13 17≤ + .
 c. 

% MATLAB recognizes both i and j as the imaginary number
>> z1 = -2+3*j; z2 = 1+4*j;    
>> abs(z1 - z2)
ans =
    3.1623       % sqrt(10)

>> abs(z1 + z2)-abs(z1)-abs(z2)
ans =
   -0.6576       % Negative result confirms triangle inequality

2.1.1.2 Complex Conjugate

The complex conjugate of z = x + jy is denoted by z and defined as z x jy= − . The product 
of a complex number (z ≠ 0) and its conjugate is a positive real number, equal to the square 
of the magnitude of z, 

 zz x jy x jy x y z= +( ) −( ) = + =2 2 2 (2.4)

Geometrically, z is the reflection of z through the real axis. Conjugates play an impor-
tant role in the division of complex numbers. Let us consider z z1 2/ , where z x jy1 1 1= +  and 
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z x jy2 2 2= +  (z2 ≠ 0). Multiplication of the numerator and the denominator by the conjugate 
of the denominator (z x jy2 2 2= − ) results in 

 

   
in the de

x jy
x jy

x jy x jy
x jy x jy

1 1

2 2

1 1 2 2

2 2 2 2

+
+

=
+( ) −( )
+( ) −( )

=
nnominator

Using Equation 2.4

 
x x y y j y x y x

x y
1 2 1 2 1 2 2 1

2
2

+( ) + −( )
+ 22

2  

                                                                    =
+
+

+
−
+

x x y y
x y

j
y x y x
x y

1 2 1 2

2
2

2
2

1 2 2 1

2
2

2
2

 

Note that the result has been expressed in standard rectangular form.

Example 2.2: Conjugation

 a. Express the following in rectangular form:

 

1
2

1
31

−
− +

j
j  

 b.  Repeat (a) in MATLAB.

Solution

 a. 
1
2

1
3

1
2

1
3

1
3

1
3

5
6

5
6

10
91

1

1 1
3

4
3−

− +
=

−( ) − −( )
− +( ) − −( ) =

− +
=

−
+

j
j

j j
j j

j
44

j

 b. 

Following the exact steps as in the solution earlier, and using the conj command, we find

>> z1 = 1/2-j; z2 = -1+1/3*j; z1*conj(z2)/(z2*conj(z2))
ans =
  -0.7500 + 0.7500i    % Note that MATLAB returns i instead of j

Direct calculation yields the same result:

>> z1/z2
ans =
  -0.7500 + 0.7500i

2.1.2 Complex Numbers in Polar Form

The standard rectangular form z  =  x + jy is quite inefficient in many situations, for 
instance, in the calculation of (−1 + 3j)8. To remedy this, the polar form of a complex 
number is utilized. As its name suggests, the polar form uses polar coordinates to rep-
resent a complex number in the complex plane. The location of any point z = x + jy in 
the  complex plane can be determined by a radial coordinate r and an angular coordi-
nate θ. The relationships between the rectangular and polar coordinates (Figure 2.3) are 
described by

 x r y r= =cos sinθ θ,      
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We first introduce Euler’s formula, 

 e jjθ θ θ =  +  cos sin  (2.5)

Consequently, 

 z x jy r j r r j re
x y

e

j

j

= + = + = + =cos sin (cos sin )θ θ θ θ
θ

θ
��� ��� � ��� ���  (2.6)

The result, z re j= θ, is known as the polar form of z. Here, r is the magnitude of z, given by 

 r z x y= = +2 2
 

and the phase (argument) of z is determined by 

 θ = = 





 = 








− −arg tan
{ }
{ }

tanz
z
z

y
x

1 1Im
Re

 (2.7)

The angle θ is measured from the positive real axis and, by convention, is regarded as posi-
tive in the counterclockwise direction. It is measured in radians (rad) and is determined 
in terms of integer multiples of 2π. The specific value of θ that lies in the interval (−π, π] is 
called the principal value of arg z and is denoted by Arg z. In engineering applications, it 
is also common to express the polar form as 

 z r= ∠ θ 

where ∠ denotes the phase angle. Note that the phase angle is not fully determined by 
Equation 2.7. As the following example demonstrates, the complex number needs to be 
located before its phase may be assessed.

Real axis

Imaginary axis

0

z = x + jy

x = r cosθ

θ

y = r sinθ

r

FIGURE 2.3
Relation between rectangular and polar coordinates.
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Example 2.3: Polar Form

Express z = −1 − 2j in polar form.

Solution

Location of z, Figure 2.4, will facilitate the phase calculation. By Equation 2.7, 

 
θ =

−
−







 ≅ ≅−tan .1 2

1
1 1071 rad 63.4349

 

However, this is not the phase. Because z is in the third quadrant, the phase in the positive 
sense (counterclockwise) is calculated as 1.1071 4.2487 rad+ ≅π , whereas in the negative 
sense (clockwise), it is π − ≅1.1071 2.0344 rad, which has the smaller measure between 
the two. Noting that r = 5 , and using the phase in the negative direction, we find 

 z j e j= − − = −1 2 5 2 0344 .
 

2.1.2.1 Complex Algebra Using the Polar Form

Working with the polar form considerably simplifies complex algebra. Consider two com-
plex numbers, in their respective polar forms, z r e j

1 1
1= θ  and z r e j

2 2
2= θ . Then,

 z z r r e j
1 2 1 2

1 2= +( )θ θ  or alternatively, r r1 2 1 2∠ +( )θ θ

This means that the magnitude and phase of the product z1z2 are

 z z r r z z1 2 1 2 1 2= =  and arg( ) arg( ) arg( )z z z z1 2 1 2 1 2= + = +θ θ

Similarly, in the case of division,
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r
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1 2= −( )θ θ  or 
r
r
1

2
1 2∠ −( )θ θ

Therefore, the magnitude and phase of z z1 2/  are

 
z
z

r
r

z
z

1

2

1

2

1

2
= =  and arg arg( ) arg( )

z
z

z z1

2
1 2 1 2









 = − = −θ θ

0

z = −1−2j −2j

x

y

−1

1.1071 2.0344

FIGURE 2.4
Calculation of phase in Example 2.3.



37Complex Analysis, Differential Equations, and Laplace Transformation

Example 2.4: Division Using Polar Form

Express the following in polar form: 

 

− −
− +
1 2
1

j
j  

Solution

The polar form of the numerator was derived in Example 2.3, as 

 − − = −1 2 5 2 0344j e j .
 

The denominator is in the second quadrant and its polar form is 

 − + =1 2 3 4j e j ( / )π
 

As a result, 

 

− −
− +

= =
−

−1 2
1

5
2

5
2

2 0344

3 4
4j

j
e
e

e
j

j
j 

 
 .3906 

.

( / )π
 

This may be verified as follows: 

 

− −
− +

⋅
− −
− −

=
− +

=
−

+ =
1 2
1

1
1

1 3
2

1
2

3
2

j
j

j
j

j
j 

second quadrant

Polar forrm
1.8925 

1.8925 4.3906
4.3906        

5
2

5
2

2
e ej j=

− =−
−

π

 

Given z re j= θ, its conjugate is derived as 

 

z x jy r j r r j r j= − = − = − = − + −cos sin ) (cos sin ) cos( ) sin( )θ θ θ θ θ θ( [ ]

                                                                              
Euler’s formula

= −re jθ  

This makes sense geometrically, since a complex number and its conjugate are reflections 
of one another through the real axis. Hence, they are equidistant from the origin, that is, 
z z r= = , and their phases are equal in measure but opposite in sign, that is, arg( ) arg( )z z= −  
(Figure 2.5). The magnitude property of complex conjugation, Equation 2.4, can also be 
confirmed, as 

 zz re re r zj j= ( )( ) = =−θ θ 2 2

 

r
x

y

z = rejθ

z = re−jθ

r

−θ

θ

FIGURE 2.5
A complex number and its conjugate.
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2.1.2.2 Integer Powers of Complex Numbers

As mentioned earlier, one area that reveals the effectiveness of the polar form is in dealing 
with expressions in the form zn for integer n. The idea is as follows: 

 
z re r e r n jn j n n jn n    

Polar form Euler’s formula
= = = +( ) (cos sθ θ θ iin )nθ

                                                
Rec

=
ttangular form

 r n jr nn ncos sinθ θ+

 (2.8)

Example 2.5: Integer Power

Simplify (−1 − 2j)4.

Solution

By Example 2.3, we have − − = −1 2 5 2 0344j e j . . Using this in Equation 2.8, with n = 4, 

 ( ) . .− − = ( ) = = − −− −1 2 5 25 7 244 2 0344 4 8 1376j e e jj j  

2.1.2.3 Roots of Complex Numbers

In real calculus, if a is a real number, then an  has a single value. On the contrary, given a 
complex number z ≠ 0 and a positive integer n, the nth root of z, written zn , is multi-valued. 
In fact, there are n different values of zn  corresponding to each value of z ≠ 0. If z re j= θ, it 
can then readily be shown that 

 z r
k

n
j

k
n

k nn n=
+

+
+






 = −cos sin , , ,

θ π θ π2 2
0 1,      1  ...   (2.9)

Geometrically, these n values lie on a circle centered at the origin, with a radius of rn , and 
are the n vertices of an n-sided regular polygon.

Example 2.6: Third Roots of 1

Calculate all three values of 13 .

Solution

The objective is to find w z= 3 , where z = 1. Noting that z = 1 is located on the positive 
real axis, one unit from the origin, we have r = 1 and θ = 0; hence, z ei= =1 0( ). Using 
Equation 2.9 with n = 3, r = 1, and θ = 0, we find 

 
1 1

0 2
3

0 2
3

0 1 23 3=
+

+
+






 =cos sin , ,

k
j

k
k

π π
,      

 

This generates three complex numbers, each with a magnitude of 1. The phases 
associated with k  =  0, 1, 2 are 0 2

3
4
3, ,  π π . Therefore, the three roots are found as 

1 1
2

3
2

1
2

3
2, , .− + − −j j  Note that all three roots lie on a circle of radius 1 13 =  centered at 

the origin and are the vertices of a regular three-sided polygon, as asserted.
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2.1.3 Complex Variables and Complex Functions

If x or y or both vary, then z = x + iy is called a complex variable. The Laplace variable 
(Section 2.3) is a recognized example of a complex variable. A complex function F defined 
on a set S is a rule that assigns a complex number w to each z S∈ . The notation is w = F(z), 
and the set S is the domain of definition of F. For instance, the domain of the function 
F z z z( ) /( )= + 1  is any region that excludes the point z = −1. Because z assumes different 
values from the set S, it is clearly a complex variable. Transfer functions (Section 4.3.2) and 
frequency response functions (Section 8.4) are the examples of complex functions that fre-
quently arise in the analysis of dynamic systems.

PROBLEM SET 2.1

In Problems 1 through 4,
 a. Express z z1 2/  in rectangular form.
 b. Verify that z z z z1 2 1 2/ /= .

 1. 
−
−
2

3 4
j
j

 2. 
1

2 1
2

−
−

j
j

 3. 
1
3

2− + j

 4. 
2
3 2

3
+

−
j

j

In Problems 5 through 10, express each complex number in its polar form.

 5. 3 2− j

 6. − +2
3 j

 7. 3 + j

 8. − 1
2 j

 9. 
1
1 2

+
− +

j
j

 10. 
1 3
1 3

+
−

j
j

In Problems 11 through 15, perform the operations by using the polar form and express 
the result in rectangular form.

 11. 
2
3

1 3
j

j+

 12. 
1 1

3
1
3

−
+

j
j
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 13. 
4

4 3 3

+
+

j
j( )

 14. ( )0.9239 0.3827+ j 12

 15. 
j

j1 4

3

+










In Problems 16 through 20, find all possible values for each expression.

 16. ( ) /− +1 2 1 3j
 17. ( ) /−1 1 4

 18. ( ) /3 1 4− j

 19. 1 2+ j
 20. ( ) /− +2

3
2 3j

 21. Find all possible roots of jz j3 1 0− + =( ) .

2.2 Differential Equations

An equation involving an unknown function and one or more of its derivatives is called 
a differential equation. Differential equations are divided into two categories: ordinary 
differential equations (ODEs) and partial differential equations (PDEs). When there is only 
one independent variable, the equation is an ODE. For example, 1

4
2

x x e t+ = − /  is an ODE 
involving the unknown function x(t), its first derivative x dx dt= / , as well as a given func-
tion e t− /2. Similarly, 2 2

 x tx t+ = sin  is an ODE relating x(t) and its first and second derivatives 
with respect to t, as well as the function sin t. In dynamic system models, the independent 
variable is generally time t. The derivative of the highest order of the unknown function 
x(t) with respect to t is the order of the ODE. For instance, 1

4
2

x x e t+ = − /  is a first-order dif-
ferential equation and 2 2

 x tx t+ = sin  is a second-order differential equation. Consider an 
nth-order ODE in the form 

 a x a x a x a x F tn
n

n
n( ) ( ) ( )+ + + + =−

−
1

1
1 0 ...   (2.10)

where x = x(t) and x d x dtn n n( ) /= . If all coefficients a a an0 1, , , ...  are either constants or func-
tions of the independent variable t, the ODE is linear. Otherwise, the ODE is  nonlinear. 
If F t( ) ≡ 0, the ODE is homogeneous. Otherwise, it is nonhomogeneous. Therefore, 
1
4

2
x x e t+ = − /  is linear, whereas 2 2

 x tx t+ = sin  is nonlinear, and both are nonhomogeneous. 
If the dependent variable is a function of more than one independent variable, the equa-
tion is called a PDE.

2.2.1 Linear, First-Order Differential Equations

In agreement with Equation 2.10, a linear, first-order ODE is expressed as 

 a x a x F t x g t
a

1 0

1

 + = ⇒ +( ) (            
and rewrite as

Divide by 

)) ( )x f t=  (2.11)
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with a general solution in the form

 x t e e f t dt ch h( ) ( ) ,= +





− ∫    h g t dt= ∫ ( )  (2.12)

where c is a constant of integration. A particular solution can be obtained when an initial 
condition is specified. Assuming that the initial time is t  =  t0, the initial condition for 
x refers to the value of x immediately prior to the initial time and is denoted by x t( )0

− . On 
the other hand, the initial value of x, denoted by x t( )0

+ , is its value immediately after the 
initial time. Although the initial condition and initial value of a quantity are almost always 
the same, there are rare instances in dynamic systems analysis where they are different; 
see Section 2.3. In the meantime, we simply assume that the two are the same and denoted 
by x t( )0 . That said, a first-order IVP is described by 

 x g t x f t x t x+ = =( ) ( ) ( ),   0 0  

Example 2.7: Initial-Value Problem

 a. Solve the IVP

 
1
3

2 1
50x x e xt+ = =− / , ( )  

 b. Confirm the result of (a) in MATLAB.

Solution

 a. Rewrite the ODE as x x e t+ = −3 3 2/ , so that g(t) = 3 and f t e t( ) /= −3 2 in Equation 2.11. 
Then, by Equation 2.12, we have h dt t= =∫3 3 , and a general solution is

 
x t e e e dt c e e c e cet t t t t t( ) / / /= +





= +  = +− − − −∫3 3 2 3 6
5

5 2 6
5

23 −−3t

 

Using the initial condition, we find c = −1, and consequently, x t e et t( ) /= −− −6
5

2 3 .

 b. 

>> x = dsolve('(1/3)*Dx+x=exp(-t/2)','x(0)=1/5'); simplify(x)
ans =
(6*exp(-t/2))/5 - exp(-3*t)

2.2.2 Second-Order Differential Equations with Constant Coefficients

A special class of linear, second-order ODEs that arises in dynamic system models is in 
the form 

 a x a x a x F t2 1 0 + + = ⇒
Constant coefficients and rewrite

      ( )
DDivide by 

      
a

x bx cx f t
2

 + + = ( ) (2.13)

This equation is normally accompanied by a set of two initial conditions, x t( )0  and x t( )0 , 
where t0 denotes the initial time. A general solution x(t) of Equation 2.13 is a superposition 
of the homogeneous solution x th( ), sometimes called the complementary solution x tc( ), and 
the particular solution x tp( ), that is, x t x t x th p( ) ( ) ( )= + .
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2.2.2.1 Homogeneous Solution

The homogeneous solution x th( ) is the solution of the homogeneous equation, 

  x bx cx+ + = 0  

and is found as follows. Assume that x e t= λ , with λ to be determined, and this is inserted 
in the earlier equation: 

 
( )λ λ λ λλ

λ
2

0
20 0+ + = ⇒ + + =

≠
b c e b ct

e t

            
Characteristic equuation

Solve
            ⇒

λ
λ

1

2  

The characteristic values λ1 and λ2 establish the two linearly independent solutions that 
form x th( ). 

Case (1): λ λ1 2≠  (real)
The two independent solutions are e tλ1  and e tλ2 , and a linear combination of the two 

yields

 x t c e c e c ch
t t( ) ,= + =1 2 1 2

1 2λ λ ,   const 

Case (2): λ λ λ1 2= =
The independent solutions are e tλ  and te tλ , so that

 x t c c t e c ch
t( ) ( ) ,= + =1 2 1 2

λ ,   const  

Case (3) λ λ2 1=  (complex conjugates)
If λ α β1 = + j , then the two independent solutions are e ttα βcos  and e ttα βsin , leading 

to 

 x t e c t c t c ch
t( ) cos sin ,= +( ) =α β β1 2 1 2,   const  

2.2.2.2 Particular Solution

The particular solution x tp( ) of Equation 2.13 is obtained by using the method of unde-
termined coefficients. The method is limited in its applications and only handles cases 
in which f t( ) is a polynomial, exponential, sinusoidal, or some combination of them. 
Table  2.1  contains the recommended x tp( ) for different scenarios of f t( ). These recom-
mended expressions are subject to modification in some special cases, as follows. If xp  

TABLE 2.1

Selection of Particular Solution; Method of Undetermined Coefficients

Term in f t( ) Recommended x tp( )

A t A t An
n + + + ... 1 0

Aeat

A tsinω  or A tcosω

Ae ttσ ωsin  or Ae ttσ ωcos

K t K t Kn
n + + + ... 1 0

Keat

K t K t1 2cos sinω ω+

e K t K ttσ ω ω( cos sin )1 2+
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contains a term that coincides with an independent solution of the homogeneous equation 
and the solution corresponds to a nonrepeated characteristic value, then the recommended 
xp must be multiplied by t. If the characteristic value is repeated—as in above-mentioned 
Case (2)—then xp  must be multiplied by t2.

Example 2.8: Nonhomogeneous, Second-Order Ordinary Differential Equation

 a. Solve the IVP

 3 5 2 0 0 0 12 3
  x x x e x xt+ + = = =− / ( ) ( ),    ,   

 b.  Confirm the result of (a) in MATLAB.

Solution

 a. The characteristic equation 3 5 2 02λ λ+ + =  yields λ = − −1 2
3, , so that 

x c e c eh
t t= +− −

1 2
2 3/ . Based on Table 2.1, we choose x Kep

t= −2 3/ . However, 
e t−2 3/  coincides with the independent solution in xh associated with λ = − 2

3 . 
Therefore, xp is modified to x Ktep

t= −2 3/ . Inserting into the original ODE and 
equating the two sides, we find K = 1, so that x tep

t= −2 3/ . This implies that a 
general solution is x t c e c e tet t t( ) / /= + +− − −

1 2
2 3 2 3. Finally, application of the initial 

conditions results in c c1 2 0= = ; hence, x t te t( ) /= −2 3.
 b. 

>> x = dsolve('3*D2x+5*Dx+2*x = exp(-2*t/3)','x(0)=0','Dx(0)=1'); 
>> simplify(x)
ans =
t*exp(-(2*t)/3)

Example 2.9: Homogeneous, Second-Order Ordinary Differential Equation

Solve the IVP 

   x x x x x+ + = = =2 5 0 0 1 0 3, ( ) ( )  ,   

Solution

The roots of the characteristic equation λ λ2 2 5 0+ + =  are λ = − ±1 2 j and a general solu-
tion is formed as x t e c t c tt( ) ( cos sin )= +−

1 22 2 . Applying the initial conditions leads to 
c1 1=  and c2 2= ; hence, x t e t tt( ) (cos sin )= +− 2 2 2 .

2.2.2.2.1 Expressing A t B tcos sinω ω+  as D tsin( )ω φ+
In systems analysis, we often encounter expressions in the form A t B tcos sinω ω+ , where 
the sine and cosine waves have the same frequency ω, for example, the term cos sin2 2 2t t+  
that appears in the solution of Example 2.9. However, it is more convenient to write this 
expression as a single trigonometric term such as D tsin( )ω φ+ , where D is the amplitude, 
φ is the phase shift, and ω matches the common frequency in the sine and cosine terms. 
Using a trigonometric expansion, we have 

 D t D t D t A t B tsin( ) cos sin sin cos cos sinω φ ω φ ω φ ω ω+ = + = +  
Compare

 

Comparison of like terms on both sides yields 

 

D A
D B

A
B

sin
cos

tan
φ
φ

φ
=
=

⇒ =         
Divide the two equations
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Next, we construct a right triangle (Figure 2.6) in which angle φ satisfies tan /φ = A B: 

 
sin φ φ= =

+
= =

+

A
D

A

A B

B
D

B

A B2 2 2 2
,    cos

 

Since D > 0 always, depending on the signs of A and B, the proper quadrant and measure 
for φ can be readily determined. In summary, 

 A t B t D t D A B
A
B

cos sin sin( ) tanω ω ω+ = + = + = −φ φ,   ,   2 2 1  (2.14)

Example 2.10: Amplitude, Phase Shift

Express sin cost t− 2  as D tsin( )ω + φ .

Solution

Comparing with the general form A t B tcos sinω ω+ , we have A = −2, B = 1, and the fre-
quency ω = 1 rad/s. We also note that D = >5 0. Since sin /φ = <A D 0 and cos /φ = >B D 0 , 
we conclude that φ is in the fourth quadrant and φ = − = −−tan ( )1 2 1.1071 rad. In summary, 

 sin cos sin( )t t t− = −2 5 1.1071  

PROBLEM SET 2.2

In Problems 1 through 4, solve the linear, first-order IVP.

 1. x x t x+ = =1
3 2 0 1cos ( ),   

 2. 1
2

1
2

1
30x tx t x+ = =,  ( )

 3. ( ) ( )t u tu t u− + = =1 2 0 1 ,  
 4. u u t u= − =( )cos ( )1 0 1

2,  

In Problems 5 through 10, solve the linear, second-order IVP.

 5.   x x x e x xt+ + = = =−4 4 0 1 0 1,  ,  ( ) ( )
 6.  x x t x x+ = = =4 0 0 0 1,  ,  ( ) ( )
 7.  x x t x x+ = = =sin ( ) ( ),  ,  0 1 0 0
 8.   x x x e x xt+ + = = = −−4 3 2 0 0 0 13 ,  ,  ( ) ( )
 9. 6 7 2 65 0 0 0 5  u u u t u u+ + = = =cos ( ) ( ),  ,  
 10. 4 4 5 0 0 0 0 1  u u u u u+ + = = =,  ,  ( ) ( )

A

B
ϕ

D =     A2 + B2

FIGURE 2.6
Phase shift.
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In Problems 11 through 14, write the expression in the form D tsin( )ω + φ .

 11. cos sint t+ 1
3

 12. 1
2 3 3cos sint t−

 13. cos( )2 1
3t + π

 14. 3sin cosω ωt t−

In Problems 15 and 16, write the expression in the form D tcos( )ω + φ .

 15. cos sint t− 3
4

 16. sin cost t−

2.3 Laplace Transformation

In Section 2.2, we learned that ODEs with constant coefficients may be solved entirely in time 
domain by using the method of undetermined coefficients, which has limitations in its appli-
cations. In this section, we introduce an alternative and systematic approach to solve these 
equations, with the advantages that a wider range of forcing functions can be handled and 
the arbitrary constants in a general solution do not need to be obtained separately. The idea 
is to transform an IVP via Laplace transformation to the s-domain, in which the transformed 
problem is algebraic and thus much easier to solve. This algebraic problem is then properly 
treated, and the data are ultimately transformed back to time domain to find the solution of 
the original IVP. If a function x t( ) is defined for all t ≥ 0, its Laplace transform is defined by 

 X  
Notation Definition

( ) ( ) ( )s t e x t dtx st= { } = −

∞

∫
0

 (2.15)

provided that the integral exists. The complex variable s is the Laplace variable, and  
is  the Laplace transform operator. It is a common practice to denote a time-dependent 
function by a lowercase letter such as x t( ) and its Laplace transform by the same letter 
in capital, X s( ). Transforming the data back to the time domain is done through inverse 
Laplace transformation −1 as (Figure 2.7) 

 x t X s( ) ( )= { }− 1
 

Laplace transforms of several functions are listed in Table 2.2.

Initial-value problem
with dependent variable

x(t) Laplace
transform

Algebraic equation
in X(s)

Solve

Inverse laplace transform

Transform
function

X(s)

−1

FIGURE 2.7
Solution process for initial-value problems, using Laplace transformation.
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TABLE 2.2

Laplace Transform Pairs

No. f t( ) F s( )

1 Unit impulse δ( )t 1
2 1, unit step u ts( ) 1/s

3 t , unit ramp u tr( ) 1 2/s

4 δ( )t a− e as−

5 u t a( )− e sas− /

6 t nn− =1, 1, 2, . . . ( )!/n sn−1

7 t aa− >1 0, Γ( ) /a sa∗

8 e at− 1
s a+

9 te at− 1
2( )s a+

10 t e nn at− =, 1, 2, . . . n
s a n

!
( )+ +1

11 1
b a

e e a bat bt

−
− ≠− −( ), 

1
( )( )s a s b+ +

12
1

a b
ae be a bat bt

−
− ≠− −( ), 

s
s a s b( )( )+ +

13
1

1
1

ab a b
be aeat bt+

−
−





− −( )
1

s s a s b( )( )+ +

14
1

12a
at e at( )− + + − 1

2s s a( )+

15
1

12a
e ateat at( )− −− − 1

2s s a( )+

16 sinωt ω
ωs2 2+

17 cosωt s
s2 2+ ω

18 e tt−σ ωsin ω
σ ω( )s + +2 2

19 e tt−σ ωcos s
s

+
+ +

σ
σ ω( )2 2

20 1− cos ωt ω
ω

2

2 2s s( )+

21 ω ωt t− sin ω
ω

3

2 2 2s s( )+

22 t tcosω s
s

2 2

2 2 2

−
+

ω
ω( )

23
1

2ω
ωt tsin

s
s( )2 2 2+ ω

(Continued )
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Example 2.11: Laplace Transform

 a. Find  e a constat−{ } =,  .

 b.  Repeat (a) in MATLAB.

Solution

 a.  e e e dt e dt
s a

at st at s a t− − −

∞

− +

∞

{ } = = =
+∫ ∫

0 0

1( )

No. f t( ) F s( )

24 1
2 3ω

ω ω ω(sin cos )t t t−
1

2 2 2( )s + ω

25
1

2ω
ω ω ω(sin cos )t t t+ s

s

2

2 2 2( )+ ω

26 1 1 1

2
2

1
2

2
2

1
1 1

2
2
2

ω ω ω
ω

ω
ω ω ω

−
−









 ≠sin sint t ,  

1
2

1
2 2

2
2( )( )s s+ +ω ω

27
1

2
2

1
2 1 2 1

2
2
2

ω ω
ω ω ω ω

−
− ≠(cos cos )t t , 

s
s s( )( )2

1
2 2

2
2+ +ω ω

28 sinh at a
s a2 2−

29 cosh at s
s a2 2−

30
1 1 1

2 2a b a
at

b
bt a b

−
−





≠sinh sinh , 
1

2 2 2 2( )( )s a s b− −

31
1

2 2a b
at bt a b

−
− ≠[cosh cosh ], 

s
s a s b( )( )2 2 2 2− −

32 1
3

22
3

2
1
6

1
2

a
e e atat at[ sin( )]− + − π

1
3 3s a+

33 1
3

2
1
2 3

2
1
6a

e e atat at[ sin( )]− + +− π
s

s a3 3+

34 1
3

22
3

2
1
6

1
2

a
e e atat at[ sin( )]− +− π

1
3 3s a−

35
1

3
2

1
2 3

2
1
6a

e e atat at[ sin( )]− −+ − π
s

s a3 3−

36
1

4 3a
at at at at[cosh sin sinh cos ]−

1
44 4s a+

37
1

2 2a
at atsinh sin

s
s a4 44+

38
1

2 3a
at at(sinh sin )−

1
4 4s a−

39
1

2 2a
at at(cosh cos )−

s
s a4 4−

∗ − −

∞

= ∫Gamma function Γ( ) .a t e dta t1

0

TABLE 2.2 (Continued)

Laplace Transform Pairs
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 b. 

>> syms a t
>> F = laplace(exp(-a*t))
F =
1/(a + s)

2.3.1 Linearity of Laplace and Inverse Laplace Transforms

The Laplace transform operator  is linear; that is, if the Laplace transforms of functions 
x t1( ) and x t2( ) exist, and c1 and c2 are constant scalars, then 

 

 c x t c x t e c x t c x t dt c e x tst st
1 1 2 2 1 1 2 2

0

1 1

0

( ) ( ) ( ) ( ) ( )+{ } = +[ ] =−

∞

−∫
∞∞

−

∞

∫ ∫+dt c e x t dtst
2 2

0

( )

                                        = { }+ { } = +c t t X s c X sx c x c1 1 2 2 1 1 2 2 ( ) ( ) ( ) ( )  

To establish the linearity of −1, take the inverse Laplace transforms of the expressions on 
the far left and far right of the above-mentioned equation to obtain 

 c x t c x t X s c X sc1 1 2 2
1

1 1 2 2( ) ( ) ( ) ( )+ = +{ }−  

Noting that x t X s1
1

1( ) ( )= { }−  and x t X s2
1

2( ) ( )= { }− , the result follows.

2.3.2 Differentiation and Integration of Laplace Transforms

Let us consider two specific types of situations: { ( )}tg t  and { ( )/ }g t t . In both cases, it is 
assumed that G s g t( ) ( )= { }  is either known directly from Table 2.2 or can be determined 
by other means. Either way, once G s( ) is available, the two above-mentioned transforms 
will be obtained in terms of the derivative and the integral of G s( ), respectively. We first 
make the following definition. If a transform function is in the form G s N s D s( ) ( )/ ( )= , then 
any value of s for which D s( ) = 0 is called a pole of G s( ). A pole with a multiplicity (number 
of occurrences) of one is known as a simple pole.

2.3.2.1 Differentiation of Laplace Transforms

If G s g t( ) ( )= { }  exists, then at any point except at the poles of G s( ), we have 

  tg t
dG s

ds
( ){ } = − ( )

 (2.16)

In the general case, 

 
 t g t

d G s
ds

n n
n

n( ) ( )
( ){ } = −1
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Example 2.12: Derivative of Laplace Transforms

 a. Find  te t−{ }2 3/ .
 b.  Repeat (a) in MATLAB.

Solution

 a. Comparison with Equation 2.16 reveals g t e t( ) /= −2 3 , so that G s
s

( ) =
+
1

2
3

. Then,

 
 te

d
ds s s

t−{ } = −
+









 =

+










2 3
2
3

2
3

2
1 1/

 

 b. 

>> syms t
>> laplace(t*exp(-2*t/3))
ans =
1/(s + 2/3)^2

2.3.2.2 Integration of Laplace Transforms

If  g t t( )/{ } exists and the order of integration can be interchanged, then 

 
g t

t
G d

s

( )
( )








=
∞

∫ σ σ (2.17)

Example 2.13: Integral of Laplace Transforms

 a. Find  sinωt
t








.

 b.  Repeat (a) in MATLAB.

Solution

 a. Comparing with Equation 2.17, we find g t t( ) sin= ω , so that G s
s

( ) .=
+
ω

ω2 2  
Consequently,

 
 sin

( / )
tan

ω ω
σ ω

σ
σ ω

σ
ω

σ
ω σ

t
t

d
d

s s s









=
+

=
+

= 





∞ ∞

−

=
∫ ∫2 2 2

11
1

∞∞
− −= − =

π
ω

ω
2

1 1tan tan
s

s
 

 b. 

>> syms w t
>> laplace(sin(w*t)/t)
ans =
atan(w/s)
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2.3.3 Special Functions

Characteristics of dynamic systems, such as stability and damping levels, can be largely 
determined by studying their responses to external excitations or disturbances, which are 
mathematically modeled as special functions. In this section, we introduce the step, ramp, 
pulse, and impulse functions, as well as their Laplace transforms.

2.3.3.1 Unit-Step Function

The unit-step function occurring at t = 0 is shown in Figure 2.8a and is defined as 

 

u t
t

( ) =
>1 0

0
       if                           
       if                           

undefined (finite)    if    
t

t
<

=
0

0









 

Physically, this may be realized as a constant signal (of magnitude 1) suddenly applied 
to the system at time t = 0 . Using the definition of the Laplace transform, Equation 2.15, 
we find 

 
 u t U s e u t dt e dt

s
st st( ) ( ) ( ){ } = = = =−

∞

−

∞

∫ ∫
Notation

 
0 0

1

 

When the magnitude is A, the signal is called a step function, denoted by Au t( ), and 

 
 Au t e Adt

A
s

st( ){ } = =−

∞

∫
0  

If the unit-step occurs at time a ≠  0 (Figure 2.8b), it is described by 

 

u t a
t a

( )− =
>1

0
       if                           
       if                           

undefined (finite)    if    
t a

t
<

==







 a 

The time-delayed step of magnitude A is described by Au t a( )−  and is shown in 
Figure 2.8c. In order to find the Laplace transform of this signal, we need the following 
shifting property:

t

u(t)

1

0
t

u(t–a)

1

0 a
t

Au(t–a)

0 a

A A<1

(a) (b) (c)

FIGURE 2.8
(a) Unit step at t = 0, (b) time-delayed unit step, and (c) time-delayed step.
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Shift on t-axis: If F s f t( ) ( )= { }  exists and a ≥ 0, then 

  f t a u t a e F sas( ) ( ) ( )− −{ } = −  (2.18)

Comparing  Au t a( )−{ } to the left side of Equation 2.18, we find f t a A( )− = , which in turn 
implies f t A( ) =  and hence F s A s( ) /= . Therefore, 

 
 Au t a

Ae
s

as

( )−{ } =
−

 

Example 2.14: Shift on t -Axis

Consider the function g t( ) defined in Figure 2.9.

 a. Express g t( ) in terms of unit-step functions.
 b. Find G s( ) by using the shift on t-axis, Equation 2.18.
 c.  Confirm the result of (b) in MATLAB.

Solution

 a. We construct the signal in Figure 2.9 by subtracting Figure 2.10b from 2.10a, 
that is,

 g t tu t tu t( ) ( ) ( )= − −3
2

3
2 1  

g(t)

t

3
2

10

FIGURE 2.9
Example 2.14.

t t

3
2

10

3
2 t

3
2 tu(t)

3
2 tu(t–1)

(a) (b)

FIGURE 2.10
(a) Infinite ray and (b) tail end of the ray.
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 b. Applying Equation 2.18 to the two terms yields

 
 3

2

3
2
2

3
2 21

3
2

1 1
tu t

s
tu t e

s s
s( ) , ( ){ } = −{ } = +







−    
 

Therefore, 

 
G s

s
e

s s
s( ) = − +







−
3
2
2 2

3
2

1 1

 

 c. 

>> syms t
% heaviside represents the unit-step
>> g = (3/2)*t*heaviside(t)-(3/2)*t*heaviside(t-1);
>> G = laplace(g)
G =
3/(2*s^2) - (3*exp(-s))/(2*s^2) - (3*exp(-s))/(2*s)

2.3.3.2 Unit-Ramp Function

The unit-ramp function (Figure 2.11) is defined as 

 
u t

t t
tr( ) =
≥
<





    if    
    if    

0
0 0 

Physically, this models a signal that changes linearly with a unit rate. By Equation 2.15, 

 
 u t U s te dt

s
r r

st( ) ( ){ } = = =−

∞

∫
0

2

1

 

In general, when the rate is A, the signal is called a ramp function, denoted by Au tr( ), and 

 
 Au t

A
s

r( ){ } = 2  

ur(t)

t

1

0

1

FIGURE 2.11
Unit ramp.
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2.3.3.3 Unit-Pulse Function

The unit-pulse function (Figure 2.12a) is defined as 

 
u t

t t t
t t tp( )

/
=

< <
< >

1 0
0 0

1 1

1

      if        
    if      or   

  

The word “unit” signifies the unit area that the signal occupies. It is readily verified that 

 
u t

t
u t u t tp( ) ( )= − −( ) 

1

1
1

 

so that 

 
 u t

t s
e

s
e

t s
p

t s t s

( ){ } = −








 = −− −1 1 1

1 1

1 1

 

In general, if the signal occupies an area A, it is called a pulse function and is denoted by 
Au tp( ).

2.3.3.4 Unit-Impulse (Dirac Delta) Function

In the unit-pulse function of Figure 2.12a, let t1 0→  (Figure 2.12b). In the limit, the 
rectangular-shaped signal occupies a region with an infinitesimally small width and 
an infinitely large height (Figure 2.12c). However, the area remains unity throughout 
the process. This limiting signal is known as the unit-impulse (or Dirac delta) function, 
denoted by δ( ).t  In general, if the area is A, the signal is called an impulse, denoted by 
A tδ( ). An impulse with zero duration and infinite magnitude is mathematical fabrication 
and does not occur physically. However, if an external disturbance (such as an applied 
force, voltage, or torque) is a pulse with a very large magnitude and is applied for a very 
short period of time, then it can be approximated as an impulse. Since δ( )t  is the limit of 
u tp( ) as t1 0→ , we have 

 
 δ( ) ( ) limt s

e
stt

st

{ } = = −







=
→

−Notation L’Hopital’s

 ∆
1

1

0 1

1    rule

  lim
t

stse
s1

1

0
1

→

−







=
 

up(t) up(t)

Area = 1
Area = 1Area = 1

1/t1 1/t1

000 t1
t t1

t
(c)(b)(a)

t

δ(t)

FIGURE 2.12
(a) Unit pulse, (b) unit pulse as t1 0→ , and (c) unit impulse.
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If the unit-impulse occurs at t a= , it is represented by δ( )t a−  and has the properties 

 
δ( )t a

t a
t a

− =
≠

∞ =




0    if    
    if     

and 

 
δ( )t a dt− =

−∞

∞

∫ 1
 

It can also be shown that 

  δ( )t a e as−{ } = −
 

2.3.3.5 The Relation between Unit-Impulse and Unit-Step Functions

Noting that t a=  is a point of discontinuity of u t a( )− , the unit-impulse signal δ( )t a−  can be 
regarded as the derivative of u t a( )−  at this point of discontinuity, that is, 

 
d
dt

u t a t a( ) ( )− = −δ
 

Therefore, the idea of the impulse function allows for the differentiation of time-variant 
functions with discontinuities.

2.3.3.6 Periodic Functions

Dynamic systems are often subjected to excitations that exhibit repeated behavior over 
long periods of time. Such excitations are modeled as periodic functions. A function f t( ) is 
said to be periodic with period P > 0 if it is defined for all t > 0 and f t P f t( ) ( )+ =  for all t > 0. 
We assume that f t( ) is also piecewise continuous, as basically all signals of physical interest 
are. In order to determine a system’s response to a specific input, the Laplace transform of 
the input must be identified properly. The Laplace transform of a periodic function f t( ) of 
period P is found as follows. By Equation 2.15, 

 
F s e f t dt e f t dt e f t dt es s

P

s

P

P

( ) ( ) ( ) ( )= = + + ⋅⋅⋅ =−

∞

− − −∫ ∫ ∫τ τ τ

0 0

2

    ss

kP

k P

k

f t dtτ ( )
( )+

=

∞

∫∑












1

0  

To make the lower and upper limits of the integral independent of P, we introduce the 
dummy variable τ = −t kP. Then, 

 
F s e f d e e f ds kP

P

k

skP s

P

( ) ( ) ( )( )=











=− +

=

∞
− −∫∑ ∫  τ ττ τ τ

00 0

ττ










=

∞

∑
k 0  
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Note that the summation only affects the exponential term because the integral term is 
independent of the index k . However, the exponential term is a geometric series, so that 

 
e e

e
skP

k

sP k

k
sP

−

=

∞
−

=

∞

−∑ ∑= =
−

0 0

1
1

( )  
Geometric series

 

Using this information in the expression of F s( ), we find 

 
F s e f d e e f ds

P

skP

k

s

P

( ) ( ) ( )=











=







− −

=

∞
−∫ ∑ ∫τ ττ τ τ τ

0 0 0

 





− −

1
1 e sP

 

Therefore, the Laplace transform of the periodic function is determined as 

  F s
e

e f t dtPs
st

P

( ) ( )=
− −

−∫1
1

0

 (2.19)

Example 2.15: Periodic Signal

Find the Laplace transform of the periodic function g t( ), defined in Figure 2.13.

Solution

It is clear that the period is P = 1. Noting that g t t( ) =  for 0 1< <t , the integral in 
Equation 2.19 is evaluated as 

 
e g t dt e tdt

e s
s

st st
s

− −
−

∫ ∫= =
− +

( )
( )

0

1

0

1

2

1 1

 

Then, by Equation 2.19, 

 
G s

e s
s e

s

s( )
( )

( )
=

− +
−

−

−

1 1
12  

2.3.4 Laplace Transforms of Derivatives and Integrals

Mathematical models of dynamic systems generally involve differential equations of 
various orders. In some occasions, the governing equation(s) may contain derivatives, 

g(t)

t

1

10 2

FIGURE 2.13
Periodic function in Example 2.15.
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as well as integrals of a function. For example, an electrical circuit with a capacitor falls 
in this category of systems. Consequently, using the Laplace transform approach to 
solve such equations requires knowledge of the Laplace transform of derivatives and 
integrals.

2.3.4.1 Laplace Transforms of Derivatives

The Laplace transform of the nth-order derivative of x t( ) is given by 

  x t s X s s x s x xn n n n n( ) ( )( ) ( ) ( ) ( ) ( ){ } = − − − −− − −1 2 10 0 0  ...  

In particular, for the first and second derivatives, the above-mentioned yields 

  x t sX s x( ) ( ) ( ){ } = − 0  

   x t s X s sx x( ) ( ) ( ) ( ){ } = − −2 0 0  (2.20)

These relations are directly employed in solving IVPs.

2.3.4.2 Laplace Transforms of Integrals

The Laplace transform of the integral of a function x t( ) is given by 

  x t dt
s

X s
t

( ) ( )
0

1∫











=  (2.21)

Equivalently, 

 − 







= ∫1

0

1
s

X s x t dt
t

( ) ( )  (2.22)

Example 2.16: Inverse Laplace Transform

 a. Find −

+( )











1

1
2

1
s s

.

 b.  Confirm the result of (a) in MATLAB.

Solution

 a. Comparing with the left side of Equation 2.22, X s
s

( ) =
+
1

1
2

, so that x t e t( ) /= − 2. 
Then,

 
− − −

+( )











= = −( )∫1

1
2

2

0

21
2 1

s s
e dt et

t

t/ /
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 b. 

>> syms s
>> ilaplace(1/s/(s+1/2))
ans =
2 - 2*exp(-t/2)
% Performing the integration in (a) yields the same result.
>> syms t
>> int(exp(-t/2),0,t)
ans =
2 - 2*exp(-t/2) % Result confirmed

2.3.5 Inverse Laplace Transformation

As was shown in Figure 2.7, the final step in solving an IVP involves the inverse Laplace 
transform − { }1 X s( ) . This can essentially be done using one of two techniques: (1) partial-
fraction expansion method and (2) convolution method.

2.3.5.1 Partial-Fraction Expansion Method

In system dynamics, the transform function X s( ) is normally in the form 

 X s
N s
D s

m
n

( )
( )
( )

= = Polynomial of degree

Polynomial of degree

 
 

,,      m n<  (2.23)

The idea behind the partial-fraction expansion method is to express X s( ) as a sum of suit-
able fractions and find the inverse Laplace transform of each fraction, and ultimately, via 
the linearity of  −1, the sum of the resulting time functions yields x t( ). How these partial 
fractions are formed depends on the nature of the poles of X s( ), that is, the roots of D s( ), 
which may be real or complex. 

• All roots of D s( ) are real
Suppose D s s s s( ) = + +3 23 2 , so that its roots are s = − −0 1 2, ,  (all real). In this case, 

we express D s( ) as a product of linear factors, as D s s s s( ) ( )( )= + +1 2 .
• D s( ) has real and complex roots

Suppose D s s s s( ) = + +3 22 2 , so that its roots are s j= − ±0 1, . In this case, instead of 
writing D s s s j s j( ) ( )( )= + + + −1 1 , we write D s s s s( ) ( )= + +2 2 2 , with the second-
degree polynomial with complex roots remaining intact. Any second-degree 
polynomial with complex roots is called an irreducible polynomial.

Regardless of whether poles of X s( ) are real or complex, four possible cases could arise.
Case (1): Linear factor s pi−

If pi is a simple pole of X s( ), then D s( ) contains the factor s pi− . This factor is associated 
with a fraction in the form of 

 

A
s pi−  

where A = const is called a residue and is to be determined appropriately.
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Example 2.17: Linear Factors

 a. Find − { }1 X s( ) , where X s
s

s s
( )

( )( )
=

+
+ +

3
1 2

.

 b.  Verify the result of (a) in MATLAB.

Solution

 a. D s( ) contains two linear factors, since poles of X s( ) are real and distinct: − −1 2, . 
Each linear term is associated with a simple fraction, as mentioned earlier. 
Thus,

 
X s

s
s s

A
s

B
s

A s B s
s s

A B
( )

( )( )
( ) ( )
( )( )

( )
=

+
+ +

=
+

+
+

=
+ + +
+ +

=
+3

1 2 1 2
2 1
1 2

ss A B
s s

+ +
+ +

2
1 2( )( )  

 The denominators of the original and the final fractions are identical (by 
design), so we force their respective numerators to be identical, that is, 

 s A B s A B+ ≡ + + +3 2( )  

 However, this identity holds only if the coefficients of like powers of s on both 
sides are the same. So, we have 

 

Coefficient of

Constant term

               
        

s A B:
:

1 = +
33   

           
  
 

Solve

= +
⇒

=
= −2

2
1A B

A
B  

 Insert the two residues into the partial fractions, and perform term-by-term 
inverse Laplace transformation to obtain 

 
X s

s s
x t

s s
( ) ( )=

+
−

+
⇒ =

+








−
+


−

− −2
1

1
2

2
1

1
1

2

1
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= −− −2 2e et t

 

 b. 

>> syms s
>> x = ilaplace((s+3)/(s+1)/(s+2))
x =
2*exp(-t)-exp(-2*t)

Case (2): Repeated linear factor ( )s pi
k−

If pi is a pole of X s( ) with multiplicity k, then D s( ) contains the factor ( )s pi
k− . This factor 

is then associated with partial fractions

 

A

s p

A

s p

A

s p

A
s p

k

i
k

k

i
k

i i−( )
+

−( )
+ +

−( )
+

−
−

−
1

1
2

2
1 ... 

 

where the residues A Ak , , ... 1 are determined, as in Case (1).
Case (3): Irreducible polynomial s as b2 + +

Each irreducible polynomial is associated with a single fraction in the form of

 
Bs C

s as b
+

+ +2  
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with constants B and C  to be determined. Before taking the inverse Laplace transform, 
we complete the square in the irreducible polynomial, that is, s as b s2 2 2+ + = + +( )σ ω . For 
example, s s s2 2 22 2 1 1+ + = + +( ) . Then, at some point, we need to determine

 
− +

+ +








1
2 2

Bs C
s( )σ ω  

The key is to split the fraction in terms of the two expressions

 

ω
σ ω( )

,
s + +2 2

  

s
s

+
+ +

σ
σ ω( )2 2

 

so that we can ultimately use the relations (Table 2.2)

 
 − − −

+ +








= +
+ +








1
2 2

1
2 2

ω
σ ω

ω σ
σ ω

σ

( )
sin ,

( )s
e t

s
s

t         


= −e ttσ ωcos
 

Example 2.18: Real and Complex Poles

 a. Find − { }1 X s( ) , where X s
s s s

( )
( )( )

=
+ + +

4
3 2 52 .

 b.  Verify the result of (a) in MATLAB.

Solution

 a. The term s s s2 2 22 5 1 2+ + = + +( )  is irreducible, whereas s + 3 is a linear factor. 
Therefore,

 

X s
s s s

A
s

Bs C
s s

A s s Bs C s
( )

( )( )
( ) ( )(

=
+ + +

=
+

+
+

+ +
=

+ + + + +4
3 2 5 3 2 5

2 5
2 2

2 33
3 2 52

)
( )( )s s s+ + +

                                                                               =
+ + + + +( ) ( )A B s A B C s2 2 3 55 3

3 2 52

A C
s s s

+
+ + +( )( )  

 Proceeding as before, 

 

A B
A B C
A C

+ =
+ + =
+ =

⇒
0

2 3 0
5 3 4

         

      
                     

AA
B
C

=
= −
=

1
2

1
2

1
2

  

   

 Substituting into the partial fractions, we arrive at 

 
X s

s
s

s s s
s

s s
( )

( ) ( )
=
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−
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+ +
+

+ +
1
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1
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1
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1
1 2

2
1 22 2 2 2 22







 

 Term-by-term Laplace inversion yields x t e e t e tt t t( ) [ cos sin ]= − +− − −1
2

3 2 2 .

 b. 

>> syms s
>> x = ilaplace(4/(s+3)/(s^2 + 2*s+5))
x =
exp(-3*t)/2 - (exp(-t)*(cos(2*t) - sin(2*t)))/2
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Case (4): Repeated irreducible polynomial ( )s as b k2 + +
Each factor ( )s as b k2 + +  in D s( ) is associated with partial fractions 

 

B s C
s as b

B s C
s as b

B s C
s as b

k k
k

+
+ +

+ + +
+ +

+ +
+ +( ) ( )2

2 2
2 2

1 1
2 ... 

 

2.3.5.2 Performing Partial-Fraction Expansion in MATLAB

The command ilaplace returns the inverse Laplace transform but not the actual par-
tial fractions. For that purpose, the residue command is used instead. This command is 
concerned with the partial-fraction expansion of the ratio of two polynomials in the form 
B s A s( )/ ( ), where, unlike the restriction cited in Equation 2.23, the degree of B s( ) can be 
higher than that of A s( ). When deg ( ) deg ( )B s A s≥ , polynomial division results in 

 
B s
A s

K s
R

s P
R

s P
R n

s P n
( )
( )

( )
( )

( )
( )

( )
( )

( )
= +

−
+

−
+ +

−
1

1
2

2
 ...  (2.24)

where K s( ) is called the direct term and R R n( ), , ( )1  ...  are the residues. Note that the 
assumption here is that there are no multiple poles. For further information, type help 
residue at the MATLAB command prompt. The structure [R, P, K] = residue(B, A) 
indicates that there are two input arguments (B, A) and three outputs [R, P, K]. Here, 
B and A are vectors of the coefficients of the numerator and denominator, respectively. The 
residues are returned in the column vector R, the pole locations in column vector P, and 
the direct terms in the row vector K.

Example 2.19: Revisiting Example 2.17 

Find the partial-fraction expansion for X s
s

s s
( )

( )( )
=

+
+ +

3
1 2

.

Solution
>> A = [1 3 2];    % denominator s^2+3*s+2
>> B = [1 3];      % numerator s+3
>> [R,P,K] = residue(B,A)
R =
    -1
     2         % residues are -1 and 2
P =
    -2
    -1         % poles (corresponding to residues) are -2 and -1
K =

     []           % empty set because deg B(s)<deg A(s)

Following the standard form in Equation 2.24, we find 

 
X s

s s s s
( )

( ) ( )
=

−
− −

+
− −

=
−
+

+
+

1
2

2
1

1
2

2
1 

which completely agrees with the result of Example 2.17.
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Example 2.20: Revisiting Example 2.18 

Find the partial-fraction expansion for X s
s s s

( )
( )( )

=
+ + +

4
3 2 52 .

Solution
>> B = 4;
>> A = conv([1 3],[1 2 5])    % "conv" gives the product
A =
     1     5    11    15
>> [R,P,K] = residue(B,A)
R =
   0.5000 + 0.0000i
  -0.2500 - 0.2500i
  -0.2500 + 0.2500i

P =
  -3.0000 + 0.0000i
  -1.0000 + 2.0000i
  -1.0000 - 2.0000i

K =
     []

The first element in R is the residue associated with the first element (pole) in P. 
Therefore, the residue for the pole at −3 is 0.5. The other two pairs of poles/residues are 
identified similarly. 

 
X s

s s s s
j

s j
j

s
( )

( )( ) ( ) ( ) (
=

+ + +
=

− −
+

− −
− − +

+
− +
− −

4
3 2 5 3 1 22

1
2

1
4

1
4

1
4

1
4

11 2− j) 

Inspection confirms that the above is equivalent to the expansion obtained in Example 2.18.

2.3.5.3 Convolution Method

In systems analysis, the problem of determining the time history of a function often boils 
down to finding −1{ ( )}F s , where F s G s H s( ) ( ) ( )=  and g t( ) and h t( ) are available. Then, 

 
− { } = = ∗ = −1

0

F s f t g h t g h t
g h

t

( ) ( ) ( )( ) ( ) ( )
Convolution of  and 

τ τ∫∫ ∫= − = ∗d h g t d h g t
t

τ τ τ τ  
Symmetry

( ) ( ) ( )( )
0  

To prove this, it suffices to show 

 
 g h t d G s H s

t

( ) ( ) ( ) ( )τ τ τ−











=∫

0  

First, using the fact that u t( )− =τ 0 for all τ > t, the left side is rewritten as 

 
 g h t d g h t u t d

t

( ) ( ) ( ) ( ) ( )τ τ τ τ τ τ τ−











= − −












∫ ∫

∞

0 0  
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Next, using Equation 2.15 and switching the order of integration, the above reduces to 

 

 g h t u t d e g h t u t dst( ) ( ) ( ) ( ) ( ) ( )τ τ τ τ τ τ τ τ− −











= − −

∞

−

∞

∫ ∫
0 0













∞

∫ dt
0

                                                 = − −−

∞ ∞

∫ ∫e h t u t dt g dst ( ) ( ) ( )τ τ τ τ
0 0  

This is allowed because the Laplace transforms of g and h exist. Once again, since u t( )− =τ 0 
for all τ > t, the first integral can be rewritten to give 

 
 g h t u t d e h t dt g dst( ) ( ) ( ) ( ) ( )τ τ τ τ τ τ τ

τ

− −











= −

∞

−

∞ ∞

∫ ∫ ∫
0 0

 
 

Introducing the change of variables ξ τ= −t , the above becomes 

 

 g h t u t d e h d g ds( ) ( ) ( ) ( ) ( )( )τ τ τ τ ξ ξ τ τξ τ− −











=

∞

− +

∞

∫ ∫
0 0 0

 
∞∞

−

∞

∫

=                                          e h dsξ ξ ξ( )
0
∫∫ ∫ −

∞

=

H s

s

G s

e g d H s G s

( ) ( )

( ) ( ) ( )

� �� �� � �� ��
  τ τ τ

0

 

Example 2.21: Convolution

Find −

+








1
2

1
2 1s s( )

 by means of convolution.

Solution

Let F s
s s

G s H s( )
( )

( ) ( )=
+

=
1

2 12 , where G s
s

( ) =
1
2  and H s

s
( ) =

+
1

2 1
. Noting g t t( ) =  and 

h t e t( ) /= −1
2

2, we find 

 
f t g h t e d et t( ) ( )( ) ( )/ (= ∗ = ⋅ =− − − −τ τ ττ1

2
2   

Integration by parts
ττ

τ

τ τ)/ ( )/ /2

0

2

00

22 2  − = − +
=

− − −∫∫
t t

tt

te d t e
 

2.3.5.3.1 Solving Initial-Value Problems

The foregoing analysis has provided us with the necessary tools to complete the proce-
dure of solving IVPs, as described in Figure 2.7. This will be illustrated by the following 
examples.
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Example 2.22: Second-Order Initial-Value Problem

Solve   x x x x x+ + = = =4 3 0 0 0 0 1
3 ,   ,  ( ) ( ) .

Solution

Laplace transform of the ODE yields 

 s X s sx x sX s x X s2 0 0 4 0 3 0( ) ( ) ( ) ( ) ( ) ( )− − + −[ ] + =  

Using the initial conditions and solving for X s( ), we find 

 
X s

s s
( )

( )( )
=

+ +
⇒

−1
3

1 3

1

  
or convolution

 using partial-fracti oon expansion

   x t e et t( ) = −( )− −1
6

3

 

Example 2.23: Second-Order Initial-Value Problem

 a. Solve  x x u t x x+ = − = =4 4 1 0 0 0 0( ), ( ) , ( )    , where u t( ) is the unit-step function.

 b.  Repeat (a) in MATLAB.

Solution

 a. Laplace transformation of the ODE, using Equation 2.20, taking into account 
the zero initial conditions, we arrive at

 
( ) ( ) ( )

( )
s X s

s
e X s

s s
es s2

24
4 4

4
+ = ⇒ =

+
− −        

 

 Let H s
s s

( )
( )

=
+

4
42 , so that X s H s e s( ) ( )= − . Using the shift on t-axis, Equation 2.18, 

 x t H s e h t u ts( ) { ( ) } ( ) ( )= = − −− − 1 1 1  

 To find h t H s( ) { ( )}= − 1 , we proceed as follows: 

 
H s

s s
A
s

Bs C
s

A B s Cs A
s

( )
( )

( )
(

=
+

= +
+
+

=
+ + +4

4 4
4

2 2

2Partial fractions

ss2 4+ )
  

 

 Equating the coefficients of like powers of s on both sides yields A = 1, B = −1, 
and C = 0. Then, 

 
H s

s
s

s
h t t( ) ( ) cos= +

−
+

⇒ = −
1

4
1 22         

 

 Finally, x t h t u t t u t( ) ( ) ( ) [ cos ( )] ( )= − − = − − −1 1 1 2 1 1 . Convolution method would 
have led to the same result.

 b. 

>> x = simple(dsolve(‘D2x + 4*x = 4*heaviside(t-1)’,’x(0) = 0, 
Dx(0) = 0’))
x =
-heaviside(t - 1)*(cos(2*t - 2) - 1) 

This completely agrees with the result in (a).
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2.3.6 Final-Value Theorem and Initial-Value Theorem

If a function x t( ) attains a finite limit as t → ∞, that is, if it settles down after a  sufficiently 
long time, then the limit is the steady-state value (or final value) of x t( ), denoted by xss. 
In other words, x x tss t

=
→∞

lim ( ). In many situations, the time history x t( ) is not  available, 
but instead, the Laplace transform X s( ) is available. The final-value theorem (FVT) allows 
us to find xss, when it exists, by directly using X s( ) without knowledge of x t( ).

2.3.6.1 Final-Value Theorem

Suppose X s( ) has no poles in the right half plane (RHP) or on the imaginary axis, except 
possibly a simple pole (multiplicity of 1) at the origin. Then, x t( ) has a definite steady-state 
value, and it is given by 

 x sX sss
s

= { }
→

lim ( )
0

 (2.25)

The FVT must be used only when it is applicable. Using the FVT when the required condi-
tions do not hold may yield incorrect results.

Example 2.24: Final-Value Theorem

 a. Find xss if X s
s

s s s
( )

( )
=

+
+ +

2 1
4 52 .

 b.  Confirm the result of (a) in MATLAB.

Solution

 a. The poles of X s( ) are at 0 and − ±2 j. The complex conjugate pair lies in the 
left half plane, and 0 is a simple pole (at the origin), all allowed by the FVT. 
Therefore,

 
x sX s

s
s s

ss
s s

= { } =
+

+ +








=
→ →

lim ( ) lim
0 0 2

2 1
4 5

1
5  

 b. 

>> syms s
>> X = (2*s+1)/s/(s^2+4*s+5);
>> xss = limit(s*X,s,0)
xss =
1/5
% Re-confirm the result by inspecting the limit of x(t) as t goes 
to infinity
>> xt = ilaplace(X)
xt =
1/5 - (exp(-2*t)*(cos(t) - 8*sin(t)))/5 % Time history x(t)
>> syms t
>> xss = limit(xt,t,inf)
xss =
1/5
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Example 2.25: Final-Value Theorem Does Not Apply

Let X s
s

s
( ) =

+
2

2 1
4

, so that its poles are at ± 1
2 j, on the imaginary axis, not permitted 

by the FVT. Therefore, FVT is not applicable and should not be applied. If it were to be 
applied, it would yield 

 
x sX s

s
s

ss
s s

= { } =
+












=

→ →
lim ( ) lim

0 0

2

2 1
4

2
0
 

which is obviously false. To explain this, we first find x t X s t( ) { ( )} cos( )= =− 1 1
22 . Then, it is 

clear that lim ( )
t

x t
→∞

 does not exist, since x t( ) is oscillatory and there is no steady-state value.

2.3.6.2 Initial-Value Theorem

If lim{ ( )}
s

sX s
→∞

 exists, then the initial value of x t( ) is given by 

 x sX s
s

( ) lim ( )0+

→∞
= { } (2.26)

Note that in the case of the initial-value theorem (IVT), the poles of X s( ) are not limited to 
specific regions in the complex plane, as they were with the FVT.

Example 2.26: Initial-Value Theorem

If X s
s

s s
( )

( )
=

+
+

1
3

2

2

1
4 3

, find x( )0+ .

Solution

By Equation 2.26, 

 
x sX s

s
s ss s

( ) lim ( ) lim
( )

0
1

4 3
1

12

1
3

2
+

→∞ →∞
= { } =

+
+












=

 

Of course, this may be readily verified in time domain as follows. First, the inverse 
Laplace transformation yields 

 
x t

s
s s

t e t( )
( )

/=
+
+












= + −− − 1

1
3

2

2
3 41

4 3
1
3

19
36

4
9  

Then, 

 
x t e

t

t( ) lim /0
1
3

19
36

4
9

1
120

3 4+

→

−= + −







=
 

In Section 2.2, we mentioned that although the initial condition and the initial value of a 
quantity are generally the same, there are cases in systems analysis where the two val-
ues differ. These situations normally arise when there is an impulsive forcing function 
involved, as illustrated in the following example.
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Example 2.27: Initial Condition ≠ Initial Value

Suppose the governing equation for a system is described by the IVP 

 2 3 0 0 0 0  x x x t x x+ + = = =− −δ( ) ( ) ( ),  ,   

where δ( )t  denotes the unit impulse. Recall that 0− refers to the time immediately prior 
to t = 0, and x( )0−  is the initial condition of x. Determine the initial values of x and x, 
that is, x( )0+  and x( )0+ .

Solution

Taking the Laplace transform of the ODE, and using the zero initial conditions, we find 

 
X s

s s
( ) =

+ +
1

2 32  

By the IVT, 

 
x sX s

s
s ss s

( ) lim ( ) lim0
2 3

02
+

→∞ →∞
= { } =

+ +








=
 

Thus, x x( ) ( )0 0+ −= . To evaluate x( )0+ , we apply the IVT while x is replaced with x. In the 
meantime, note that { } ( ) ( ) ( )x sX s x sX s= − =−0 . Then, 

 
 x s x s sX s

s
s ss s s

( ) lim { } lim ( ) lim0
2 3

2

2
+

→∞ →∞ →∞
= { } = [ ]{ } =

+ +





 


=

1
2  

Therefore,  x x( ) ( )0 0+ −≠ . The findings here are best understood when they are viewed 
from a physical standpoint. The governing differential equation in this example can 
realistically describe the motion of a mechanical system, where x and x denote the 
displacement and velocity, respectively, and the applied force is impulsive. The initial 
 displacement clearly remains unchanged before and after the exertion of the impulsive 
force. However, since the velocity is the rate of change of displacement, it experiences 
a sudden change immediately after the force is applied. Figure 2.14 depicts the details 
related to the current example.

t
0 0.5 1 1.5 2 2.5 3 3.5 4

−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

Initial value
(displacement)

x(0+)

Initial value
(velocity)

x(0+)

Initial condition
x(0−)

Displacement

Velocity

FIGURE 2.14
Relations between initial conditions and initial values.
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PROBLEM SET 2.3

In Problems 1 through 8,
 a. Find the Laplace transform of the given function. Use Table 2.2 when applicable.
 b.  Confirm the result of (a) in MATLAB.
 1. eat b+ , a b, = const
 2. cos( )ω φt + , ω φ, = const
 3. sin( )ω φt − , ω φ, = const
 4. t3 1

2−
 5. sin2 t
 6. t tcosω
 7. t tcosh
 8. t t2 1

2sin( )

In Problems 9 through 12,
 a. Express the signal in terms of unit-step functions.
 b. Find the Laplace transform of the expression in (a) by using the shift on t-axis.
 9. g t( ) in Figure 2.15
 10. g t( ) in Figure 2.16

 11. g t
t

t t( ) =
<

− < <
0    if         

    if    
0    if         

0
1 0 1

tt >







 1

g(t)

t
1

1

0 2

FIGURE 2.15
Signal in Problem 9.

g(t)

t
10

1

2

−1

FIGURE 2.16
Signal in Problem 10
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 12. g t
t

t t
t

( ) =
<

< <
>

0    if         
    if    

1    if         

0
0 1

11









In Problems 13 through 16, find the Laplace transform of each periodic function whose 
definition in one period is given.

 13. h t
t
t

( ) =
< <

− < <






1
1 1

1
2

1
2

     if    0
    if    

 14. h t
t t

t t
( ) =

< <
− < <





       if        
      if    

0 1
1 1 2

 15. h t
t

t t
( ) =

< <
− < <





1 0 1
2 1 2
       if        

    if      

 16. h t t t( ) ,= − < <2 0 2 

In Problems 17 and 18, find the Laplace transform of the given periodic function.

 17. f t( ) in Figure 2.17
 18. f t( ) in Figure 2.18

In Problems 19 and 20,
 a. Find the partial-fraction expansion.
 b. Verify (a) by using the residue command in MATLAB.

f(t)

t
1

1

0 2

FIGURE 2.17
Periodic function in Problem 17.

f(t)

t
a

a

2a0 3a 4a

FIGURE 2.18
Periodic function in Problem 18.
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 19. 
s

s s s( )( )+ + +1 2 22

 20. 
9 5

4 52 2

s
s s s

+
+ +( )

In Problems 21  through 26, find the inverse Laplace transform by using the partial-
fraction expansion method.

 21. 
s

s s
+
+
1
32( )

 22. 
2 3

4 12

s
s s

+
+ +( )( )

 23. 
4 5

4 52 2

s
s s s

+
+ +( )

 24. 
s

s s s
+
+ +

10
2 52( )

 25. 
5 8

2 2

s
s s

+
+( )

 26. 
2 3 4
3 2 2

2

2

s s
s s s

+ −
+ + +( )( )

In Problems 27 through 32,

 a. Solve the IVP.
 b.  Confirm the result of (a) in MATLAB.
 27. 2

3 2 1 0 0x x u t u t x+ = − − =( ) ( ), ( ) 
 28.   x x x u t u t x x+ + = − − − = =2 1 2 0 0 0 0( ) ( ), ( ) , ( )  
 29.   x x e x xt+ = = =−1

4
2 1

20 0 0, ,  ( ) ( )
 30.   x x x t x x+ + = − = =1

2
1
21 0 0 0δ( ) ( ) ( ),  ,  

 31.   x x x t x x+ + = = =3 2 0 0 0 32
3sin( ), ( ) , ( )  

 32.   x x x e x xt+ + = = =−2 0 0 0 03
4

2/ , ( ) , ( )  

In Problems 33 through 37, decide whether the FVT is applicable, and if so, find xss.

 33. X s
s

s s
( )

( )( )
=

+ +4 1 32

 34. X s
s

s s s
( )

( )( )
=

+
+ + +

2
1

1
3

1
3

2

 35. X s
s

s s
( )

( ) ( )
= +

+ +
2

1 33

 36. X s
s

s s s
( )

( )( )
= +

+ +
1

3 22

 37. X s
s

s s s
( )

( )
= +

+ +
4 1

4 4 2

2

2
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In Problems 38 through 41, evaluate x( )0+  by using the IVT.

 38. X s
s

s s
( )

( )( )
= +

+ +
3 1
1 2

2

2
3

2

 39. X s
s

s s s
( )

( )( )
= +

+ + +

2

1
2

2

1
1 9 6 2

 40. X s
s s

s s s
( )

( )
( )( )( )

= +
+ + +

4
1 2 3

2

2

 41. X s
s

s s
( )

( )
=

+
+

1
4

4

3 2

1
2 9

2.4 Summary

The rectangular (Cartesian) form of a complex number is z x jy= + , where x and y are the 
real and imaginary parts of z, respectively. The magnitude of z is z x y= +2 2 . The distance 
between two complex numbers z1 and z2 is z z1 2− . The complex conjugate of z, denoted by 
z, is defined as z x jy= − , and zz x y z= + =2 2 2. The polar form of z is z re j= θ, where r z= , 
and θ is measured from the positive real axis and regarded positive in the counterclockwise 
direction. Given a complex number z re j= ≠θ 0, and a positive integer n, the nth root of z is 
multi-valued and defined by 

 
z r

k
n

j
k

n
k nn n= + + +






 = −cos sin , , ,

θ π θ π2 2
0 1 1,       ... 

 

An nth-order ODE 

 a x a x a x a x F tn
n

n
n( ) ( ) ( )+ + + + =−

−
1

1
1 0 ...   

is linear if coefficients a a an0 1, , , ...  are either constants or functions of the independent 
variable t. If F t( ) ≡ 0, the ODE is homogeneous. Otherwise, it is nonhomogeneous. A linear, 
first-order ODE 

 x g t x f t+ =( ) ( ) 

has a general solution 

 
x t e e f t dt c h g t dt ch h( ) ( ) ( )= +





= =− ∫ ∫ ,     ,    const
 

If a function x t( ) is defined for all t ≥ 0, its Laplace transform is defined by 

 
X   

Notation Definition
( ) ( ) ( )s t e x t dtx st= { } = −

∞

∫
0  
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provided that the integral exists. If F s f t( ) { ( )}=   exists and a ≥ 0, then 

  f t a u t a e F sas( ) ( ) ( )− −{ } = −
 

The Laplace transform of a periodic function f t( ) with period P is given by 

 
  F s

e
e f t dtPs

st

P

( ) ( )=
− −

−∫1
1

0  

The Laplace transforms of the first and second derivatives of a function x t( ) are defined by 

  x t sX s x( ) ( ) ( ){ } = − 0  

   x t s X s sx x( ) ( ) ( ) ( ){ } = − −2 0 0  

The Laplace transform of the integral of a function x t( ) is 

 
 x t dt

s
X s

t

( ) ( )
0

1∫











=

 

Inverse Laplace transformation can be performed by either partial-fraction expansion or 
the convolution method, which states 

 
− { } = ∗ = −∫1

0

G s H s g h t g h t
g h

t

( ) ( ) ( )( ) ( ) ( )
Convolution of  and 

τ τ dd h g t d h g t
t

τ τ τ τ  
Symmetry

= − = ∗∫ ( ) ( ) ( )( )
0  

Final-value theorem: If X s( ) has no poles in the RHP or on the imaginary axis, except pos-
sibly a simple pole at the origin, then x t( ) has a definite steady-state value, and it is given by 

 
x sX sss

s
= { }

→
lim ( )

0  

Initial-value theorem: If lim ( )
s

sX s
→∞

{ } exists, then the initial value of x is 

 
x sX s

s
( ) lim ( )0+

→∞
= { }

 

Review Problems

In Problems 1  through 4, perform the operations and express the result in rectangular 
form. 

 1. e j j( )/( )− + +1 2 1

 2. e j( )0.15 0.85− 8
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 3. 
( )

( )( )

2
3

1
2

4

3
4

1
31 1

+
+ − +

j
j j

 4. 
( )
( )
1 2

3
4

2
3

3

−
+

j
j

 5. Find all possible values of 3 1
3

4 3
+( )j /

.
 6. Find all possible roots of the following equation:

 ( )2 1 2 04− + − =j z j  

In Problems 7 through 10, solve the IVP. Do not use Laplace transformation.

 7. y y t t y− = + =tan , ( )1 0 1  

 8. y y t y= − =( )sin , ( )1 21
2  π

 9.  y y t t y y− = − = =2 1
20 0 0cos , ( ) , ( )    

 10.  y y e t y yt+ = = =4 0 0 0 1
10sin , ( ) , ( )    

 11. Express the signal in Figure 2.19 in terms of unit-step functions and subsequently 
find its Laplace transform by using the shift on t-axis.

 12. Find the Laplace transform of the periodic function in Figure 2.20.
 13. Find the response x t( ) of a system governed by

 3 7 2 1 0 0 0 0  x x x tu t x x+ + = − = =( ) ( ) ( ),  ,  

 14. Evaluate the convolution t u t a∗ −( ).
 15. Evaluate the convolution ( )( )g h t∗ , where g t( ) is shown in Figure 2.21 and h t t( ) sin= .

g(t)

t
10

1

3
2

FIGURE 2.19
Problem 11.

g(t)

t
10

1

3
2

35
2

FIGURE 2.20
Problem 12.
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 16. a. Using partial-fraction expansion, find

 
− + +

+








1
3 2

2 2

4 8 2
4 1

s s
s s( )  

 b.  Confirm the result of (a) in MATLAB.
 17. a. Find

 
−

− + +
+ +









1
2

2

4 12 5
2 4 8 5

e s s
s s s

s( )
( )  

 b.  Confirm the result of (a) in MATLAB.
 18. Consider

 
X s

s s
s s

( )
( )

= + +
+

2

2

3 1
1  

 a. Using the final-value theorem, if applicable, evaluate xss.
 b. Confirm the result of (a) by evaluating lim ( )

t
x t

→∞
.

 19. Consider

 
X s

s s
s s s

( )
( )
( )

= − +
+ +

2 25 30 113
25 10 226

2

2  

 a. Using the initial-value theorem, evaluate x( )0+ .
 b. Confirm the result of (a) by evaluating lim ( )

t
x t

→0
.

 20. Consider

 
X s

s
s s s

( )
( )

= +
+ +

0.2 0.3
2.5 0.53 2  

 a. Evaluate xss by using the final-value theorem.
 b. Confirm the result of (a) by evaluating lim ( )

t
x t

→∞
 .

g(t)

t
1

1

0

FIGURE 2.21
Problem 15.
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3
Matrix Analysis

In this chapter, we discuss the fundamentals of matrix analysis, including matrix opera-
tions and properties, as well as matrix characteristics such as the rank, the determinant, 
and the inverse. Matrix analysis plays a particularly important role in the treatment of 
systems of algebraic and/or differential equations that are coupled, that is, when several 
unknown variables are involved in several equations in the system model. Also discussed 
in this chapter is the matrix eigenvalue problem, which plays a key role in the determina-
tion of a system’s natural frequencies, as well as the solution process for a system of differ-
ential equations. First, we focus on algebraic systems and then extend the ideas to systems 
of differential equations and the matrix eigenvalue problem.

3.1 Vectors and Matrices

An n-dimensional vector v is an ordered set of n scalars, written as 

 

v =





















v
v

vn

1

2

...

 

where each v i ni   ... ( , , , )= 1 2  is a component of vector v. A matrix is a collection of numbers 
(real or complex), or possibly functions, arranged in a rectangular array and enclosed by 
square brackets. Each of the elements in a matrix is called an entry of the matrix. The hori-
zontal and vertical levels of entries are the rows and columns of the matrix, respectively. 
The number of rows and columns of a matrix determines the size of that matrix. If a matrix 
A has m rows and n columns, then its size is m n× . If a matrix has the same number of rows 
as columns, it is a square matrix. Otherwise, it is rectangular. It is customary to denote 
matrices by bold-faced capital letters, such as A. The abbreviated form of an m n×  matrix is 

 A = = =×[ ] , , , , , , , ,a i m j nij m n    ...     ... 1 2 1 2  

where aij is known as the ( , )i j  entry of A, located at the intersection of the ith row and 
the jth column of A. For instance, a23 is the entry located at the intersection of the second 
row and the third column. If A is a square matrix (m n= ), the elements a a ann11 22, , , ...  are 
the diagonal entries of A. These diagonal elements form the main diagonal of A. Two 
matrices A = [ ]aij  and B = [ ]bij  are equal if they have the same size and the same entries in 
the respective locations. If any rows or columns (or possibly both) of A are deleted, a sub-
matrix of A is generated. The sum of A = ×[ ]aij m n and B = ×[ ]bij m n is C = = +× ×[ ] [ ]c a bij m n ij ij m n. 
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The product of a scalar k  and matrix A = ×[ ]aij m n is k kaij m nA = ×[ ] . Consider A = ×[ ]aij m n and 
B = ×[ ]bij n p, so that the number of columns of A is equal to the number of rows of B. Then, 
their product C AB=  is m p× , whose entries are obtained as 

 
c a b i m j pij ik kj

k

n

= = =
=

∑
1

1 2 1 2, , , , , , , ,   ...    ... 
 

This is schematically shown in Figure 3.1. If the number of columns of A does not match 
the number of rows of B, the product is undefined. If the product is defined, then the ( , )i j  
entry of C is simply the dot (inner) product of the ith row of A and the jth column of B. 

Given an m n×  matrix A, its transpose, denoted by AT, is an n m×  matrix whose first row 
is the first column of A, second row is the second column of A, and so on. Given that all 
matrix operations are valid, 

• ( )A B A B+ = +T T T

• ( ) ,k k kT TA A= =  scalar

• ( )AB B AT T T=

Example 3.1: Transpose

Given 

 
A b=

−








 = − 

1 5
2 4

2 3,    
 

 a. Find AbT .
 b.  Verify (a) in MATLAB.

Solution

 a. Since b is 1 2× , the size of bT  is 2 1× , and hence, the operation AbT  is valid with 
size 2 1× :

 
AbT =

−








 −









=
−
−









1 5
2 4

2
3

13
16  

a11
b11 b1j b1p

b21 b2j b2p

bn1 bnj bnp

c11 c1j c1p

ci1 cij cip

cm1 cmj cmpn×pm×n m×p

ith row

jth column

=

a12 a1n

ai1 ai2 ain

am1 am2 amn

FIGURE 3.1
Construction of the matrix product.
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 b. 

>> A = [1 5;-2 4]; b = [2 -3];
>> A*b.'    
ans =
   -13
   -16

3.1.1 Special Matrices

A square matrix A is symmetric if A AT =  and skew-symmetric if A AT = − . A square 
matrix An n ija× = [ ] is upper-triangular if aij = 0 for all i j> ; that is, all entries below the main 
diagonal are zeros; lower-triangular if aij = 0 for all i j< ; that is, all elements above the main 
diagonal are zeros; and diagonal if aij = 0 for all i j≠  . In the upper- and lower-triangular 
matrices, all the diagonal elements may be zeros. However, in a diagonal matrix, at least 
one diagonal entry must be non-zero. The n n×  identity matrix, denoted by I , is a diagonal 
matrix whose diagonal entries are equal to 1.

3.1.2 Elementary Row Operations

Matrices generally do not appear in a special form such as triangular or diagonal. However, 
because special matrices are so much easier to work with, a general matrix is often trans-
formed (or reduced) into one of the mentioned special forms. This is done with the aid of 
elementary row operations (EROs). There are three types of EROs: 

• ERO1: Multiply a row by a non-zero constant
• ERO2: Interchange two rows
• ERO3: Multiply the ith row by α = ≠const 0, add the result to the kth row, and then 

replace the kth row with the outcome. In this process, the ith row is called the 
pivot row.

It is important to note that a matrix and its transformed form are not the same, but depending 
on the transformation, certain characteristics of the original matrix may be preserved in 
the process. These EROs are often used to transform a matrix A into an upper-triangular 
form. The form of matrix A in the final stage of this process is called the row-echelon form 
of A, denoted by REF( )A . We reiterate that the original matrix and any subsequent one 
generated by an ERO are completely different matrices. Furthermore, the REF of a matrix 
is not unique because various sequences of EROs may lead to an upper-triangular matrix. 
Although REF( )A  is not unique for a given matrix A, important characteristics of A are 
preserved, regardless of the choice of the REF.

Example 3.2: Row-Echelon Forms and Elementary Row Operations 

Find the REF of 

 

A =
−

−

















1 2 1
2 0 3
1 1 2  

Solution

The details are shown in Figure 3.2. In the first segment, the first row is the pivot row 
and used to generate zeros below the ( , )1 1  entry. In the second segment, the lower two 
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rows are switched to replace the entry of 4 with −1 to avoid fractions. In the third seg-
ment, the new second row is the pivot row, which is used to create a zero below the ( , )2 2  
entry. The final matrix represents REF( )A . To address the nonuniqueness of the REF, 
note that if the two rows were not swapped in the second segment, the upper-triangular 
matrix in the final step may have been 

 

1 2 1
0 4 1
0 0 1

−













 

3.1.3 Rank of a Matrix

The rank of a matrix A, denoted by rank( )A , is the number of non-zero rows in the REF 
of A. This number is independent of the sequence of EROs used. The rank is sometimes 
called the row rank. If A is m n× , then rank( )A  can at most be equal to m or n, whichever 
is smaller. For instance, the rank of a 3 4×  matrix can at most be 3. If elementary column 
operations are employed to find the column echelon form, then the number of non-zero 
columns is the column rank of the matrix. It turns out that the row rank and the column 
rank of a matrix are the same, and consequently, 

 rank rank(( ) )A A= T  

Example 3.3: Rank

 a. Find the rank of the given matrix.
 b.  Confirm the result of (a) in MATLAB.

 

A =
−

−
−

















2 1 3
1 2 4
7 1 5  

Solution

 a. The details are shown in Figure 3.3.
  Since there are two non-zero rows in the REF of A, we have rank( )A = 2.
 b. 

 >> A = [2 -1 3;1 2 -4;7 -1 5];
  >> rank(A)
  ans =
       2 

1

1 2

−2 −2

−1−1

1
2 0 3 = A

−2
+

+
+

1

4

1 1
10 4

0 3

−2
−1

4

1 1
30

0 1

−2
−1

0

1 1
30

0 13

ERO3

ERO2

ERO3

REF(A)

FIGURE 3.2
Steps in the construction of the row-echelon form.
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3.1.4 Determinant of a Matrix

The determinant of a square matrix A = ×[ ]aij n n is a scalar denoted by A or det( )A . The most 
trivial case is A = ×[ ]a11 1 1, for which the determinant is simply A = a11. For n ≥ 2, the deter-
minant may be calculated using any row—with preference given to the row with the most 
number of zeros—as 

 
A = − =+

=
∑ a M i nik

i k
ik

k

n

( ) , , , ,1 1 2
1

       ... 
 

(3.1)

In Equation 3.1, Mik  is called the minor of aik, defined as the determinant of the ( ) ( )n n− × −1 1  
submatrix of A, obtained by deleting the ith row and the kth column of A. The quantity 
( )− +1 i k

ikM  is the cofactor of aik and is denoted by Cik. In addition, note that ( )− +1 i k is respon-
sible for whether a term is multiplied by +1 or −1. A square matrix with a non-zero deter-
minant is called nonsingular. Otherwise, it is called singular.

Example 3.4: Determinant

 a. Calculate the determinant of

 

A =

−
−

−



















2 1 0 1
1 2 1 5
1 4 2 6
3 1 4 2  

 b.  Repeat (a) in MATLAB.

Solution

 a. We will use the first row, since it contains one zero entry.

 

−
−

−

= −
−

−
−

−
2 1 0 1

1 2 1 5
1 4 2 6
3 1 4 2

2
2 1 5
4 2 6
1 4 2

1
   

Using the first row 11 5
1 2 6
3 4 2

1 2 1
1 4 2
3 1 4

−
−

−  

 Each of the three 3 3×  determinants is computed via Equation 3.1, resulting in 

 A = − − − − = −2 64 46 35 117( ) ( ) ( )  

 b. 

 >> A = [-2 1 0 1;1 2 -1 5;1 4 2 6;3 -1 4 2]; 
 >> det(A) 
 ans =

  -117

2 3

1 2 −4
7 −1

−1 2 3−1 2 3−1

− −

−5

−1

−1
+

+
+

2
5 11
2 2

2
5 11
2

0

0

5 11
2 20

0 0 0

−7
2

FIGURE 3.3
Construction of row-echelon form in Example 3.3.
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3.1.4.1 Properties of Determinant

The following properties are associated with the matrix determinant: 

• If an entire row (or column) of A is zero, then A = 0, that is, A is singular.
• If any rows (or columns) of A are linearly dependent, then A is singular.
• If A is n n×  and rank( )A < n, then A is singular.

• A AT =

• AB A B=

• The determinant of a lower-triangular, upper-triangular, or diagonal matrix is the 
product of the diagonal entries.

• If k ≠ 0  is a scalar and A is n n× , then k knA A= .

The effects of EROs on the matrix determinant: 

• ERO1: If a row of A is multiplied by a scalar k ≠  0, then the determinant of the 
resulting matrix is k A.

• ERO2: If any two rows of A are interchanged, then the determinant of the resulting 
matrix is − A .

• ERO3: Determinant is preserved under ERO3.

3.1.4.2 Rank in Terms of Determinant

The rank of a matrix A is the size of the largest nonsingular submatrix of A. In other words, 
rank( )A = r if there exists an r r×  submatrix of A with non-zero determinant and any other 
p p×  (with p r> ) submatrix of A is singular. If An n×  is nonsingular, then rank( ) .A = n  If A = 0, 
then rank( )A < n.

Example 3.5: Rank Via Determinant

Find the rank of 

 

A = −
















2 0 1 1
3 1 1 0
4 2 3 5  

Solution

Since A is 3 4× , rank( )A  can at most be 3. Inspection of all possible 3 3×  submatrices of 
A yields 

 

2 0 1
3 1 1
4 2 3

0
2 0 1
3 1 0
4 2 5

0
0 1 1
1 1 0

2 3 5
0− = − = − =,   ,   

 

This implies that rank( )A < 3; hence, it may be either 2 or 1. Since 
2 0
3 1

2 0
−

= − ≠ , we 
conclude that rank( )A = 2.
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3.1.4.3 Block Diagonal and Block Triangular Matrices

A block diagonal matrix is defined as a square matrix partitioned in such a way that its 
diagonal elements are square matrices, whereas all other elements are zeros (Figure 3.4a). 
Similarly, a block triangular matrix is defined as a square matrix partitioned such that its 
diagonal elements are square blocks, whereas all entries either above or below this main 
block diagonal are zeros (Figures 3.4b and c). It is interesting to note that many proper-
ties of these special block matrices essentially generalize those of diagonal and triangular 
matrices. In particular, the determinant of each of these matrices is equal to the product of 
the individual determinants of the blocks along the main diagonal. Consequently, a block 
diagonal (or triangular) matrix is singular if and only if one of the blocks along the main 
diagonal is singular. We also mention that the rank of a block triangular matrix is at least 
equal to the sum of the ranks of the individual diagonal blocks.

Example 3.6: Block Triangular Matrix

Evaluate the determinant and rank of 

 

A =
−





















1 3 0 0
2 4 0 0

0 2 5 0
0 0 1 2  

Solution

As observed in Figure 3.5, A is a block lower-triangular matrix. Each of the two 2 2×  
blocks has a determinant of 10 and a rank of 2; thus, the determinant of the matrix is 
( )( )10 10 100=  and its rank is 4.

1 3 0 0
−2 4 0 0
0 2 5 0
0 0 1 2

A =

FIGURE 3.5
Example 3.6.

1

−2 1
0 4

−3 2
5 8

0 1 4
5 0 0 3 1
0 1 0 2 −2

1 −1
2 −4

0 1 −1 0 3
4 4 0 6 0

−2 0 1
2 −1
1 4

(a) (b) (c)

FIGURE 3.4
(a) Block diagonal, (b) block lower-triangular, and (c) block upper-triangular.
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3.1.5 Inverse of a Matrix

The inverse of a square matrix An n×  is denoted by A−1, with the property AA I A A− −= =1 1 , 
where I  is the n n×  identity matrix. The inverse of A exists only if A ≠  0 and is obtained 
using the adjoint matrix of A, denoted by adj( )A .

3.1.5.1 Adjoint Matrix

If A = ×[ ]aij n n, then the adjoint of A is defined as 

 adj( )

( ) ( ) ... ( )
( ) ( )

A =

− − −
− −

+ + +

+ +

1 1 1
1 1

1 1
11

2 1
21

1
1

1 2
12

2 2

M M M
M M

n
n

222
2

2

1
1

2
2

1

1 1 1

... ( )
... ... ... ...

( ) ( ) ... ( )

−

− − −

+

+ + +

n
n

n
n

n
n

n n

M

M M MM

C C C
C C C

Cnn

n

n

n





















=

11 21 1

12 22 2

1

...

...
... ... ... ...

CC Cn nn2 ...



















 (3.2)

where Mij is the minor of aij and C Mij
i j

ij= − +( )1  is the cofactor of aij. Note that each minor Mij 
(or cofactor Cij) occupies the ( , )j i  position in the adjoint matrix, the opposite of what one 
would normally expect. Then, 

 
A

A
A− =1 1

 adj( )
 

(3.3)

Equation 3.3 clearly indicates that A must be nonsingular for A−1 to exist.

Example 3.7: Inverse

 a. Find the inverse of

 

A =
−

− −
−

















3 1 2
1 3 6
2 2 4  

 b.  Verify the result of (a) in MATLAB.

Solution

 a. Noting A = − ≠64 0, the inverse exists. The first few minors and cofactors are 
computed as

 
C M11

1 1
11

1 11 1
3 6

2 4
24= − = −

−
= −+ +( ) ( )

 

 
C M12

1 2
12

1 21 1
1 6
2 4

8= − = −
−
−

= −+ +( ) ( )
 

 
C M21

2 1
21

2 11 1
1 2
2 4

8= − = −
−

= −+ +( ) ( )
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 Continuing this process, by Equation 3.3, we find 

 

adj( )A =
















=
− −
− −
−

C C C
C C C
C C C

11 21 31

12 22 32

13 23 33

24 8 0
8 8 16
88 8 8− −















  

 Finally, 

 

A− =
−

− −
− −
− − −

















= −




1

3
8

1
8

1
8

1
8

1
4

1
8

1
8

1
8

1
64

24 8 0
8 8 16
8 8 8

0










 

 b. 

>> A = [3 1 -2;-1 -3 6;-2 2 4]; inv(A)
ans =
    0.3750    0.1250         0
    0.1250   -0.1250    0.2500
    0.1250    0.1250    0.1250

Example 3.8: Inverse of a Symbolic Matrix

 a. Determine ( )sI A− −1, where s is the Laplace variable, I is the 2 2×  identity 
matrix, and

 
A =

− −










0 1
4 5  

 b.  Repeat (a) in MATLAB.

Solution

 a. First

 
s

s
s

s
s

s sI A I A− =








 −

− −








 =

−
+









 ⇒ − =

0
0

0 1
4 5

1
4 5

2        ++ + = + +5 4 1 4s s s( )( )
 

 Then, by Equation 3.3, 

 

( )
( )

( )( )

( )(

s
s

s s s

s
s

s
s s

I A
I A

I A
− =

−
−

=
+ +

+
−









 =

+
+

−1 1
1 4

5 1
4

5
1

adj
++ + +

−
+ + + +























4
1

1 4

4
1 4 1 4

) ( )( )

( )( ) ( )( )

s s

s s
s

s s  

 b. 

>> syms s
>> A = [0 1;-4 -5]; inv(s*eye(2) - A)
ans =
 [ (s+5)/(s^2+5*s+4),     1/(s^2+5*s+4)]
[    -4/(s^2+5*s+4),     s/(s^2+5*s+4)]
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The following properties are associated with the inverse of a matrix:

• ( )A A− − =1 1

• AB B A( ) =− − −1 1 1

• ( ) ( ) ,A A− −= = >1 1 0p p p  integer

• A A− =1 1/

• ( ) ( )A A− −=1 1T T

• Inverse of a (nonsingular) symmetric matrix is symmetric.
• Inverse of a diagonal matrix is diagonal, whose entries are the reciprocals of 

the entries of the original matrix.

PROBLEM SET 3.1

In Problems 1 through 8, perform the indicated operations, if defined, for the following 
vectors and matrices.

 

A B v=
−
−

















=
−







 =

−








0 2 1
1 3 3
2 1 2

3 1 1
0 4 5

1
2

, , ,          w =
−

















1
0
1

 1. w AT

 2. BAw

 3. ( )AB vT

 4. ( )B vw A− T

 5. Aw B v− T

 6. A BA vw( )+ T

 7. v BwT

 8. ( )A B B w2 + T

In Problems 9 through 12, find the rank by inspecting the REF of the matrix.

 9. A =
−

−
− −

















3 2 0
1 2 4

4 4 3

 10. A =
−

−

















2 1 1
3 3 2
1 2 0

 11. A =

− −
−



















1 1 1 0
3 2 0 1
0 2 4 1
1 1 3 1
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 12. A =

−

−



















1 1 2 0
3 2 0 1
2 3 2 1
4 1 2 1

 13. Determine the value of a such that rank( )A = 2.

 

A =

−
−

− −
−



















2 1 0 2
1 3 1 4
1 2 1 6
5 1 0a

 14. Given

 

A B=
− − −

















=
















0 1 0
0 0 1
1 2 1

0
0
1
2

,  

 find the rank of

 B AB A B2 

In Problems 15 through 18, evaluate the determinant.

 15. 

−
−
−

−

1 2 3 1
6 0 1 3
0 1 5 1
1 3 0 1

 16. 

0 0 3 2
0 0 1

1 2
0 0 0 2

− −

−
=

b
a a

a

a b, ,  parameters

 17. 

s
s

s
s

s

−
−

+
+

=

1 0 0
0 0 1
1 2 1 0
0 1 3 2

,   parameter

 18. 

5 2 0 0 0
2 4 0 0 10
0 0 3 0 0
0 0 0 1 2
0 0 1 3 5

−

−
−
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In Problems 19 through 24, find the inverse of the matrix.

 19. A =
−









 =

cos sin
sin cos

α α
α α

α,  parameter

 20. A = −
















1 0 2
0 2 1
0 0 3

 21. A =
−

−

















1 1 0
3 0 0
2 0 2

 22. A =
+

+

















=
a

a
a

a
1 0 1

0 2
1 0 2

,   parameter

 23. A = +
+ + +

















=
a

a
a a a

a
0 0

0 3 0
1 2 3 1( )

,   parameter

 24. A =
− − +( ) − +( )

+ +( )
L L L

L L L
1 1 2 1 2 2 1 2

1 1 2 1 2 2

sin sin sin
cos cos

θ θ θ θ θ
θ θ θ ccos

, , , ,
θ θ

θ θ
1 2

1 2 1 2+( )












=  parametersL L

 25. Prove that the inverse of a (nonsingular) symmetric matrix is symmetric.

 26. Given An n×  and scalar k ≠  0, show that ( )k
k

A A− −=1 11
.

3.2 Solution of Linear Systems of Equations

A linear system of n equations in n unknowns appears in the form 

 

a x a x a x b
a x a x a x b

a

n n

n n

n

11 1 12 2 1 1

21 1 22 2 2 2

1

+ + + =
+ + + =

 ... 
 ... 
...

xx a x a x bn nn n n1 2 2+ + + =









  ... 

 (3.4)

where a i j nij   ... ( , , , , )= 1 2  and b k nk   ... ( , , , )= 1 2  are the known constants, and aij’s are the 
coefficients. Equation 3.4 can be conveniently expressed in matrix form, as 

 Ax b=  (3.5)

with 

 

A =














a a a
a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...






=





















=

× ×n n n n

x
x

x

b
b

b

,     ,     x b

1

2

1

1

2

... ...

nn n





















×1
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where A is the coefficient matrix. A set of values for x x xn1 2, , , ...  satisfying Equation 3.4 
forms a solution of the system. The vector x with components x x xn1 2, , , ...  is the solution 
of Equation 3.5. If x x xn1 20= = = = ... , the solution x 0= ×n 1 is called the trivial solution. The 
augmented matrix for Equation 3.5 is defined as 

 A b   =

a a a
a a a

a a a

bn

n

n n nn

11 12 1

21 22 2

1 2

1...
...

... ... ... ...
...

bb

bn
n n

2

1

...

( )



















 × +

 (3.6)

3.2.1 Gauss Elimination Method

Gauss elimination is a basic method to solve a linear system in the form of Equation 3.5 
when n is not large. It comprises two phases: (1) Use the EROs to transform the augmented 
matrix A b [ ] into the upper-triangular form and (2) find the unknowns through back 
substitution.

Example 3.9: Gauss Elimination Method

Using Gauss elimination, solve the linear system 

 

−
−

−

































=
−

















1 1 3
1 2 2
2 1 4

3
9
8

1

2

3

x
x
x  

Solution

Figure 3.6 shows the steps involved in transforming the augmented matrix into the 
upper-triangular form, followed by back substitution.

3.2.2 Using the Inverse of the Coefficient Matrix

If the coefficient matrix A in Equation 3.5 is nonsingular, then the vector solution can be 
obtained as x A b== −1 .

3.2.2.1 MATLAB Built-in Function "\"

The built-in function in MATLAB for solving a linear system Ax=b is the backslash (\), and 
the solution vector is obtained via x=A\b. It is important to note that x=A\b computes the 
solution vector by Gauss elimination and not by x=inv(A)*b.

12

+
+

+ 3
−1 1 3 3
1 −2 2 9
2 1 −4 −8

−1 1 3 3
0 −1 5 12
0 3 2 −2

−1 1 3 3
0 −1 5 12
0 0 17 34

Upper-triangular form
17x3 = 34

−x1 + x2 + 3x3 = 3
−x2 + 5x3 = 12

x1 = 1
x2 = −2
x3 = 2

Back substitution

⇒

FIGURE 3.6
Gauss elimination method in Example 3.9.
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Example 3.10: Solution of a Linear System

Solve the system in Example 3.9 by using

 a. The inverse of the coefficient matrix.
 b.  The "\" operator in MATLAB.

Solution

 a. The inverse is calculated as

 

−
−

−

















= −
















−
1 1 3

1 2 2
2 1 4

1
17

6 7 8
8 2 5
5 3 1

1

 

 Therefore, 

 

x
x
x

1

2

3

1
17

6 7 8
8 2 5
5 3 1

3
9
8

1
2

















= −














 −

















= −
22
















 

 b. 

>> A = [-1 1 3;1 -2 2;2 1 -4]; b = [3;9;-8]; x=A\b
x =
     1
    -2
     2

3.2.3 Cramer’s Rule

Consider the linear system in Equation 3.5. Assuming the coefficient matrix is nonsingu-
lar, each unknown is uniquely determined via 

 
x

D
D

i ni
i= =, , , ,   ... 1 2

 

where determinants D and Di are formed as 

 

D

a a a
a a a

n

n

=

11 12 1

21 22 2

... ...

... ...
... ... ... ... ...
... ... ... .... ...

... ...

,

... ...

a a a

D

a b a
a

n n nn

i

i D

n

1 2

11 1 1

2

   

th column of 

=
11 2 2

1

... ...
... ... ... ... ...
... ... ... ... ...

... ...

,
b a

a b a

n

n n nn

    ... i n= 1 2, , ,
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Example 3.11: Cramer’s Rule

 a. Solve the system in Example 3.9 by using Cramer’s rule.
 b.  Repeat (a) in MATLAB.

Solution

 a. The determinant of the coefficient matrix is computed first,

 

D =
−

−
−

= ≠
1 1 3

1 2 2
2 1 4

17 0

 

 Subsequently, the three determinants are calculated as

 

D D D1 2 3

3 1 3
9 2 2
8 1 4

17
1 3 3

1 9 2
2 8 4

34
1 1 3

1 2 9
2 1

= −
− −

= =
−

− −
= − =

−
−,   ,   

−−
=

8
34

 

 Therefore, the solutions are obtained as

 
x

D
D

x
D
D

x
D
D

1
1

2
2

3
31 2 2= = = = − = =, ,      

 

 b. 

>> A = [-1 1 3;1 -2 2;2 1 -4]; b = [3;9;-8]; D = det(A);
>> A1 = A; A1(:,1) = b; D1 = det(A1);
>> A2 = A; A2(:,2) = b; D2 = det(A2);
>> A3 = A; A3(:,3) = b; D3 = det(A3);
>> x1 = D1/D; x2 = D2/D; x3 = D3/D; x = [x1;x2;x3]

x =

    1.0000
   -2.0000
    2.0000

3.2.4 Homogeneous Systems

Consider a homogeneous system Ax 0= , and let An n×  be nonsingular. Since b 0= ×n 1, every 
determinant Di defined in Cramer’s rule contains a column of all zero entries, hence is zero. 
Consequently, x D Di i= =/ 0 for i n= 1 2, , , ... , and the only possible solution is the trivial 
solution x 0= ×n 1.

In order for Ax 0=  to have a nontrivial solution, the coefficient matrix must be singular, 
A = 0. This ensures that the equations are linearly dependent, so that there is at least one 
free variable that can ultimately generate infinitely many solutions.
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PROBLEM SET 3.2

In Problems 1 through 6, solve the linear system Ax b=  by using Gauss elimination.

 1. A b=
−

−

















= −
−

















2 2 1
3 1 4
1 2 5

1
2
8

,   

 2. A b=
−

−
















= −
−

















1 0
3

5 1

4.2
2.3 1.5

3.2
  

10.4
4.6
4.8

,

 3. A b=
−

−
−

















=
−






3
3

5 2
11

1.4 2.1
1.5 .2 1

0.7 2.5
  

4.10
.9

4.75
,












 4. A b=
−

− −
















=
















3 0 2
1 4 3
2 3 2

0
1
4

,   

 5. A b=

−
−

− −



















=
−

















2 1 0 3
1 3 1 4
2 0 3 5
1 2 4 6

10
14
9
11

,   





 6. A b=

−
− −

− −
−



















=
−

−

















2 4 3 1
3 2 6 1
1 2 3 2
4 8 9 3

7
6

1
3

,   





In Problems 7 through 10, solve the linear system Ax b=  by using

 a. The inverse of the coefficient matrix.

 b.  The "\" operator in MATLAB.

 7. A b=
−

− −

















=
















=
2 1 2
3 0 2
1 2 1

4

0
, ,    parameter

a
a a

 8. A b=
− + −

− −
− + +

















= −
+













a a
a

a a

a
a

a

1 2 1 1
1 2 1
1 2 1 3 1

5
4

7 2
,   




=,   parametera

 9. A b=
−

−



















=
−




















2 2 0 0
0 0

0 0 1
0 0 1 1

0
1

2

1
2

3
2

1
2

3
2

,  
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 10. A b=
−

−



















=

−
−
−















3 2 0 0
1 0

1 0 1
0 0 1 1

1

2

1
2

4
3

3
2

1
6
1
2

,   







In Problems 11 through 14,

 a. Solve the linear system Ax b==  by using Cramer’s rule.

 b.  Repeat (a) in MATLAB.

 11. A b= −
−

















=
















1 5 0
1 2 1
2 5 3

13
0
1

,   

 12. A b=
−
−

−

















=
−

















2 1
1 1 2

1

19
26

8

1
2

1
2

1
2

,   

 13. A b=
+ + −
− +









 =









=
s s

s

F
s F

2 1
3

1
3

1
3

1
3 0

, , ,    parameters

 14. A b=
−

−



















=
−
−















3 2 0 0
1 0

1 0 1
0 0 1 1

7
1
2

4
3

3
2

8
3
3
4

1
2

,   







In Problems 15 through 17, solve the homogeneous linear system Ax 0= , where the 
 components of x are x x xn1 2, , , ... .

 15. A =
−

−
















1 3 4
2 2 1
1 1 5

 16. A = −
−

















2 0 1
1 1 3

2 2 3

 17. A =
−

−

















5 3 2
0 2 4
3 2 6

 18. Determine a so that the following system has a nontrivial solution:

 

2 1 0 0
1 0 0
0 0 2 1
0 0 1

0
0
0

1
2

1

2

3

4

−

−







































=
a

a

x
x
x
x 00
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3.3 Matrix Eigenvalue Problem

The matrix eigenvalue problem associated with a square matrix An n×  is formulated as 

 Av v v 0= ≠ =×λ λ, ,    scalarn 1  (3.7)

A number λ, complex in general, for which Equation 3.7 has a nontrivial solution ( )v 0≠ ×n 1  
is called an eigenvalue or characteristic value of matrix A. The corresponding solution 
v 0≠   of Equation 3.7 is the eigenvector or characteristic vector of A corresponding to λ. The 
set of all eigenvalues of A forms the spectrum of A, denoted by λ( )A . The largest eigen-
value of A, in absolute value, is the spectral radius of A.

3.3.1 Solving the Eigenvalue Problem

Rewrite Equation 3.7 as 

 Av v 0− =λ  

Note that every single term here is an n×1 vector. On the left-hand side, both terms contain 
vector v. While in the second term λ and v commute, the same is not true with A and v in 
the first term. Therefore, we can only factor out v from the right to obtain 

 ( )A I v 0− =λ  (3.8)

The identity matrix I  has been inserted, so that the two terms in parentheses are size-
compatible. Note that Equation 3.8 represents a homogeneous system, and, as previously 
mentioned, such a system has a nontrivial solution if and only if its coefficient matrix is 
singular. Thus, for Equation 3.8 to have a nontrivial solution (v 0≠  ), its coefficient matrix 
A I− λ  must be singular. In other words, 

 A I− =λ 0 

This is called the characteristic equation of A. The determinant A I− λ  is an nth-degree 
polynomial in λ and is known as the characteristic polynomial of A whose roots are the 
eigenvalues of A. For each eigenvalue, we find the corresponding eigenvector by solv-
ing Equation 3.8. Since A I− λ  is singular, it has at least one row dependent on the other 
rows, which means that the REF of A I− λ  will have at least one zero row. Therefore, for 
each fixed λ, Equation 3.8 has infinitely many solutions. A basis of solutions represents all 
eigenvectors associated with each λ.

3.3.1.1 Eigenvalue Properties of Matrices

• Eigenvalues of upper- and lower-triangular and diagonal matrices are the entries 
along the main diagonal of the matrix.

• The determinant of a matrix is the product of its eigenvalues.
• All eigenvalues of a symmetric matrix are real.
• Eigenvalues of a skew-symmetric are either zero or pure imaginary.
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• A matrix A is orthogonal if A AT = −1. All eigenvalues of an orthogonal matrix have 
absolute values of 1.

• The eigenvalues of block diagonal and block triangular matrices are the eigenval-
ues of the block matrices along the diagonal.

Example 3.12: Matrix Eigenvalue Problem

 a. Find all eigenvalues and eigenvectors of

 

A = −
−

















1 3 1
0 2
0 0

3
2  

 b.  Repeat (a) in MATLAB.

Solution

 a. Since A is an upper-triangular matrix, we have λ( ) , ,A = −1 2 2. For λ1 1= , we solve

 

( ) ( )A I v 0 A I v 0− = ⇒ − = ⇒ −
−


























λ1 1 1 3

3
      

0 3 1
0 1
0 0

a
b
c






=
















⇒
































0
0
0

0 0 0
0 1 0
0 0 1

  
EROs

a
b
c

==
















0
0
0  

The second row gives b = 0 and the third row gives c = 0. The first row of zeros 
suggests that there is one free variable. Because b = 0 and c = 0, the free variable 
must be selected as a. Note that the free variable may be assigned any value, 
as long as the ensuing eigenvector is not a zero vector. For instance, in the cur-
rent case, a cannot be assigned a value of zero, since b and c are already zeros. 
Choosing a = 1 results in

 

v1

1
0
0

=
















 

For λ2 2= , we solve

 

( )A I v 0− = ⇒
−

−
−

































=







2 3
4

0
0
0

2     
1 3 1

0 0
0 0

a
b
c 









⇒
−































=







     
1 3 0

0 0
0 0

EROs
1
0

0
0
0

a
b
c 








 

The second row suggests that c = 0 and the first row suggests that a b= 3 . The last 
row of all zeros signifies that there is one free variable, which may be chosen as 
either a or b. Letting b = 1, we have a = 3, and

 

v2

3
1
0

=
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For λ3 2= − , solve

 

( )A I v 0+ = ⇒ −
































=










2 3
0

0
0
0

3    
3 3 1
0 4
0 0

a
b
c






 

The second row gives 4 3b c= , whereas the first row yields 3 3 0a b c+ + = . The last 
row suggests one free variable. Expressing two of the three variables in terms of 
a third one, we find

 b c a c= = −3
4

13
12,    

This way, c is selected as the free variable. Letting c = 12, we find

 

v3

13
9

12
=

−














 

 b. 

In order to find the eigenvalues and the eigenvectors, we use the command "eig" 
in the form of [V, D] = eig(A), so that matrix V contains the eigenvectors (nor-
malized as unit vectors) in its columns and diagonal matrix D has the eigenvalues 
along its main diagonal. The eigenvalue in the ( , )1 1  entry of D corresponds to the 
eigenvector in the first column of V, and so on.

>> A = [1 3 1;0 2 -3;0 0 -2];
>> [V,D] = eig(A)
V =
    1.0000    0.9487   -0.6549
         0    0.3162    0.4534
         0         0    0.6046

D =
     1     0     0
     0     2     0
     0     0    -2

As mentioned earlier, the eigenvectors are normalized to unit vectors by dividing 
the vector by its length (norm). For instance, eigenvector v2 in (a) has length 10  and

 

1
10

1
10

3
1
0 0

2v =
















=
















0.9487
0.3162

 

This, of course, agrees with the second column of the matrix V, returned by "eig".

3.3.2 Algebraic Multiplicity and Geometric Multiplicity

The algebraic multiplicity (AM) of an eigenvalue is the number of times it occurs. Its geo-
metric multiplicity (GM) is the number of linearly independent eigenvectors associated 
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with it. For instance, in Example 3.12, each of the three eigenvalues has the AM of 1, since 
each occurs only once, and a GM of 1, because there is only one independent eigenvector 
for each. Of course, GM of an eigenvalue λ is equal to the number of zero rows in the REF 
of A I− λ . In general, we have GM AM≤  . Therefore, any eigenvalue with the AM of 1 auto-
matically has a GM of 1.

Example 3.13: Algebraic Multiplicity and Geometric Multiplicity

Find all eigenvalues and eigenvectors of the following matrix, and identify the AM and 
GM of each eigenvalue. 

 

A =
−

















2 0 1
0 2 4
0 0 3  

Solution

Since A is an upper-triangular matrix, we have λ( ) , ,A = −2 2 3, so that λ = 2 has an AM of 
2 and λ = −3 has an AM of 1. To determine the GM of each eigenvalue, the correspond-
ing eigenvalue problem needs to be solved. For λ = 2, we solve 

 

( )A I v 0− = ⇒
−

































=








2
0 0 1
0 0 4
0 0 5

0
0
0

      
a
b
c









⇒
































=











   

EROs
0 0 1
0 0 0
0 0 0

0
0
0

a
b
c 


 

The first row gives c = 0. Two zero rows indicate two free variables (a and b here), so 
that two linearly independent eigenvectors can be obtained. This implies that λ = 2 has 
a GM of 2. To find the first independent eigenvector, let a b= =1 0, , and to find the sec-
ond one, let a b= =0 1,  . Therefore, the two linearly independent eigenvectors associated 
with λ = 2 are 

 

1
0
0

0
1
0

































,   

 

For λ = −3, we solve 

 

( )A I v 0+ = ⇒
































=









3

5 0 1
0 5 4
0 0 0

0
0
0

      
a
b
c






 

As expected, there is only one free variable, and the GM is 1. Proceeding as usual, the 
only independent eigenvector associated with λ = −3 is obtained as 

 

1
4
5−
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3.3.2.1 Generalized Eigenvectors

Suppose AM of a certain eigenvalue λ is m, so that m corresponding eigenvectors are 
expected for λ. However, if the GM of λ is k m< , then only k  linearly independent eigen-
vectors will be generated for λ. This means that there are m k−  missing eigenvectors for λ. 
These missing eigenvectors are called generalized eigenvectors and can be found by using 
a systematic approach (see Reference [6]). Any matrix with a generalized eigenvector is 
called defective. The following example illustrates how defective matrices can be handled 
in MATLAB.

Example 3.14: Generalized Eigenvectors

Find the eigenvalues and eigenvectors of 

 

A =
−

−

















6 1 2
2 6 2
0 1 8  

Solution

The eigenvalues of A are calculated as λ( ) , ,A = 8 6 6, so that λ1 8=  has an AM of 1 and 
λ2 6=  has an AM of 2. For λ1 8= , we solve 

 

A I v 0−[ ] = ⇒
− −

−
−

















→8
2 1 2

2 2 2
0 1 0

0
0
0

1 0 1
0 11            

EROs
00

0 0 0

0
0
0

1
0
1

1

















⇒ =
−















     v

 

Since there is one independent eigenvector, λ1 8=  has a GM of 1, as expected. For λ2 6= , 
we solve 

 

A I v 0−[ ] = ⇒
−

−

















→
−

6
0 1 2
2 0 2
0 1 2

0
0
0

0 1 2
1 0 1
0

2           
EROs

00 0

0
0
0

1
2
1

2

















⇒ =
−















      v

 

Because there is one free variable, only one independent eigenvector is generated and 
λ1 6=  has a GM of 1. We now make the following observation. Matrix A has three eigen-
values; thus, three eigenvectors are expected. One of the eigenvalues (λ1 8= ) occurs 
once and expectedly has one corresponding eigenvector. The other eigenvalue (λ2 6= ) 
occurs twice, so that two eigenvectors are warranted. Since only one was found, there 
exists one generalized eigenvector.

3.3.2.2 Generalized Eigenvectors in MATLAB

To find the eigenvalues and eigenvectors of the current matrix A in MATLAB, we would 
ordinarily use the "eig" function, as follows:

>> A = [6 1 -2;2 6 2;0 -1 8]; [V,D] = eig(A)
V =
   -0.7071    0.4082   -0.4082
    0.0000   -0.8165    0.8165
    0.7071   -0.4082    0.4082
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D =
    8.0000         0         0
         0    6.0000         0
         0         0    6.0000

However, we notice that the second and third columns of V represent the same eigenvec-
tor. This indicates that there exists a generalized eigenvector. In order to find this missing 
eigenvector, we switch from "eig" to "jordan", which is specifically designed for this 
purpose.

>> [V,J] = jordan(A)
V =
    0.5000   -1.0000    0.5000
         0    2.0000         0
   -0.5000    1.0000    0.5000

J =
     8     0     0
     0     6     1
     0     0     6

Note that matrix J is no longer diagonal and is known as a Jordan matrix. The eigenvalues 
of A are 8 6 6, , . The first column of V contains the eigenvector for λ = 8. The next two col-
umns correspond to λ = 6, with the last one being a generalized eigenvector.

3.3.2.3 Similarity Transformations

Two matrices An n×  and Bn n×  are similar if there exists a nonsingular matrix Sn n× , such that 

 B S AS= −1  (3.9)

We say that B is obtained from A through a similarity transformation. Eigenvalues of 
a matrix are preserved under similarity transformation; that is, λ λ( ) ( )A B= . Similarity 
transformations are often utilized to transform a matrix into a diagonal matrix, with 
eigenvectors playing a key role in that process.

3.3.2.4 Matrix Diagonalization

Suppose An n×  has eigenvalues λ λ λ1 2, , , ... n and corresponding linearly independent 
eigenvectors v v v1 2, , , ... n, with no generalized eigenvectors. Form the modal matrix 
V v v vn n n× = [ ]1 2 ... , which is guaranteed to be nonsingular, because its columns are 
linearly independent. Then, 

 V AV D− =



















=1

1 0 0
0 0

0 0
0 0

λ
λ

λ

...
...

... ...
...

2

n

 (3.10)

Matrix A has clearly been transformed into a diagonal matrix D by a similarity 
transformation.
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3.3.2.5 Defective Matrices

Suppose An n×  has eigenvalues λ λ λ1 2, , , ... n and linearly independent eigenvectors 
v v v1 2, , , ... n, including at least one generalized eigenvector. Again, the modal matrix 
V v v vn n n× = [ ... ]1 2  is guaranteed to be nonsingular, because its columns are linearly 
independent, and 

 V AV J− =1  (3.11)

where J  is not diagonal and is called a Jordan matrix (see Example 3.14).

Example 3.15: Diagonalization 

In Example 3.12, we found that λ( ) , ,A = −1 2 2 and there are no generalized eigenvectors. 
The modal matrix then transforms A into the diagonal matrix D, as in Equation 3.10.

>> A = [1 3 1;0 2 -3;0 0 -2]; [V,D] = eig(A);
>> D = V\A*V     % Perform D = V-1AV
D =
    1.0000   -0.0000    0.0000
         0    2.0000   -0.0000
         0         0   -2.0000

Example 3.16: Jordan Matrix 

In Example 3.14, we found that λ( ) , ,A = 8 6 6 and there is one generalized eigenvector. 
The modal matrix transforms A into a Jordan matrix J, as in Equation 3.11.

>> A = [6 1 -2;2 6 2;0 -1 8]; [V,J] = jordan(A);
>> V\A*V      % Perform J = V-1AV
ans =
     8     0     0
     0     6     1
     0     0     6

This, of course, agrees with the Jordan matrix J returned by jordan(A).

PROBLEM SET 3.3

In Problems 1 through 8,

 a. Find the eigenvalues and eigenvectors of the matrix.

 b.  Confirm the results of (a) in MATLAB.

 1. A =
−











2 4
0 3

 2. A =
−









5 2
2 0

 3. A =










0 3
3 0
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 4. A =
−

















1 1 0
3 3 0
0 0 2

 5. A =
− −

−
− −

















3 4 2
1 4 1

2 6 1

 6. A =
−

−
− −

















1 2 4
1 2 2
5 10 2

 7. A =

−
− − −

− −
− −



















0 2 2 0
1 5 2 2

0 3 0 3
1 2 2 1

In Problems 8 through 15, find the eigenvalues, eigenvectors, AM, and GM of each 
eigenvalue and decide whether the matrix is defective or not. Then, transform the 
matrix into either a diagonal or a Jordan matrix, whichever is applicable.

 8. A =
−









2 1
6 7

 9. A =
−









0 1
1 2

 10. A =
















3 0 0
0 3 1
5 0 0

 11. A =
− −

















4 1 0
0 4 1
1 1 3

 12. A =
−
−
−

















2 3 1
1 2 1
1 1 0

 13. A =
















2 2 1
0 1 0
0 0 1

 14. A = − −
−

















1 0 0
0 2 1
0 1 2
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 15. A =
















5 0 0
2 5 1
0 0 6

 16. Prove that if A2 2×  has a repeated eigenvalue λ, then A must be defective.
 17. Prove that a singular matrix must have at least one zero eigenvalue.
 18. Show that if the eigenvalues of A are λ λ λ1 2, , , ... n, then the eigenvalues of 

A I− α  are λ α λ α λ α1 2− − −, , , ... n .
 19. Show that the eigenvalues of A and AT are the same.

3.4 Summary

A matrix is a collection of elements arranged in a rectangular array and enclosed by square 
brackets. The size of a matrix A is m n×  if it has m rows and n columns. The abbreviated 
form of an m n×  matrix is 

 A = = =×[ ] , , , , , , , ,a i m j nij m n       ...        ... 1 2 1 2  

Matrix addition is performed entry-wise. If k  is scalar, then k kaij m nA = ×[ ] . If A = ×[ ]aij m n and 
B = ×[ ]bij n p, then C AB=  is an m p×  matrix, whose entries are obtained as 

 
         ...      ... c a b i m j pij ik kj

k

n

= = =
=

∑
1

1 2 1 2, , , , , , , ,
 

The transpose of Am n× , denoted by AT, is an n m×  matrix, whose rows are the columns of 
A. A matrix A = ×[ ]aij n n is symmetric if A AT = , upper-triangular if aij = 0 for all i j> , lower-
triangular if aij = 0 for all i j< , and diagonal if aij = 0 for all i j≠  . Matrix transformations 
may be achieved by using EROs: 

• ERO1: Multiply a row by a non-zero constant
• ERO2: Interchange two rows
• ERO3: Multiply the ith row by α = ≠const 0, add the result to the kth row, and then 

replace the kth row with the outcome. In this process, the ith row is called the 
pivot row.

The rank of a matrix is the number of non-zero rows in the REF of that matrix. The deter-
minant of An n×  is a real scalar, calculated as 

 
A = − =+

=
∑ a M i nik

i k
ik

k

n

( ) , , , ,1 1 2
1

       ... 
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where Mik  is the minor of aik and ( )− +1 i k
ikM  is the cofactor of aik. The inverse of matrix A is 

obtained as 

 
A

A
A− =1 1

adj( )
 

where adj( )A  is the adjoint matrix of A and is defined as 

 

adj( )

( ) ( ) ... ( )
( ) ( )

A =

− − −
− −

+ + +

+ +

1 1 1
1 1

1 1
11

2 1
21

1
1

1 2
12

2 2

M M M
M M

n
n

222
2

2

1
1

2
2

1

1 1 1

... ( )
... ... ... ...

( ) ( ) ... ( )

−

− − −

+

+ + +

n
n

n
n

n
n

n n

M

M M MM

C C C
C C C

Cnn

n

n

n





















=

11 21 1

12 22 2

1

...

...
... ... ... ...

CC Cn nn2 ...


















 

The eigenvalue problem associated with a matrix A is described by 

 A v v v 0n n n n n n× × × × × ×= ≠1 1 1 1 1 1λ ,      

where λ is an eigenvalue of A and v is the corresponding eigenvector. The eigenvalues are 
the roots of the characteristic equation A I− =λ 0. The AM of an eigenvalue is the number 
of times it occurs. The GM of an eigenvalue is the number of linearly independent eigen-
vectors associated with it. In general, we have GM AM≤  . If GM AM<  for an eigenvalue, 
then the matrix has at least one generalized eigenvector. A matrix with at least one gen-
eralized eigenvector is called defective. Any nondefective matrix A can be diagonalized 
via a similarity transformation V AV D− =1 , where V v v vn n n× = [ ... ]1 2  is the modal 
matrix of A, whose columns are the (linearly independent) eigenvectors of A and D is a 
diagonal matrix composed of the eigenvalues of A. Defective matrices are transformed 
into a Jordan matrix J.

Review Problems

 1. Find the value of a such that the following two matrices have the same determinant.

 

1 3 0
2 0

0 0 4

4 0 0
0 3 2
0 11

2

−
















−
−

















a a,     

 

 2. Determine whether the following vectors are linearly independent.

 

3
1

4

5
4
2

2
5
2

−






























 −

















, ,    
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 3. Prove that the product of two symmetric matrices is not necessarily symmetric.
 4. If A is m m×  and symmetric, and B is a general m n×  matrix, show that B ABT  is 

n n×  and symmetric.
 5. Given

 

A C=
− − −

















=  

0 1 0
0 0 1
2 1 2

2 0 1
3,    

 

find the rank of

 C A C A CT T T T T( )2  

 6. Determine a such that rank( )A = 3, where

 

A =

−
− −

−



















3 7 2 1
1 4 3 2

1 4 5 3
7 12 1 5

a

 

 7. Find the inverse of the rotation matrix

 

R = −
















cos sin
sin cos

θ θ
θ θ

0
0

0 0 1  

 8. Find the value(s) of a for which the following system only has a trivial solution.

 

2
3 1

2

3

1 2
2 1

1 1 5

0
0
0

−
−

−

































=
















a
x
x
x  

 9. Solve the following linear system by using Cramer’s rule; a is a parameter.

 

Ax b A x= =

−
−

− −
−



















=



     , ,

3 0 1 2
2 2 0 2
1 3 1 1

2 1 2 3

1

2

3

4

x
x
x
x


















=

+

−





















,   b

2 4
2

2 2
2

a

a
a  

 10. Solve the linear system in Problem 9 by using the inverse of the coefficient matrix.
 11. Show that any matrix with distinct eigenvalues is nondefective.
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 12. a. Find all eigenvalues and eigenvectors of

 

A =
− −

−
− −

















3 2 0
0 1 0
1 1 2  

 b.  Confirm the results of (a) in MATLAB.
 13. Find the eigenvalues and the AM and GM of each, and decide whether the matrix 

is defective.

 

A =
−

−
−



















1 0 0 0
2 3 0 0

1 0 1 1
0 2 0 1  

 14. Prove that the eigenvalues of a matrix are preserved under a similarity transfor-
mation; that is, if S AS B− =1 , then the eigenvalues of A and B are the same.

 15.  Find the modal matrix, and use it to transform A into a diagonal or Jordan 
matrix:

 

A =

− −

−
−



















1 4 1 2
0 1 1 4
0 0 1 0
0 0 2 5  

 16. Show that the rotation matrix R of Problem 7 is orthogonal. Then, verify that each 
of its eigenvalues has an absolute value of 1.

 17. Prove that if k = const and matrix A has eigenvalues λ λ1, , ... n, with correspond-
ing eigenvectors v v1, , ... n, then the eigenvalues of kA are k k nλ λ1, , ... , with eigen-
vectors v v1, , ... n.

In Problems 18 through 20, decide whether the statement is true or false.

 18. If n ≥ 3, then every n n×  matrix with any repeated eigenvalues is defective.
 19. The rank of a singular 4 4×  matrix is 3.
 20. If all eigenvalues of a matrix are real, then the matrix is symmetric.



http://taylorandfrancis.com
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4
System Model Representation

This chapter presents several commonly used forms in the representation of mathemati-
cal models of dynamic systems. The derivation of the models will be introduced and 
thoroughly discussed in Chapters 5 through 7. The main topics covered in this chapter 
include the configuration form, state-space form, input–output (I/O) equation, trans-
fer function, and block diagram representation. Also included is how any one of these 
forms may be obtained from any other form. Various methods of linearization of non-
linear systems, including linearization in Simulink®, are covered in the final section of 
this chapter.

4.1 Configuration Form

A set of coordinates that completely describes the motion of a system is known as a set 
of generalized coordinates. This set is not unique, so that more than one set of coordi-
nates can be chosen for the same system. However, the number of coordinates remains 
the same, regardless of the set selected for a specific system. If there are n generalized 
coordinates, they are usually denoted by q q qn1 2, , , ... . Suppose a dynamic system model 
is described by 

 

   



q f q q q q q q t
q f q q

n n1 1 1 2 1 2

2 2 1 2

=
=

( , , , , , , , , )
( , ,

 ...  ... 
 ....  ... 

 ... 

, , , , , , )
...

( , , , ,

q q q q t

q f q q q q

n n

n n n

  

 

1 2

1 2 1= ,, , , , ) q q tn2  ... 











 (4.1)

where   q q qn1 2, , , ...  are the generalized velocities and f f fn1 2, , , ... , known as the generalized 
forces, are algebraic functions of qi and qi (i n= 1 2, , , ... ) and time t. Assuming initial time 
is t = 0, Equation 4.1 subjected to initial generalized coordinates q q qn1 20 0 0( ), ( ), , ( ) ...  and 
initial generalized velocities   q q qn1 20 0 0( ), ( ), , ( ) ...  is called the configuration form.

Example 4.1: Configuration Form

The mechanical system shown in Figure 4.1 consists of blocks m1 and m2, linear springs 
with stiffness coefficients k1 and k2, a linear damper with coefficient of viscous damping 
c, and force F t( ) applied to block m2. The equations of motion are derived as (Chapter 5) 

 

m x k x k x x c x x
m x k x x c x

1 1 1 1 2 2 1 2 1

2 2 2 2 1 2

0  

  

+ − − − − =
+ − + −

( ) ( )
( ) ( xx F t1) ( )=
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where x1 and x2 are the displacements of the blocks, and x1 and x2 are their respective 
velocities. The system is subjected to initial displacements x x1 100( ) =  and x x2 200( ) =  and 
initial velocities  x x1 100( ) =  and  x x2 200( ) .=  Obtain the configuration form.

Solution

The equations of motion are first rewritten as 

 

  

 

x
m

k k x k x cx cx

x
m

k x k x cx

1
1

1 2 1 2 2 1 2

2
2

2 2 2 1 1

1

1

= − + + − +[ ]

= − + +

( )

−− +[ ]










cx F t2 ( )
 

Comparison with Equation 4.1 reveals that n = 2, so that there are two generalized coor-
dinates: q x1 1=  and q x2 2= . The previous set of equations is then expressed as 

 

  



 

q
m

k k q k q cq cq

f q q q q t

1
1

1 2 1 2 2 1 2
1

1 1 2 1 2

= − + + − + ( )

( , , , , )

qq
m

k q k q cq cq F t

f q q q q t

2
2

2 2 2 1 1 2
1

2 1 2 1 2

= − + + − +  

 

( )

( , , , , )  

where f1  and f2 are the generalized forces. These, together with the four initial conditions, 

 

q x q x
q x q x

1 10 1 10

2 20 2 20

0 0
0 0

( ) , ( )
( ) , ( )

= =
= =

  
  

 

   

establish the configuration form.

4.1.1 Second-Order Matrix Form

Mathematical models of dynamic systems that are governed by n-dimensional systems of 
second-order differential equations can conveniently be expressed as 

 Mx Cx Kx f + + =  (4.2)

which is commonly known as the standard, second-order matrix form, where 

• xn× =1  configuration vector and fn× =1  vector of external forces
• Mn n× = mass matrix, Cn n× = damping matrix, and Kn n× = stiffness matrix

x1 x2

k2

k1

m1 m2
c

F(t)

FIGURE 4.1
Mechanical system in translation.
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Example 4.2: Second-Order Matrix Form

Express the equations of motion of the system in Example 4.1 in second-order matrix form.

Solution

The equations of motion can be expressed in the form of Equation 4.2, as 

 

m
m

x
x

c c
c c

x
x

k k1

2

1

2

1

2

1 20
0



















+
−

−


















+
+ −







kk
k k

x
x F t

2

2 2

1

2

0
−



















=






( )  

where the pertinent vectors and matrices are properly identified as

 M C K=








 =

−
−









 =

+ −
−











m
m

c c
c c

k k k
k k

1

2

1 2 2

2 2

0
0

, , ,      xx f=








=








x
x F t

1

2

0
,

( )
   

PROBLEM SET 4.1

In Problems 1 through 8, assuming general initial conditions, express the system model in

 a. Configuration form.
 b. Standard, second-order matrix form.

 1. 
1
2 1 1

1
3 1 2

2
1
2 2

1
3 1 2

2 3

0 

 

x x x x
x x x x e t

+ + − =
+ − − =





−

( )
( ) /

      



 2. 
1
3 1 1 1 2

2

3
5 2 1 2

2
2 0

 x x x x e
x x x

t+ + − =
− − =







−( )
( )           

 3. 
m x k x cx k x x F t
m x k x x F t

1 1 1 1 1 2 2 1 1

2 2 2 2 1 2

 



+ + − − =
+ − =

( ) ( )
( ) ( )                 





; mechanical system in Figure 4.2

 4. 
m x c x k x k x x c x x F t
m x k x x

1 1 1 1 1 1 2 2 1 2 2 1

2 2 2 2

   



+ + − − − − =
+ −

( ) ( ) ( )
( 11 2 2 1 0) ( )+ − =



 c x x                          

; mechanical system in Figure 4.3

 5. 
 

 

θ θ θ θ

θ θ θ θ
1 1

3
2 1 2

2

2 2
3
2 1 2 0

+ + − =

+ − − =

−( ) sin

( )

/e tt

            







 6. 
mx kx k x x c x x F t
mx

  



1 1
1
2 2 1 2 1 1

2
2
3

2+ − − − − =
−

( ) ( ) ( )            
kk x x k x x c x x

mx kx k x x
( ) ( ) ( )

(
3 2

1
2 2 1 2 1

3 3
2
3 3 2

2 0
2

− + − + − =
+ + −

 



    
)) ( )+ =







 cx F t3 2                        

c

x1

k1
k2

x2

m1 m2

F2(t)F1(t)

FIGURE 4.2
Mechanical system in Problem 3.
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 7. 

1
2 1 1 2 1

1
2 2 1 12mx kx k x x c x x F t  + − − − − =( ) ( ) ( )                                 

2 2 3 2 2 1
1
2 2 1 3mx k x x k x x c x x c x   − − + − + − −( ) ( ) ( ) ( −− =

+ + − + − =



  

x F t
mx kx k x x c x x

2 2

3 3 3 2 3 22 0
) ( )

( ) ( )
    

                                           









 8. 
 

  

x x F t
x

= − +
= + −





1
4

2 2
( )

ϕ ϕ ϕ

4.2 State-Space Form

Dynamic systems, ranging from mechanical to fluid and thermal systems, are mathemat-
ically modeled as systems of ordinary differential equations (ODEs) of various orders. 
However, such general form of system model is not very convenient for the purposes of 
analysis, simulation, and control. One of the most convenient forms is achieved by trans-
forming a system of ODEs of various orders into a larger system of first-order ODEs. The 
first and most important step toward that goal is the selection of a suitable set of state 
variables. If there exist n state variables for a specific system, then they are denoted by 
x i ni   ... ( , , , ).= 1 2

4.2.1 State Variables, State-Variable Equations, and State Equation

State variables form the smallest set of independent variables that completely describe 
the state of a system. More exactly, knowledge of the state variables at a fixed reference 
time t0 and system inputs at all t t≥ 0  translates to knowing the state variables and system 
outputs at all t t≥ 0 . State variables are independent; thus, they cannot be expressed as 
algebraic functions of one another and the system inputs. Moreover, a set of state vari-
ables is not unique, so that more than one set may be identified for a dynamic system. 
Given the mathematical model of a dynamic system, the state variables are determined 
as follows: 

• The number of state variables is the same as the number of initial conditions 
needed to completely solve the system model.

• The state variables are exactly those variables for which initial conditions are 
required.

x1 x2

k1 k2

m1 m2

c2c1

F(t)

FIGURE 4.3
Mechanical system in Problem 4.
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Example 4.3: State Variables

In the mechanical system shown in Figure 4.4, all parameter values are in consistent 
physical units. The model of this system is provided by its equation of motion 

 2 10 x x x F t+ + =0.5 ( ) 

where the applied force F t( ) serves as the system input. Note that we use b and c inter-
changeably to denote the coefficient of viscous damping.

Two initial conditions, x( )0  and x( )0 , are needed to completely solve the differential 
equation. Therefore, there are two state variables, denoted by x1 and x2. However, the 
state variables are those variables for which initial conditions are required. Since these 
variables are x and x, the state variables are selected as x x1 =  and x x2 = .

4.2.1.1 State-Variable Equations

There are as many state-variable equations as there are state variables. Each state-variable 
equation is a first-order ODE whose left side is the first derivative of a state variable and 
whose right side is an algebraic function of the state variables, system inputs, and pos-
sibly time t. Suppose a dynamic system has n state variables x x xn1 2, , , ...  and m inputs 
u u um1 2, , , ... . Then, the state-variable equations take the generic form 

 





x f x x u u t
x f x x u

n m

n

1 1 1 1

2 2 1 1

=
=

( , , ; , , ; )
( , , ; ,

 ...  ... 
 ...  .... 

 ...  ... 

, ; )
...

( , , ; , , ; )

u t

x f x x u u t

m

n n n m =









 1 1

 (4.3)

where f f fn1 2, , , ...  are algebraic functions of the state variables and inputs and are generally 
nonlinear.

Example 4.4: State-Variable Equations (Example 4.3 Continued)

Referring to Example 4.3, since there are two state variables, there must be two state-
variable equations in the form 

 





x
x

1

2

= ⋅⋅ ⋅
= ⋅⋅ ⋅





 
  

Recall that only state variables and inputs may appear on the right side of each ODE. 
Since x x1 = , we have  x x1 = . However, x x= 2 and hence  x x x1 2= = . This means that the 

x

k = 10

b = 0.5
m = 2

F(t)

FIGURE 4.4
Mechanical system in Example 4.3.
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first equation is simply x x1 2= , which is valid because the right side contains only a 
state variable. Next, we know that x x2 =  , so that  x x2 = . However, x is obtained from 
the equation of motion, as 

 
  x x x x F t

x
2

1
2 10= = − − +[ ] =  0.5

equation of motion

Using the

( )
11 2

1
2 2 110

= =
− − +[ ]

x x x
x x F t

, 

Use state variables
0.5



( )
 

With this, the state-variable equations can be written as 

 





x x
x x x F

1 2

2
1
2 2 110

=
= − − +

                                 
0.5 (( )t[ ]





  

Noting that F t( ) is the only system input, this agrees with Equation 4.3.

4.2.1.2 State Equation

In general, when at least one of the functions f f fn1 2, , , ...  in Equation 4.3 is nonlinear, 
Equation 4.3 is expressed in vector form, as 

 x f x u= ( , , )t  (4.4)

where 

 

x u=





















=





















×

x
x

x

u
u

un n m m

1

2

1

1

2

... ...
 ,  

×× ×

=





















1

1

2

1

 ,  f

f
f

fn n

...

 

However, if all elements of a dynamic system are linear, then f f fn1 2, , , ...  in Equation 4.3 
will be linear combinations of x x xn1 2, , , ...  and u u um1 2, , , ... : 

 





x a x a x b u b u
x a x a

n n m m1 11 1 1 11 1 1

2 21 1 2

= + ⋅⋅⋅ + + + ⋅⋅⋅ +
= + ⋅⋅⋅ +

     
  nn n m m

n n nn n n

x b u b u

x a x a x b u

+ + ⋅⋅⋅ +

= + ⋅⋅⋅ + + + ⋅⋅⋅

21 1 2

1 1 1 1

  

    
...

 ++









 b unm m

 (4.5)

Rewriting Equation 4.5 in matrix form yields 

 







x
x

x

a a a
a a a

n

n

n

1

2

11 12 1

21 22 2

...

...

...
... ... .





















=
... ...

...
...

a a a

x
x

xn n nn n n n n1 2

1

2







































× ×11

11 12 1

21 22 2

1 2

+










b b b
b b b

b b b

m

m

n n nm

...

...
... ... ... ...

... 


























× ×n m m m

u
u

u

1

2

1

...

 

Finally, this can be conveniently expressed as 

 x Ax Bu= +  (4.6)
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Equation 4.6 is known as the state equation, where 

 

x u=





















= =





x
x

x

u
u

un m

1

2

1

2

... ...
 state vector,     


















=  input vector

 

 

A =














a a a
a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...






= = state matrix,    B

b b b
b b b

m

m

11 12 1

21 22 2

...

...
... ... .... ...

...b b bn n nm1 2



















=  input matrix

 

Example 4.5: State Equation (Example 4.4 Continued)

The state-variable equations at the conclusion of Example 4.4 clearly indicate that the 
system is linear, so they are expressed in matrix form, as 

 





x
x

x
x

F t
1

2
1
4

1

2
1
2

0 1
5

0







=
− −



















+








 ( )

 

Therefore, the state equation is 

 
x Ax B x A B= + =









=
− −









 =









u

x
x

,  ,  ,  ,  
1

2
1
4

1
2

0 1
5

0
uu= F t( )

 

Since there is only one input F t( ), input vector u is scalar and denoted by u.

4.2.2 Output Equation and State-Space Form

Consider a dynamic system with state variables x x xn1 2, , , ...  and inputs u u um1 2, , , ... , as 
before. Suppose the system has p outputs y y yp1 2, , , ... . Outputs are sometimes called mea-
sured outputs, referring to physical quantities that are being measured. Then, the output 
equations generally appear in the form 

 

y g x x u u t
y g x x u

n m

n

1 1 1 1

2 2 1 1

=
=

( , , ; , , ; )
( , , ; ,

 ...  ... 
 ...  ... ,, ; )

...
( , , ; , , ; )

u t

y g x x u u t

m

p p n m=









 1 1 ...  ... 

 (4.7)

where g g gp1 2, , , ...  are algebraic functions of the state variables and inputs and are gener-
ally nonlinear.
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4.2.2.1 Output Equation

If at least one of the functions g g gp1 2, , , ...  in Equation 4.7 is nonlinear, Equation 4.7 is 
expressed in vector form, as 

 y g x u= ( , , )t  (4.8)

where 

 

y x=





















=





















×

y
y

y

x
x

xp p n n

1

2

1

1

2

...
,

...
   

×× ×

=





















=













1

1

2

1

1

2
,

...
,

...
      u g

u
u

u

g
g

gm m p









×p 1 

However, if all elements are linear, then g g gp1 2, , , ...  in Equation 4.7 are linear combina-
tions of x x xn1 2, , , ...  and u u um1 2, , , ... : 

 

y c x c x d u d u
y c x c x

n n m m

n

1 11 1 1 11 1 1

2 21 1 2

= + ⋅⋅⋅ + + + ⋅⋅⋅ +
= + ⋅⋅⋅ +

     
  nn m m

p p pn n p p

d u d u

y c x c x d u d

+ + ⋅⋅⋅ +

= + ⋅⋅⋅ + + + ⋅⋅⋅ +

21 1 2

1 1 1 1

  

    
...

mm mu











 

This is conveniently expressed as 

 y Cx Du= +  (4.9)

Equation 4.9 is known as the output equation, where y, x, and u are defined as before, and 

 

C =











c c c
c c c

c c c

n

n

p p pn

11 12 1

21 22 2

1 2

...

...
... ... ... ...

... 







=

=

×p n

m

m

d d d
d d d

 output matrix   

D

11 12 1

21 22 2

...

...
... .... ... ...

...d d dp p pm p m1 2





















=

×

 direct transmissionn matrix

 

Example 4.6: Output Equation

For the mechanical system studied in Examples 4.3 through 4.5, suppose the output is 
the velocity x of the block. Since there is only one output, the output vector y is 1 1×  and 
hence denoted by y. The output is x; therefore, y x=  . However, for this system, we know 
x x= 2; thus, y x= 2 . Finally, Equation 4.9 may be written as 
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 y
x
x

u=  








+ ⋅0 1 0
1

2
 

so that C = [ ]0 1  and D = 0. Note that the direct transmission matrix D is 1 1×  and 
hence denoted by D .

4.2.2.2 State-Space Form

The combination of the state equation and the output equation is called the state-space 
form. For a linear system with state variables x x xn1 2, , , ... , inputs u u um1 2, , , ... , and outputs 
y y yp1 2, , , ... , the state-space form is 

 
x A x B u

y C x D u

= +
= +





× × × ×

× × × × ×

n n n n m m

p p n n p m m

1 1

1 1 1

     
 (4.10)

Example 4.7: State-Space Form

In the mechanical system shown in Figure 4.5, all parameter values are in consistent 
physical units. The equations of motion are derived as 

 

1
2 1 1 2 1 2 1 1

2 2 1 2

10 5
5

  

 

x x x x x x F
x x x x

+ − − − − =
+ − + −

( ) ( )
( ) (

0.8
0.8 x F1 2) =





              

Assuming that the (measured) outputs are x1 and x1, obtain the state-space form.

Solution

The system model comprises two second-order ODEs; hence, a total of four initial 
conditions are needed for complete solution. There are therefore four state variables, 
selected as 

 

x x
x x
x x
x x

1 1

2 2

3 1

4 2

=
=
=
=



  

When designating state variables, the above-mentioned arrangement is the most com-
monly used.

b = 0.8

m2 = 1

k1 = 10

k2 = 5

1
2m1 =

x1 x2

F2(t)F1(t)

FIGURE 4.5
Mechanical system in Example 4.7.
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The state-variable equations are then formed as 

 





x x
x

1 3

2

=                                                  
==
= −

x
x

4

3 3
                                                

 00 10 1 2
5 5

1 2 4 3 1

4 2 1 4 3 2

x x x x F
x x x x x F

+ + − +
= − + − + +






1.6 .6
0.8 0.8    





  

The state equation is subsequently obtained as 

 x Ax Bu= +  

where 

 

x A=





















=
− −

−
×

x
x
x
x

1

2

3

4 4 1

0 0 1 0
0 0 0 1
30 10
5 5

,  
1.6 1.6

0.8 −−





















=





















=

× ×
0.8

,  ,  

4 4 4 2

0 0
0 0
2 0
0 1

B u
F11

2 2 1
F







 ×

 

Since the outputs are x1 and x1, we have 

 
y =









=








x
x

x
x

1

1

1

3  

As a result, the output equation is 

 y C x D u2 1 2 4 4 1 2 2 2 1× × × × ×= +  

where 

 
C D 0=









 =

×

×
1 0 0 0
0 0 1 0

2 4

2 2,  
 

Finally, combining the state equation and the output equation yields the state-space 
form.

4.2.2.3 State-Space Form in MATLAB® 

The built-in MATLAB function ss can be employed to build and store a state-space model. 
The model can in turn be used for analysis, simulation, and control purposes.

>> help ss
 ss  Construct state-space model or convert model to state space.

  Construction:
   SYS = ss(A,B,C,D) creates an object SYS representing the continuous- 
   time state-space model
      dx/dt = Ax(t) + Bu(t)
      y(t) = Cx(t) + Du(t)



115System Model Representation

Example 4.8:  State-Space Form

The state-space form in Example 4.7 can be stored in MATLAB under an assigned name, 
say, sys, as follows:

% Input matrices A,B,C and D
>> A = [0 0 1 0;0 0 0 1;-30 10 -1.6 1.6;5 -5 0.8 -0.8];
>> B = [0 0;0 0;2 0;0 1]; C = [ 1 0 0 0;0 0 1 0]; D = [0 0;0 0];
>> sys = ss(A,B,C,D)    % state-space form
sys =
 
  a = 
         x1    x2    x3    x4
   x1     0     0     1     0
   x2     0     0     0     1
   x3   -30    10  -1.6   1.6
   x4     5    -5   0.8  -0.8
 
  b = 
       u1  u2
   x1   0   0
   x2   0   0
   x3   2   0
   x4   0   1
 
  c = 
       x1  x2  x3  x4
   y1   1   0   0   0
   y2   0   0   1   0
 
  d = 
       u1  u2
   y1   0   0
   y2   0   0
 
Continuous-time state-space model.

4.2.3 Decoupling the State Equation

The state variables are generally coupled through the entries of the state matrix A; that is, 
the state-variable equations cannot be solved independently for the state variables, because 
the state matrix is not diagonal. However, as we learned in Chapter 3, assuming matrix A 
is not defective, it may be transformed into a diagonal matrix through a coordinate trans-
formation defined by the modal matrix associated with matrix A. This process, known as 
the decoupling of the state equation, is explained as follows.

Consider the state-space form, Equation 4.10. Assume A has eigenvalues λ λ λ1 2, , , ... n, 
linearly independent eigenvectors v v v1 2, , , ... n, and no generalized eigenvectors. Then, the 
modal matrix V v v v=   ×1 2 ... n n n

 diagonalizes matrix A, that is, 

 

V AV D− = =



















1

1

2

0 0
0 0

0 0
0 0



λ
λ

λ

...
...

... ...
... n  

We have changed the notation of D to D to avoid confusion with the direct transmission 
matrix. Substitute the transformation x Vx=   into the state-space form to obtain 
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Vx AVx Bu

y CVx Du V

�� �
�

= +
= +






⇒

−

     
       by 

Pre-multiply 

1

tthe state equation

   
     

 
V Vx V AVx V Bu

y CVx Du

− − −= +
= +

1 1 1�� �
�                         





  

Knowing V V I− =1  and V AV D− =1
  and denoting B V B= −1  and C CV= , the above becomes 

 
�� � � �

� �
x Dx Bu

y Cx Du

= +

= +






 (4.11)

Since D is diagonal, the new state equation in Equation 4.11 is clearly decoupled; each 
row is a first-order differential equation in one state variable, independent of the others. 
In the decoupled state-space form, the state vector is x. Equations 4.10 and 4.11 represent 
the state-space forms of the same system but corresponding to two different state vectors. 
This is consistent with the fact that the state vector is not unique for a given system model.

Example 4.9: Decoupling the State Equation

The state-space form for a system model is 

 

x Ax B

Cx

= +
= +





u
y Du  

where 

 
x A B C=









=
− −









 =









 = = 

x
x

u u
1

2
1
2

3
2

0 1 0
1

0 1,  ,  ,  ,    =,  D 0
 

 a. Find the decoupled state equation, together with the corresponding output 
equation.

 b.  Repeat (a) in MATLAB.

Solution

 a. The eigenvalues and eigenvectors of A are found as

 
λ1 2

1
2 1 21

2
1

1
1, , , ,= − − =

−







=
−








     v v
 

 Therefore, the modal matrix is formed as V =
− −





2 1

1 1 , and

 
V− =

− −









1 1 1
1 2

,
 
V AV D− = =

−
−











1
1
2 0

0 1
 ,

  

B V B= =
−









−1 1
2

,
 

C CV= =  1 1

 The decoupled state-space form is then obtained as

 

�� �

�

x x

x

=
−

−






+
−





=   + ⋅








1
2 0

0 1
1

2

1 1 0

u

y u          
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 b. 

>> A = [0 1;-1/2 -3/2]; B = [0;1]; C = [0 1]; D = 0;
>> [V,Dtilda] = eig(A)
V =                        % Eigenvectors are normalized

    0.8944   -0.7071
   -0.4472    0.7071

Dtilda =                      

   -0.5000         0
         0   -1.0000

>> Btilda = V\B; Ctilda = C*V;
>> dec_sys = ss(Dtilda,Btilda,Ctilda,D)   % Define decoupled system

dec_sys =
  a = 
         x1    x2
   x1  -0.5     0
   x2     0    -1

  b = 
          u1
   x1  2.236
   x2  2.828

  c = 
            x1       x2
   y1  -0.4472   0.7071

  d = 
       u1
   y1   0
 
Continuous-time state-space model. 

Because the "eig" command returns normalized eigenvectors (unit vectors), the ensuing 
matrix V is different from V obtained in (a), and the subsequent input matrix B and output 
matrix C do not agree with those in (a). However, the new system is decoupled.

PROBLEM SET 4.2

In Problems 1  through 8, find a suitable set of state variables, derive the state-variable 
equations, and form the state equation.

 1. mx bx e m bt
 + = = >−2 3 0/ , , const

 2. 1
3

1
2 2  x x x x t+ + + = cos

 3. 
 



x x x x F t
x x x x F t
1

1
4 1

2
3 1 2 1

2 2
2
3 2 1 22

+ + − =
+ + − =







( ) ( )
( ) ( )

 
 

 4. 
 



x x x y
y y x F t
+ + =

+ + =






2
5

1
2

2
2

         
    ( )

 5. 
 x x x x F t

x x x
1 1 1 2

1
3 2 1 2

2 2
2 0

+ + − =
− − =





( ) ( )
( )              
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 6. 
 z z k z z e
z k z z

t
1 1

1
2 1 2

3

2
1
2 1 2 0

+ + − =
− − =







−( )
( )

,
/

           
   constk =

 7. 
2 4 2

2 2
1 1 2 1 2 1

2 1 2 1 2 2

  

  

x x x x x F t
x x x x x F t

+ − + − =
− + − + =





( )
( )

 8. 
mL mgL kL kL

mL mgL kL kL

1
2

1 1 2
2

1 2
2

2

1
2

2 1 2
2

2 2
2

0



θ θ θ

θ θ

+ + − =

+ + −

( )

( ) θθ1
1 2

0=






=, , , , ,    constm k g L L

In Problems 9 and 10, derive the state-variable equations (in vector form) for the given 
nonlinear system model.

 9. 2 21
3

2 2 3
 x x x e t+ + = − /

 10. 
  



x x x x
x x t

1
1
3 1 1 2

3

2 1 2
+ =
= +





 sin   

Problems 11 through 14 are concerned with the stability of systems. A linear dynamic 
system is stable if the homogeneous solution of its mathematical model, subjected to the 
prescribed initial conditions, decays. More practically, a linear system is stable if all the 
eigenvalues of its state matrix have negative real parts; that is, they all lie in the left half 
plane.
 11. Decide whether the system in Problem 1 is stable.
 12. Decide whether the system in Problem 5 is stable.
 13. Decide whether the system in Problem 4 is stable.
 14. Find the range of values of b for which a system described by  y b y y F t− − − =( ) ( )1  

is stable.
In Problems 15 through 18, find the state-space form of the mathematical model.

 15. 
 



x x x x
x x x x F t

1 1
3
2 1 2

2 2
3
2 1 2

3 0
2

+ + − =
+ − − =







( )
( ) ( )

      , outputs are x1 and x1.

 16. 
 



z z z z z F t
z z z

1
3
4 1 2 1 1

2
3
4 2 1

2
0

+ − + + =
+ − =

( ) ( )
( )                     






, outputs are z1 and z2.

 17. 
2 9 21 1 3 2 1 2 1

2 2 1

  

  

x x x x x x x F t
x x x

+ − − − − − =
+ −

( ) ( ) ( ) ( )
( )

0.8
0.8 ++ − =

= −
2 0

2
2 1

3 1 3

( )
( )

x x
x x x

                        
0.45                                                









, outputs are x2  and x2 .

 18. 

  

  

x x x x x x x
x x x
1

2
5 1 3

3
5 2 1

1
2 2 1

2
3
5 2 1

1
2

0+ − − − − − =
+ − +

( ) ( ) ( )
( ) (xx x F t

x x x
2 1

3
3
5 1 3

− =
= −

) ( )
( )

             
                                              









, outputs are x2 and x3 .

 19. A dynamic system is governed by 4 8 3 y y y f t+ + = ( ), where f  and y are the sys-
tem input and output, respectively. Derive the state-space form of the decoupled 
system.

 20. A dynamic system model is derived as

 

4 3
2 0

1 1 1 2

2
1
3 1 2

 



x x x x f t
x x x

− − + =
+ + =





( )
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where the input is f  and the outputs are x2 and x1.
 a. Find the state-space form.
 b.  Derive the state-space form of the decoupled system.

4.3 Input–Output Equation and Transfer Function

An I/O equation is a differential equation that relates a system input, a system output, and 
their time derivatives. If u t( ) is the input and y t( ) is the output, then the I/O equation is in 
the general form 

 
y a y a y a y b u b un n

n n
m m( ) ( ) ( ) ( )+ + ⋅⋅⋅ + + = +−

−
−

1
1

1 0 1
1  

            



                                                      + ⋅⋅⋅    ,     + + ≤−b u b u m nm m1 
 (4.12)

where a an1, , ...  and b b bm0 1, , , ...  are constants and y d y dtn n n( ) /= . Therefore, a single-input-
single-output (SISO) system has only one I/O equation. A multiple-input-multiple-output 
(MIMO) system, on the other hand, has several I/O equations, one for each pair of I/O. In 
particular, a system with q inputs and r outputs has a total of qr I/O equations.

4.3.1  Input–Output Equations from the System Model

The generalized coordinates in a system model are normally coupled through the gov-
erning equations; for example, the block displacements x1 and x2  in the mechanical sys-
tem of Example 4.7 are coupled through the equations of motion. As a result, deriving 
one or more I/O equations is usually a difficult task, because it requires that one coor-
dinate be expressed in terms of the other coordinates; for example, in Example 4.7, 
x1 would need to be expressed in terms of x2 , which is not possible due to coupling. In 
what follows, we present a systematic approach that can be used to obtain I/O equa-
tions from the system model. The idea is to take the Laplace transform of the governing 
equations—assuming zero initial conditions—and eliminate the unwanted variables in 
the ensuing algebraic system. The new data are subsequently transformed back to time 
domain and interpreted as one or more differential equations, which in turn are the 
desired I/O equations.

Example 4.10: Single-Input-Single-Output System

The model for the simple mechanical system in Example 4.3 is derived as 

 2 10 x x x F t+ + =0.5 ( ) 

where F t( ) is the input and x t( ) is the output. Find the I/O equation.

Solution

The equation of motion is already in the form of Equation 4.12; thus, it serves as the I/O 
equation.
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Example 4.11: Multi-Input-Multi-Output System

A system model is described by 

 

 

 

x x x x f t
x x x x

1 1 1 2

2 2 1 22 0
+ + − =
+ − + =





( )
   

where f  is the input, and x1 and x2 are the outputs. Derive all possible I/O equations.

Solution

Since there is one input and two outputs, two I/O equations are expected. Laplace trans-
formation of the model, assuming zero initial conditions, leads to 

 

( ) ( ) ( ) ( )
( ) ( ) ( )

s s X s X s F s
X s s s X s

2
1 2

1
2

2

1
2 1 0

+ + − =
− + + + =





  

Since x1 and x2 are the outputs, we solve the above system once for X s1( ) and a second 
time for X s2( )  by using Cramer’s rule: 

 

X s

F s
s s

s s
s s

s s F s
s s

1

2

2

2

2

4 3

1
0 2 1

1 1
1 2 1

2 1
3

( )

( )

( ) ( )
=

−
+ +

+ + −
− + +

=
+ +

+ + 44 32s s+

 

 

X s

s s F s

s s
s s

F s
s s s s

2

2

2

2

4 3 2

1
1 0

1 1
1 2 1

3 4 3
( )

( )

( )=

+ +
−

+ + −
− + +

=
+ + +

 

Cross-multiplication in both cases yields 

 ( ) ( ) ( ) ( )s s s s X s s s F s4 3 2
1

23 4 3 2 1+ + + = + +  

 ( ) ( ) ( )s s s s X s F s4 3 2
23 4 3+ + + =  

Interpretation of these two equations in time domain gives the desired possible I/O 
equations, as

 x x x x f f f1
4

1 1 13 4 3 2( ) + + + = + +  

  ,   x x x x f2
4

2 2 23 4 3( ) + + + =  

4.3.2 Transfer Functions from the System Model

A transfer function is defined as the ratio of the Laplace transforms of an output and an 
input, with the assumption that initial conditions are zero. Therefore, if y t( ) is an output 
and u t( ) is an input, the corresponding transfer function is defined as 

 G s
y t
u t

Y s
U s

( )
{ ( )}
{ ( )}

( )
( )

= =
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Consider the general form of I/O equation described by Equation 4.12. Taking the Laplace 
transform, assuming zero initial conditions, yields 

 ( ) ( ) (s a s a s a Y s b s b s b s bn n
n n

m m
m m+ + ⋅⋅⋅ + + = + + ⋅⋅⋅ + +−

−
−

−1
1

1 0 1
1

1    )) ( )U s  

The transfer function is then formed as 

 
Y s
U s

b s b s b s b
s a s a s a

m m
m m

n n
n

( )
( )

= + + ⋅⋅⋅ + +
+ + ⋅⋅⋅ + +

−
−

−
−

0 1
1

1

1
1

1

  
  nn

m n,     ≤  (4.13)

As mentioned earlier, there is a transfer function for each I/O pair. A SISO system has 
therefore only one transfer function, whereas a MIMO system has several, one for each 
possible I/O pair. If a system has q inputs and r outputs, then there are a total of qr transfer 
functions, assembled in an r q×  transfer function matrix (also known as a transfer matrix), 
denoted by G( ) [ ( )]s G sij=  where i r= 1 2, , , ...  and j q= 1 2, , , ... .

Example 4.12: Transfer Function

A system model is described by 

 
1
2 2 2 

x x x f f+ + = +  

Assuming that f  is the input and x is the output, find the transfer function.

Solution

Assuming zero initial conditions, the Laplace transform of the equation yields 

 ( ) ( ) ( ) ( )1
2

2 2 2s s X s s F s+ + = +  

The transfer function is then formed as 

 
X s
F s

s
s s

( )
( )

=
+
+ +

2
21

2
2  

Example 4.13: Transfer Matrix

The equations of motion for a mechanical system are given as 

 

 



x x x x f t
x x x f t

1 1 1 2 1

2 1 2 2

2
2

+ + − =
− − =





( ) ( )
( ) ( )       

If f1 and f2 are the inputs and x1 and x2  are the outputs, find the transfer matrix.

Solution

We expect a 2 2×  transfer matrix with the following structure: 

 G( )
( ) ( )
( ) ( )

( )
( )

( )

s
G s G s
G s G s

X s
F s

X s

F=








 =

×

=11 12

21 22 2 2

1

1 0

1

2
FF s

X s
F s

X s
F s

F

F F

2 0

2

1 0

2

2 0

1

2 1

( )

( )
( )

( )
( )

=

= =
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To find the four transfer functions listed earlier, we take the Laplace transform of the 
governing equations, with zero initial conditions, to obtain 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

s s X s X s F s
X s s X s F s

2
1 2 1

1
2

2 2

2 2
2 2
+ + − =

− + + =





  

Solving for X s1( ), we find 

 

X s

F s
F s s

s s
s

s
F s

s
s

F1

1

2
2

2

2

2

2

1

2
2

2 2
2 2

2 2
( )

( )
( )

( )
( )

( )
=

−
+

+ + −
− +

= +
+

∆ ∆
(( )s

 

where 

 ∆( )s s s s s= + + +4 3 24 2  

Solving for X s2( ) yields 

 

X s

s s F s
F s

s s
s

s
F s

s s
2

2
1

2

2

2

1

2

2
2

2 2
2 2

2 2
( )

( )
( )

( )
( )

(
=

+ +
−

+ + −
− +

= +
+ +

∆ ∆ ss
F s

)
( )2

 

Note that we do not attempt to cancel terms involving s from the numerator and denom-
inator in each fraction, because valuable information about the system will be lost oth-
erwise. The entries of the 2 2×  transfer matrix G( )s  are finally formed as 

 
G s

X s
F s

s
s

G s
X s
F sF F

11
1

1 0

2

12
1

2 02 1

2 2
( )

( )
( ) ( )

, ( )
( )
( )

= =
+

= =
= =∆

    
∆∆( )s  

 
G s

X s
F s s

G s
X s
F s

s s

F F
21

2

1 0

22
2

2 0

2

2 1

2
( )

( )
( ) ( )

( )
( )
( )

= = = =
+

= =∆
,     

++ 2
∆( )s  

Ultimately, the transfer matrix is formed as 

 G( ) ( ) ( )

( ) ( )

, ( )s

s
s s

s
s s

s

s s s=

+

+ +



















= +

2

2
4

2 2

2 2
∆ ∆

∆ ∆

∆   33 24 2+ +s s 

PROBLEM SET 4.3

In Problems 1 through 8, find all possible I/O equations.

 1. 
 



x x x x f t
x x x

1 1
1
3 1 2

2
1
3 1 2 0

+ + − =
− − =







( ) ( )
( )

  
             

, f t( ) = input, x x1 2,  = outputs

 2. 
 

 

x x x x f t
x x x x f t
1 1

3
5 1 2 1

2 2
3
5 1 2 2

2
3

+ + − =
+ − − =







( ) ( )
( ) ( )

 
, f t f t1 2( ), ( ) = inputs, x2 = output
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 3. 
 



x x x x f t
x x x f t

1 1
1
3 1 2 1

2
1
3 1 2 2

+ + − =
− − =







( ) ( )
( ) ( )      

, f t1( ), f t2( ) = inputs, x1 = output

 4. 
 

 

x x x x
x x x x f t
1 1 1 2

2 2 1 2

2 0
2

+ + − =
+ − − =





( )
( ) ( )

      
, f t( ) = input, x1 = output

 5. 
 θ θ θ θ
θ θ θ

1
2
3

1
3 1 2

2
1
3 1 2 0

+ + − =
− − =

1 ( ) ( )
( )

u t    
                






, u t( ) = input, θ2 = output

 6. 
 



x x x x f t
x x x f t

1 1 1 2 1

2 1 2 2

3
3

+ + − =
− − =





( ) ( )
( ) ( )

   
         

, f t1( ), f t2( ) = inputs, x1, x2  = outputs

 7. 
1
2 1 1 1 2

1
3 1

2 1 2

2
2 0

 



q q q q q v t
q q q

+ + − + =
− − =

( ) ( )
( )                     





, v t( ) = input, q1, q2 = outputs

 8. 

  

  

x x x x x x x f t
x x x x x

1 1 3 2 1
1
2 2 1

2 2 1
1
2 2 1

+ − − − − − =
+ − + − =

( ) ( ) ( )
( ) 00

3 1 3

                     
                          x x x= −                      









, f t( ) = input, x2 , x3  = outputs

 9. A mechanical system model is derived as mx bx kx f t + + = ( ), where m = 2, b = 1
2 , 

k = 5, and applied force f t e t( ) = −2
5 , all in consistent physical units. The system is 

subjected to zero initial conditions. Assuming that x is the output, find the transfer 
function.

 10. In Problem 9, find the transfer function if x is the output.
In Problems 11 through 14, a system model and its inputs and outputs are provided. 

Find the appropriate transfer function or matrix.

 11. 
 

 

x x x x f t
x x x x

1 1 1 2

2 2 2 1

9
9 0

+ + − =
+ + − =





0.4
0.6 0.8  

( ) ( )
( )

, f t( ) = input, x1 = output

 12. 
 



q q q q q v t
q q q

1 1
1
2 1 2 1

2
1
2 1 2 0

+ + − + =
− − =

( ) ( )
( )                  






, v t( ) = input, q1= output

 13. 
  

  

x x x x x x f
x x x x x f
1 1 2 1 2 1 1

2 2 1 2 1 22
+ − − − − =

+ − + − =
( ) ( )

( ) ( )     




, f t1( ), f t2( ) = inputs, x1, x2  = outputs

 14. 

  

  

x x x x x f t
x x x f t

1 1 3 2 1 1

2 2 1 2

2
2

+ − − − =
+ − =

( ) ( )
( ) ( )              

                             x x x3 1 3= −









, f t1( ), f t2( ) = inputs, x1, x2 = outputs

 15. The governing equation for an electric circuit is derived as

 
L

di
dt

Ri
C

i t dt v t
t

+ + =∫1

0

( ) ( )

 where L, R, and C  are the inductance, resistance, and capacitance, respectively, all 
constants; i t( ) is the current; and v t( ) is the applied voltage. Initial conditions are 
assumed to be zero. If v t( ) and i t( ) are the system input and output, respectively, 
find the transfer function.

 16. Electric charge q and electric current i are related via i dq dt= / . In Problem 15, find 
the transfer function if v t( ) and q t( ) are the system input and output, respectively.
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 17. The I/O equation for a dynamic system is given as 3 2 4 x x x f t+ + = ( ), where f  and 
x denote the input and output, respectively.

 a. Find the system’s transfer function.
 b. Assuming f t( ) is the unit impulse, find the expression for X s( ) by using (a).
 c. Find the steady-state value xss via the final-value theorem.
 18. The mathematical model of a dynamic system is given as

 
 

 

x x x x f t
x x x x
1 1

1
2 1 2

2 2
1
2 1 2

2
3 0

+ + − =
+ − − =







( ) ( )
( )     

 where f  is the input and x1 and x2 are the outputs.
 a. Find the appropriate transfer functions.
 b. Assuming f t( ) is the unit impulse, find the expressions for X s1( ) and X s2( ) by 

using (a).
 c. Find the steady-state values of x1 and x2 by using the final-value theorem.
 19. The state-space representation of a system model is described as

 

x Ax B

Cx

= +
= +





u
y Du

 where

 x A B C=








=
− −









 =









 =   =

x
x

D
1

2

0 1
2 1

0
1

0 1, , , ,        00,   u f=

 Find
 a. The I/O equation.
 b. The transfer function.
 20. The state-space representation of a system model is described as

 

x Ax B

y Cx D

= +
= +





u
u

where

 
x A B C=









=
− −









 =









 =











x
x

1

2
1
2

0 1
3

0
1

1 0
0 1

, , ,      ,, ,    D =








 =

0
0

u f

Find the transfer matrix.
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4.4  Relations between State-Space Form, Input– Output Equation, 
and Transfer Matrix

So far in this chapter, we have learned to derive the state-space form, I/O equation(s), and 
transfer function(s) directly from the system’s mathematical model. In this section, we 
present two standard procedures to obtain (1) the state-space form from the I/O equation 
and (2) the transfer matrix from the state-space form.

4.4.1  Input–Output Equation to State-Space Form

Consider the general form of an I/O equation 

 y a y a y a y b u b u bn n
n n

n n
n

( ) ( ) ( ) ( )+ + ⋅⋅⋅ + + = + + ⋅⋅⋅ +−
−

−
−1

1
1 0 1

1
1     uu b un+  (4.14)

where u is the input, y is the output, a an1, , ...  and b b bn0 1, , , ...  are constants, and y d y dtn n n( ) / .=  
Note that this agrees with Equation 4.12, except that the same highest order of differentia-
tion for y and u is now allowed, that is, m n= . The goal is to derive the state-space form 
directly from the I/O equation, Equation 4.14. With the assumption of zero initial condi-
tions, the transfer function is readily obtained as 

 

Y s
U s

b s b s b s b
s a s a s a

n n
n n

n n
n

( )
( )

= + + ⋅⋅⋅ + +
+ + ⋅⋅⋅ + +

−
−

−
−

0 1
1

1

1
1

1

  
  nn  

Rewrite this expression as 

 

Y s
U s

Y s
V s

V s
U s

b s b s b s b
s

n n
n n n

( )
( )

( )
( )

( )
( )

( )= ⋅ = + + ⋅⋅⋅ + +−
−0 1

1
1

1
  

++ + ⋅⋅⋅ + +








−

−a s a s an
n n1

1
1   

so that 

 

Y s
V s

b s b s b s b
V s
U s s a s

n n
n n n n

( )
( )

( )
( )

= + + ⋅⋅⋅ + + =
+

−
− −0 1

1
1

1

1
  ,    11

1+ ⋅⋅⋅ + +−  a s an n  

Time-domain interpretation of the first one gives 

 y b v b v b v b vn n
n n= + + ⋅⋅⋅ + +−

−0 1
1

1
( ) ( )     (4.15)

and the second one yields 

 v a v a v a v un n
n n

( ) ( )+ + ⋅⋅⋅ + + =−
−1

1
1    (4.16)

Equation 4.16 is an nth-order differential equation in v; hence, n initial conditions are 
needed for complete solution, which implies that there are n state variables, selected as 

 

x v
x v

x v
x v

n
n

n
n

1

2

1
2

1

=
=

=
=

−
−

−

         
         

        



...
( )

( )     
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The resulting state-variable equations are subsequently formed as 

 





x x
x

1 2

2

=
=

                                                
xx3                                                 
    ...                                              

     x xn n− =1                                          
x a x a xn n n= − − +−1 1 2       ⋅ ⋅ ⋅ − +a x un1  

Therefore, the state equation is 

 x Ax B= + u 

where 

 x A=



























=

−

x
x

x
x
n

n

1

2

1

0 1 0 0
0 0 1 0

... ,

...

...
... ..   .. ... ... ...

...

...
0 0 0 1

1 2 1− − − −





















− − ×

a a a an n n n n
Lowwer companion matrix

      , ... ,B =























×

0
0

0
1

1n

u == u (4.17)

The state matrix in Equation 4.17 is called the lower companion matrix. The output is given 
by Equation 4.15. Using the state variables in Equation 4.15, we find 

 

y b v b v b v b v

b x b x b

n n
n n

n n n

= + + ⋅⋅⋅ + +

= + + ⋅⋅⋅ +

−
−

−

0 1
1

1

0 1 1

( ) ( )   

    



 xx b xn2 1+  

Since the output equation cannot contain xn, we substitute for xn by using the last relation 
in the state-variable equations. The result is 

 

y b a x a x a x u b x b x b xn n n n n n= − − + ⋅⋅⋅ − + + + ⋅⋅⋅ + +

=

− −0 1 1 2 1 1 1 2 1( )    

colllect like terms
   ( ) ( ) (− + + − + + ⋅⋅⋅ + −− −b a b x b a b x b an n n n0 1 0 1 1 2 0 11 1 0+ +b x b un)  

Finally, the output equation is obtained as 

 y Du= +Cx  

where 

 C = − + − + − +  =− − ×
b a b b a b b a b D bn n n n n0 0 1 1 0 1 1 1 0... ,     (4.18)

Equations 4.17 and 4.18 describe all four matrices involved in the state-space form.
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Example 4.14: Input/Output Equation to State-Space Form

Find the state-space form corresponding to the I/O equation 

 3 2 1
2

    y y y y u u u+ + + = + +  

Solution

Divide the I/O equation by 3 to obtain 

     y y y y u u u+ + + = + +1
3

1
3

2
3

1
3

1
6

1
3  

Comparing with Equation 4.14, we have n = 3, a1
1
3= , a2

1
3= , a3

2
3= , b0 0= , b1

1
3= , b2

1
6= , 

and b3
1
3= . By Equation 4.17, 

 

x A B=
















=
− − −

















=
x
x
x

1

2

3
2
3

1
3

1
3

0 1 0
0 0 1

0
0
1

,    ,   
















=,   u u

 

By Equation 4.18,

 C =   =1
3

1
6

1
3 0,    D

Therefore, the state-space form is obtained as 

 

x x

x

=
− − −

















+
















=  

0 1 0
0 0 1

0
0
12

3
1
3

1
3

1
3

1
6

1
3

u

y                    















 

4.4.1.1 Controller Canonical Form 

The process of obtaining the state-space form from the I/O equation can be handled in 
MATLAB by using the built-in "tf2ss" command.

>> help tf2ss
 tf2ss  Transfer function to state-space conversion.
    [A,B,C,D] = tf2ss(NUM,DEN)  calculates the state-space 
    representation:
        x = Ax + Bu
        y = Cx + Du
    of the system:
                NUM(s) 
        H(s) = --------
                DEN(s)
    from a single input.  Vector DEN must contain the coefficients of
    the denominator in descending powers of s.  Matrix NUM must 
    contain the numerator coefficients with as many rows as there are
    outputs y.  The A,B,C,D matrices are returned in controller 
    canonical form.  This calculation also works for discrete systems.
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The tf2ss command calls for the transfer function, which is available from the I/O equa-
tion, and returns the state-space form in controller canonical form. This form is different from 
that in Equations 4.17 and 4.18, because it is based on the state variables being selected in 
the reverse order of what we have become accustomed to. It can be shown (see Problem 
Set 4.4) that the selection of state variables as 

 

x v
x v

x v

n

n

n

1
1

2
2

1

=
=

=

−

−

−

( )

( )

...

         
        

             
               
           x vn =  

leads to the state-space representation in controller canonical form: 

 

x Ax B

y Cx D

= +
= +





u
u 

where 

 x A=
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−

− −x
x

x
x

a a a a

n

n
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2

1

1 2 2 1
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an

1 0 0 0 0

0 0 1 0 0
0 0 0 1 0

...
... ... ... ... ... ...

...
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=























×n n
Upper companion matrix

  , ...B

1
0

0
0

nn

u u

×

=

1

,    (4.19)

and 

 C = − + − + − +  =
×

b a b b a b b a b D bn n n0 1 1 0 2 2 0 1 0... ,     (4.20)

The state matrix in the controller canonical form is known as the upper companion matrix.

Example 4.15: Input/Output Equation to Controller Canonical State-Space Form

A system’s I/O equation is provided as 

      y y y y u u u u+ + + = + + +2 3 21
2  

 a. Find the state-space representation in controller canonical form.

 b.  Confirm the results of (a) in MATLAB.

Solution

 a. Comparing the I/O equation with Equation 4.14, we find

 n = 3, a1 2= , a2 1= , a3
1
2= , b0 1= , b1 1= , b2 3= , and b3 2=
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 Selecting the state variables as x y1 = , x y2 =  , and x y3 = , Equations 4.19 and 4.20 
yield

 

x x

x

=
− − −















+
















= −  + ⋅

2 1
1 0 0
0 1 0

1
0
0

1 2 1

1
2

3
2

u

y u        















 

 b.  The transfer function is directly obtained from the I/O equation, as

 

Y s
U s

s s s
s s s

( )
( )

=
+ + +
+ + +

3 2

3 2 1
2

3 2
2  

>> Num = [1 1 3 2];     % Define numerator
>> Den = [1 2 1 1/2];   % Define denominator
>> [A,B,C,D] = tf2ss(Num,Den)
A =
   -2.0000   -1.0000   -0.5000
    1.0000         0         0
         0    1.0000         0
B =
     1
     0
     0
C =
   -1.0000    2.0000    1.5000
D =
     1

4.4.2 State-Space Form to Transfer Matrix

The transfer function (for SISO systems) or transfer matrix (for MIMO systems) can be 
systematically derived from the state-space form. Consider the state-space form, as in 
Equation 4.10 

 

x A x B u

y C x D u

= +
= +





× × × ×

× × × × ×

n n n n m m

p p n n p m m

1 1

1 1 1

     

 

Since the system has m inputs and p outputs, there are a total of mp transfer functions, 
and the transfer matrix G( )s  is p m×  and derived as follows. First, we note that the Laplace 
transform of a vector such as x is handled as 

 

x x X=





















⇒ =

x
x

xn

1

2

...
{ } (        

Laplace transform

 ss

x
x

xn

)
...

=

{ }
{ }
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1

2
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Assuming zero initial state vector, x 0( )0 1= ×n , Laplace transformation of the state-space 
form yields 

 
s s s s

s s s
X AX BU

Y CX DU

( ) ( ) ( )
( ) ( ) ( )

= +
= +



  

The first equation is manipulated as 

 
( ) ( ) ( ) ( ) (

( )
s s s s s

s
I A X BU X I A

I A
− = ⇒ = −

− −
        

Pre-multiply by

1
)) ( )−1BU s

 

Inserting this into the second equation results in 

 

Y C I A BU DU

C I A B D U

( ) ( ) ( ) ( )

( ) ( )

s s s s

s s

= − +

= − + 

−

−

1

1

 

For a SISO system with input u and output y, the transfer function is G s Y s U s( ) ( )/ ( ),=  
so that Y s G s U s( ) ( ) ( )= . Extending this idea to MIMO systems, with input  vector 
u and output vector y, we have Y G U( ) ( ) ( )s s s= . However, earlier analysis led to 
Y C I A B D U( ) [ ( ) ] ( )s s s= − +−1 . Comparison of these last two relations suggests that the 
transfer matrix is defined as 

 G C I A B D( ) ( )s s= − +−1
 (4.21)

4.4.2.1 MATLAB Command "ss2tf" 

The process of obtaining the transfer matrix from the state-space form is handled in 
MATLAB by using the built-in "ss2tf" command.

>> help ss2tf
 ss2tf  State-space to transfer function conversion.
    [NUM,DEN] = ss2tf(A,B,C,D,iu)  calculates the transfer function:

                NUM(s)          -1
        H(s) = -------- = C(sI-A) B + D
                DEN(s)
   
 of the system:

        x = Ax + Bu
        y = Cx + Du

    from the iu'th input.  Vector DEN contains the coefficients of the
    denominator in descending powers of s.  The numerator coefficients
    are returned in matrix NUM with as many rows as there are 
    outputs y.



131System Model Representation

Example 4.16: Single-Input-Single-Output System

A system’s state-space representation is 

 

x Ax B

Cx

= +
= +





u
y Du 

where 

 
x A B C=









=
− −









 =









 =  

x
x

1

2
2
3

1
2

0 1
1

0
1

1,   ,   ,   ,,  ,  D u u= =0
 

 a. Find the transfer function.

 b.  Confirm (a) by using ss2tf.

Solution

 a. Since both u and y are 1 1× , the system is SISO; hence, there is only one transfer 
function. Given the matrix sizes, G( )s  in Equation 4.21 is easily confirmed to be 
1 1×  and simply denoted by G s( ). Noting D = 0, Equation 4.21 reduces to

 G s s( ) ( )= − −C I A B1  

Using the adjoint matrix (Chapter 3), we find 

 
( )s

s s
s

s
I A− =

+ +
+
−











−1
2 2

3

2
31

1

1
1  

With this, the transfer function is obtained as 

 
G s s

s s
s

s
s

( ) ( )= − =   + +
+
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 =−C I A B1 1

2 2 2
3

2
3

1
21

1
1

1
1

0
1

++
+ +

1
12 2

3s s  

 b. 

>> A = [0 1;-1 -2/3]; B = [0;1]; C = [1 1/2]; D =0;
>> [Num, Den] = ss2tf(A,B,C,D)   
Num =
         0    0.5000    1.0000        % Num = (1/2)s + 1
Den =
    1.0000    0.6667    1.0000        % Den = s2 + (2/3)s + 1

Example 4.17:  Multi-Input-Multi-Output System

The state-space form for a system model is 

 

x Ax Bu

y Cx Du

= +
= +



  

where 

 

x A B=
















= −
− − −
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x
x
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1
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0 1 0
0 0 1

















=








 = ×, ,    C D 0
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Find the transfer matrix by using ss2tf.

Solution

It is observed that both y and u are 2 1× ; hence, there are two outputs and two inputs 
and the transfer matrix G( )s  is 2 2× .

>> A = [0 1 0;0 1 -1;-1/3 -2 -2/3]; B = [0 0;1 0;0 1/2];
>> C = [0 1 0;0 0 1]; D = zeros(2,2);
>> [Num1, Den1] = ss2tf(A,B,C,D,1)      % Contribution by input 1
Num1 =
         0    1.0000    0.6667         0       % s2+(2/3)s
         0         0   -2.0000   -0.3333       % -2s–1/3
Den1 =
    1.0000   -0.3333   -2.6667   -0.3333      % s3–(1/3)s2–(8/3)s–1/3
>> [Num2, Den2] = ss2tf(A,B,C,D,2)     % Contribution by input 2
Num2 =
         0         0   -0.5000         0        % -(1/2)s
         0    0.5000   -0.5000         0        % (1/2)s2-(1/2)s
Den2 =
    1.0000   -0.3333   -2.6667   -0.3333      % s3–(1/3)s2–(8/3)s–1/3

The two rows returned in Num1  translate to s s2 2
3+  and − −2 1

3s . These represent the 
numerators in the two transfer functions relating the first input to the two outputs. 
Recall from previous work that these two transfer functions occupy the first column of 
the transfer matrix. The two rows returned in Num2 translate to − 1

2 s and 1
2

2 1
2s s− , which 

are the numerators in the two transfer functions relating the second input to the two 
outputs. These two transfer functions occupy the second column of the transfer matrix. 
Therefore, the transfer matrix is formed as 

 G( )s
s s s

s s s
s s s

=
− − −

+ −
− − −













1
23 1

3
2 8

3
1
3

2 2
3

1
2

1
3

1
2

2 1
2

 

PROBLEM SET 4.4

In Problem 1 through 6, find the state-space form directly from the I/O equation.

 1. 1
2
  y y y u+ + =

 2. 3 2 3 2  y y y u u+ + = +
 3.     y y y y u u+ + + = +2

5 2 2
 4. 2

3
3
2

1
3

   y y y u u u+ + = + +
 5. 2 2 24y y y y u u u( ) + + + = + +   

 6. y y y y u( )4 1
4 4+ + + = 

 7. Derive the state-space representation in controller canonical form, as described by 
Equations 4.19 and 4.20.

 8. A system’s I/O equation is provided as

 5
6

4 1
6

1
2

1
3y y y y u u u( ) + + + = + +   

 a. Find the state-space representation in controller canonical form.

 b.  Confirm the results of (a) in MATLAB.
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In Problems 9 through 12, given the transfer function Y s U s( )/ ( ), find
 a. The I/O equation.
 b. The state-space form directly from the I/O equation in (a).

 9. 
s

s s
+

+ +

3
4

3 1
3 1

 10. 
1
5

2

2 3
5

1
10

1s
s s

+
+ +

 11. 
s s

s s s

3

2
3

3 2

2 1
1

+ +
+ + +

 12. s s
s s s

3

4 2

2
2 3 2

+
+ + +

 13. The state-variable equations and the output equation for a dynamic system are 
given as

 





x x
x x x u

y x x
1 2

2 2 1

1
2 1 2

=
= − − +





= +
               

     ,

 Find the transfer function (or matrix) by determining the Laplace transforms of x1 
and x2  in the state-variable equations and using them in the Laplace transform of 
the output equation.

 14. Repeat Problem 13 for

 





x x
x x x u

x
x

1 2

2
1
2 2 1

1
2

1

2

=
= − − +





=
                    

     , y 






In Problems 15 through 19, the matrices in the state-space form of a system model are 
given.
 a. Find the transfer function (or transfer matrix) by using Equation 4.21.

 b.  Verify the result of (a) by using the ss2tf command.

 15. A B C=
− −









 =









 =   =

0 1
2

0
2

1 0
1
7

1
2,  ,  ,  D

 16. A B C=
− −









 =









 =   =

0 1
1 2

0
0 1

2
3

1
3,  ,  ,  D

 17. A B C=
− − −

















=
















=




0 1 0
0 0 1

1

0
0

1 0 0
0 0 1

2
3

1
3

1
2

,  ,  



 = ×,  D 02 1
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 18. A B C=
− − −

















=
















=


0 1 0
0 0 1
2 1 2

0 0
1 0
0

0 1 0
0 0 1

1
4

,  ,  






 =









,  D

1
2 0
0 0

 19. A B C=
− −

















=
















=





0 1 0
0 0 1
1 0 1

0 0
1 0
0 2

1 0 0
0 1 0

,  ,  



 =









,  D

0 0
0 1

 20. A dynamic system model has state variables x1 and x2 and input u. The two I/O 
equations are derived as

     x x x u u x x x u1 1 1
1
3 2 2 22 2 2+ + = + + + =,      

 Find the state-space representation for this model and subsequently the transfer 
matrix.

4.5 Block Diagram Representation

A block diagram that represents a dynamic system is an interconnection of blocks, each 
block corresponding to an operation carried out by a component in such a way that the 
block diagram as a whole agrees with the mathematical model of the system. Each block 
is identified with a transfer function G s O s I s( ) ( )/ ( )= , also called the gain of the block, as 
shown in Figure 4.6. Therefore, the output of the block is 

 O s G s I s( ) ( ) ( )=  

4.5.1 Block Diagram Operations

The principal operations in block diagrams include signal amplification, algebraic summa-
tion of signals, integration of signals, replacing series and parallel block combinations with 
equivalent single blocks, and treatment of loops.

4.5.1.1 Summing Junction

The output of a summing junction (or summer) is the algebraic sum of signals entering 
the summing junction. Each signal is accompanied by a positive or negative sign; see 
Figure 4.7. A summing junction may have as many inputs (with the same units) as desired 
but only one single output.

G(s) O(s)
Output

I(s)
Input

FIGURE 4.6
Schematic of a transfer function block.
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4.5.1.2 Series Combinations of Blocks

Consider two blocks with transfer functions G s1( ) and G s2( ) in a series combination, as in 
Figure 4.8. The block G s1( ) has input U s( ) and output X s( ), which is the input to the block 
G s2( ). The output of block G s2( ) is Y s( ). Therefore, the overall input is U s( ), whereas the 
overall output is Y s( ). The goal is to replace this arrangement with a single block that has 
U s( ) as input and Y s( ) as output, that is, a single block with transfer function Y s U s( )/ ( ).

The output of the second block is Y s G s X s( ) ( ) ( )= 2 . However, since X s( ) is the output of 
the first block and is given by X s G s U s( ) ( ) ( )= 1 , we have 

 Y s G s X s G s G s U s G s G s U s( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= = [ ] = [ ]2 2 1 1 2  

Therefore, 

 
Y s
U s

G s G s
( )
( )

( ) ( )= 1 2
 

As a result, the series configuration in Figure 4.8  can be replaced with a single block 
G s G s1 2( ) ( ) with overall input U s( ) and overall output Y s( ), as shown in Figure 4.9.

Example 4.18:  Blocks in Series

Consider two blocks in a series connection with transfer functions

 
G s

s
s

1 2 2
( ) ,=

+  
G s

s
s s

2

1
2

2 2
( ) =

+
+

+−
Σ

+
X1(s) X1(s) − X2(s) + X3(s)

X2(s)
X3(s)

FIGURE 4.7
Summing junction.

X(s) Y(s)G1(s) G2(s)U(s)

FIGURE 4.8
Two blocks in series.

G1(s)G2(s)U(s) Y(s)

FIGURE 4.9
A single block replacing two blocks in series.
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The transfer function of the equivalent single block is determined as 

 
G s G s

s s
s s s

1 2

1
2

2 22 2
( ) ( )

( )
( )( )

=
+

+ +  

This can be handled in MATLAB as follows:

>> Num1 = [1 0]; Den1 = [1 0 2]; Num2 = [1 1/2]; Den2 = [1 2 0];
>> sysG1 = tf(Num1, Den1);     % Define system w/ transfer function G1(s)
>> sysG2 = tf(Num2, Den2);     % Define system w/ transfer function G2(s)
>> sysEq = series(sysG1,sysG2)    % Find the equivalent single TF

sysEq =
 
         s^2 + 0.5 s
  -------------------------    
  s^4 + 2 s^3 + 2 s^2 + 4 s
 
Continuous-time transfer function.

4.5.1.3 Parallel Combinations of Blocks

Consider two blocks with transfer functions G s1( ) and G s2( ) in a parallel combination, 
as shown in Figure 4.10. Once again, the objective is to replace the arrangement with a 
single block that has U s( ) as input and Y s( ) as output, that is, a single block with transfer 
function Y s U s( )/ ( ). Note that point B in Figure 4.10 is called a branch point. The outputs 
of the two blocks, labeled Y s1( ) and Y s2( ), are simply Y s G s U s1 1( ) ( ) ( )=  and Y s G s U s2 2( ) ( ) ( ),=  
respectively. These two are the inputs to the summing junction, whose output is then 
calculated as 

 Y s Y s Y s G s U s G s U s G s G s U s( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )] ( )= + = + = +1 2 1 2 1 2  

Therefore, 

 

Y s
U s

G s G s
( )
( )

( ) ( )= +1 2
 

The parallel configuration in Figure 4.10 can thus be replaced with a single block G s G s1 2( ) ( ),+  
overall input U s( ), and overall output Y s( ), as shown in Figure 4.11.

+
Σ

+
BU(s) Y(s)

G1(s)

G2(s)

Y1(s)

Y2(s)

FIGURE 4.10
Two blocks in parallel.
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Example 4.19:  Blocks in Parallel

Consider two blocks in a parallel connection with transfer functions 

 
G s

s
1

1
2 1

( ) ,=
+  

G s
s

s s
2

1
3

2 2
( ) =

+
+

The transfer function of the equivalent single block is determined as 

 
G s G s

s
s

s s
s s

s s s
1 2

1
3

2

2 11
3

1
3

2

1
2 1 2

3
2 1 2

( ) ( )
( )( )

+ =
+

+
+
+

=
+ +

+ +  

This can be handled in MATLAB as follows:

>> sysG1 = tf([1], [2 1]);
>> sysG2 = tf([1 1/3], [1 2 0]);
>> sysEq = parallel(sysG1,sysG2)

sysEq =
 
  3 s^2 + 3.667 s + 0.3333
  ------------------------
    2 s^3 + 5 s^2 + 2 s
 
Continuous-time transfer function.

4.5.1.4 Integrator

An integrator integrates a signal u t( ) from initial time 0 to the current time t to produce 

 
y t u t dt

t

( ) ( )= ∫
0  

Laplace transformation of this relation yields 

 
Y s

s
U s

Y s
U s

( ) ( )
( )
( )

= ⇒ =1 1
         

transfer function

Integrator

ss  

Therefore, an integrator is represented by a single block with transfer function 1/s, as 
shown in Figure 4.12.

1
sU(s) Y(s)

Integrator

FIGURE 4.12
Integrator block.

U(s) Y(s)G1(s) + G2(s)

FIGURE 4.11
A single block replacing two blocks in parallel.
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4.5.1.5 Closed-Loop Systems

A closed-loop (or feedback) system is depicted in Figure 4.13. The input is U s( ). The output 
Y s( ) is fed back through the feedback element H s( ), whose output C s( ) is compared with 
the input U s( ) at the summing junction. The difference, E s U s C s( ) ( ) ( )= − , is known as the 
error signal. Because of the negative sign associated with C s( ) at the summing junction, the 
configuration in Figure 4.13 is known as a negative-feedback system.

Note that Y s E s G s( ) ( ) ( )=  is the input to the feedback element H s( ), thus 
C s H s Y s H s E s G s( ) ( ) ( ) ( ) ( ) ( )= = . Based on this, we define 

 
open-loop transfer function = =

C s
E s

G s H s
( )
( )

( ) ( )
 

Another important transfer function in the closed-loop system in Figure 4.13 is defined as 

 
feedforward transfer function = =

Y s
E s

G s
( )
( )

( )
 

4.5.1.5.1 Closed-Loop Transfer Function

The closed-loop transfer function (CLTF) provides the direct relation between the (overall) 
input U s( ) and the (overall) output Y s( ) and is determined as follows. Referring to Figure 4.13, 

 Y s G s E s G s U s C s
E s U s C s C s H s Y s

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

= = −[ ] =
= − =

   G s U s H s Y s( ) ( ) ( ) ( )−[ ] 
The above is then manipulated as 

 1+[ ] =G s H s Y s G s U s( ) ( ) ( ) ( ) ( ) 

Finally, the CLTF is formed as

Negative-feedback CLTF  
Y s
U s

G s
G s H s

( )
( )

( )
( ) ( )

=
+1

 (4.22)

Similarly, in the case of a positive feedback, it can be easily shown that

Positive-feedback CLTF  
Y s
U s

G s
G s H s

( )
( )

( )
( ) ( )

=
−1

 (4.23) 

+

−
ΣU(s) E(s)

Y(s)

C(s)

G(s)

H(s)

FIGURE 4.13
A negative-feedback system.
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Example 4.20: Negative Feedback

In the negative-feedback system shown in Figure 4.13, assume that 

 
G s

s s
H s s( ) ( )=

+ +
= +

1
2 1

2 12 ,     
 

 a. Find the CLTF.

 b.  Confirm the result of (a) in MATLAB by using feedback.

Solution

 a. By Equation 4.22

 

Y s
U s

G s
G s H s

s s
s

s s
s s

( )
( )

( )
( ) ( )

=
+

= + +

+
+

+ +

=
+ +1

1
2 1

1
2 1

2 1

1
2 3 2

2

2

2

 

 b. 

>> sysG = tf([1],[2 1 1]); sysH = tf([2 1],[1]);
>> sysEq = feedback(sysG,sysH)
sysEq =
 
         1
  ---------------
  2 s^2 + 3 s + 2
 
Continuous-time transfer function.

4.5.2 Block-Diagram Reduction Techniques

As dynamic systems get more complex in nature, so do their block-diagram represen-
tations. In these situations, the block diagram can potentially contain several summing 
junctions, blocks in series or parallel connections, and positive and negative feedback 
loops. There are a few basic rules that facilitate the process of simplifying a block diagram. 
These include, among others, moving a branch point and moving a summing junction, as 
explained in the following.

4.5.2.1 Moving a Branch Point

Consider the branch point B in Figure 4.14a, located to the left of the block G s( ). The branch 
point may be moved to the right side of the block G s( ), as demonstrated in Figure 4.14b. The 
key is for signals Y s1( ) and Y s2( ) to carry the same information before and after B is moved. 
It is readily seen that Y s G s U s1( ) ( ) ( )=  in both arrangements. In addition, Y s U s2( ) ( )=  before 
B is moved, and Y s G s G s U s U s2 1( ) [ / ( )] ( ) ( ) ( )= =  after the move.

4.5.2.2 Moving a Summing Junction

Consider the summing junction in the configuration shown in Figure 4.15a. The summing 
junction may be moved to the left side of the block G s1( ), as demonstrated in Figure 4.15b. 
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Once again, the key is for the signal Y s( ) to carry the same information before and after the 
summing junction is moved. In Figure 4.15a, it is easily seen that 

 Y s G s U s G s U s( ) ( ) ( ) ( ) ( )= +1 1 2 2  

In Figure 4.15b, we have

 
Y s G s U s

G s
G s

U s G s U s G s U s( ) ( ) ( )
( )
( )

( ) ( ) ( ) ( ) (= +





= +1 1

2

1
2 1 1 2 2 ))

 

This validates the equivalence of the two arrangements.

Example 4.21: Block-Diagram Reduction

Using reduction techniques, simplify the block diagram shown in Figure 4.16 to a sin-
gle block with input U s( ) and output Y s( ) and subsequently find the transfer function 
Y s U s( )/ ( ).

Solution

There are several ways in which this block diagram can be reduced. However, the result 
is independent of the choices of reduction techniques and the order in which they 
are used. We will simplify it as follows. The block diagram is composed of a negative 

+

+
Σ Σ+

+
Y(s) Y(s)

G1(s)

G1(s)

G2(s)

U1(s) G1(s)

G2(s)U2(s)

(a) (b)

U1(s)

U2(s)

FIGURE 4.15
(a) Summing junction and (b) summing junction moved.

B B
(a) (b)

1

U(s) G(s) U(s) G(s)

G(s)Y2(s)

Y1(s)

Y2(s)

Y1(s)

FIGURE 4.14
(a) Branch point and (b) branch point moved.

+

−

+

+
ΣΣ Y(s)KU(s) G1(s) G2(s)

H1(s) H2(s)

FIGURE 4.16
Block diagram in Example 4.21.
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feedback, a parallel connection, and a constant gain block, as shown in Figure 4.17. The 
negative feedback is replaced with a single block with transfer function 

 

G s
G s H s

1

1 11
( )

( ) ( )+  

The parallel connection consists of blocks G s2( ) and H s2( ) and hence is replaced with a 
single block 

 G s H s2 2( ) ( )+  

These two single blocks are shown in Figure 4.18. The series connection in Figure 4.18 is 
next replaced with a single block whose transfer function is the product of the indi-
vidual block transfer functions, that is, 

 

G s
G s H s

G s H s K1

1 1
2 2

1
( )

( ) ( )
( ) ( )

+
+[ ]

 

This yields Figure 4.19, from which the overall transfer function is easily found as 

 

Y s
U s

KG G H
G H

( )
( )

( )
=

+
+

1 2 2

1 11  

+

−
Σ Σ

+

+
K

Negative feedback Parallel connection
Constant

Gain
Y(s)U(s) G1(s)

H1(s)

G2(s)

H2(s)

FIGURE 4.17
Feedback and parallel connection identified.

G1

1 + G1 H1
G2 + H2 K

Series connection

Y(s)U(s)

FIGURE 4.18
Feedback loop and parallel connection replaced.

1 + G1H1
Y(s)U(s)

KG1(G2 + H2)

FIGURE 4.19
Simplified block diagram in Example 4.21.
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4.5.2.3 Mason’s Rule

So far, we have learned that when a block diagram contains several loops, each loop 
can be  replaced with a single block with a transfer function, given by Equations 4.22 
and Equation 4.23 for negative and positive feedbacks, respectively. This, in conjunction 
with other tactics mentioned earlier, can then help us find the overall transfer function 
for the block diagram. However, an alternative approach is to employ Mason’s rule. We 
first define a forward path as the one that originates from the overall input, leading to 
the overall output, never moving in the opposite direction. A loop path (or a loop) is the 
one that originates from a certain variable and returns to the same variable. The gain of 
a forward path or a loop path is the product of the gains of the individual blocks that 
constitute the path.

4.5.2.3.1 Mason’s Rule: Special Case

Suppose that all forward paths and loops in a block diagram are coupled; that is, all of 
them have a common segment. Then, 

 overall transfer function
forward path gains

loop gains
=

−
∑

∑1
 (4.24)

Example 4.22: Mason’s Rule (Special Case)

Using Mason’s rule, determine the overall transfer function Y s U s( )/ ( ) for the block dia-
gram in Figure 4.20.

Solution

Path segments have been assigned numbers for easier identification. There are two for-
ward paths and two loops:

Forward Path Gain Loop Gain

12356 G G1 2 2372 −G H1 1

12346 G G1 3 23582 G G H1 2 2

+
+

+

1 2 3

+
Σ Σ

4

5 6

7

8

Y(s)U(s) G1(s)

H1(s)

H2(s)

G2(s)

G3(s)

FIGURE 4.20
Block diagram in Example 4.22.
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Note that the loop labeled 2372 is a negative feedback; thus, its gain is negative. Since all 
forward paths and loops have a common segment, labeled 23, special case of Mason’s 
rule applies, and the overall transfer function is found via Equation 4.24, as 

 

Y s
U s

G G G G
G H G G H

( )
( )

=
+

+ −
1 2 1 3

1 1 1 2 21  

4.5.2.3.2 Mason’s Rule: General Case

In general, when all forward paths and loops are not coupled, the overall transfer function 
is obtained as 

 overall transfer function ,    number of forwa= ==∑ F D

D
m

k k
k

m

1 rrd paths (4.25)

where

F kk = gain of the th forward path

D = − +∑1 single-loop gains gain products of all non-touching twwo-loops

gain products of all non-touching three-loops
∑

∑− +   ⋅ ⋅ ⋅

D Dk = same as  when the block diagram is restricted to the poortion
         not touching the th forward pathk

Example 4.23: Mason’s Rule (General Case)

Using Mason’s rule, find the overall transfer function Y s U s( )/ ( ) for the block diagram 
in Figure 4.21.

Solution

We note that not all forward paths are coupled; in particular, the two negative-feedback 
loops do not share a common segment. Therefore, the overall transfer function must be 
found via the general Mason’s rule, Equation 4.25. Two forward paths and two loops 
are identified:

Forward Path Gain Loop Gain

1234568 G G G1 2 4 23(10)2 −G H1 1

12378 G G1 3 4594 −G H2 2

+ Σ Σ
− −

+

+
Σ

1 2 3 4 5 6

7

8

10

+

9

U(s) Y(s)G1(s)

H1(s)

G2(s) G4(s)

G3(s)

H2(s)

FIGURE 4.21
Block diagram in Example 4.23.
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The quantities in Equation 4.25 are calculated as follows: 

 F G G G F G G1 1 2 4 2 1 3= =,    

 

D G H G H G H G H= + + +1 1 1 2 2 1 1 2 2

Single-loop gains      Gain pr
� ��� ���

ooduct of 
non-touching two-loops

� �� ��
 

To find D1, consider the portion of the block diagram that does not touch the first for-
ward path, 1234568. Since there are no forward paths or loops in the restricted segment, 
we conclude that 

 D1 1=  

To determine D2 , consider the portion of the block diagram that does not touch the 
second forward path, 12378. Since the restricted section contains only one single loop, 
4594, we have 

 D G H2 2 21= +  

Finally, Equation 4.25 yields 

 

Y s
U s

G G G G G G H
G H G H G H G H

( )
( )

( )
=

+ +
+ + +

1 2 4 1 3 2 2

1 1 2 2 1 1 2 2

1
1  

4.5.3 Block Diagram Construction from System Model

Block diagrams disclose many characteristics of dynamic systems that may not be observ-
able by their mathematical models, such as the interrelation between the different com-
ponents and variables. In what follows, we will learn how to construct partial blocks 
corresponding to specific segments of a system model and subsequently assemble them 
properly to generate the complete block diagram. Based on the block diagram, a model can 
then be constructed in Simulink for analysis and simulation purposes. This process will 
be systematically used in the subsequent chapters.

Example 4.24: Block Diagram from System Model

A dynamic system with input u and output x is governed by 

 2 4 x x x u t+ + = ( ) 

 a. Derive the state-variable equations and the output equation.
 b. Construct a block diagram by using the information in (a).
 c.  Build a Simulink model based on the block diagram in (b).

Solution

 a. The state variables are selected as x x1 =  and x x2 = . Noting that the output is 
y x x= = 1, the state-variable equations and the output equation are derived as

 





x x
x x x u

y x
1 2

2
1
2 1 2

14
=
= − − +





=
                      

    
( )

,
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 b. Taking the Laplace transform of the equations in (a), we have

 

sX s X s
sX s X

1 2

2
1
2 14

( ) ( )
( )

=
= −

                                 
(( ) ( ) ( )

, ( ) ( )
s X s U s

Y s X s
− +[ ]






=

2
1    

 

 The overall input U s( ) must appear on the far left of the diagram, and the over-
all output X s1( ) must appear on the far right. Block diagram is built from left to 
right; hence, we need to start with an equation that contains the overall input 
U s( ). Thus, we start with sX s X s X s U s2

1
2 1 24( ) [ ( ) ( ) ( )]= − − + , which may be con-

structed by using a summing junction. The inputs to the summing junction are 
U s( ) with a positive sign, 4 1X s( ) with a negative sign, and X s2( ) with a negative 
sign. Then, the output of the summing junction is multiplied by 1

2  to generate 
sX s2( ); Figure 4.22a. This output subsequently goes through a block of 1/s, an 
integrator, to generate X s2( ). However, X s sX s2 1( ) ( )= . Therefore, X s2( ) will go 
through yet another block of 1/s to produce X s1( ), as shown in Figure 4.22b. 
Since X s1( ) is the overall output, we can complete the diagram, as depicted in 
Figure 4.22c.

 c.  Figure 4.23  shows a Simulink model based on the block diagram in 
Figure 4.22c. The input is represented by a Signal Generator (Sources 
library). The summing junction is represented by the Add block (Math 
Operations library). Double-clicking the Add block allows us to dictate 
the signs associated with the incoming signals. The Gain blocks and the 
Integrator blocks are imported from Commonly Used Blocks library. 
The output is stored in Out1 (Commonly Used Blocks library), as well as in 
Scope for simulation purposes. Using this model, the output x t( ) correspond-
ing to a specified input u t( ) is readily generated in MATLAB.

...

+

− −
Σ 1

s

4

1
s

1
2

+

−
−Σ 1

s
1
s

1
2

+

−
−Σ 1

2
U(s)

U(s)

U(s)

sX2(s)

sX2(s)

sX2(s)

X2(s)

X2(s)

X2(s)

X1(s) = X(s)

X2(s) = sX1(s)

X2(s) = sX1(s)

X1(s) = X(s)

X1(s) = X(s)

4X1(s)

4X1(s)

4X1(s)

(a)

(b)

(c)

FIGURE 4.22
(a) Block diagram initiated, (b) partial block, and (c) diagram completed.
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4.5.3.1 State-Space Block in Simulink 

As we learned in Section 4.2, linear system models can be expressed in the state-space 
form. The state-space form of a model can be represented in Simulink by the State-Space 
block imported from the Continuous library. Double-clicking the State-Space block 
allows us to input the state-space matrices (A, B, C, D) and the Initial Conditions.

Example 4.25: State-Space Block 

Consider the dynamic system model in Example 4.24, whose state-space form is 

 

x Ax B

Cx

= +
= +





u
y Du 

where 

 
x A B C=









=
− −









 =









 =  

x
x

1

2
1
2

1
2

0 1
2

0
1 0,  ,  ,  ,  DD u u t= =0,  ( )

 

Figure 4.24a shows the corresponding Simulink model, where there is a single output 
x1. The initial conditions can be entered by double-clicking the State-Space block. If 
both state variables x1 and x2 are the outputs, then the output equation is modified to 

 
y Cx D y C D= + =









=








 =









 =u

x
x

u u,   ,   ,  ,  
1

2

1 0
0 1

0
0

(( )t
 

Input
u(t) Add

+
−
−

1
s

Integrator 1

1
s

Integrator 2

4

Gain 2

1/2

Gain1 Scope

1
Out1
x1 = x

x2 x1 x1

FIGURE 4.23
Simulink model in Example 4.24.

Demux

x = Ax + Bu
y = Cx + Du

x = Ax + Bu
y = Cx + Du

State-space
C = [1 0]

State-space
C = [1 0;0 1]

Input
u(t)

(a) (b)

Input
u(t)

Scope

1
Out1

Scope1

Scope2
x2

x1

x1

FIGURE 4.24
Simulink model in Example 4.25 with (a) single output and (b) two outputs.
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In this case, enter the C matrix as the 2 2×  identity matrix and import a Demux block (Signal 
Routing library) to split the vector signal y into x1 and x2. This is depicted in Figure 4.24b.

PROBLEM SET 4.5

 1. Reduce the block diagram in Figure 4.25  by moving the constant gain block K 
to the right of the summing junction. Subsequently, find the transfer function 
Y s U s( )/ ( ).

 2. Consider the block diagram in Figure 4.26. Use the block-diagram reduction steps 
listed in the following to find Y s U s( )/ ( ).

 a. Replace the single loop containing G s1( ) and H s( ) with a single equivalent 
block.

 b. Move the gain block K to the right of the summing junction.
 c. Replace the resulting loop with a single equivalent block.
 3. For the block diagram in Figure 4.27, find the transfer function Y s U s( )/ ( ) by using
 a. Block-diagram reduction techniques.
 b. Mason’s rule.

+

−
ΣK Y(s)U(s) G(s)

H(s)

FIGURE 4.25
Problem 1.

+

− −
ΣK Y(s)U(s) G1(s) G2(s)

H(s)

FIGURE 4.26
Problem 2.

+
Σ Σ

+

+ +
Y(s)U(s)

H(s)

G1(s)

G2(s)

G3(s)

G4(s)

FIGURE 4.27
Problem 3.
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 4. Using Mason’s rule, find Y s U s( )/ ( ) for the block diagram in Figure 4.16, Example 4.21.
 5. Find Y s U s( )/ ( ) in Figure 4.28 by using Mason’s rule.
 6. Use block-diagram reduction techniques listed in the following to find the overall 

transfer function for the diagram in Figure 4.28.
 a. Move the summing junction of the negative-feedback loop containing H s2( ) 

outside of the positive-feedback loop containing H s1( ).
 b. In the ensuing diagram, replace the loop containing H s1( ) with a single block.
 c. Similarly, replace the two remaining loops with single equivalent blocks to 

obtain one single block whose input is U s( ) and output is Y s( ).
 7. In Figure 4.29, find the transfer function Y s U s( )/ ( ) by using
 a. Block-diagram reduction steps.
 b. Mason’s rule.
 8. Find the overall transfer function in Figure 4.30 by using Mason’s rule.
 9. For the block diagram in Figure 4.31, find Y s U s( )/ ( ) by using
 a. Block-diagram reduction.
 b. Mason’s rule.
 10. Consider the block diagram in Figure 4.32,  where V s( ) represents an external 

disturbance.
 a. Find the transfer function Y s U s( )/ ( ) by setting V s( ) = 0.
 b. Find Y s V s( )/ ( ) by setting U s( ) = 0.

+

−
Σ Σ Σ

+ +

−
K

+
Y(s)U(s)

H1(s)

H3(s)

H2(s)

G2(s)G1(s)

FIGURE 4.28
Problems 5 and 6.

+

−
K

+
Σ

Σ

+
Y(s)U(s)

G1(s)

H2(s)

G2(s)

H1(s)

FIGURE 4.29
Problem 7.
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 11. The state-variable equations and the output equation of a system are given as

 





x x
x x x u

y x x
1 2

2
1
2 1 2

1 22
2

=
= − − +





= +
                   

    ,

 where u and y are the input and output, respectively.
 a. Construct the block diagram.
 b. Find the transfer function Y s U s( )/ ( ) directly from the block diagram.
 c. Find the transfer function Y s U s( )/ ( )  from the state-space form and compare 

with (b).
 12. The state-space representation of a system model is given as

 

x Ax B

Cx

= +
= +





u
y Du

+

+−
Σ Y(s)U(s) G1(s) G2(s) G3(s)

H2(s)

H3(s)

FIGURE 4.30
Problem 8.

+

−
Σ Σ

− −

+
Y(s)U(s) G1(s) G2(s) G3(s)

H2(s)
H1(s)

FIGURE 4.31
Problem 9.

+

−
Σ

+
Σ

+

−

External disturbance

Y(s)U(s) G2(s)

H2(s)

H1(s)

G1(s)

V(s)

FIGURE 4.32
Problem 10.
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 with

 
x A B C=









=
− −









 =









 =  

x
x

1

2
2
3

1
2

0 1
2

0
3

1,   ,   ,   ,,  ,  D u u= =0

 a. Construct the block diagram.
 b. Find the transfer function Y s U s( )/ ( ) directly from the block diagram.
 c. Find the transfer function Y s U s( )/ ( ) from the state-space form and compare 

with (b).
In problems 13 through 16, the I/O equation of a dynamic system is provided.

 a. Find the state-space model.
 b. Construct the block diagram based on the information in (a).
 c. Determine the overall transfer function directly from the block diagram in (b).
 13. 3 2 1

3
  y y y u+ + =

 14. 2
3

1
32 2  y y y u u+ + = +

 15. 2 2   y y y u u+ + = +
 16.   y y y u u+ + = +1

2
1
22

 17. A system is described by its transfer function

 

Y s
U s

s
s s s

( )
( ) ( )

=
+
+ +

1
3

22 2

 a. Find the I/O equation.
 b. Find the state-space model from the I/O equation.
 c. Build a block diagram based on the information in (b). Find the transfer func-

tion directly from the block diagram and compare with the given transfer 
function.

 18. Repeat Problem 17 for

 

Y s
U s

s
s s

( )
( )

=
+

+ +

2 1
3

22 2

 19. The block diagram representation of a system model is presented in Figure 4.33, 
where x1 and x2  denote the two state variables.

2
+

− −
Σ 1

s
1
s

+

−
Σ

1
3

3

1
2

Y(s)U(s)
X2(s) X1(s)

FIGURE 4.33
Problem 19.
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 a. Derive the state-space form directly from the block diagram.
 b. Find the transfer function directly from the block diagram.
 20. Repeat Problem 19 for the block diagram in Figure 4.34, where x1, x2 , and x3  denote 

the state variables.

4.6 Linearization

The systems that we have studied so far have primarily been assumed linear, making their 
analysis somewhat straightforward. However, many dynamic systems contain elements 
that are inherently nonlinear, which cannot be treated as linear, except for a restricted 
range of operating conditions. In this section, we present a methodical approach to derive 
a linear approximation of a nonlinear model. We will also learn how to linearize nonlin-
ear elements in Simulink. In Section 8.6, we will investigate the response of the linearized 
model in relation to that of the nonlinear model.

4.6.1 Linearization of a Nonlinear Element

Consider a nonlinear function f  of a single variable x, as shown in Figure 4.35a. The lin-
earization of f x( ) will be done at a specific point P x f: ( , ), known as an operating point. 
For now, we assume that the (constant) values of x  and f  are available, but we will learn 
shortly how to find an operating point for a given system.

The values x  and f f x= ( ) are called the nominal values of x and f , respectively. As shown 
in Figure 4.35b, the coordinates of any point ( , )x f  on the graph of f x( ) can be expressed as

 x t x x t( ) ( ),= + ∆   f t f f t( ) ( )= + ∆  (4.26)

where the time-varying quantities ∆x t( )  and ∆f t( )  are the incremental variables for x and f , 
respectively. Graphically, the linear approximation of f x( ) is provided by the tangent line at 
the operating point P, with a reasonably good accuracy in a small neighborhood of P, that 

2

+

− −
Σ 1

s
1
s +

− Σ

2
3

1
2

1
3

1
s

+

Y(s)U(s)
X3(s) X2(s) X1(s)

FIGURE 4.34
Problem 20.
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is, small values for ∆x t( )  and ∆f t( ) . Analytically, this is justified by writing the Taylor series 
expansion of f x( ) about the operating point, as 

 

f x f x
df
dx

x x
d f
dx

x x
P P

( ) ( ) ( )
!

( )= + − + − +

Linear terms

 ...
1
2

2

2
2

 

Assuming ∆x x x= −  is small, the linear approximation of f x( ) is achieved by retaining the 
first two terms, while neglecting the remaining terms containing higher powers of x x− : 

 f x f x
df
dx

x
x

( ) ( )≅ + ∆  (4.27)

Therefore, the closer x is to x  of the operating point, the better the linear approximation 
will be at x. The following example demonstrates this fact.

Example 4.26: Nonlinear Function of a Single Variable

Linearize f x x x( ) =  about the operating point P : ( , )2.5 6.25 . Examine the accuracy of the 
linear approximation for x = 2.45 and x = 2 7. .

Solution

We first note that 

 
f x x x

x x
x x

( ) = =
≥

− <






⇒

2

2

0
0

   if   
   if    

     
Differentiatte

    
   if   
   if    

df
dx

x x
x x

=
≥

− <




2 0
2 0 

Since x = 2.5, Equation 4.27 yields 

 f x f x x xx( ) ( ) [ ]≅ + = +=2.5 6.252.52 5∆ ∆  

At x = 2.45, we have ∆x x x= − = − = −2.45 .5 0.052 , so that 

 f( ) ( )2.45 6.25 0.05≅ + − =5 6 

P

0

(a) (b)

x

f
f (x) f (x)

f

x

Operating point

Linear approximation
of f at P

P

0 x

f

f

x

f

x

Δf

Δx

FIGURE 4.35
(a) Linearization about an operating point and (b) incremental variables.
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Since the exact value is 2.45 6.00252 = , our linear approximation has a 0.04% relative 
error.

At x = 2.7 , we have ∆x x x= − = − =2.7 .5 0.22 , hence 

 f( ) ( )2.7 6.25 0.2 7.25≅ + =5  

Since the exact value is 2.7 7.292 = , our linear approximation has a 0.55% relative error. 
The percentage relative error associated with x = 2.7  is much larger than that for x = 2.45, 
because it is farther away from the operating point.

4.6.1.1 Functions of Two Variables

Consider a nonlinear function f x y( , ) of two independent variables. In this case, the operat-
ing point is represented by ( , , )x y f  and the incremental variables are defined as

 ∆x t x t x( ) ( ) ,= −   ∆y t y t y( ) ( ) ,= −   ∆f t f t f( ) ( )= −

Taylor series expansion about the operating point yields 

 

f x y f x y
f
x

x x
f
y

y y
x y x y

( , ) ( , ) ( ) ( )
, ,

= + ∂
∂

− + ∂
∂

−

Linear terms

         
 

+ ∂
∂

− + ∂
∂

− + ∂
∂ ∂

−1
2

1
2

2

2
2

2

2
2

2

!
( )

!
( ) ( )(

, , ,

f
x

x x
f

y
y y

f
x y

x x
x y x y x y

yy y− +)  ...
 

Assuming that x x−  and y y−  are small, the linear approximation of f x y( , ) in a small 
neighborhood of the operating point is given by 

 f x y f x y
f
x

x
f
y

y
x y x y

( , ) ( , )
, ,

≅ + ∂
∂

+ ∂
∂

∆ ∆  (4.28)

4.6.2 Linearization of a Nonlinear Model

The model of a nonlinear system can be linearized about the system’s operating point(s) 
systematically through a standard procedure outlined shortly.

4.6.2.1 Operating Point

We will use notations such as x  and y  to represent the (fixed) coordinates of an operating 
point. Therefore, to find an operating point, we first replace the dependent variables such 
as x t( ) with x = const. It is desired that a system operates not far from its equilibrium state. 
For that, we set the time-varying portion of the input u t( ) equal to zero. The result is an 
algebraic equation (for one-dimensional cases) or a system of equations (for higher dimen-
sions) that can be solved for variables such as x  and y . Note that a system may have more 
than one operating point.
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Example 4.27: Operating Point

Find the operating point(s) for a nonlinear system whose model is described by 

 2 1
4

 x x x x e t+ + = + −
 

Solution

Note that the input here is 1
4 + −e t. Since x t( ) is the only dependent variable, the operat-

ing point is identified by x. For the purpose of finding the operating point, we set the 
time-varying portion of the input, which is e t− , equal to zero. To find the operating point, 
we replace x with x and the input with 1

4  in the given system model. Since x = const, 
we have x = 0 and x = 0. Therefore,

 x x = 1
4  (a)

We solve this equation as follows:
Case (1): If x > 0, then x x=  and Equation (a) simplifies to x 2 1

4= . This has two 
 solutions x = ± 1

2 . However, the assumption in this case is x > 0, so that only the 
positive solution is acceptable, and

 x = 1
2  

Case (2): If x < 0, then x x= −  and Equation (a) becomes − =x 2 1
4 , which has no real 

solution. Therefore, the only valid operating point corresponds to x = 1
2 .

4.6.2.2 Linearization Procedure

A nonlinear system model is linearized about an operating point, as follows: 

 1. Find the operating point, as explained earlier.
 2. Linearize the nonlinear term(s) about the operating point by means of Taylor series 

expansions—Equation 4.27 for functions of a single variable and Equation 4.28 for 
two variables.

 3. In the original nonlinear model, replace variables such as x with x x+ ∆  and 
 nonlinear terms with their linear approximations of Step 2. Include the time- 
varying portions of the input that were previously set to zero to calculate the oper-
ating point in Step 1. The resulting system is linear in the incremental  variables 
such as ∆x .

 4. Finally, use the initial conditions of the original model to calculate those for the 
linearized model. For instance, knowing x( )0  in the original system, find ∆x( )0   by 
noting that ∆x t x t x( ) ( )= − , so that ∆x x x( ) ( )0 0= − .

Example 4.28: Linearization Procedure

A nonlinear system model is given as 

 2 0 0 01
4

1
2

  x x x x e x xt+ + = + = =− , ( ) , ( )     

Derive the linearized model.
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Solution

We will follow the procedure outlined earlier.

 1. The operating point was determined in Example 4.27, as x = 1
2 .

 2. The only nonlinear element in the model is f x x x( ) = , which is linearized 
about the operating point via Equation 4.27. Recalling Example 4.26, we find

 
f x f x x xx( ) ( ) [ ]≅ + = +=

1
2

1
42 1

2
∆ ∆

 

 3. In the original model, replace x with x x x+ = +∆ ∆1
2  and the nonlinear term 

with 1
4 + ∆x. Reconsider the time-varying portion e t− , which was previously set 

to zero, to obtain

 
2

2 1
2

2

1
2 1

4
1
4

d x
dt

d x
dt

x e t( ) ( )
( )

+
+

+
+ + = + −∆ ∆

∆
 

 This simplifies to

 2∆ ∆ ∆ x x x e t+ + = −  

 4. The initial conditions are adjusted as follows:

 
∆ ∆

∆
x t x t x t x t

x
( ) ( ) ( ) ( )

(
= − ⇒ = ⇒1

2

0
              

Differentiate
 

)) ( )
( ) ( )

= − = −
= =

x
x x

0
0 0

1
2

1
2

1
2∆            

 In summary, the linearized model is derived as 

 2 0 01
2

1
2∆ ∆ ∆ ∆ ∆  x x x e x xt+ + = = − =− , ( ) , ( )       

 This is a second-order initial-value problem with constant coefficients and is 
easily solved to generate ∆x t( ) . It is important to note that ∆x t( )  is not com-
patible with the solution x t( ) of the original nonlinear system. Recalling that 
x t x t( ) ( )= +1

2 ∆  in this problem, the solution ∆x t( )  of the linearized model needs 
to be raised by 1

2  unit to be compatible with x t( ). Figure 4.36 shows that the 
solutions of the nonlinear model and the linearized model indeed agree near 
the operating point x = 1

2 . We will elaborate on this and many other related 
issues in Section 8.6.

1
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t

x

Linear

Nonlinear

FIGURE 4.36
Solutions of a nonlinear model and its linearized form.
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Example 4.29: Linearization

A system is governed by its nonlinear state-variable equations, as 

 





x x x
x x x x

1 2 1

2 1 2
2

2

0 0
2 4 0 1

= =
= − − = −

 , ( )
( ) , ( )

                   

  

Derive the linearized model.

Solution

We will follow the standard procedure outlined earlier. Note that the only input is −4 in 
the second equation.

 1. Replace x1 and x2 with x1 and x2, respectively. Since there is no time-varying 
portion in the input, no further modification is needed.

 

0
0 2 4

0
1

2

1 2
2

2

1

=
= − −





⇒
=
=




x
x x

x
x

                   
        

( )   

 Therefore, the operating point is ( , ) ( , )x x1 2 1 0= .
 2. The only nonlinear element is f x x x x( , ) ( )1 2 1 2

22= − , which will be linearized 
about the operating point ( , )1 0 . By Equation 4.28,

 

f x x f
f
x

x
f

x
x

x

( , ) ( , )

( )

( , ) ( , )

(

1 2
1 1 0

1
2 1 0

2

2
2

1 0

4 2

= +
∂
∂

+
∂

∂

= + − 

∆ ∆

11 0
1 1 2 1 0 2

1 2

2 2

4 4 4

, ) ( , )
( )∆ ∆

∆ ∆

x x x x

x x

+ − 

= + −  

 3. In the original model, replace x1 with x x x1 1 11+ = +∆ ∆ , x2 with x x x2 2 2+ =∆ ∆ , 
and the nonlinear term with its linear approximation, 4 4 41 2+ −∆ ∆x x . No other 
adjustments need to be made, as no time-varying portions of input were set to 
zero. This yields

 

∆ ∆
∆ ∆ ∆





x x
x x x

1 2

2 1 24 4 4 4
=
= + − −





                        
     ⇒⇒

=
= −





     
             ∆ ∆

∆ ∆ ∆





x x
x x x

1 2

2 1 24 4  

 4. The initial conditions are modified as

 

∆
∆

∆
∆

x x x
x x x

x
x

1 1 1

2 2 2

1

2

0 0
0 0

0 1
0 1

( ) ( )
( ) ( )

( )
( )

= −
= −

⇒
= −
= −

        
 

 Therefore, the linearized model is 

 

∆ ∆ ∆
∆ ∆ ∆ ∆





x x x
x x x x

1 2 1

2 1 2 2

0 1
4 4 0

= = −
= − = −

, ( )
, ( )

               
  11



  

 This linear system is then solved for ∆x t1( )  and ∆x t2( ) . Once again, it must be 
noted that ∆x t1( )  and ∆x t2( )  are not compatible with the coordinates x t1( ) and 
x t2( ) of the original nonlinear system. Compatibility is achieved by taking into 
account that x x1 11= + ∆  and x x2 2= ∆ .
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4.6.2.3 Small-Angle Linearization

Mathematical models of some dynamic systems contain nonlinear elements that involve 
trigonometric functions of an angle. One particular area where such cases occur is the 
rotational motion of a mechanical system; see Section 5.3. These types of models can be 
linearized as long as the angle remains small. In particular, if θ << 1 radian, then 

 
sin
cos

θ θ
θ

θθ

≅
≅

≅

1

02


 (4.29)

Example 4.30: Small-Angle Linearization

The governing equations for a dynamic system have been derived as 

 

2

10 0

2


 







x x x f t

x

+ − + + =

+ + =




θ θ θ

θ θ θ

sin ( )

cos sin           


  

where f t( ) is the system input.
 a. Derive the linearized model for θ << 1 radian.
 b. Assuming that x and θ are the outputs, find the state-space form for the linear 

model.

Solution

 a. Using the first two approximations in Equation 4.29, the governing equations 
reduce to

 

2

10 0

2


 







x x x f t

x

+ − + + =

+ + =







θ θ θ

θ θ

( )

                  
⇒

+ + + =

+ +

≅
              

a
b













θ θ θ

θ θ

2 0 2

10

( )
( )

( )x x x f t

x ==





 0          

 b. In its present form, the linearized model cannot be transformed into state-vari-
able equations, because both x and θ appear in the same equation. However, 
the remedy is to manipulate the two equations, labeled Equations a and b, to 
eliminate the unwanted variables, as follows. From Equation b, we find that 


θ θ= − −10 x . We insert it into Equation a and simplify to obtain

  x x x f t+ + − =10θ ( ) (c)

 This equation is now in the correct form. Next, from Equation b, we find that 


x = − −10θ θ. We insert it into Equation a and simplify to arrive at

 

θ θ+ − − = −20 x x f t( ) (d)

In summary, 

 

( )
( )

( )

( )

c
d

   





x x x f t

x x f t

+ + − =

+ − − = −







10

20

θ

θ θ  

 Selecting the state variables as x x1 = , x2 = θ, x x3 =  , and x4 = θ, the state- variable 
equations are subsequently formed as 
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3 3 1 2
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Noting that there is only one input, f t( ), the state equation is written as 

 

X Ax B X A
.

= + =





















=
− −

−



u

x
x
x
x
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0 0 1 0
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Since x and θ are the outputs, the output equation is formed as 

 
y Cx + D y C D= =









=








 =









u

x
x

,  ,  ,  
1

2

1 0 0 0
0 1 0 0

0
0  

These types of systems will be discussed in greater detail in Section 8.6

4.6.3  Linearization in Simulink 

The state-space form of the linearized model of a nonlinear system can be extracted in 
Simulink by using the 'linearize' built-in function:

  linearize Obtains a linear model from a Simulink model.

LIN = linearize('sys',OP,IO) takes a Simulink model name, 'sys', an
    operating point object, OP, and an I/O object, IO, as inputs and
    returns a linear time-invariant state-space model, LIN. The operating
    point object is created with the function OPERPOINT or FINDOP. The
    linearization I/O object is created with the function GETLINIO or
     LINIO. Both OP and IO must be associated with the same Simulink model, 

sys.

The function is used in conjunction with ‘findop’ and ‘getlinio’. The function call for 
 ‘findop' is as follows:

findop Find operating points from specifications or simulation
   [OP_POINT,OP_REPORT] = findop('model',OP_SPEC) finds an operating point,
   OP_POINT, of the model, 'model', from specifications given in OP_SPEC.

op _ spec is an operating point specification object and is created with the function 
'operspec'. Specifications on the operating points, such as minimum and maximum val-
ues, initial guesses, and known values, are specified by editing opspec. To find equilibrium 
(or steady-state) operating points, set the SteadyState property of the states and inputs in 
opspec to 1. The findop function uses optimization to find operating points that closely 
meet the specifications listed in opspec. The function call for 'getlinio' is as follows:

IO = getlinio('sys') finds all linearization annotations in a Simulink
    model, 'sys'.  The vector of objects returned from this function call
    has an entry for each linearization annotation in a model.
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To initiate the process, first build a Simulink model, 'sys', and identify a linearization input 
point and a linearization output point. To identify a linearization input point, right-click 
the desired signal and select Linear Analysis Points > Input Purturbation. 
To identify a linearization output point, right-click the desired signal and select Linear 
Analysis Points > Output Measurement.

Example 4.31: Linearization in Simulink 

A nonlinear system model is described by 

 2 1 2 0 0 0 13
  x x x t x x+ + = + = =sin ( ) , ( ),      

In order to build a Simulink model, the nonlinear state-variable equations must first be 
formed. Choosing state variables x x1 =  and x x2 =  , we find

 




x x
x x x

1 2

2
1
2 2 1

3 1
=
= − − + +

                                
( sin 22

0 0
0 1

1

2t
x
x)

( )
( )





=
=

,    (a)

Following the procedure outlined in Section 4.5, we build the model shown in 
Figure 4.37 for the nonlinear system in Equation a and save it as 'Example431'. Double-
clicking an integrator block allows us to input the appropriate initial condition for 
the output signal of that block. Since the first integrator has x2 as its output, we use 
x2 0 1( ) .=  For the second integrator, x1 0 0( ) = . The nonlinear element x1

3 is handled by the 
 function block from the Simulink User-Defined Functions library, where u is 
used as the input variable name. The linearization input point is chosen at the output 
signal of the summing junction after the gain block, the linearization output point at 
the output signal x1.

The linear model is extracted from the nonlinear system in Equation (a), as follows. 
Note that the model 'Example431' must be open before we can proceed.

>> sys='Example431';
>> load_system(sys);
>> opspec = operspec(sys);

% Specify the properties of the first state variable
>> opspec.States(1).SteadyState = 1;
>> opspec.States(1).x = 0;      % Initial value
>> opspec.States(1).Min = 0;    % Minimum value

IC: x1(0) = 0IC: x2(0) = 1

1
Out1 = x1

Sin(2t)

Scope

1
s

Integrator 2

1
s

Integrator 1

1/2

Gain

1 +
+− −

Constant

u^3

Nonlinear element

x2 x1

+

Linearization
input point

Linearization
output point

FIGURE 4.37
Simulink model in Example 4.31.
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% Specify the properties of the second state variable
>> opspec.States(2).SteadyState = 1;
>> opspec.States(2).x = 1;      % Initial value
>> opspec.States(2).Min = 0;    % Minimum value

% Find the operating point based on the above specifications
>> [op,opreport] = findop(sys,opspec);
 

Operating Point Search Report:
---------------------------------
 Operating Report for the Model Example431.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States: 
----------
(1.) Example431/Integrator 1
      x:             0      dx:             0 (0)
(2.) Example431/Integrator 2
      x:             1      dx:             0 (0)

Inputs: None 
----------

Outputs: 
----------
(1.) Example431/Out1 = x1
      y:             1    [-Inf Inf]

% Get the linearization annotations
>> IO=getlinio(sys);

% Extract the linear state-space model
>> LIN = linearize('Example431',op,IO)
 
LIN =
 
  a = 
                 Integrator 1  Integrator 2
   Integrator 1          -0.5          -1.5     % Controller canonical form
   Integrator 2             1             0
 
  b = 
                 Gain
   Integrator 1     1
   Integrator 2     0
 
  c = 
       Integrator 1  Integrator 2
   x1             0             1
 
  d = 
       Gain
   x1     0
 
Continuous-time state-space model.
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NOT ES

• The state matrix is in the controller canonical form.
• The input in the linearized model contains the time-varying portion of the input 

in the original nonlinear model. In the current example, since the input for the 
nonlinear system is 1 2+ sin t, the input for the linear model is simply sin 2t.

We will validate the Simulink results as follows. The operating point satisfies x 3 1= , so 
that x = 1. The nonlinearity f x x( ) = 3 is linearized about x = 1, as 

 f x x f x x xx( ) ( ) [ ]= ≅ + = +=
3 2

11 3 1 3∆ ∆  

Substitute x x= +1 ∆  and the linear approximation into the original equation: 

 2 1 1 1 3 1 2 3 2( ) ( ) [ ] sin sin+ + + + + = + ⇒ + + =∆ ∆ ∆ ∆ ∆ ∆x x x t x x x 

       2 tt 

To derive the controller canonical form, choose the state variables as ∆ ∆x x1 =   and 
∆ ∆x x2 = , and the state-variable equations for the linearized model are obtained as 

 

∆ ∆ ∆
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x x x t
x x
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2 1 2
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3 2= − − +
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In vector form,
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2

 

This confirms the set of results generated in Simulink. Linear analysis of nonlinear 
systems will be further discussed in Section 8.6.

PROBLEM SET 4.6

In Problems 1  through 10, the mathematical model of a nonlinear system is provided. 
Using the procedure outlined in this section, find the operating point and derive the lin-
earized model.

 1.   x x x u t u t x x+ + = = = =2 0 0 03 1
2( ) ( ) , ( ) , ( ),  unit-step     

 2.  x x t x x+ = + = =1
3

3 1
3 0 1 0 1sin ( ) ( ),   ,  

 3. 1
2

1
3

1
23 0 0 0  x x x x t x x+ + = + = − =cos ( ) ( ),   ,  

 4.   x x x x t x x+ + = + = =1
8

1
2 0 0 0 1sin( ) ( ) ( ),   ,  

 5.   x x f x e x x f x
x

t+ + = + = = =−2
3

3 1
31 0 1 0

3
( ) , ( ) , ( ) , ( )/         

       if    
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0

3 0
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 6. 1
3 3 0 0 0 1  x x f x t x x+ + = + = = −( ) sin ( ) ( ) ,,   ,  
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In Problems 11 through 14, a nonlinear model is given.
 a.  Obtain the linear state-space form in Simulink.
 b. Derive the linearized model analytically to confirm the result of (a).

 11.   x x x x t x x+ + = + = =1 0 0 0 1sin , ( ) , ( )    
 12.   x x x u t u t x x+ + = = = =3 0 1 0 1( ) ( ) , ( ) , ( ),   unit-step     
 13.    x x x x t x x+ + = + = =1

2
1
2

1
20 0 0cos( ) ( ) , ( ),     

 14. 2 0 1 0 13 1
8

 x x t x x+ = + = =sin ( ) , ( ),     

4.7 Summary

A set of generalized coordinates is a set of coordinates that completely describes the 
motion of a system. If there are n generalized coordinates q q qn1 2, , , ... , the system model is 
described by the configuration form 

 

   



q f q q q q q q t
q f q q

n n1 1 1 2 1 2

2 2 1 2

=
=

( , , , , , , , , )
( , ,

 ...  ... 
 ....  ... 

 ... 

, , , , , , )
...

( , , , ,

q q q q t

q f q q q q

n n

n n n

  

 

1 2

1 2 1= ,, , , , ) q q tn2  ... 











 

where   q q qn1 2, , , ...  are the generalized velocities and f f fn1 2, , , ... , known as the generalized 
forces, are functions of qi and qi (i n= 1 2, , , ... ) and time t.

Models of dynamic systems governed by n−dimensional systems of second-order dif-
ferential equations are represented by the standard, second-order matrix form 

 Mx Cx Kx f + + =  
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where 

• xn× =1  configuration vector and fn× =1  vector of external forces
• Mn n× = mass matrix, Cn n× = damping matrix, and Kn n× = stiffness matrix

State variables x i ni   ... ( , , , )= 1 2  form the smallest set of independent variables that com-
pletely describes the state of a system. There are as many state variables for a system as 
there are initial conditions required to completely solve the model. The state variables 
are those variables for which initial conditions are needed. For a linear system with state 
variables x x xn1 2, , , ... , inputs u u um1 2, , , ... , and outputs y y yp1 2, , , ... , the state-space form is 

 

x A x B u

y C x D u

= +
= +





× × × ×

× × × × ×

n n n n m m

p p n n p m m

1 1

1 1 1

     

 

where 

• xn× =1  state vector, A = state matrix, B = input matrix, and y = output vector
• C = output matrix, D = direct transmission matrix, and u = input vector

If u t( ) is an input and y t( ) is an output of a system, then the I/O equation is 

 

y a y a y a y b u b un n
n n

m m( ) ( ) ( ) ( )+ + ⋅⋅⋅ + + = +−
−

−
1

1
1 0 1

1 

             



                      ,     + ⋅⋅⋅ + + ≤−b u b u m nm m1   

where a an1, , ...  and b b bm0 1, , , ...  are constants.
A transfer function is the ratio of the Laplace transforms of the output and the input. 

If a system has q inputs and r outputs, the qr transfer functions are assembled in an r q×  
transfer matrix, denoted by G( ) [ ( )]s G sij= , where i r= 1 2, , , ...  and j q= 1 2, , , ... .

A block diagram is an interconnection of blocks, each block corresponding to an opera-
tion carried out by a component, such that the block diagram as a whole agrees with the 
system’s mathematical model.

The linearization of a nonlinear system model is performed as follows: 

• Find the operating point(s) by assuming that the dependent variables are con-
stants and setting the time-varying portions of inputs equal to zero.

• Linearize the nonlinear term(s) about the operating point(s).
• In the original nonlinear model, express variables in terms of incremental vari-

ables, and replace nonlinear terms with their linear approximations. The resulting 
system is linear in the incremental variables.

• Find the initial conditions for the incremental variables.

The state-space linear model of a nonlinear system can be extracted in Simulink by using 
the 'linearize' built-in function. The function is used in conjunction with 'findop' and 
'getlinio'. The inputs to the 'findop' function are the model, 'sys', and 'opspec', which 
is an operating point specification object, and is created with the function 'operspec'. 
Specifications on the operating points, such as minimum and maximum values, initial 
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guesses, and known values, are specified by editing 'opspec'. To find equilibrium (or 
steady-state) operating points, set the 'SteadyState' property of the states and inputs 
in 'opspec' to 1. The 'findop' function uses optimization to find operating points that 
closely meet the specifications listed in 'opspec'.

Review Problems

 1. The mathematical model of a dynamic system is derived as

 

 



x x x x
x x x f t

1 1 1 2

2 1
1
4 2

3 0
2

+ + − =
− − =





 
( )  

 a. If f t( ) is the input and x1 and x1 are the outputs, obtain the state-space form.
 b.  Determine if the system is stable (Problem Set 4.2) by examining the state-

space form.
 c. Find the transfer matrix directly from the given model.
 d.  Confirm the result of (c) by using ss2tf.
 2. A system is described by its governing equations

 

1
2 1 1 2 1

2 2 1

2
2 0





x x x x f t
x x x

+ − − =
+ − =





( ) ( )
( )                

 where f  is the input and x2 and x2  are the outputs.
 a. Obtain the state-space form.
 b.  Find the transfer matrix directly from the state-space form.
 c. Find the transfer matrix by using the governing equations, and compare 

with (b).
 3. A dynamic system with input f  and output x is modeled as

 
3
4 0 x x kx f t k+ + = = >( ),   const  

 a. Find the state-space form, and determine the value(s) of k  for which the system 
is stable.

 b. Find the transfer function directly from the state-space form.
 c. Find the transfer function directly from the given model, and compare with (b).
 4. The I/O equation of a system is derived as

 2 1
2

1
3

   y y y u u u+ + = + +  

 a. Find the state-space representation.
 b. Find the transfer function from the state-space form.
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 5. A system’s transfer function is given as

 

Y s
U s

s s
s s s

( )
( )

( )= +
+ + +

2

1
3

3 2

2 1
2  

 a. Find the state-space form.
 b. Find the transfer function from (a).
 6. Find the I/O equation of a SISO system whose state-space form is given as
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 7. Repeat Problem 6 for
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 8. Find all possible I/O equations for a system with state-space form
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In Problems 9 through 12, given the block diagram representation of the system, find 
the overall transfer function.

 9. Figure 4.38

+
Σ

Σ

−

1
sk1

k3

k4

k2

+

+

1
s Y(s)U(s)

FIGURE 4.38
Problem 9.
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 10. Figure 4.39
 11. Figure 4.40
 12. Figure 4.41

In Problems 13 and 14, given the block diagram, find the system’s I/O equation.

 13. Figure 4.42
 14. Figure 4.43
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− −
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+ +
Y(s)U(s)
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G2(s)G1(s)

FIGURE 4.39
Problem 10.
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FIGURE 4.40
Problem 11.
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FIGURE 4.41
Problem 12.
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In Problems 15 and 16, given the state-space representation of the system model, 
 construct the appropriate block diagram, and directly use it to find the transfer matrix.

 15. 
x Ax B

Cx

= +
= +





u
y Du
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FIGURE 4.42
Problem 13.
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FIGURE 4.43
Problem 14.
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 16. 
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 17. A system is stable if the poles of the overall transfer function lie in the left half 
plane; these poles are the same as the eigenvalues of the state matrix. Consider the 
block diagram representation of a system shown in Figure 4.44, where k > 0 is a 
parameter. Determine the range of values of k  for which the system is stable.

 18. Repeat Problem 17 for the block diagram in Figure 4.45, where k > 0 is a parameter.
 19. Derive the linearized model for the nonlinear system, described by
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 20. Repeat Problem 19 for
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FIGURE 4.44
Problem 17.
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Problem 18.
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5
Mechanical Systems

This chapter discusses the modeling techniques for mechanical systems in either trans-
lational or rotational motion, or both. We begin this chapter with an introduction of 
mechanical elements, including mass elements, spring elements, and damper elements. 
The concept of equivalence is discussed, which simplifies the modeling of systems in 
many applications. We then review Newton’s second law and apply it to translational sys-
tems. For rotational systems, moment equations are used to obtain dynamic models. For 
systems involving both translational and rotational motions, equations of motion can be 
derived using the force/moment approach, based on Newtonian mechanics, or the energy 
method, based on analytical mechanics. Examples are given to illustrate both methods, 
followed by a brief coverage of gear–train systems. The chapter concludes with simulation 
of mechanical systems, using MATLAB®, Simulink®, and SimscapeTM computer tools.

5.1 Mechanical Elements

The objective of this chapter is to show how one can obtain mathematical models of 
mechanical systems. Because a real mechanical system is usually complicated, simplifying 
assumptions must be made to reduce the system to an idealized model, which consists of 
interconnected elements. The behavior of the mathematical model can then approximate 
that of the real system.

A mathematical model of a mechanical system can be constructed based on physical 
laws (such as Newton’s laws and the conservation of energy) that the elements and their 
interconnections must obey. Elements can be broadly divided into three classes according 
to whether element forces are proportional to accelerations, proportional to displacements, 
or proportional to velocities. Correspondingly, they can be divided into elements that store 
and release kinetic energy, store and release potential energy, and dissipate energy. In this 
section, element equations relating the external forces to the associated element variables 
are presented.

5.1.1 Mass Elements

Figure 5.1 shows a mass m traveling with a velocity v. The basic variables used to describe 
the dynamic behavior of a translational mechanical system are the acceleration vector a, 
the velocity vector v, and the position vector r. They are related by the time derivatives 

 
a

v r= =d
d

d
dt t

2

2  
(5.1)
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which can also be represented in the simple dot notation 

 a v r= =  (5.2)

Assume that the motion of the mass in Figure 5.1 is under the influence of an externally 
applied force, and is constrained in only one direction. According to Newtonian mechan-
ics, the resulting force f acting on the mass is equal to the time rate of change of momen-
tum. For a constant mass, Newton’s second law is expressed as 

 f
t

mv m
v
t

ma= = =d
d

d
d

( )  (5.3)

Note that the acceleration a is absolute and must be measured with respect to an inertial 
reference frame. For ordinary systems at or near the surface of the Earth, the ground can 
be approximated as a reference for motion. 

Mass elements store mechanical energy. The energy stored in a mass is kinetic energy if 
the mass is in motion. The kinetic energy is expressed as 

 T mv= 1
2

2
 (5.4)

which implies that the mass stores kinetic energy as its velocity increases and releases 
kinetic energy as its velocity decreases. If a mass has a vertical displacement relative to a 
reference position, the energy stored in the mass is potential energy given by 

 V mghg =  (5.5)

where:
g is the gravitational acceleration (9.81 m/s2 or 32.2 ft/s2)
h is the height measured from the reference position or datum to the center of mass
Subscript g is used to denote that the potential energy is associated with gravity

For rotational mechanical systems, the basic variables used to describe system dynamics are 
the angular acceleration vector α, the angular velocity vector ω, and the angular position 
vector θ. The direction of an angular vector can be determined using the right-hand rule, 
as shown in Figure 5.2. The sense of rotation follows the curve of the four fingers, and the 
rotational vector points in the direction of the thumb. In this chapter, we consider the rigid 
bodies that are constrained to rotate about only one axis. Then, in scalar form, we have 

 
α ω θ= =d

d
d
dt t

2

2  
(5.6)

m f

v

FIGURE 5.1
A mass traveling with a velocity v.



171Mechanical Systems

or 

 α ω θ= =  (5.7)

Figure 5.3 shows a disk rotating about an axis through a fixed point O. The relation between 
the torque τ about the fixed point O and the angular acceleration α of the disk about O is 

 τ α= IO  (5.8)

where IO is the mass moment of inertia of the body about the fixed point O, and common 
units used are kg·m2 or slug·ft2. Similar to a translational mass, a rotational mass can store 
kinetic energy and potential energy. The kinetic energy for a rotational mass about a fixed 
point O is expressed as 

 
T I= 1

2
2

Oω
 

(5.9)

The potential energy for a rotational mass has the same form as Equation 5.5.  

5.1.2 Spring Elements

Figure 5.4a shows a translational spring element, which is fixed at one end and is subjected 
to a tensile (or compressive) force f at the other end. The spring has a free length x0, and 
the deflection of the spring caused by the force f is denoted by x. Assume that the spring is 
massless or of negligible mass. For a linear spring, Hooke’s law states that 

 f kx=  (5.10)

α

O
τ

FIGURE 5.3
A disk rotating about an axis through a fixed point O.

FIGURE 5.2
Right-hand rule.



172 Modeling and Analysis of Dynamic Systems

where k is the spring stiffness in units of N/m or lb/ft. If the spring is connected to a 
mass, due to Newton’s third law, the force exerted on the mass by the spring has the same 
magnitude as f, but opposite in direction. When the two ends of a spring are displaced by 
x1 and x2, as shown in Figure 5.4b, the forces at the two ends are equal in magnitude but 
opposite in direction. If x2 > x1 > 0, the spring is under elongation and the force applied to 
the spring is 

 f kx k x x= = −rel ( )2 1  (5.11)

where xrel = x2 − x1 is the relative displacement between the two ends of the spring. 
When a spring is stretched or compressed, potential energy is stored in the spring and 

is given by 

 V kxe =
1
2

2 (5.12)

where subscript e denotes that the potential energy is associated with elastic elements.
For a torsional spring, as shown in Figure 5.5a, we have 

 τ θ= K  (5.13)

where:
τ is the applied torque
K is the torsional spring stiffness in units of N·m/rad or ft·lb/rad
θ is the angular deformation of the spring

Figure 5.5b shows a torsional spring, with both ends twisted. Assume that θ1 and θ2 are 
the angular displacements of respective ends corresponding to the applied torque. If 
θ2 > θ1 > 0, then 

 τ θ θ θ= = −K Krel ( )2 1  (5.14) 

K

τ θ
(a)

K

τ θ1 τ θ2

(b)

FIGURE 5.5
A torsional spring element with (a) one fixed end and (b) two free ends.

x0 x

f
k

(a)
x1 x2

f f

(b)

k

FIGURE 5.4
A translational spring element with (a) one fixed end and (b) two free ends.



173Mechanical Systems

and the spring is twisted in the counterclockwise direction when viewed from the right-
hand side. The potential energy stored in a torsional spring element is expressed as 

 V Ke = 1
2

2θ  (5.15)

5.1.3 Damper Elements

A spring element exerts a reaction force that is dependent on the relative displacement 
between two ends of the spring. In contrast, a force that depends on the relative velocity 
between two bodies is modeled by a damper element. Figure 5.6 shows a mass sliding on a 
fixed horizontal surface, where the two surfaces are separated by a film of liquid. The mass 
is subjected to a friction force generated between the two surfaces, and the friction caused 
by the liquid is called viscous damping. The direction of the damping force is opposite 
to the direction of the motion, and its magnitude depends on the nature of fluid flow 
between the two surfaces. The exact viscous damping force is complex; thus, for modeling 
in system dynamics, we use a linear relationship 

 f bv=  (5.16)

where the symbol b is used to denote the viscous damping coefficient in units of N·s/m 
or lb·s/ft. The damping force exerted on the mass in Figure 5.6 is to the left. Note that the 
symbol c is also often used to denote the viscous damping coefficient. Therefore, both b 
and c will be used interchangeably in this book. 

The viscous friction can be modeled using a viscous damper (or a dashpot). The symbol 
in Figure 5.7a is the representation of a viscous damper, which is like a piston moving 
through a liquid-filled cylinder, as shown in Figure 5.7b. There are small holes in the pis-
ton through which the liquid flows as the parts move relative to each other. If v2 > v1 > 0, 
the right end of the damper moves to the right with respect to the left end. The force 

f f

v1 v2
b

(a)

Flow Piston motion v2

Cylinder motion v1(b)

FIGURE 5.7
A viscous damper: (a) symbol and (b) physical system.

Damping
force

Fixed surface

Liquid �lm

v

m

FIGURE 5.6
A mass sliding on a lubricated fixed surface.
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applied to the right end is dependent on the relative velocity vrel = v2 − v1. The force has a 
magnitude of 

 f bv b v v= = −rel ( )2 1  (5.17) 

and points to the right. Assume that the damper is massless or of negligible mass. Then, 
the forces at the two ends of the damper are equal in magnitude but opposite in direction.

For a torsional damper, as shown in Figure 5.8a, the linear relationship between the 
externally applied torque and the angular velocity is given by 

 τ ω= B  (5.18)

where B is the rotational viscous damping coefficient in units of N·m·s/rad or ft·lb·s/rad. 
The symbol in Figure 5.8b represents a rotational viscous damper, which can be used to 
model the viscous friction between two rotating surfaces separated by a film of liquid. If 
ω2 > ω1 > 0, the magnitude of the applied torque is 

 τ ω ω ω= = −B Brel ( )2 1  (5.19)

and the direction is as shown. 
Note that the damping dissipates the energy of the system. Besides viscous damping, 

there are two other types of damping in engineering mechanics: Coulomb damping asso-
ciated with dry friction and structural damping. The former will be discussed in Chapter 9, 
and the latter is beyond the scope of this text.

5.1.4 Equivalence

In many mechanical systems, multiple springs or dampers are used. In such cases, an 
equivalent spring stiffness constant or damping coefficient can be obtained to represent 
the combined elements.

Example 5.1: Springs in Parallel

Consider a system of two springs, k1 and k2, in parallel, as shown in Figure 5.9. Prove that 
the system is equivalent to a single spring whose stiffness is 

 k k keq = +1 2  

Proof

Because of parallel interconnection, the bottom ends of the springs are attached to 
the same fixed body, and their top ends are also attached to a common body. This 
implies that both springs have the same deflection x. Assume that the forces applied 

B

τ ω
(a)

B

τ    ω1 τ    ω2(b)

FIGURE 5.8
A rotational viscous damper with (a) one fixed end and (b) two free ends.
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to the two springs are f1 and f2, respectively. Because the system is in static equilib-
rium, the total force is given by 

 f f f k x k x k k x= + = + = +1 2 1 2 1 2( )  

Comparing it with the equivalent system, 

 f k x= eq  

we obtain the equivalent spring stiffness 

 k k keq = +1 2 

The result can be extended to n springs. For a system of n springs in parallel, the 
equivalent spring stiffness keq is equal to the sum of all the individual spring stiffness 
coefficients ki: 

 k k k kneq = + + +1 2   

Example 5.2: Springs in Series

Consider a system of two springs, k1 and k2, in series, as shown in Figure 5.10. Prove that 
the equivalent spring stiffness of the system is 

 
k

k k
k k

eq =
+
1 2

1 2  

Proof

Because both springs are in static equilibrium, they are subjected to the same force f. 
Assume that the two springs are deformed by x1 and x2, respectively. The total deforma-
tion of the system is given by 

 
x x x

f
k

f
k

f
k k

= + = + = +







1 2

1 2 1 2

1 1

 

For the equivalent system, the deformation is 

 
x

f
k

=
eq  

f f f1 f2

k1 k1k2 keq k2

x

=

x x x

FIGURE 5.9
Equivalence for two springs in parallel.
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Thus, 

 

1 1 1

1 2k k keq
= +

 

or 

 
k

k k
k k

eq =
+
1 2

1 2  

The result can also be extended to n springs. For a system of n springs in series, the 
reciprocal of the equivalent spring stiffness keq is equal to the sum of all the reciprocals 
of the individual spring stiffness coefficients ki: 

 

1 1 1 1

1 2k k k kneq
= + + +

 

The above-mentioned two examples show how one can derive the equivalent spring 
stiffness for springs connected in parallel or in series. For a system of dampers, the 
equivalent damping coefficient can be derived using the same logic and similar steps.

Springs are the most familiar elastic elements. However, many engineering applications 
involving elastic elements do not contain springs but other mechanical elements, such as 
beams and rods, which can be modeled as springs. The equivalent spring constants can 
be determined using the results from the study of mechanics of materials [2, 12].

Example 5.3: Equivalent Spring Constant of a Cantilever Beam

Consider a uniform cantilever beam of length L, width b, and thickness h in Figure 5.11. 
Assume that a force f is applied to the free end of the beam, and the corresponding 
deflection is x. Derive the equivalent spring constant keq. 

f

f

f

x1

k1

x2

x x2

x1

k2 k2keq

k1

f

=

FIGURE 5.10
Equivalence for two springs in series.
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Solution

The force–deflection relation of a cantilever beam can be found in mechanics of materi-
als references. The relation is 

 
x

L
EI

f=
3

3 A  

where:
x is the deflection at the free end of the beam
f is the force applied at the free end of the beam
E is the modulus of elasticity of beam material
IA is the area moment of inertia about the beam’s longitudinal axis

For a beam having a rectangular cross-section, with width b and thickness h, the area 
moment of inertia is 

 
I

bh
A =

3

12  

Thus, the force–deflection relation reduces to 

 
x

L
Eb h

f=
4 3

3
 

For the equivalent system, the force–deflection relation is 

 
x

f
k

=
eq  

Thus, the equivalent spring stiffness is 

 
k

Eb h
L

eq =
3

34  

L
f

b h

=
x

x

f

keq

FIGURE 5.11
A beam in bending under a transverse force.
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PROBLEM SET 5.1

 1. If the 50-kg block in Figure 5.12 is released from rest at A, determine its kinetic 
energy and velocity after it slides 5 m down the plane. Assume that the plane is 
smooth.   

 2. Repeat Problem 1 if the coefficient of kinetic friction between the block and the 
plane is μk = 0.15.

 3. The ball in Figure 5.13 has a mass of 6 kg and is fixed to a rod having a negligible 
mass. Assume that the ball is released from rest when θ = 60°. 

 a. Determine the gravitational potential energy of the ball when θ = 60° and 30°. 
The datum is shown in Figure 5.13.

 b. Determine the kinetic energy and the velocity of the ball when θ = 30°.
 4. The 6-kg slender rod in Figure 5.14 is released from rest when θ = 60°.   
 a. Determine the gravitational potential energy of the rod when θ = 60° and 30°. 

The datum is shown in Figure 5.14.
 b. Determine the kinetic energy and the angular velocity of the rod when θ = 30°. 

The mass moment of inertia of the slender rod about the fixed point O is 
IO = mL2/3, where L is the length of the rod.

 5. Determine the elastic potential energy of the system shown in Figure 5.15 if the 
10-kg block moves downward a distance of 0.05 m. Assume that the block is origi-
nally in static equilibrium.   

 6. If the disk in Figure 5.16 rotates in the clockwise direction by 10°, determine the 
elastic potential energy of the system. Assume that the springs are originally 
undeformed.   

 7. Determine the equivalent spring constant for the system shown in Figure 5.17. 

datum

1 m
θ

O

FIGURE 5.13
Problem 3.

5 mA

60°

FIGURE 5.12
Problem 1.
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datum

1 m

O

θ

FIGURE 5.14
Problem 4.

10 kg

500 N/m

FIGURE 5.15
Problem 5.

k1

k2

k3 k5

k4

f

FIGURE 5.17
Problem 7.

400 N⋅m/rad

400 N⋅m/rad

FIGURE 5.16
Problem 6.
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 8. Determine the equivalent spring constant for the system shown in Figure 5.18. 
 9. Derive the spring constant expression for the axially loaded bar shown in 

Figure 5.19. Assume that the cross-sectional area is A and the modulus of elastic-
ity of the material is E.   

 10. The uniform circular shaft in Figure 5.20 acts as a torsional spring. Assume that 
the elastic shear modulus of the material is G. Derive the equivalent spring con-
stant corresponding to a pair of torques applied at the two free ends.   

 11. A rod is made of two uniform sections, as shown in Figure 5.21. The two sections 
are made of the same material, and the modulus of elasticity of the rod material is 
E. The areas for the two sections are A1 and A2, respectively. Derive the equivalent 
spring constant corresponding to a tensile force f applied at the free end.   

 12. Derive the spring constant expression for the fixed-fixed beam in Figure 5.22. The 
Young’s modulus of the material is E and the moment of inertia of cross-sectional 
area is I. Assume that the force f and the deflection x are at the center of the beam.   

E, A1 E, A2

L1 L2

f

FIGURE 5.21
Problem 11.

τ τ d

L

FIGURE 5.20
Problem 10.

f f

L

FIGURE 5.19
Problem 9.

k1 k2

k3

k4

f

FIGURE 5.18
Problem 8.
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 13. Derive the spring constant expression for the simply supported beam in Figure 5.23. 
The Young’s modulus of the material is E and the moment of inertia of cross-sectional 
area is I. Assume that the force f and the deflection x are at the center of the beam.   

 14. Derive the spring constant expression for the simply supported beam in Figure 5.24. 
The Young’s modulus of the material is E and the moment of inertia of cross-sectional 
area is I. Assume that the applied load f is anywhere between the supports.   

 15. Determine the equivalent damping coefficient for the system shown in Figure 5.25.   
 16. Determine the equivalent damping coefficient for the system shown in Figure 5.26.   

b1 b2

b3
f

FIGURE 5.25
Problem 15.

a
f

b

EI

x

FIGURE 5.24
Problem 14.

L

EI f

x

FIGURE 5.23
Problem 13.

L

fEI

x

FIGURE 5.22
Problem 12.

b1

b2

b3
f

FIGURE 5.26
Problem 16.
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5.2 Translational Systems

With appropriate simplifying assumptions, a translational mechanical system can be 
modeled as a system of interconnected mechanical elements. The dynamic behavior of the 
system must obey the physical laws, and the dynamic equations of motion can be obtained 
by applying these physical laws, such as Newton’s second law or D’Alembert’s principle. 
The number of equations of motion is determined by the number of degrees of freedom 
of the system.

5.2.1 Degrees of Freedom

The number of degrees of freedom of a dynamic system is defined as the number of inde-
pendent generalized coordinates that specify the configuration of the system. Generalized 
coordinates need not be restricted only to the actual position coordinates, which are physi-
cal coordinates. They could be anything, for example, position coordinates, translational 
displacement, rotational displacement, pressure, voltage, and current. The generalized 
coordinates of a system need not be of the same type.

Figure 5.27a shows a translational mechanical system, in which the mass m moves in 
the horizontal direction and x is the displacement measured from the static equilibrium 
position of the mass. The displacement x is the generalized coordinate, and the number 
of degrees of freedom of the system is 1. When a pendulum consisting of a massless rod 
of length L and a point mass of M is attached to the block of mass m (Figure 5.27b), one 
displacement coordinate x is not enough to describe the motion of the system. On the one 
hand, the pendulum moves together with the block in the horizontal direction. On the other 
hand, the pendulum rotates and the rotational motion can be described using an angular 
displacement θ. Thus, for the system in Figure 5.27b, x and θ are the two independent 
generalized coordinates and the number of degrees of freedom of the system is 2. 

When generalized coordinates are independent, they are equal in number to the degrees 
of freedom. If generalized coordinates are dependent, the number of degrees of freedom 
is the difference between the number of dependent coordinates and the number of con-
straints. For instance, to describe the motion of the pendulum in Figure 5.28, we can use 
the rectangular displacements x and y, instead of the angular displacement θ. However, 

k

m

b

x(a)

k

M

L

m

b

x

θ

(b)

FIGURE 5.27
A mechanical system with (a) displacement as the generalized coordinate and (b) mixed types of generalized 
coordinates.
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those two rectangular displacements are related by the constraint x2 + y2 = L2. Thus, the 
number of degrees of freedom is 1 (i.e., number of dependent generalized coordinates–
number of constraints), which is the same as the result obtained by using the angular 
displacement as the generalized coordinate. 

5.2.2 Newton’s Second Law

Newton’s second law states that the acceleration of a mass is proportional to the resultant 
force vector acting on it and is in the direction of this force. Assume that the translational 
motion of a particle or a rigid body is restricted in a plane. For a particle, which is a mass 
of negligible dimensions, Newton’s second law can be expressed in vector form 

 F a=∑ m  (5.20)

or in scalar form 

 F ma F max x y y= =∑ ∑,       (5.21)

where ∑Fx and ∑Fy are summations of the applied forces decomposed along the x and y 
directions, respectively, and ax and ay are the x and y components of the acceleration of the 
particle, respectively.

For a rigid body, Newton’s second law is given by 

 F a=∑ m C  (5.22)

or 

 F ma F max x y y= =∑ ∑C C,  (5.23)

where subscript C denotes the center of mass. In many engineering applications, the gravity 
field is considered to be uniform and the center of mass coincides with the center of gravity.

5.2.3 Free-Body Diagrams

To apply Newton’s second law to a mechanical system, it is useful to draw a free-body 
diagram for each mass in the system, showing all external forces. The non-input forces 
can be described in terms of displacements or velocities by using the expressions associ-
ated with the basic spring or damper elements. Drawing correct free-body diagrams is 
the most important step in analyzing mechanical systems by the force/moment approach 
(as opposed to the energy approach).

M

L

x
y

θ

FIGURE 5.28
Independence of generalized coordinates.
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Let us consider a simple system consisting of a block of mass m, a spring of stiffness k, and 
a viscous damper of viscous damping coefficient b. Figure 5.29 shows the physical mass–
spring–damper system and the free-body diagram drawn for the mass. The motion of the 
system can be described using the displacement variable x, which is chosen as the generalized 
coordinate. The positive direction is the direction shown by the arrow next to the displace-
ment x. Assume that the positive direction is to the right, as shown. This sign convention 
implies that the displacement x, velocity x, and acceleration x are positive to the right. 

Three forces included in the free-body diagram are the applied force f, the force exerted 
by the spring fk, and the force exerted by the damper fb. The magnitudes of the forces are 
shown in the free-body diagram, and their physical directions are indicated by the arrows. 
The force f is externally applied to the mass–spring–damper system, and the positive direc-
tion is given to the right. To determine the forces fk and fb, we can imagine the mass to be 
displaced along the positive direction, x > 0. Thus, the spring is in tension, and there is a 
spring force fk = kx applied to the mass. The force exerted by the spring is to the left, as it 
tends to restore to the undeformed position. Similarly, the assumption of x > 0 indicates 
that the mass moves to the right with a velocity x. Remember that the damping force for a 
moving mass is always opposite to the direction of motion. Thus, the force exerted by the 
damper is to the left, and the magnitude is f bxb =  .

The previous analysis shows that an assumption about the motion of all masses in a 
mechanical system must be made to draw the free-body diagrams. It is customary to assume 
that all displacements are in the assumed positive directions when determining the proper 
magnitudes and directions for the forces. Applying Newton’s second law to the correct 
free-body diagrams leads to differential equations of motion, which can be converted to 
other system representations, such as the transfer function form and the state-space form.

Example 5.4: A Single-Degree-of-Freedom Mass–Spring–Damper System

Consider the simple mass–spring–damper system subjected to an input force f, as 
shown in Figure 5.29a.

 a. Apply Newton’s second law to derive the differential equation of motion.
 b. Determine the transfer function. Assume that the system output is the dis-

placement x and the initial conditions are x(0) = 0 and x( )0 0= .
 c. Determine the state-space representation. Assume that the system output is 

the displacement x and the state variables are x1 = x and x x2 = .
 d.  Use Simulink and Simscape to construct block diagrams to find the dis-

placement output x(t) of the system subjected to an applied force f(t) = 10u(t), 
where u(t) is the unit-step function. The parameter values are m  =  1  kg, 
b = 2 N·s/m, and k = 5 N/m. Assume zero initial conditions.

k
x

f

b

m

(a)

x

f
fk = kx

fb = bx
m

(b)

FIGURE 5.29
A mass–spring–damper system: (a) physical system and (b) free-body diagram.
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Solution

 a. Let us choose the displacement of the mass as the coordinate x. The free-body 
diagram of the mass is shown in Figure 5.29b. Applying Newton’s second law 
in the x direction gives 

 

+ → =

− − =

∑x ma

f kx bx mx

Fx x:

   

  which can be rearranged into the standard input–output differential equation 
form

 mx bx kx f + + =  

 b. Taking the Laplace transform of both sides of the preceding equation with zero 
initial conditions results in

 ( ) ( ) ( )ms bs k X s F s2 + + =  

  Thus, the transfer function relating the input f(t) to the output x(t) is 

 
X s
F s ms bs k

( )
( )

=
+ +
1

2  

 c. As specified, the state, the input, and the output are
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  The state-variable equations are thus formed as
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  The output equation is

 y x x= = 1 

  Writing the state-variable equations and the output equation in matrix form 
yields
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 d.  We start with building a Simulink block diagram by using the math-
ematical model obtained in Part (a). Solving for the highest derivative of the 
output x gives 

 
 x

m
f kx bx= − −

1
( )

 

 which can be represented using the block diagram shown in Figure 5.30. 
Two Integrator blocks are used to form the velocity x  and the displace-
ment x, both of which are fed back to form the acceleration x . Note that a 
step input causes the motion of the system. Double-click the block with the 
name Step, and type 0 for the Step time and 10 for the Final value 
to define the input f(t) = 10u(t).   

  We can also build a Simscape block diagram to simulate the physical 
system shown in Figure 5.29a. The mass, translational damper, and trans-
lational spring blocks can be found in Simscape/Foundation Library/
Mechanical/Translational Elements. In the same library, the 
Mechanical Translational Reference block is used to represent a 
rigidly clamped end. To apply a force input, the Ideal Force Source 
block is included, which can be found in …/Mechanical/Mechanical 
Sources. To obtain a displacement output, the Ideal Translational 
Motion Sensor block is included, which can be found in …/Mechanical/
Mechanical Sensors. Figure 5.31  is the resulting Simscape block dia-
gram. Note that port symbols (e.g., C for “case”, R for “rod”, P for “posi-
tion”, V for “velocity”, and S for “signal”) are useful for making a correct 
connection.   

  Define the values of the parameters m, b, and k in the MATLAB 
Command window. Run both simulations, and the same curve, as shown 
in Figure  5.32,  can be obtained, which is the resulting displacement out-
put x(t) of the mass–spring–damper system in Figure 5.29a, subjected to a 
step input force. More examples of using Simulink and Simscape to build a 
mechanical system will be given in Section 5.6.   

Step
Mass term Integrator Integrator 1

Velocity Displacement

Scope

Damping term

Spring term

k

+
−
−

1/m 1
s—

1
s—

b

Acceleration

FIGURE 5.30
Simulink block diagram corresponding to Example 5.4.
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FIGURE 5.31
Simscape block diagram corresponding to Example 5.4.
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FIGURE 5.32
Displacement output x(t) of the mechanical system in Example 5.4.
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5.2.4 Static Equilibrium Position and Coordinate Reference

In Example 5.4, we specified the static equilibrium position as the coordinate origin. For this 
mass–spring–damper system moving only in the horizontal direction, the mass is in equilib-
rium when the spring is at its free length. Note that it is advantageous to choose the static 
equilibrium position as the coordinate origin, because this choice can simplify the equation of 
motion by eliminating static forces. The advantage is obvious when the motion along the verti-
cal direction is involved. The following example shows that the gravity term does not enter the 
governing differential equation if the displacement is measured from the static equilibrium.

Consider the mass–spring system shown in Figure 5.33a, where the mass is assumed to 
move only in the vertical direction. The free length of the spring is y0. Due to gravity, the 
spring is stretched by δst when the mass is in static equilibrium and mg = kδst (Figure 5.33b). 
Imagine the mass to be displaced downward by a distance of x. If we choose the unde-
formed position in Figure 5.33a as the origin of the coordinate y, applying Newton’s second 
law to the free-body diagram in Figure 5.33c gives 

 

+ ↓ =

− =
+ =

∑y F ma

mg ky my
my ky mg

y y:  



  

Note that the gravity term mg appears in the equation of motion. Now, let us choose the static 
equilibrium position in Figure 5.33b as the origin of the coordinate x. The equation of motion is 

 

+ ↓ =

− + =
+ =

∑x F ma

mg k x mx
mx kx

x x:

( )δst 

 0  

where the gravity term mg and the static spring force kδst cancel out, resulting in a simpler 
equation. 

k y0
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mg mg

kδst

δstδst

ky

y
(a)

(b) (c)

FIGURE 5.33
Choice of coordinate origins for a mass–spring system: (a) undeformed position, (b) static equilibrium position, 
and (c) dynamic position.
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Example 5.5: A Two-Degree-of-Freedom Quarter-Car Model

Consider a quarter-car model shown in Figure 5.34a, where m1 is the mass of one-fourth 
of the car body and m2 is the mass of the wheel–tire–axle assembly. The spring k1 rep-
resents the elasticity of the suspension and the spring k2 represents the elasticity of the 
tire. z(t) is the displacement input due to the surface of the road. The actuator force, f, 
applied between the car body and the wheel–tire–axle assembly, is controlled by feed-
back and represents the active components of the suspension system.

 a. Draw the necessary free-body diagrams, and derive the differential equations 
of motion.

 b. Determine the state-space representation. Assume that the displacements of 
the two masses, x1 and x2, are the outputs and the state variables are x1 = x1, 
x2 = x2, x x3 1=  , and x x4 2=  .

 c.  The parameter values are m1  =  290  kg, m2  =  59  kg, b1  =  1000  N·s/m, 
k1 = 16,182 N/m, and k2 = 19,000 N/m. Use MATLAB commands to define the 
system in the state-space form and then convert it to the transfer function 
form. Assume that all the initial conditions are zero. 

Solution

 a. We choose the displacements of the two masses x1 and x2 as the generalized 
coordinates. The static equilibrium positions of m1 and m2 are set as the coordi-
nate origins. Assume

 x x z1 2 0> > >  

  which implies that the springs are in tension and

   x x z1 2 0> > >  

  The free-body diagrams of m1 and m2 are shown in Figure 5.34b. According to 
the assumption, the mass m1 moves faster than the mass m2, and the elonga-
tion of the spring k1 is x1 – x2. The force exerted by the spring k1 on the mass 
m1 is downward as it tends to restore to the undeformed position. Because of 

m1

m2

k1

k2

b1f

x1

x2

z

(a)

m1

x1

k2 (x2 – z)

k1 (x1 – x2) b1 (x1 – x2)f

x2
m2

(b)

FIGURE 5.34
A quarter-car model: (a) physical system and (b) free-body diagram.
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Newton’s third law, the force exerted by the spring k1 on the mass m2 has the 
same magnitude, but opposite in direction. Other spring forces and damp-
ing forces can be determined using the same logic. Note that the gravitational 
forces, m1g and m2g, are not included in the free-body diagrams.

  Applying Newton’s second law to the masses m1 and m2, respectively, gives 

 

+ ↑ =

− − − − =

− + − +

∑x ma

f k x x b x x m x

f k x x b

Fx x:

( ) ( )

( ) (

1 1 2 1 1 2 1 1

1 1 2 1

  

xx x k x z m x1 2 2 2 2 2− − − = ) ( )  

 Rearranging the equations into the standard input–output form,

 

m x b x b x k x k x f

m x b x b x k x k

1 1 1 1 1 2 1 1 1 2

2 2 1 1 1 2 1 1 1

  

  

+ − + − =

− + − + +( kk x f k z2 2 2) = − +  

 which can be expressed in second-order matrix form (Section 4.1) as
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 b. Note that the inputs to the system are the actuator force f and the road surface 
irregularity z. The state, the input, and the output vectors are 
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  The state-variable equations are then obtained as
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  The output equation is
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  Thus, the state-space representation is
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 c.  The following is the MATLAB session:
>> m1 = 290;
>> m2 = 59;
>> b1 = 1000;
>> k1 = 16182;
>> k2 = 19000;
>> A = [0 0 1 0;
 0 0 0 1;
 -k1/m1 k1/m1 -b1/m1 b1/m1;
 k1/m2 -(k1+k2)/m2 b1/m2 -b1/m2];
>> B = [0 0; 0 0; 1/m1 0; -1/m2 k2/m2];
>> C = [1 0 0 0; 0 1 0 0];
>> D = zeros(2,2);
>> sys_ss = ss(A,B,C,D);
>> sys_tf = tf(sys_ss);

The command tf returns two transfer functions from the input #1 (i.e., f) to the two 
outputs x1 and x2: 
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and another two transfer functions from the input #2 (i.e., z) to the outputs x1 and x2: 
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Note that the system has two inputs and two outputs. Thus, there are a total of four 
transfer functions, which can be formed as a 2 × 2 transfer matrix 
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Note that the gravity terms in Example 5.5 do not appear in the equations of motion, 
because the static equilibrium positions are chosen as the coordinate origins. Two inde-
pendent coordinates, x1 and x2, are required to specify the system dynamics. Such a 
system is called a two-degree-of-freedom system, which is a special case of multiple-
degree-of-freedom systems.

5.2.5 Massless Junctions

A system of massless junctions is a system of springs and dampers without any masses. 
The differential equations of motion for such a system can be derived using Newton’s sec-
ond law and simply letting the masses be zero at the junctions.

Example 5.6: A Two-Degree-of-Freedom System with Massless Junctions

Consider the system of massless junctions shown in Figure 5.35a. An external force f 
is applied to the junction A. Draw the free-body diagrams and derive the differential 
equations of motion. 

Solution

Two massless junctions, A and B, are included in this system. We choose the displace-
ments of the two junctions as the generalized coordinates, which are denoted by x1 and x2. 
Assume that x1 > x2 > 0. This implies that the two springs are in extension. The free-body 
diagrams at the two massless junctions are shown in Figure 5.35b. Applying Newton’s 
second law to each massless junction gives 

 

+ → = =

− − − − + =

− − +

∑x F ma

k x x b x x f

k x x k x

x x:

( ) ( )

( )

0

01 1 2 1 1 2

1 1 2 2 2

A:

B:

 

bb x x1 1 2 0( ) − =  

The equations can be rearranged as 

 

b x b x k x k x f

b x b x k x k k x

1 1 1 2 1 1 1 2

1 1 1 2 1 1 1 2 2 0

 

 

− + − =

− + − + + =( )  
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A f
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k2

k1
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k2 x2

x1x2

A fB

b1 (x1 – x2)

k1 (x1 – x2)

(b)

FIGURE 5.35
A two-degree-of-freedom system with massless junctions: (a) physical system and (b) free-body diagram.
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or in matrix form 

 

b b
b b
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f
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Note that the system in Example 5.6 is a two-degree-of-freedom system. The dynamic 
behavior of the system is described by two first-order differential equations of motion, 
and thus, it is a second-order system. If the two massless junctions are replaced by two 
masses, as shown in Figure 5.36, the resulting system is still a two-degree-of-freedom 
system, but a fourth-order system. The reader can derive the differential equations of 
motion for the new system in Figure 5.36 as an exercise. 

In Examples 5.5 and 5.6, the differential equations of motion are also given in second-order 
matrix form as M Cx Kx fx + + = . By observation, we find the following: 

 1. The mass, damping, and stiffness matrices are symmetric.
 2. All diagonal entries of these matrices are non-negative.
 3. The off-diagonal elements of both the damping and the stiffness matrices are 

non-positive.
 4. The off-diagonal elements of the mass matrix are non-negative.

These results are true for stable mechanical systems with purely translational or rotational 
motion. The reader can use them as necessary conditions to check the correctness of the 
differential equations of motion.

5.2.6 D’Alembert’s Principle

Newton’s second law can be reformulated as 

 F a− =∑ m C 0 (5.24)

which is known as D’Alembert’s principle. The equation has ∑F as the sum of all the physi-
cal forces and −maC as the inertial force, which is a fictitious force. The minus sign asso-
ciated with the inertial force indicates that the force acts in the negative direction when 
aC > 0. If the inertial force is included with the external forces, the mass can be consid-
ered to be in equilibrium. D’Alembert’s principle is completely equivalent to the formu-
lation of Newton’s second law, although it looks like a classical static force balance. To 
use D’Alembert’s principle correctly, the inertial force must be shown in the free-body 
diagrams correctly. The following is a simple example that shows the derivation of the dif-
ferential equation of motion by using D’Alembert’s principle.

k2

k1

m2 m1b1

x2 x1

f

FIGURE 5.36
System obtained by replacing the massless junctions in Figure 5.35 by masses.
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Example 5.7: D’Alembert’s Principle

Reconsider the single-degree-of-freedom mass–spring–damper system in Example 
5.4. Draw a free-body diagram and derive the differential equation of motion by using 
D’Alembert’s principle.

Solution

The displacement x is chosen as the generalized coordinate, and the origin is set at 
the static equilibrium position. For D’Alembert’s principle, the free-body diagram of the 
mass is shown in Figure 5.37, where the inertial force is shown by a dashed line. Note 
that we assumed x > 0 and x > 0. The inertial force acts in the negative direction with a 
magnitude of mx. Applying D’Alembert’s principle in the x direction results in 

 

+ → − =

− − − =

∑x ma

f kx bx mx

Fx x: 0

0   
or 

 mx bx kx f + + =  

which is the same as the one obtained previously in Example 5.4. 

PROBLEM SET 5.2

 1. For the system shown in Figure 5.38, the input is the force f and the output is the 
displacement x of the mass.   

 a. Draw the necessary free-body diagram and derive the differential equation of 
motion.

f

m
x

k b

FIGURE 5.38
Problem 1.

x

fk = kx

fb = bx

f

mx
m. ..

FIGURE 5.37
Free-body diagram of a mass–spring–damper system by using D’Alembert’s principle.
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 b. Using the differential equation obtained in Part (a), determine the transfer 
function. Assume that initial conditions are x(0) = 0 and x( )0 0= .

 c. Using the differential equation obtained in Part (a), determine the state-space 
representation.

 2. Repeat Problem 1 for the system shown in Figure 5.39.   
 3. Repeat Problem 1 for the system shown in Figure 5.40.   
 4. Repeat Problem 1 for the system shown in Figure 5.41.   
 5.  For Problems 1 through 4, use Simulink to construct block diagrams to find 

the displacement output x(t) of the system subjected to an applied force f(t) = 10u(t), 
where u(t) is the unit-step function. The parameter values are m = 1 kg, b = 2 N·s/m, 
and k = 5 N/m. Assume zero initial conditions.

k b

x

m

f

FIGURE 5.41
Problem 4.

k b

x
m

f

FIGURE 5.40
Problem 3.

k

b
x

m

30°

f

FIGURE 5.39
Problem 2.



196 Modeling and Analysis of Dynamic Systems

 6. The system shown in Figure 5.42  simulates a machine supported by rubbers, 
which are approximated as four identical spring–damper units. The input is the 
force f and the output is the displacement x of the mass. The parameter values are 
m = 500 kg, b = 250 N·s/m, and k = 200,000 N/m.   

 a. Draw the necessary free-body diagram and derive the differential equation of 
motion.

 b. Determine the transfer function. Assume zero initial conditions.
 c. Determine the state-space representation.
 d. Find the transfer function from the state-space form and compare with the 

result obtained in Part (b).
 7. Repeat Problem 6 for the system shown in Figure 5.43.   
 8. The system shown in Figure 5.44 simulates a vehicle traveling on a rough road. 

The input is the displacement z.   
 a. Draw the necessary free-body diagram and derive the differential equation of 

motion.

k = 400 N/m k = 400 N/m

b = 125 Ns/m b = 125 Ns/m

x

20 kg

f

FIGURE 5.43
Problem 7.

m

f

x

k b

FIGURE 5.42
Problem 6.

m

k b

x

z

FIGURE 5.44
Problem 8.
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 b. Assuming zero initial conditions, determine the transfer function for two dif-
ferent cases of output: (1) displacement x and (2) velocity x.

 c. Determine the state-space representation for two different cases of output: 
(1) displacement x and (2) velocity x.

 9. Repeat Problem 8 for the system shown in Figure 5.45, where the cam and follower 
impart a displacement z to the lower end of the system.   

 10. For the system shown in Figure 5.46, the input is the force f and the outputs are the 
displacements x1 and x2 of the masses.  

 a. Draw the necessary free-body diagrams and derive the differential equations 
of motion.

 b. Write the differential equations of motion in the second-order matrix form.
 c. Using the differential equations obtained in Part (a), determine the state-space 

representation.

k1

b

x1

x2

m1

m2

f

k2

FIGURE 5.46
Problem 10.

k1 b

x
m

k2

z

FIGURE 5.45
Problem 9.
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 11. Repeat Problem 10 for the system shown in Figure 5.47.   
 12. Repeat Problem 10 for the system shown in Figure 5.48.   
 13.  For Problems 10 through 12, use MATLAB commands to define the systems in the 

state-space form and then convert to the transfer function form. Assume that the dis-
placements of the two masses, x1 and x2, are the outputs, and all initial conditions are 
zero. The masses are m1 = 5 kg and m2 = 15 kg. The spring constants are k1 = 7.5 kN/m 
and k2 = 15 kN/m. The viscous damping coefficients are b1 = b2 = b = 250 N·s/m.

 14. For the system in Figure 5.49, the inputs are the forces f1 and f2 applied to the masses 
and the outputs are the displacements x1 and x2 of the masses.   

 a. Draw the necessary free-body diagrams and derive the differential equations of 
motion.

 b. Write the differential equations of motion in the second-order matrix form.
 c. Using the differential equations obtained in Part (a), determine the state-space 

representation.

k1

f

x1

x2

b2

b1 m1

30°

m2

k2

FIGURE 5.47
Problem 11.

k1

f

x1 x2

b1 m1 m2

k2

FIGURE 5.48
Problem 12.

k1

k2

x1 x2

b2

f1
f2

m1

m2

k3

FIGURE 5.49
Problem 14.
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 15. Repeat Problem 14 for the system shown in Figure 5.50.   
 16.  For Problems 14 and 15, use MATLAB commands to define the systems in the 

state-space form and then convert to the transfer function form. Assume that the 
displacements of the two masses, x1 and x2, are the outputs, and all initial condi-
tions are zero. The masses are m1 = 5 kg and m2 = 15 kg. The spring constants are 
k1 = 7.5 kN/m, k2 = 15 kN/m, and k3 = 30 kN/m. The viscous damping coefficients 
are b1 = b2 = 250 N·s/m.

 17. For the system in Figure 5.51, the input is the force f and the outputs are the displace-
ment x1 of the mass and the displacement x2 of the massless junction A.   

 a. Draw the necessary free-body diagrams and derive the differential equations of 
motion. Determine the number of degrees of freedom and the order of the system.

 b. Write the differential equations of motion in the second-order matrix form.
 c. Using the differential equation obtained in Part (a), determine the state-space 

representation.
 18. Repeat Problem 17 for the system in Figure 5.52, where the input is the displacement z 

and the outputs are the displacements x1 and x2. 

k1 k2

m

x1

b1 b2

A

x2

f

FIGURE 5.51
Problem 17.

k1 f1 f2

x1 x2

k3

b1 m1 m2

k2

FIGURE 5.50
Problem 15.

m

x2

k1

k2

b

A

x1

z

FIGURE 5.52
Problem 18.
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5.3 Rotational Systems

In this section, we consider the derivation of a mathematical model for a rotational 
mechanical system. When a rigid body moves arbitrarily in three-dimensional space, the 
axis of rotation keeps changing. This makes modeling rather complex. Thus, the discus-
sion of three-dimensional rigid body motions is not covered in this text, and we are mainly 
concerned with two-dimensional or plane motion. The fundamentals of rigid bodies in 
three dimensions are included only to help the interested reader in further studies.

5.3.1 General Moment Equation

The moment equation is applicable to systems of particles and rigid bodies in three and 
two dimensions. For a system of particles connected rigidly or a rigid body in arbitrary 
motion, using Newton’s second law leads to the general moment equation given by 

 M H r aP P C P P= + ×∑  m /  (5.25)

where:
subscript P denotes an arbitrary accelerating point
subscript C denotes the mass center of the system of particles or the rigid body
∑MP is the sum of all externally applied moments about point P
HP is the angular momentum vector about point P
HP is the time rate of change of HP

m is the total mass of the system of particles or the mass of the rigid body
rC/P is the position vector of the mass center C with respect to point P
aP is the acceleration vector of point P

It is usually difficult to obtain HP for complex systems. For a rigid body, the angular 
momentum is related to mass moments of inertia and the angular velocity, 

 H IP P= ω (5.26)

or 
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(5.27)

where:
HP is the angular momentum about point P
ω is the angular velocity vector (3 × 1)
IP is the mass moment of inertia tensor (3 × 3) about point P, and

 
I y z m I x z m I x y mxx yy zz= + = + = +∫ ∫ ∫( ) , ( ) , ( )2 2 2 2 2 2d      d      d

 
(5.28)
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I I xy m I I yz m I I xz mxy yx yz zy xz zx= = − = = − = = −∫ ∫ ∫d d d, ,

 
(5.29)

As shown in Figure 5.53, the integrals containing squares represent the mass moments of 
inertia of the body about the x, y, and z axes, respectively. The integrals containing prod-
ucts of coordinates represent the mass products of inertia of the body. 

In general, the time derivatives of the nine elements in the matrix IP are non-zero for a 
nonsymmetric rigid body, and thus, it is difficult to study the dynamics of a rigid body 
in three dimensions. However, if the motion of the rigid body is restricted to a plane, the 
complexity is reduced significantly.

5.3.2 Modeling of Rigid Bodies in Plane Motion

In many engineering applications, the motion of rigid bodies is primarily in two dimen-
sions. A rigid body is in plane motion if it translates in two dimensions (or a plane) and 
rotates only about an axis that is perpendicular to the plane. For a rigid body in plane 
motion, the mass moment of inertia is a scalar quantity and the time rate of change of the 
angular momentum reduces to 

 HP P= I αα (5.30)

where:
IP is the mass moment of inertia of the body about an axis through point P
α is the angular acceleration

Then, Equation 5.25 becomes 

 M r aP P C P P= + ×∑ I mαα /  (5.31)

z

z
y

y

dm

x

x

FIGURE 5.53
A differential element of a rigid body.
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Note that the rigid body in plane motion is constrained to rotate about only one axis. 
Therefore, the net moment ΣMP and the angular acceleration α are essentially scalars, whose 
signs signify the directions (e.g., clockwise or counterclockwise). Because the cross-product 
term is mrC/P × aP = rC/P × (maP), it can be considered as the effective moment caused by a 
fictitious force maP, and the direction of the effective moment can be denoted by its sign.

If the rigid body rotates about a fixed axis through point O, Equation 5.31 can be simpli-
fied as 

 M IO O=∑ α (5.32)

with P = O and aP = aO = 0. IO is the mass moment of inertia of the body about point O. If 
the axis of rotation is not fixed, the dynamics model of the rigid body can be derived using 
Equation 5.31 or 

 M IC C=∑ α (5.33)

with P = C and rC/P = 0. IC is the mass moment of inertia of the body about the mass center C. 
Both Equations 5.31 and 5.33 are applicable regardless of whether the axis of rotation is 
fixed or not.

Example 5.8: A Single-Degree-of-Freedom Rotational Mass–Spring–Damper System

Consider a simple disk–shaft system shown in Figure 5.54a, in which the disk rotates 
about a fixed axis through point O. A single-degree-of-freedom torsional mass–spring–
damper system in Figure 5.54b can be used to approximate the dynamic behavior of the 
disk–shaft system. IO is the mass moment of inertia of the disk about point O, K repre-
sents the elasticity of the shaft, and B represents torsional viscous damping. Derive the 
differential equation of motion. 

Solution

The free-body diagram of the disk is shown in Figure 5.54c. Because the disk rotates 
about a fixed axis, we can apply Equation 5.32 about the fixed point O. Assuming that 
counterclockwise is the positive direction, we have 

 

+ =

− − =

∑ : M I

K B I

O O

O

α

τ θ θ θ

 

   

K

B

θτ
O

(a)

K

B
Io

θ

O

τ

(b)

Kθ

Bθ

θ

τ

(c)

FIGURE 5.54
A rotational mass–spring–damper system: (a) physical system, (b) mass–spring–damper model, and (c)  free-body 
diagram.
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Thus,

 I B KO
 θ θ θ τ+ + =  

Example 5.9: A Two-Degree-of-Freedom Rotational Mass–Spring–Damper System

Consider the disk–shaft system shown in Figure 5.55. The mass moments of inertia of 
the two disks about their longitudinal axes are I1 and I2, respectively. The massless tor-
sional springs represent the elasticity of the shafts and the torsional viscous dampers 
represent the fluid coupling.

 a. Draw the necessary free-body diagrams and derive the differential equations 
of motion.

 b. Determine the transfer functions Θ1(s)/T(s) and Θ2(s)/T(s). All initial conditions 
are assumed to be zero.   

Solution

 a. We choose the angular displacements θ1 and θ2 as the generalized coordinates. 
Assume that θ1 > θ2 > 0. The free-body diagrams are shown in Figure  5.56. 
Applying Equation 5.32 about the fixed points O1 and O2, respectively, gives

 

+ =

− − =

− −

− −

−

∑ :

( )

( )

M I

K K I

K K

B

B

O Oα

τ θ θ θ θ

θ θ θ

θ

θ

1 1 1 11 1 3 1 2

3 1 2 2 2 2







22 2 2= I θ  

K1

B1 B2
I1 I2

K3

K2θ1 θ2

τ

FIGURE 5.55
A two-degree-of-freedom rotational disk–shaft system.

K1θ1

B1θ1

O1 O2

B2θ2

K3(θ1 − θ2) K2θ2

θ1 θ2

τ

(a) (b)

FIGURE 5.56
Free-body diagrams for the disk–shaft system in Figure 5.55.
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  Rearranging the equations results in
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 b. Taking Laplace transform gives
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  or in matrix form
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  Using Cramer’s rule, we can solve for Θ1(s)/T(s) and Θ2(s)/T(s) as 
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5.3.3 Mass Moment of Inertia

As shown in Equation 5.28, the mass moment of inertia of a rigid body about a specified 
axis of rotation is defined as 

 I r m= ∫ 2d  (5.34)

where r is the distance between the axis of rotation and the mass element dm. The mass 
moments of inertia for some rigid bodies with common shapes are given in Table 5.1, 
where all masses are assumed to be uniformly distributed and the axes of rotation all pass 
through the mass centers. If the axis of rotation does not coincide with the axis through 
the mass center, but is parallel to it, the parallel-axis theorem can be applied to obtain the 
corresponding moment of inertia, 

 I I md= +C
2 (5.35)

where:
IC is the mass moment of inertia of the rigid body about an axis passing through its  center 

of mass
I is the mass moment of inertia about the new axis
d is the perpendicular distance between the two parallel axes 
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TABLE 5.1
Mass Moments of Inertia of Common Geometric Shapes

Slender rod
y

x

z

L

C

I I mLy z= =
1

12
2

Ix = 0

Thin disk

z

x

r

y

C

I mrx =
1
2

2

I I mry z= =
1
4

2

Thin rectangular plate

z

x
b

y
L

C

I m L bx = +
1

12
2 2( )

I mLy =
1

12
2

I mbz =
1

12
2

Circular cylinder
y

C

L

z

r
x

I mrx =
1
2

2

I I m r Ly z= = +
1

12
3 2 2( )

Rectangular prism
y

C

L

z

h

x

b

I m b hx = +
1

12
2 2( )

I m L by = +
1

12
2 2( )

I m L hz = +
1

12
2 2( )

Sphere
y

z
r

x

I I I mrx y z= = =
2
5

2

Source: Beer, F.P. et al., Vector Mechanics for Engineers: Dynamics, 9th ed., McGraw-Hill, 
New York, NY, 2009; Hibbeler, R.C., Engineering Mechanics: Dynamics, 12th ed., 
Prentice Hall, Upper Saddle River, NJ, 2010. With Permission.
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Example 5.10: An Inverted-Pendulum–Bob System

Consider the inverted-pendulum system shown in Figure 5.57a, in which a point mass m 
is attached at the tip of a uniform slender rod of mass M and length L. The mass center 
of the rod is located at point C. The inverted-pendulum system rotates about an axis 
through the joint O. The friction at the joint is modeled as a torsional viscous damper of 
coefficient B. 

 a. Deter mine the mass moment of inertia of the system about point O.
 b. Draw the free-body diagram for the inverted-pendulum system and obtain the 

nonlinear equation of motion.
 c. Linearize the equation of motion for small angles θ. 

Solution

 a. The system consists of a point mass and a slender rod. The total mass moment 
of inertia about point O is

 I I IO O mass O rod= +_ _  

  where

 I mLO mass_ = 2
 

 and IO_rod can be obtained using the parallel-axis theorem, 

 
I I Md ML M

L
MLO rod C rod_ _= + = + 






 =2 2

2
21

12 2
1
3  

 Then,

 
I m

M
LO = +






3

2

 

 b. For the inverted-pendulum system, the free-body diagram is shown in 
Figure 5.57b, where Rx and Ry are the x and y components of the reaction force at 
the joint O, respectively. Note that the system rotates about a fixed axis through 
point O. Applying Equation 5.32 about the fixed point O gives 

θ

O

C
M, L

m

(a)

Bθ Bθ

Ry

mg

Mg
Rx

O

θ
C

(b)

FIGURE 5.57
An inverted pendulum-bob system: (a) physical system and (b) free-body diagram.
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 Substituting IO obtained in Part (a) into the equation, and rearranging it in the 
input–output differential equation form, we obtain 

 
m

M
L B m

M
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 + − +






 =

3 2
02

 θ θ θsin
 

 c. For small angles θ, sin θ ≈ θ. The equation of motion becomes 

 
m

M
L B m

M
gL+






 + − +






 =

3 2
02

 θ θ θ
 

 which is a linear equation in terms of θ.

Let us examine the nonlinear differential equation of motion in Part (b). Note that the 
unknown reaction forces Rx and Ry at the joint O do not appear in the moment equation 
∑MO =  IOα. If an arbitrary nonfixed point P is used, we must apply Equation 5.31. The 
moments caused by the unknown forces Rx and Ry appear in the equation, and auxiliary 
equations are required to eliminate the terms related to Rx and Ry. This is the advantage 
of choosing the fixed point to apply the moment equation if a rigid body rotates about a 
fixed axis.

Example 5.11: A Coupled Pendulum System

Consider the two-degree-of-freedom system shown in Figure 5.58a, where two uniform 
slender rods of mass m and length L are connected by a translational spring of stiffness k. 
θ1 and θ2 are the angular displacements of the rods. The torques τ1 and τ2 are applied to 
the pivot points O1 and O2, respectively. When θ1 = 0, θ2 = 0, τ1 = 0, and τ2 = 0, the spring 
is at its free length. Draw the necessary free-body diagrams and derive the differential 
equations of motion. Assume small angles for θ1 and θ2. 

O1
O1

O2
O2

L/2

k

mg

Rx1

fk

Ry1

Rx2

Ry2

mg
θ2

θ2

θ1
θ1

τ2τ1
τ2τ1

(a) (b)

FIGURE 5.58
A coupled pendulum system: (a) physical system and (b) free-body diagram.
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Solution

We choose the angular displacements θ1 and θ2 as the generalized coordinates. Assume 
θ1 > θ2 > 0, which implies that the spring is in tension. The free-body diagrams are shown 
in Figure 5.58b. Applying Equation 5.32 about the fixed points O1 and O2, respectively, 
gives 
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where I I mLO O1 2
1
3

2= = . Note that the spring force fk is in the horizontal direction due 
to the small-angle assumption, and its magnitude can be approximated as k( 1

2 Lsinθ1 – 
1
2 Lsinθ2). Substituting fk into the equations and rearranging them results in 
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For small angles, we have 
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5.3.4 Pure Rolling Motion

Wheels are common mechanical systems involving general plane motion. Figure 5.59a 
shows a uniform disk rolling on a horizontal surface. If there is no slipping between 
the disk and the surface, the disk undergoes pure rolling motion. The contact point is 
the instantaneous center (IC), where the velocity is zero. From the results of kinematics, the 
acceleration of the IC is rθ2, and its direction points from the IC to the mass center C (or 
for a uniform disk, the geometric center). The problem of finding aIC is left to the reader as 
an exercise. 

C
r

rθ2

x
IC

(a)

mg

f

N

IC

(b)

FIGURE 5.59
A pure rolling disk: (a) physical system and (b) free-body diagram.
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The free-body diagram of the disk is shown in Figure 5.59b, where reaction forces at the 
contact point include the normal force N and the friction force f. Note that a fixed point 
does not exist for the rolling motion; thus, we cannot use the moment equation ∑MO = IOα. 
Also, it is inconvenient to sum the moments about the mass center by using the equation 
∑MC = ICα, because the unknown reaction force f inevitably appears in the equation and 
needs to be eliminated with the help of auxiliary equations. However, if the point IC is 
used, the moment equation 

 M r aIC IC C/IC IC= + ×∑ I mα  (5.36)

reduces to 

 M IIC IC=∑ α. (5.37)

Because the position vector rC/IC and the acceleration vector aIC are parallel, their cross 
product is zero, mrC/IC × aIC = 0. Therefore, we do not need to deal with the moment caused 
by the friction force at the contact point. This is a special way of using Equation 5.31.

In summary, if there is a point S such that the position vector rC/S is parallel to the accel-
eration vector aS, we can apply 

 M IS S=∑ α (5.38)

to model the dynamics of the rigid body. IS the mass moment of inertia of the body about 
point S. For the pure rolling disk in Figure 5.59, the IC at the contact point has the property 
of rC/IC||aIC.

Example 5.12: A Pure Rolling Disk

Consider the system shown in Figure 5.60a, in which a uniform disk of mass m and 
radius r rolls on a horizontal surface. A translational spring of stiffness k is attached to 
the disk. Assuming that there is no slipping between the disk and the surface, derive the 
differential equation of motion. 

Solution

The free-body diagram of the system is shown in Figure 5.60b, in which the normal 
force N and the friction force f are reaction forces at the contact point. When the disk is 
at the static equilibrium position, we have fk = kδst, where δst is the static deformation of 
the spring. Then, 
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θ
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x
(a)

mg

fk

f

N

IC

θ
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FIGURE 5.60
A pure rolling disk–spring system: (a) physical system and (b) free-body diagram.
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or δst = 0. We choose the static equilibrium position as the origin. When the disk rolls, 
the spring force is fk = k(x + δst) = kx. Because of no slipping, the contact point is the IC, 
and rC/IC||aIC. Applying Equation 5.37 gives 
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where 

 I I md mr mr mrIC C= + = + =2 2 2 21
2

3
2  

Introducing the assumption of no slipping, x = rθ, we obtain the differential equation 
of motion 

 
3
2

02 2mr krθ θ+ =  

Strictly speaking, the disk in Figure 5.59 or Example 5.12 is not a purely rotational sys-
tem, and the rolling motion involves both translation and rotation. Such a system can 
also be modeled using both Newton’s second law and the moment equation. We will 
present the corresponding discussion in the next section.

PROBLEM SET 5.3

 1. Consider the rotational system shown in Figure 5.61. The system consists of a mass-
less shaft and a uniform thin disk of mass m and radius r. The disk is constrained 
to rotate about a fixed longitudinal axis along the shaft. The shaft is equivalent 
to a torsional spring of stiffness K connected in parallel with a torsional viscous 
damper of damping coefficient B. Draw the necessary free-body diagram and 
derive the differential equation of motion.   

 2. Repeat Problem 1 for the system shown in Figure 5.62.   

K, B

m

r

θ

τ

FIGURE 5.61
Problem 1.
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 3. Consider the torsional mass–spring system in Figure 5.63. The mass moments of 
inertia of the two disks are I1 and I2, respectively. The massless torsional springs 
represent the elasticity of the shafts.   

 a. Draw the necessary free-body diagrams and derive the differential equations 
of motion. Provide the equations in the second-order matrix form.

 b. Determine the transfer functions Θ1(s)/T(s) and Θ2(s)/T(s). All the initial condi-
tions are assumed to be zero.

 c. Determine the state-space representation with the angular displacements 
θ1 and θ2 as the outputs.

 4. Repeat Problem 3 for the system shown in Figure 5.64, where the torsional viscous 
damper represents the fluid coupling. The input is the angular displacement ϕ at 
the end of the shaft.   

 5. Consider the pendulum system shown in Figure 5.65. The system consists of a bob 
of mass m and a uniform rod of mass M and length L. The pendulum pivots at the 
joint O. Draw the necessary free-body diagram and derive the differential equa-
tion of motion. Assume small angles for θ.   

 6. Repeat Problem 5 for the systems shown in Figure 5.66, in which (a) the mass of the 
rod is neglected and (b) no bob is attached to the rod.   

K1

θ1 θ2
K2

I1 I2

O1 O2

τ

FIGURE 5.63
Problem 3.

K, BK, B
m

rτ
θ

FIGURE 5.62
Problem 2.
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I2I1

2

2

θ1 θ
φ

FIGURE 5.64
Problem 4.
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 7. The system shown in Figure 5.67 consists of a uniform rod of mass M and length L 
and a translational spring of stiffness k at the rod’s left tip. The friction at the joint 
O is modeled as a damper with coefficient of torsional viscous damping B. The 
input is the force f and the output is the angle θ. The position θ = 0 corresponds to 
the static equilibrium position when f = 0.   

 a. Draw the necessary free-body diagram and derive the differential equation of 
motion for small angles θ.

 b. Using the linearized differential equation obtained in Part (a), determine the trans-
fer function Θ(s)/F(s). Assume that the initial conditions are θ(0) = 0 and θ( )0 0= .

 c. Using the differential equation obtained in Part (a), determine the state-space 
representation.

k

L/2

O

f

Bθ
.

θ

FIGURE 5.67
Problem 7.
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Bθ
.

Bθ
.

FIGURE 5.66
Problem 6.
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FIGURE 5.65
Problem 5.
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 8. Repeat Problem 7 for the system shown in Figure 5.68. When θ = 0 and f = 0, the 
springs are at their free lengths.   

 9.  Example 5.4  Part (d) shows how one can represent a linear system in 
Simulink based on the differential equation of the system. A linear system can 
also be represented in transfer function or state-space form. The correspond-
ing blocks in Simulink are Transfer Fcn and State-Space, respectively. 
Consider Problem 7 and construct a Simulink block diagram to find the output θ(t) 
of the system, which is represented using (a) the linearized differential equation of 
motion, (b) the transfer function, and (c) the state-space form obtained in Problem 7. 
The parameter values are M = 0.8 kg, L = 0.6 m, k = 100 N/m, B = 0.4 N·s/m, and 
g = 9.81 m/s2. The input force f is the unit-impulse function, which has a magni-
tude of 20 N and a time duration of 0.01 s.

 10.  Repeat Problem 9 by using the linearized differential equation of motion, the 
transfer function, and the state-space form obtained in Problem 8. The parameter 
values are m = 0.2 kg, M = 0.8 kg, L = 0.6 m, k = 100 N/m, and g = 9.81 m/s2. The 
input force f is the unit-impulse function, which has a magnitude of 20 N and a 
time duration of 0.01 s.

 11. Consider the system shown in Figure 5.69, in which the motion of the rod is small 
angular rotation. When θ = 0, the springs are at their free lengths.   

 a. Determine the mass moment of inertia of the rod about point O. Assume that a > b.
 b. Draw the necessary free-body diagram and derive the differential equation of 

motion for small angles θ.

f m

k

M, L
C

O

θ

k

FIGURE 5.68
Problem 8.
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FIGURE 5.69
Problem 11.
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 12. Consider the system shown in Figure 5.70, in which a lever arm has a spring–
damper combination on the other side. When θ  =  0, the system is in static 
equilibrium. 

 a. Assuming that the lever arm can be approximated as a uniform slender rod, 
determine the mass moment of inertia of the rod about point O.

 b. Draw the necessary free-body diagram and derive the differential equation of 
motion for small angles θ.

 13. Consider the two-degree-of-freedom system shown in Figure 5.71, in which two 
simple inverted pendulums are connected by a translational spring of stiffness k. 
Each pendulum consists of a point mass m concentrated at the tip of a massless 
rope of length L. θ1 and θ2 are the angular displacements of the pendulums. When 
θ1 = 0 and θ2 = 0, the spring is at its free length.   

 a. Draw the necessary free-body diagrams and derive the differential equations 
of motion. Assume small angles for θ1 and θ2. Provide the equations in the 
second-order matrix form.

 b. Using the differential equations obtained in Part (a), determine the state-space 
representation with the angular velocities θ1

 and 
θ2 as the outputs.

 14. Repeat Problem 13 for the system shown in Figure 5.72, in which each pendulum 
is a uniform slender rod of mass m and length L. The inputs are the torques τ1 and 
τ2 applied to the pivots O1 and O2, respectively. When θ1 = 0, θ2 = 0, τ1 = 0, and 
τ2 = 0, the spring is at its free length.   

m m

k

θ1

θ2

O1 O2

FIGURE 5.71
Problem 13.
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FIGURE 5.70
Problem 12.
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 15. Consider the system shown in Figure 5.73, in which a uniform sphere of mass m 
and radius r rolls along an inclined plane of 30°. A translational spring of stiffness 
k is attached to the sphere. Assuming that there is no slipping between the sphere 
and the surface, draw the necessary free-body diagram and derive the differential 
equation of motion.   

 16. Consider the system shown in Figure 5.74. A uniform solid cylinder of mass m, 
radius R, and length L is fitted with a frictionless axle along the cylinder’s long 
axis. A spring of stiffness k is attached to a bracket connected to the axle. Assume 
that the cylinder rolls without slipping on a horizontal surface. Draw the neces-
sary free-body diagram and derive the differential equation of motion. 

O1 O2

L/3
k

θ2

θ1

τ2τ1

FIGURE 5.72
Problem 14.
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FIGURE 5.74
Problem 16.
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FIGURE 5.73
Problem 15.
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5.4 Mixed Systems: Translational and Rotational

For a system involving both translational and rotational motions, Newton’s second law 
and the moment equation can be used to obtain the model. This section provides only one 
method to obtain the differential equation of motion by using the force and moment equa-
tions, which may be applied in different ways.

5.4.1 Force and Moment Equations

Consider a mechanical system in plane motion, which involves translations along the x 
and y directions and rotation about one axis perpendicular to the x-y plane. For a system 
of a single mass, applying Newton’s second law in the translational directions gives the 
force equations 

 F ma F max x y y= =∑ ∑C C,  (5.39)

The moment equation is in the form of 

 M IC C=∑ α (5.40)

or 

 M I M mP C eff_ C= +∑ α a  (5.41)

where the symbol M meff C_ a  is used to represent the effective moment caused by the fic-
titious force maC. Although Equation 5.41  looks different from the general moment 
Equation 5.31  given in Section 5.3, they are essentially equivalent. Figure 5.75  shows a 
rigid body in plane motion. Applying Equation 5.31 gives the net moment about point P 
as ΣMP = IPα + mrC/P × aP. According to the parallel-axis theorem, we have I I mrP C C P= + /

2 . Then, 
I I mrP C C Pα α α= + /

2 , and it follows the direction of α, that is, the counterclockwise direction. 
Also, from the kinematics of rigid bodies, the acceleration of point P is aP = aC + aP/C, t + aP/C, n, 
as shown in Figure 5.76. Note that mrC/P × aC = rC/P × (maC), which can be considered as the 
effective moment caused by the fictitious force maC and is denoted as M meff C_ a . The tangential 
component of the relative acceleration aP/C, t is perpendicular to the position vector rC/P with 
a magnitude of αrC/P. Thus, the magnitude of the cross product mrC/P × aP/C, t is mrC P/

2 α and 

ICα

y

x

maC

rC/P

P

C

FIGURE 5.75
A rigid body in plane motion.
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its direction is clockwise. The normal component aP/C, n is parallel to the position vector 
rC/P, and thus, mrC/P × aP/C, n = 0. Assuming that the positive direction is counter clockwise, 
we have ΣM I mr M mrmP C C P eff C P C= + + −α α α/ _ /

2 2
a , which is the same as Equation 5.41.  

For a system of multiple masses, the force equations become 
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where n is the number of masses and aCi is the acceleration of the mass center of the ith 
mass. Because it may be a challenge to find the mass center for the entire system of mul-
tiple masses, we use an arbitrary point P to sum the moments, 
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(5.43)

where:
ICi is the moment of inertia of the ith mass about its center of mass
αi is the angular acceleration of the ith mass

To derive the differential equation of motion correctly, we recommend drawing two 
diagrams before applying the force and moment equations. One is the free-body dia-
gram that shows all external forces and moments applied to the system, and the other 
is the kinematic diagram that indicates the acceleration at the mass center of each mass. 
The left-hand sides of the force and moment Equations 5.42 and 5.43 are written based 
on the free-body diagram, and the right-hand sides are written based on the kinematic 
diagram.

Example 5.13: A Lever Mechanism

Consider the system shown in Figure 5.77, in which a lever arm has a force applied on 
one side and a spring–damper combination on the other side with a suspended mass. 
When θ = 0 and f = 0, the system is at static equilibrium. Assume that the lever arm can 
be approximated as a uniform slender rod. Draw the free-body diagram of the lever arm 
and the suspended mass. Derive the differential equations of motion for small angles θ. 

Solution

This is a mixed system with two masses. The suspended block undergoes translational 
motion along the vertical direction, and the motion of the rod is pure rotation about 

aP/C,n

P
aP/C,t

aC

C

aC
α

y

x

FIGURE 5.76
A kinematic diagram of aP and aC.
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point O that is fixed. We choose the displacement of the block y and the angular dis-
placement of the rod θ as the generalized coordinates. Note that y is measured from the 
static equilibrium position, which is set as the origin. The free-body diagrams and the 
kinematic diagram of the system are shown in Figure 5.78.

At static equilibrium, for the block, we have 
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where δst is the static deformation of the spring. 
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FIGURE 5.78
A lever mechanism: (a) free-body diagram at static equilibrium and (b) free-body diagram and kinematic dia-
gram at dynamic position.
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A lever mechanism.
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When a force f is applied on one side of the rod, the deformation of the spring caused 
by the rotation of the rod can be approximated as Lθ/4 for small angles θ. Assuming 
that the block and the rod are displaced in their positive directions and Lθ/4 > y > 0, 
the spring is in tension and the magnitude of the spring force is fk = k(Lθ/4 – y + δst). 
The magnitude of the damping force is f bLb = θ 4 . The free body diagram and the 
kinematic diagram of the system are shown in Figure 5.78b. Note that the accelera-
tion components my and IO

θ are shown together with the forces in the free-body dia-
gram. For complex mechanical systems, we recommend to draw a separate kinematic 
diagram.

For the block (translation only), applying the force equation in the y direction gives 
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For the rod (rotation only), applying the moment equation about the fixed point O gives 
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where IO can be obtained using parallel-axis theorem, 
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For small angular motions, cosθ ≈ 1. Introducing the static equilibrium conditions and 
rearranging the two equations give 
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Example 5.14: A Cart–Inverted-Pendulum System

Consider the mechanical system shown in Figure 5.79, where a uniform rod of mass 
M and length L is pivoted on a cart of mass m. An external force f is applied to the 
cart. Assume that the pendulum is constrained to move in a vertical plane, and the cart 
moves without slipping along a horizontal line. Denote the displacement of the cart as 
x and the angular displacement of the pendulum as θ. 

 a. Draw the necessary free-body diagram and kinematic diagram, and derive the 
nonlinear equations of motion.

 b. Linearize the equations of motion for small angular motions, and determine 
the state-space form with x and θ as the outputs. 
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Solution

 a. This is a mixed system with two masses. The motion of the cart is purely trans-
lational, and the inverted pendulum undergoes both translation and rotation. 
The free-body diagram and the kinematic diagram are given in Figure 5.80. 
Note that the acceleration of the mass center of the rod consists of three compo-
nents. On the one hand, the pendulum moves together with the cart along the 
horizontal line at an acceleration of x. On the other hand, it rotates about the 
pivot P on the cart. The relative rotational accelerations include the tangential 
component L

2
θ and the normal component L2

2
θ .  

  Applying the force equation to the whole system along the x direction gives
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FIGURE 5.80
A cart–inverted-pendulum system: (a) free-body diagram and (b) kinematic diagram.
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FIGURE 5.79
A cart–inverted-pendulum system.
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 The forces at the pivot are canceled out because they are internal forces between 
the cart and the pendulum. Applying the moment equation to the pendulum 
about point P results in
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 Rearranging the two equations into the standard input–output form
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 b. For small angular motions, cosθ ≈ 1, sinθ ≈ θ, θ θ2 0≈  (see Section 4.6). The lin-
earized equations are 
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 The state, the input, and the output are specified as
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 We then take the time derivative of each state variable. For the first two,
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 Note that the two linearized equations are coupled. The derivatives x and θ 
cannot be solved using only one of the equations. To find x3  and x4 , we rewrite 
the two linearized differential equations as
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 from which x and θ can be solved using Cramer’s rule:
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 Simplifying the equations gives
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 Thus, the state-space equation in matrix form is
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 Note that in Part (a), Equation 5.31 instead of 5.41 can also be applied to the 
pendulum to derive the second equation of motion. The related free-body dia-
gram and the kinematic diagram are shown in Figure 5.81. Summing all exter-
nally applied moments about the pivot P, which moves together with the cart 
with an acceleration of x, gives 
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FIGURE 5.81
Applying Equation 5.31 to the pendulum: (a) free-body diagram and (b) kinematic diagram.



223Mechanical Systems

5.4.2 Energy Method

The differential equation of motion of a mechanical system can be obtained using the 
force/moment approach, which is based on Newtonian mechanics. Free-body diagrams 
are necessary in order to apply the force and moment equations correctly. An alternative 
way of obtaining the differential equation of motion is to use the energy method based on 
analytical mechanics.

For a mass–spring system with negligible friction and damping, the principle of conser-
vation of energy states that 

 T V+ = constant  (5.44)

or 

 
d
dt

T V( )+ = 0
 

(5.45)

where:
T is the kinetic energy
V is the potential energy, which includes the gravitational potential energy and the 

elastic potential energy

The expression for the kinetic energy of a translational or rotational mass element was 
given in Section 5.1. In general, the kinetic energy of a rigid body in plane motion is 

 
T mv I= +1
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2 2
C Cω

 
(5.46)

where:
vC is the velocity of the mass center C of the body
ω is the angular velocity of the body

Note that the kinetic energy of a rigid body in plane motion can be separated into two 
parts: (1) the kinetic energy associated with the translational motion of the mass center C 
of the body, and (2) the kinetic energy associated with the rotation of the body about the 
mass center C. If a rigid body rotates about a fixed point O with an angular velocity ω, the 
kinetic energy reduces to T = (1/2)IOω2.

Example 5.15: A Pulley System

Consider the pulley system shown in Figure 5.82. A block of mass m is connected to a 
translational spring of stiffness k through a cable, which passes by a pulley with mass mp 
and radius r. The pulley rotates about the fixed mass center O. The moment of inertia of the 
pulley about its mass center is IO. Use the energy method to derive the equation of motion. 

Solution

The system has two mass elements, one translational block of mass and one pulley 
rotating about its fixed mass center. Their motions are related to each other by the geo-
metric constraint, x = rθ. The kinetic energy of the system is 

 
T T T mx I= + = +block pulley O

1
2

1
2

2 2


θ
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The undeformed position, static equilibrium position, and dynamic position of the 
mass–spring system are shown in Figure 5.83. 

Choosing the static equilibrium position as the datum for the gravitational potential 
energy, we have 

 V mgxg = −  

The elastic potential energy is 

 
V k xe st= +

1
2

2( )δ
 

The total potential energy is 

 
V V V mgx kx k kx= + = − + + +g e st st

1
2

1
2

2 2δ δ
 

Because of the static equilibrium condition, mg = kδst, the expression of potential energy 
becomes 

 
V kx k= +

1
2

1
2

2 2δst 

O

θ

k
m

x

FIGURE 5.82
A pulley system.
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FIGURE 5.83
A pulley system: (a) undeformed position, (b) static equilibrium position, and (c) dynamic position.



225Mechanical Systems

The total energy of the system is 

 
T V mx I kx k+ = + + +

1
2

1
2

1
2

1
2

2 2 2 2




O stθ δ
 

for which the time derivative is 

 
d
d

O
t

T V mxx I kxx( )+ = + +



θθ
 

Using the geometric constraint, x  =  rθ, which implies that  x r= θ and  x r= θ, we can 
rewrite the above-mentioned equation as 

 
d
d

O
t

T V mr I kr( )+ = + +2 2
  θθ θθ θθ 

Applying the principle of conservation of energy, we find 

 ( )I mr krO + + =2 2 0θ θ  

Note that the mechanical system in Example 5.15  is a single-degree-of-freedom sys-
tem, which requires only one generalized coordinate (e.g., x or θ) to describe the system 
dynamics. The example shows that if we can obtain the expression of T + V in terms of 
the generalized coordinate, the equation of motion can be derived by taking the time 
derivative and setting it equal to zero.

For an n-degree-of-freedom system, n independent equations of motion can be derived 
using Lagrange’s formulation, which is applicable to both conservative and nonconserva-
tive systems. One of the forms of Lagrange’s equations for a conservative system is 

 
d
dt

T
q

T
q

V
q

i n
i i i

∂
∂









 − ∂

∂
+ ∂

∂
= = …



0 1 2, , , ,  (5.47)

where:
qi is the ith generalized coordinate
n is the total number of independent generalized coordinates

In general, the kinetic energy is a function of the generalized displacements and the gen-
eralized velocities, 

 T T q q q q q qn n= … …( )1 2 1 2, , , , , , ,    (5.48)

The potential energy is a function of the generalized displacements, 

 V V q q qn= …( , , , )1 2  (5.49)

Example 5.16: A Double Pendulum

Consider the double pendulum in Figure 5.84, where two point masses of equal mass 
m are attached to two rigid links of equal length L. The links are assumed to be mass-
less. The motion of the system is constrained in the vertical plane. Neglecting friction, 
derive the equations of motion by using Lagrange’s equations. Assume small angles for 
θ1 and θ2. 
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Solution

The system is only subjected to gravitational forces, and it is a conservative system. The 
dynamics of the system can be described using two independent angular displacement 
coordinates, θ1 and θ2. The kinetic energy of the system is 

 T mv mv= +
1
2

1
2

1
2

2
2
 

From kinematics, 

 v L1 1= θ  

and, as shown in Figure 5.85a, 

 v L L L2
2

1

2

2

2
2

1 2 2 12= ( ) + ( ) + −   θ θ θ θ θ θcos( ) 

θ1

θ2
L

L

m

m

FIGURE 5.84
A double-pendulum system.
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FIGURE 5.85
A double-pendulum: (a) kinematic diagram and (b) positions of the mass centers.
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which is obtained by applying the law of cosines. Thus, 

 
T m L m L L L= ( ) + ( ) + ( ) + −





1
2

1
2

21

2

1

2

2

2
2

1 2 2 1
    θ θ θ θ θ θ θcos( )

 

Note that no spring elements are involved in the system. This implies that Ve = 0 and 
V = Vg. Using the datum defined in Figure 5.85b, we can obtain the gravitational poten-
tial energy 

 V mgh mghg = − −1 2 

where 

 

h L

h L L

1 1

2 1 2

=

= +

cos

cos cos

θ

θ θ  

Thus, 

 V mgL mgL= − −2 1 2cos cosθ θ  

We then apply Lagrange’s equations 

 

d
dt

T
q

T
q

V
q

i
i i i

∂
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 −

∂
∂

+
∂
∂

= =


0 1 2, ,
 

For i = 1, q1 = θ1,  q1 1= θ , 

 

∂
∂

= + −

∂
∂
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T
mL mL

t
T

mL mL



 





θ
θ θ θ θ

θ
θ
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2
1

2
2 2 1

1

2
1
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d
d

22
2 2 1

2
2 2 1 2 1

1

2
1 2

   

 

θ θ θ θ θ θ θ θ

θ
θ θ

cos( ) ( )( )− − − −

∂
∂

= −

mL

T
mL

sin

ssin( )( )

sin

θ θ

θ
θ

2 1

1
1

1

2

− −

∂
∂

=
V

mgL
 

Substituting into Lagrange’s equation results in 

 

d
dt

T T V
mL mL mL

∂
∂









 −

∂
∂

+
∂
∂

= + − −


 

θ θ θ
θ θ θ θ

1 1 1

2
1

2
2 2 1

22 cos( ) θ θ θ θ2
2

2 1 12 0sin( ) sin− + =mgL
 

Similarly, for i q q= = =2 2 2 2 2, ,θ θ

 , 
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∂
∂

= + −

∂
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T
mL mL

t
T

mL mL



 



 

θ
θ θ θ θ

θ
θ

2

2
2

2
1 2 1

2

2
2

2
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d
d

   

 

θ θ θ θ θ θ θ θ

θ
θ θ

1 2 1
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1 2 1 2 1

2

2
1 2
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∂
∂

= −
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T
mL nn( )

sin

θ θ

θ
θ

2 1

2
2

−

∂
∂

=
V

mgL
 

Substituting into Lagrange’s equation gives 

 

d
dt

T T V
mL mL mL

∂
∂









 −

∂
∂

+
∂
∂

= + − +


  

θ θ θ
θ θ θ θ

2 2 2

2
2

2
1 2 1

2cos( ) θθ θ θ θ1
2

2 1 2 0sin( ) sin− + =mgL
 

For small motions (θ1 ≈ 0 and θ2 ≈ 0), the two differential equations of motion are linear-
ized as 

 

2 2 0

0

2
1

2
2 1

2
1

2
2 2

mL mL mgL

mL mL mgL

 

 

θ θ θ

θ θ θ

+ + =

+ + =  

or in second-order matrix form 

 

2 2 0
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2 2
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θ

θ

θ
θ22

0
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For a nonconservative system, the form of Lagrange’s equations given in Equation 5.47 is 
changed to 

 

d
dt

T
q

T
q

V
q

Q i n
i i i

i
∂
∂









 − ∂

∂
+ ∂

∂
= = …



, , , ,1 2
 

(5.50)

where Qi’s represent nonconservative forces or moments associated with generalized coor-
dinates, known as generalized forces. Typical examples of nonconservative forces include 
the damping force, the friction force, and other external forces by which the work done is 
not zero. Note that both the gravitational force and the spring force are conservative forces, 
which are taken into account when finding the expression of the potential energy V. 

The generalized force associated with the ith generalized coordinate can be determined 
by 

 
Q

q
j Ni j

j

ij

N

=
∂
∂

= …
=

∑F
r

1

1 2, , ,
 

(5.51)

where:
Fj is the nonconservative force vector applied to the system at the jth point
rj is the location vector of the jth point with respect to a fixed coordinate system
N is the number of nonconservative forces applied to the system
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For instance, the point mass in Figure 5.86a is subjected to a force F. It moves in the three-
dimensional space, and r is the position vector. Choosing x, y, and z as the generalized 
coordinates, we can find the associated generalized forces by applying Equation 5.51, 

 
Q

q
F F F

x
x y z F F F Fx y z x y z x1

1
= ∂

∂
= + +( ) ∂

∂
+ +( ) = + +( ) =F

r
i j k i j k i j k i

  

 
Q

q
F F F

y
x y z F F F Fx y z x y z y2

2
= ∂

∂
= + +( ) ∂

∂
+ +( ) = + +( ) =F

r
i j k i j k i j k j

  

 
Q

q
F F F

z
x y z F F F Fx y z x y z z3

3
= ∂

∂
= + +( ) ∂

∂
+ +( ) = + +( ) =F

r
i j k i j k i j k k

 

The example in Figure 5.86b shows how to find the generalized force if the rotational 
motion is involved. A pendulum of length L is subjected to a horizontal force and a torque 
at the pivot. Within the chosen coordinate system x-y-z, the torque can be expressed as 
Mk and the resulting position vector at the pivot can be expressed as θk. With the angular 
displacement θ as the generalized coordinate, applying Equation 5.51 gives 

 

Q
q

F L L M

F L

j
j

j

=
∂
∂

= ( ) ∂
∂

+( ) + ( ) ∂
∂

( )

= ( ) −

=
∑F

r
j i j k k

j

1

2

θ
θ θ

θ
θcos sin

sinn cos cosθ θ θi j k k+( ) + ( ) = +L M FL M  

Note that Equation 5.51 is derived based on the principle of virtual work, which is beyond 
the scope of this text. The interested reader can refer to [13] for more details.

Example 5.17:  A Single-Degree-of-Freedom Mass–Spring–Damper 
System (Energy Method)

Reconsider the simple mass–spring–damper system, as shown in Figure 5.29a. Derive 
the equation of motion by using Lagrange’s equations.

Solution

The displacement x is chosen as the generalized coordinate, and the origin is set at the 
static equilibrium position. Other than the spring force, the system is subjected to the 
damping force fb and the external force f (as shown in Figure 5.87), and it is a noncon-
servative system. 

y

x

z

F = Fxi + Fyj + Fzk

r = xi + yj + zk

(a)

y

x

r1 = L cosθi + L sinθj

F1 = Fyj

F2 = Mk r2 = θk

(b)

FIGURE 5.86
Example of generalized forces: (a) translational motion and (b) rotational motion.
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The kinetic energy and the potential energy of the system are T mx= 1
2

2
  and V kx= 1

2
2, 

respectively. The generalized force is 
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x
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x
x bx

x
x f bxj
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= ( ) ∂
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( ) + −( ) ∂
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i i i i
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Applying the Lagrange’s equation 

 
d
dt

T
x

T
x

V
x

Q
∂
∂







 −

∂
∂

+
∂
∂

=
  

gives the equation of motion of the system 

 mx kx f bx + = −  

or 

 mx bx kx f + + =  

Example 5.18: A Cart–Inverted-Pendulum System (Energy Method)

Reconsider the mechanical system, as shown in Figure 5.79. Derive the equations of 
motion of the system by using Lagrange’s equations.

Solution

As shown in Figure 5.88a, the motion of the cart is purely translational and 

 
T mxcart =

1
2

2


 

The inverted pendulum undergoes both translation and rotation and 

 
T Mv IC Cpendulum = +

1
2

1
2

2 2
θ

 

where the velocity at the center of mass can be found by 
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L L
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2
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2 2

2 2
1
4
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 = + +

 

 

 θ θ θ θ θ θcos sin cos θθ2

 

x

ffb = bx m

FIGURE 5.87
The nonconservative forces applied to a mass–spring–damper system.
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and the mass moment of inertia I MLC = 1
12

2. Thus, the kinetic energy of the system is 

 
T T T m M L MLxx M= + = + ++cart pendulum

1
2

1
2

1
6

2 2 2( ) cos





θ θ θ
 

Note that no spring elements are involved in the system. This implies that Ve = 0 and 
V = Vg. Using the datum defined in Figure 5.88b, we can obtain the gravitational poten-
tial energy 

 V Mgh Mg
L

g = =
2

cosθ 

As shown in Figure 5.88c, the system is subjected to a horizontal force f, by which the 
work done is not zero. Thus, it is a nonconservative system. Same as Example 5.14, the 
displacement of the cart, x, and the angular displacement of the pendulum, θ, are cho-
sen as the generalized coordinates. We then apply Lagrange’s equations 
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For i = 1, q1 = x,  q x1 = , 
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Applying Equation 5.51 gives the generalized force 
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FIGURE 5.88
A cart−inverted-pendulum system: (a) kinematic diagram, (b) position of the mass center of the pendulum, and 
(c) nonconservative force.
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Substituting into Lagrange’s equation results in 

 
( ) cos sinm M x ML ML f+ + − =
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Applying Equation 5.51 gives the generalized force 

 
Q f x2 0=

∂
∂

= ( ) ∂
∂

( ) =F
r

i i
θ θ  

Note that the external force f does not generate a moment on the pendulum. 
Substituting into Lagrange’s equation gives 

 
1
3

1
2

1
2

02ML MLx MgL

θ θ θ+ − =cos sin
 

The result is the same as the one obtained previously in Example 5.14. 

PROBLEM SET 5.4

 1. For the pulley system in Example 5.15, draw the free-body diagram and kinematic 
diagram, and derive the equation of motion by using the force/moment approach.

 2. The double pulley system shown in Figure 5.89 has an inner radius of r1 and an 
outer radius of r2. The mass moment of inertia of the pulley about point O is IO. 
A translational spring of stiffness k and a block of mass m are suspended by cables 
wrapped around the pulley, as shown. Draw the free-body diagram and kinematic 
diagram, and derive the equation of motion by using the force/moment approach.   

m k

r1
r2

O

FIGURE 5.89
Problem 2.
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 3. Consider the mechanical system shown in Figure 5.90. A disk−shaft system is 
connected to a block of mass m through a translational spring of stiffness k. The 
elasticity of the shaft and the fluid coupling are modeled as a torsional spring of 
stiffness K and a torsional viscous damper of damping coefficient B, respectively. 
The radius of the disk is r and its mass moment of inertia about point O is IO. 
Assume that the friction between the block and the horizontal surface cannot be 
ignored and is modeled as a translational viscous damper of damping coefficient b. 
The input to the system is the force f. Draw the necessary free-body diagram and 
the kinematic diagram, and derive the equations of motion.   

 4. Consider the mechanical system shown in Figure 5.91, where the motion of the rod 
is small angular rotation. When θ = 0 and f = 0, the deformation of each spring is 
zero and the system is at static equilibrium. Assume that the friction between the 
block of mass m1 and the horizontal surface cannot be ignored and is modeled as 
a translational viscous damper of damping coefficient b.   

f

b
x
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r

B

K

m

IO
O

θ

FIGURE 5.90
Problem 3.
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FIGURE 5.91
Problem 4.
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 a. Assuming that a > c >  0, determine the mass moment of inertia of the rod 
about the pivot point O.

 b. Draw the necessary free-body diagram and the kinematic diagram, and derive 
the equations of motion for small angles.

 5. Consider the mechanical system shown in Figure 5.92, in which a simple pendu-
lum is pivoted on a cart of mass m and is constrained to rotate in a vertical plane. 
The pendulum consists of a point mass M concentrated at the tip of a massless 
rod of length L. Assume that the friction between the cart and the horizontal sur-
face cannot be ignored. Denote the displacement of the cart as x and the angular 
displacement of the pendulum as θ. Draw the necessary free-body diagram and 
kinematic diagram, and derive the equations of motion for small angles.   

 6. Consider the mechanical system shown in Figure 5.93. The inputs are the force 
f1 applied to the cart and the force f2 applied at the tip of the rod. The outputs are 
the displacement x of the cart and the angular displacement θ of the pendulum.   

 a. Draw the free-body diagram and kinematic diagram, and derive the equations 
of motion for small angles.

 b. Using the differential equation obtained in Part (a), determine the state-space 
representation.

 7. For the mechanical system in Problem 2, use the energy method to derive the 
equation of motion.

90°

θ

f2

f1

k
m

M,  L

x

FIGURE 5.93
Problem 6.
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FIGURE 5.92
Problem 5.
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 8. For the mechanical system in Problem 11 of Problem Set 5.3, use the energy method 
to derive the equation of motion.

 9. Repeat Problem 13 of Problem Set 5.3, using Lagrange’s equations.
 10. Repeat Problem 14 of Problem Set 5.3, using Lagrange’s equations.
 11. Repeat Problem 5, using Lagrange’s equations.
 12. Repeat Problem 6, using Lagrange’s equations.
 13. A robot arm consists of rigid links connected by joints allowing the relative motion 

of neighboring links. The dynamic model for a robot arm can be derived using 
Lagrange’s equations

 
d
dt

T T V
i n

i i i
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∂
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+ ∂
∂

= = …
θ θ θ

τ , , , ,1 2

 where:
  θi is the angular displacement of the ith joint
  τi is the torque applied to the ith joint
  n is the total number of joints

  Consider a single-link planar robot arm, as shown in Figure 5.94. Use Lagrange’s 
equations to derive the dynamic model of the robot arm. Assume that the motion 
of the robot arm is constrained in a vertical plane, and the joint angle varies 
between 0° and 360°.   

 14. Repeat Problem 13  for a two-link planar robot arm, as shown in Figure 5.95. 
Assume that the motion of the robot arm is constrained in a horizontal plane, and 
the joint angles vary between 0° and 360°. 

O

θτ

m, L

FIGURE 5.94
Problem 13.
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FIGURE 5.95
Problem 14.
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5.5 Gear–Train Systems

Gear–train systems are important in many engineering applications. Figure 5.96a shows a pair 
of ideal gears, which are assumed to be rigid and meshed without backlash. A torque τ1 pro-
duced by a motor is applied to gear 1, which rotates and causes gear 2 to rotate in the opposite 
direction. The radii of gear 1 and gear 2 are r1 and r2, respectively. The relative sizes of the two 
gears result in a proportionality constant between the angular velocities of the respective shafts. 

For the purpose of analysis, a free-body diagram for the rotational gear–train system 
must be drawn with care. It is convenient to visualize the gears as circles. Figure 5.96b 
shows the free-body diagram seen from the side of the input shaft. The two gears are tan-
gent at the contact point and rotate without slipping. The torque applied to gear 1 causes 
an action force F onto gear 2 at the contact point. Because of Newton’s third law, gear 1 is 
subjected to a reaction force at the contact point. Use θ1 and θ2 to denote the respective 
angular displacements. The geometric constraint is 

 r r1 1 2 2θ θ=  (5.52)

which can be rewritten as 

 
θ
θ

2

1

1

2
= =r

r
N (5.53)

where N is called the gear ratio, which also defines the relationship between the numbers 
of teeth on the two gears: 

 

n
n

N1

2
=

 
(5.54)

Note that the gear ratio N may be defined differently among authors. Differentiating 
Equation 5.53 gives 

 

ω
ω

2

1
= N

 
(5.55)

Equations 5.54 and 5.55 show that if the number of teeth on the output gear is larger than 
the number of teeth on the input gear, the input gear must rotate faster than the output 
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FIGURE 5.96
A gear–train system: (a) physical system and (b) free-body diagram.
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gear. Thus, the gear pair is a speed reducer for N < 1. If the gears have negligible inertia or 
zero angular acceleration, and if the energy loss due to friction between the gear teeth can 
be neglected, the input work must be equal to the output work. Under these conditions, 
the output torque is greater than the input torque for a speed reducer.

To obtain the mathematical model of a gear–train system, the fundamental laws are still 
applied. We need to draw a free-body diagram and apply the moment equation for each 
gear. The derivation also requires a consideration of the geometric constraint.

Example 5.19: A Single-Degree-of-Freedom Gear–Train System

For the gear–train system shown in Figure 5.96a, derive the differential equation of 
motion. The mass moments of inertia of the two gears about their respective fixed cen-
ters are IC1 and IC2.

Solution

The free-body diagram is shown in Figure 5.96b. The geometric constraint is 
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Applying the moment equation to each gear gives 
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Combining the two equations and eliminating F yields 
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Note that the angular displacements θ1 and θ2 are dependent through the geometric con-
straint. Thus, the gear–train in Figure 5.96 is a single-degree-of-freedom system, which 
requires only one equation of motion in terms of only one coordinate. Assume that the 
equation is expressed in terms of θ1. Introducing the geometric constraint results in the 
equation of motion 
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simplified to 
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which is the dynamics seen from the input side.
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Example 5.20: A Single-Link Robot Arm

The mechanical model of a single-link robot arm driven by a motor can be represented 
as a gear–train system, as shown in Figure 5.97, in which two rotational subsystems are 
coupled with a pair of gears with negligible inertia. The mass moments of inertia of the 
motor and the load are Im and I, respectively. The coefficients of torsional viscous damp-
ing of the motor and the load are Bm and B, respectively. τm is the torque generated by the 
motor. Assume that the gear ratio is N = r1/r2. Derive the differential equation of motion 
in terms of the motor variable θm. 

Solution

The free-body diagrams for the motor, the load, and the gear–train are shown in 
Figure 5.98, where F represents the contact force between the two gears. The moments 
caused by the contact force on the motor and on the load are r1F and r2F, respectively. 
Applying the moment equation to the motor and the load gives 
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Solving for F from the equation for the load and substituting it into the equation for the 
motor results in 
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FIGURE 5.98
Free-body diagrams: (a) motor, (b) load, and (c) gear–train.
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FIGURE 5.97
The mechanical model of a single-link robot arm driven by a motor.
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By the geometry of the gears, 
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Substituting these into the previous differential equation gives 

 τ θ θ θ θm m m m m m m− − + =B N I B I   

2( )  

which can be rearranged as 

 ( ) ( )I N I B N Bm m m m m+ + + =2 2
 θ θ τ  

The equation is in terms of the angular displacement of the motor. 

PROBLEM SET 5.5

 1. Repeat Example 5.19, and determine a mathematical model for the simple one-
degree-of-freedom system shown in Figure 5.96a in the form of a differential equa-
tion of motion in θ2.

 2. Repeat Example 5.20, and determine a mathematical model for the single-link 
robot arm shown in Figure 5.97 in the form of a differential equation of motion in 
the load variable θ.

 3. Consider the one-degree-of-freedom system shown in Figure 5.99. The system 
consists of two gears of mass moments of inertia I1 and I2 and radii r1 and r2, respec-
tively. The applied torque on gear 1 is τ1. Assume that the gears are connected with 
flexible shafts, which can be approximated as two torsional springs of stiffness, 
K1 and K2, respectively. 

 a. Draw the necessary free-body diagrams, and derive the differential equation 
of motion in θ1.

 b. Using the differential equation obtained in Part (a), determine the transfer 
function Θ2(s)/T1(s).

 c. Using the differential equation obtained in Part (a), determine the state-space 
representation with θ2 as the output.   
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FIGURE 5.99
Problem 3.
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 4. Consider the gear–train system shown in Figure 5.100. The system consists of a 
rotational cylinder and a pair of gears. The gear ratio is N =  r1/r2. The applied 
torque on the cylinder is τa. Assume that the gears are connected with flexible 
shafts, which can be approximated as two torsional springs of stiffness, K1 and K2, 
respectively. 

 a. Draw the necessary free-body diagrams, and derive the differential equations 
of motion.

 b. Using the differential equations obtained in Part (a), determine the state-space 
representation. Use θa, θ1, ωa, and ω1 as the state variables, and use θ2 and ω2 as 
the output variables.

 5. A three-degree-of-freedom gear–train system is shown in Figure 5.101, which con-
sists of four gears of moments of inertia I1, I2, I3, and I4. Gears 2 and 3 are meshed 
and their radii are r2 and r3, respectively. Gears 1 and 2 are connected by a rela-
tively long shaft, and gears 3 and 4 are connected in the same way. The shafts are 
assumed to be flexible, and can be approximated by torsional springs. The applied 
torque and load torque are τa and τl on gear 1 and gear 4, respectively. The gears 
are assumed to be rigid and have no backlash. Derive the differential equations of 
motion.   

 6. Repeat Problem 5. Assume that the shaft connecting gears 1 and 2  is relatively 
short and rigid.
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FIGURE 5.100
Problem 4.
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5.6 System Modeling with Simulink and Simscape

Simulink is a block diagram environment for multidomain simulation and model-based 
design. It provides a graphical editor, block libraries, and solvers for modeling, simulating, 
and analyzing dynamic systems, and even connecting your model to hardware for real-
time testing. Simscape is an extension of Simulink for modeling and simulating  physical 
systems spanning mechanical, electrical, hydraulic, and other physical domains. The 
reader can refer to Sections 1.6 and 1.7 for a brief introduction to Simulink and Simscape. 
In this section, more examples are included to illustrate mechanical system modeling with 
Simulink and Simscape. The mathematical models in all examples are given without a 
detailed derivation and the reader can derive them as an exercise.

5.6.1 Translational Systems

It is known that translational mechanical systems can be modeled as systems with inter-
connected mass, spring, and damper elements. The dynamics of such systems can be rep-
resented by ordinary differential equations, transfer functions, or in the state-space form. 
The common inputs are forces or displacements, and the common outputs are displace-
ments, velocities, or accelerations.

To model a translational mechanical system with Simulink and Simscape, three parts of 
blocks are needed to simulate the input, the system itself, and the output. A Simulink dia-
gram is constructed based on the system’s mathematical representation, such as differential 
equation(s), transfer function(s), or the state-space form. Blocks in the Simulink libraries of 
Sources, Continuous, and Sinks are commonly used to construct the input, the sys-
tem itself, and the output, respectively. While a Simscape block diagram is built just as you 
would assemble a physical system. Basic physical components like mass, spring, damper, 
etc. are available in the Simscape library of Translational Elements for representing 
one-dimensional translational motion. The blocks in the Simscape libraries of Mechanical 
Sources and Mechanical Sensors are used to generate inputs and output measurements.

Example 5.4 in Section 5.2 shows how to build a Simulink or Simscape block diagram 
of a single-degree-of-freedom mass–spring–damper system with a force input. The math-
ematical model of the system is given by an ordinary differential equation. In this section, 
we will consider different numbers of degrees of freedom, different system inputs, and 
different system representations.

Example 5.21: A Single-Degree-of-Freedom Vehicle Model 

The mass–spring–damper system shown in Figure 5.102 represents a vehicle traveling 
on a rough road. Assume that the surface of the road can be approximated as a sine 
wave z = Z0sin(ωt), where Z0 = 0.01 m and ω = 3.5 rad/s. The mathematical model of the 
system is given by an ordinary differential equation 

 mx bx kx bz kz  + + = +  

where m = 3000 kg, b = 2000 N ⋅ s/m, and k = 50 kN/m. 

 a. Build a Simulink model of the system based on the mathematical representa-
tion and find the displacement output x(t).

 b. Convert the ordinary differential equation to a transfer function and repeat 
Part (a). Assume zero initial conditions.

 c. Build a Simscape model of the physical system and find the displacement 
output x(t).   
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Solution

 a. Solving for the highest derivative of the output x gives 

 
  x

m
kz bz kx bx= + − −

1
( )

 

 The corresponding Simulink block diagram is shown in Figure 5.103. Note that 
the displacement input z(t) is a sine function, which can be defined using a 
Sine Wave block available in the library of Sources. Double-click the block 
and type 0.01 for the Amplitude and 3.5 for the Frequency to define the 
input z(t) = 0.01sin(3.5t).   

 b. The transfer function relating the input z(t) to the output x(t) is 

 
X s
Z s

bs k
ms bs k

( )
( )

=
+

+ +2  

 The Simulink block diagram built based on the transfer function is shown in 
Figure 5.104, where a Transfer Fcn block is used to represent the vehicle 
system. Double-click the block and type [b k] for the Numerator coef-
ficient and [m b k] for the Denominator coefficient to define the 
transfer function X(s)/Z(s).   

 c. The Simscape block diagram corresponding to the physical system is shown in 
Figure 5.105, which can be created by following these steps:   
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FIGURE 5.102
The mechanical model of a vehicle traveling on a rough road.
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FIGURE 5.103
Simulink block diagram built based on the ordinary differential equation.



243Mechanical Systems

 1. Type ssc_new at the MATLAB Command window to open the main 
Simscape library and create a new model.

 2. Open the library of Simscape/Foundation Library/Mechanical/ 
Translational Elements and drag the Mass, Translational 
Damper, and Translational Spring into the model window. Double-
click these blocks to define the parameters Mass, Damping coeffi-
cient, and Spring rate as m, b, and k.

 3. To add the representation of the displacement input, open the library 
of Simscape/Foundation Library/Mechanical/Mechanical 
Sources and drag the Ideal Translational Velocity Source into 
the model window. Note that two types of inputs are available in Simscape 
for translational mechanical systems, and they are used to define either a 
force or a velocity input. Therefore, the displacement input function in this 
example must be converted to the velocity by taking the time derivative.

 4. To add the sensor to measure the displacement of the mass, open the library 
of Simscape/Foundation Library/Mechanical/Mechanical 
Sensors and drag the Ideal Translational Motion Sensor into 
the model window.

Sine wave Transfer fcn

z(t) x(t)

Scope

bs + k
ms2 + bs + k

FIGURE 5.104
Simulink block diagram built based on the transfer function.
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Simscape block diagram corresponding to Example 5.21.
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 5. Now open Simulink libraries to add the source and the scope. As men-
tioned in Step 3, taking the time derivative of z(t) gives the velocity input 
function z t t( ) . cos( . )= 0 035 3 5 . Open the library of Simulink/Sources to 
drag the Clock block and open the library of Simulink/User-Defined 
Functions to drag the Fun block. Double-click the Fun block and type 
0.035*cos(3.5*u) for the Expression, where u is the default name of 
the input to the Fun block, and here it represents the time t. Note that the 
Simulink-PS Converter and PS-Simulink Converter blocks are 
used to convert Simulink signals into physical signals or vice versa.

 6. Orient the blocks and connect them, as shown in Figure 5.105.

Define the values of the parameters m, b, and k in the MATLAB Command window. 
Run all simulations and the same curve, as shown in Figure 5.106, can be obtained, 
which is the resulting displacement output x(t) of the vehicle due to the roughness of 
the road. 

Example 5.22: A Two-Degree-of-Freedom Mass–Spring System 

Consider the two-degree-of-freedom mass–spring system shown in Figure 5.107. The 
mass block m1 and the spring k1 represent a rotating machine, which is subjected to a 
harmonic disturbance force f  =  40sin(7πt) N due to a rotating unbalanced mass. The 
mass block m2 and the spring k2 represent a vibration absorber (see Section 9.3 for more 
details), which is designed to reduce the displacement of the machine. The mathematical 
model of the system is given by a set of ordinary differential equations 
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Displacement output x(t) of the vehicle model in Example 5.21.
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where m1 = 6 kg, k1 = 6000 N/m, m2 = 1.65 kg, and k2 = 800 N/m. Assume zero initial 
conditions.  
 a. Build a Simulink model of the system based on the differential equations of 

motion and find the displacement outputs x1(t) and x2(t).
 b. Convert the ordinary differential equations to the state-space form and repeat 

Part (a).
 c. Build a Simscape model of the physical system and find the displacement out-

puts x1(t) and x2(t).  

Solution

 a. Solving for the highest derivatives of the output x1 and x2, respectively, gives 
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 The corresponding Simulink block diagram is shown in Figure 5.108, where 
four Integrator blocks are included to obtain the signals x1, x1, x2, and x2. 
A  Sine Wave block is used to model the harmonic disturbance force 
f = 40sin(7πt) N. Double-click the block and type 40  for the Amplitude and 
7*pi for the Frequency to define the disturbance input.   

 b. Define the state, the input, and the output vectors as

 

x y=





















=





















= =

x
x
x
x

x
x
x
x

u f
x

1

2

3

4

1

2

1

2

1





, ,
xx2









 

x2

x1

k2

m2

m1

k1

f

FIGURE 5.107
A two-degree-of-freedom mass–spring system.
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  The state-space representation is
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   The Simulink block diagram built based on the state-space form is shown in 
Figure 5.109, in which a State-Space block is used to represent the mass–
spring system. Same as Part (a), a Sine Wave block is used to model the 
input. Double-click the State-Space block and define the matrices A, B, C, 
and D, which is a 2 × 1 zero vector. The parameter of Initial conditions 
is a 4 × 1 zero vector. The bar-shaped block in Figure 5.109 is called Demux, 
which can be found in the library of Signal Routing and is used to split 
the vector signal y into two signals x1 and x2.

 c.  The Simscape block diagram corresponding to the physical system is shown 
in Figure 5.110, which can be created by following the steps similar to those 
in Example 5.21. 
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FIGURE 5.108
Simulink block diagram built based on the ordinary differential equations.
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Define the values of the parameters m1, m2, k1, and k2 in the MATLAB Command window. 
Run all simulations and the same curves, as shown in Figure 5.111, will be obtained, 
which are the resulting displacement outputs x1(t) and x2(t) due to the harmonic distur-
bance force input. 

The aforementioned two examples and Example 5.4  demonstrate basic modeling tech-
niques with Simulink and Simscape. Since a Simulink block diagram of a dynamic system 
is created based on the system’s mathematical model, the modeling techniques discussed 
in this section can be applied to other types of dynamic systems represented as ordinary 
differential equations, transfer functions, or in the state-space form. However, a Simscape 
model describes the physical structure of a dynamic system rather than the underlying 
mathematics. It is obvious that Simscape diagrams look different for different types of 
dynamic systems. Therefore, Sections 6.6 and 7.4 will focus on Simscape modeling in vari-
ous physical domains, such as rotational mechanical, electrical, hydraulic, and thermal.
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FIGURE 5.109
Simulink block diagram built based on the state-space form.

Solver
configuration

Sine
wave

Simulink-PS
converter

Mechanical
translational
reference 1

Mechanical
translational
reference 1

S PS

Ideal force source

Ideal translational
motion sensor 1

Ideal translational
motion sensor PS-Simulink

converter

PS-Simulink
converter 1

Scope 1

PS S

PS S

Scope

Mechanical
translational
reference 2

Translational
spring k1

Translational
spring k2

Mass m1

Mass m2

f(x) = 0

S
C

R

R
C

R
C

P
V
C

C
V
P

R

R

FIGURE 5.110
Simscape block diagram corresponding to Example 5.22.
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5.6.2 Rotational Systems

The blocks in the library of Simscape\Foundation Library\Mechanical can be cat-
egorized into two classes: translational and rotational. Basic elements such as inertia, rota-
tional damper, and rotational spring available in the library of Rotational Elements 
are used to model a rotational mechanical system. Two source blocks, Ideal Torque 
Source and Ideal Angular Velocity Source, in the library of Mechanical 
Sources are used to generate inputs. Also, two sensors, Ideal Torque Sensor and 
Ideal Rotational Motion Sensor, in the library of Mechanical Sensors are used 
to output measurements.

Example 5.23:  A Single-Degree-of-Freedom Rotational 
Mass–Spring–Damper System 

Consider the simple disk–shaft system in Example 5.8. A single-degree-of-freedom rota-
tional mass–spring–damper system can be used to approximate the dynamic behavior 
of the disk–shaft system. The parameter values are I = 0.01 kg ⋅ m2, B = 1.15 N ⋅ m ⋅ s/rad, 
and K = 4150 N ⋅ m/rad.
 a. Assume that a torque τ = 10sin(600t) is acting on the disk, which is initially at 

rest. Build a Simscape model of the physical system and find the angular dis-
placement output θ(t).

 b. Assuming that the external torque is τ = 0 and the initial angular displacement 
is θ(0) = 0.1 rad, find the angular displacement output θ(t).

Solution

 a. The Simscape block diagram and the angular displacement output of the 
system are shown in Figures 5.112  and 5.113, respectively. Comparing 
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FIGURE 5.111
Displacement output x(t) of the vehicle model in Example 5.22.
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Figure  5.112  with Figure 5.31, which is the Simscape model of a single-
degree-of-freedom translational mass–spring–damper system, reveals the 
similarity of these two Simscape diagrams. The main difference is that the 
blocks in this example are all related to rotational motion instead of transla-
tional motion.     
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FIGURE 5.112
Simscape block diagram of the physical system in Example 5.23.
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Angular displacement output θ(t) of the system in Example 5.23 with a torque input.



250 Modeling and Analysis of Dynamic Systems

 b. The Simscape model in Figure 5.111 can also be used to simulate the system in 
Part (b). To specify a zero external torque, we can either define the Amplitude 
of the Sine Wave as 0 or delete the blocks related to input generation, includ-
ing Sine Wave, Simulink-PS Converter, Ideal Torque Source, and 
Mechanical Rotational Reference blocks. To specify a non-zero initial 
angle, double-click the Rotational Spring block, type 0.1 for the Initial 
deformation, and choose the unit as rad. This implies that the spring is ini-
tially twisted by 0.1 rad. Also, double-click the Ideal Rotational Motion 
Sensor block, type 0.1  for the Initial angle, and choose the unit as 
rad. The corresponding angular displacement of the system is shown in 
Figure 5.114. 

Example 5.24: A Single-Link Robot Arm with a Gearbox 

Consider the single-link robot arm in Example 5.20. It is driven by a DC motor through 
a gearbox with a gear ratio N = 1/70. The mass moments of inertia of the motor and the 
load are Im and I, respectively. The coefficients of torsional viscous damping of the motor 
and the load are Bm and B, respectively. τm is the torque generated by the motor. The 
parameter values are Im = 3.87 × 10–7 kg ⋅ m2, I = 0.0016 kg ⋅ m2, Bm = 0 N ⋅ m ⋅ s/rad, and 
B = 0.004 N ⋅ m ⋅ s/rad. Assume that the robot arm is initially at rest and the motor torque 
is τm(t) = 0.003u(t), where u(t) is the unit-step function with a step time of 0 seconds. 
Build a Simscape model of the physical system and find the angular velocity output θ( )t .

Solution

The Simscape model of the system is shown in Figure 5.115. To model the robot arm, two 
Inertia blocks are included, one for the motor and the other for the load. Since the 
damping of the motor can be ignored, one Rotational Damper block is included 
to represent the damping of the load. The shaft of the motor and that of the load are 
coupled through a gearbox. Double-click the Gear Box block and type 70 (not 1/70) 
for the Gear ratio, which in Simscape is defined as the ratio of the input shaft angu-
lar velocity to that of the output shaft. This is the reciprocal of the gear ratio defined in 
Equation 5.55. The output of port W of the Ideal Rotation Motion Sensor is the 
corresponding angular velocity θ( )t , which is shown in Figure 5.116.  
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FIGURE 5.114
Angular displacement output θ(t) of the system in Example 5.23 with a non-zero initial condition.
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Note that only the Simscape block diagrams are given in the previous two examples. 
The corresponding Simulink modeling is left to the reader as an exercise.

PROBLEM SET 5.6

 1.  Consider the mass–spring–damper system in Problem 6 of Problem Set 5.2. 
Assume that the force acting on the mass block is a unit-impulse function 
with a magnitude of 100 N and a duration of 0.1 sec. The parameter values are 
m = 500 kg, b = 250 N·s/m, and k = 200,000 N/m. 

 a. Build a Simulink model based on the differential equation of motion of the 
system and find the displacement output x(t).

 b. Build a Simscape model of the physical system and find the displacement out-
put x(t).
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FIGURE 5.115
Simscape block diagram of the single-link robot arm with a gearbox.
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Angular velocity output θ( )t  of the robot arm in Example 5.24.
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 2.  Repeat Problem 1 for the mass–spring–damper system shown in Figure 5.117, 
in which the origin of the coordinate x is set at equilibrium. Assume that 
x(0) = 0.1 m and x( )0 0=  m/s. The parameter values are m = 20 kg, b = 125 N 
s/m, and k = 400 N/m.   

 3.  Consider the two-degree-of-freedom mass–spring system shown in Figure 5.118. 
The parameter values are m1 = m2 = 5 kg, k1 = 2000 N/m, and k2 = 4000 N/m. Assume 
that, initially, x(0) = [0 0]T and x( )0 1 0= [ ]T.   

 a. Build a Simulink model based on the differential equations of motion of the 
system and find the displacement outputs x1(t) and x2(t).

 b. Build a Simscape model of the physical system and find the displacement 
outputs x1(t) and x2(t).

 4.  Repeat Problem 3  for the two-degree-of-freedom quarter-car model in 
Example 5.5. Assume that the surface of the road can be approximated as a sine 
wave z = Z0sin(2πvt/L), where Z0 = 0.01 m, L = 10 m, and the speed v = 20 km/h. 
If the car moves at a speed of 100 km/h, rerun the simulations and compare the 
results with those obtained in the case of 20 km/h. Ignore the control force f for 
both cases.

 5.  Consider the disk–shaft system in Problem 2 of Problem Set 5.3. The system 
is approximated as a single-degree-of-freedom rotational mass–spring system, 
where m = 10 kg, r = 0.05 m, B = 1 N ⋅ m ⋅ s/rad, and K = 1000 N ⋅ m/rad. 

 a. Assume that a torque τ = 50u(t) N ⋅ m is acting on the disk, which is initially at 
rest. Build a Simscape model of the physical system and find the angular dis-
placement output θ(t).

 b. Assuming that the external torque is τ = 0 and the initial angular displacement 
is θ(0) = 0.1 rad, find the angular displacement output θ(t).
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FIGURE 5.118
Problem 3.

x

b
k

k m

FIGURE 5.117
Problem 2.
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 6.  Consider the pendulum-bob system in Problem 5 of Problem Set 5.3. The para-
meter values are m = 0.1 kg, M = 1.2 kg, L = 0.6 m, and B = 0.25 N ⋅ s/m. The initial 
angular displacement is θ(0) = 0.1 rad and the initial angular velocity is θ = 0 1.  rad/s. 

 a. Build a Simulink block diagram based on the nonlinear mathematical model 
of the system and find the angular displacement output θ(t).

 b. Build a Simscape model of the nonlinear physical system and find the angular 
displacement output θ(t).

5.7 Summary

This chapter was devoted to modeling mechanical systems. Because real systems are usu-
ally quite complicated, simplifying assumptions must be made to reduce the system to 
an idealized model consisting of interconnected mass, damper, and spring elements. The 
relations between the external forces or moments applied to the elements and the associ-
ated element variables are given by 

• Mass translation: f mx=  rotation about fixed O: τ θ= IO


• Damper translation: f bx= rel rotation: τ θ= B rel

• Spring translation:  f = kxrel rotation: τ = Kθrel

Here, the spring force is dependent on the relative displacement between the two ends of 
the spring, and the damping force depends on the relative velocity between the two ends 
of the damper.

For a system of interconnected mechanical elements, the dynamic equations of motion 
can be obtained by applying Newton’s second law or the moment equation (or both). The 
number of equations of motion is determined by the number of degrees of freedom of the 
system. The number of degrees of freedom of a dynamic system is defined as the number 
of independent generalized coordinates that specify the configuration of the system. The 
static equilibrium position of a mechanical system is usually chosen as the coordinate ori-
gin. This choice can simplify the equation of motion by eliminating static forces.

To apply Newton’s second law or the moment equation to a mechanical system, it is use-
ful to draw a free-body diagram for each mass in the system, showing all external forces 
or moments. The noninput forces can be described in terms of displacements or velocities, 
using the expressions associated with the basic spring or damper elements. Drawing cor-
rect free-body diagrams is the most important step in analyzing mechanical systems, using 
the force/moment approach.

In this chapter, we were mainly concerned with the modeling of mechanical systems in 
plane motion, which involves translations along the x and y directions and rotation about 
one axis perpendicular to the x–y plane. Newton’s second law is used for modeling trans-
lational mechanical systems, whereas the moment equation is used for rotational mechani-
cal systems. Newton’s second law and the moment equation are used together for mixed 
translational and rotational systems.

The general form of Newton’s second law for a rigid body (or a particle) is given by

 F a=∑ m C  
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or 

 F ma F max x y y= =∑ ∑C C   ,  

For a rigid body rotating about a fixed axis through point O, the moment equation is given by 

 M IO O=∑ α 

If the axis of rotation is not fixed, the moment equation can be set about the mass center C as 

 M IC C=∑ α 

or an arbitrary point P as 

 M r aP P C/P P= + ×∑ I mα  

which is equivalent to 

 M I M mP C eff C= +∑ α _ a  

The symbol M meff C_ a  represents the effective moment caused by the fictitious force maC.
The mass moments of inertia for some rigid bodies with common shapes were given in 

Table 5.1, in which all masses are assumed to be uniformly distributed and all the axes of 
rotation pass through the mass centers. If the axis of rotation does not coincide with the 
axis through the mass center, but is parallel to it, the parallel-axis theorem can be applied 
to obtain the corresponding moment of inertia, 

 I I md= +C
2 

where d is the distance between the two parallel axes.
For a system of multiple masses, the force equations become 

 
F m a F m ax i i x

i

n

y i i y

i

n

∑ ∑ ∑ ∑= =
= =

( ) , ( )C C   
1 1

 

and the moment equation becomes 

 
M I Mi i

i

n

m

i

n

i iP C eff C∑ ∑ ∑= +
= =

α
1 1

_ a  

The force/moment approach is based on Newtonian mechanics. An alternative way of 
obtaining the system’s equations of motion is to use the energy method based on analyti-
cal mechanics. For a single-degree-of-freedom mass–spring system with negligible fric-
tion and damping, the principle of conservation of energy states that 

 
d
dt

T V( )+ = 0 

The kinetic energy of a rigid body in plane motion can be separated into two parts: (1) the 
kinetic energy associated with the translational motion of the mass center C of the body 
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and (2) the kinetic energy associated with the rotation of the body about C. Expressions for 
the kinetic energy of a rigid body in plane motion are given as 

• Translation only: T mv= 1
2

2

• Rotation about a fixed point O: T I= 1
2

2
Oω

• Mixed translation and rotation: T mv I= +1
2

1
2

2 2
C Cω

The potential energy includes 

• Gravitational potential energy: Vg = mgh

• Elastic potential energy: V kxe = 1
2

2 or V Ke = 1
2

2θ

For an n-degree-of-freedom system, n independent equations of motion can be derived 
using Lagrange’s formulation. One of the forms of Lagrange’s equations for a conservative 
system is 

 
d
dt
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where:
qi is the ith generalized coordinate
n is the total number of independent generalized coordinates

For a nonconservative system, the previous equation is changed to 
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where Qi is the ith generalized force. In contrast to the force/moment approach with 
Newton’s second law and the moment equation, Lagrange’s equations do not require a 
free-body diagram. However, velocity analysis is essential to Lagrange’s equations.

Review Problems

 1. Determine the equivalent spring constant for the system shown in Figure 5.119.   
 2. Determine the equivalent spring constant for the system shown in Figure 5.120.   
 3. Consider the system shown in Figure 5.121, in which a mass–spring system is 

hung from the middle of a massless beam. Assume that the beam can be modeled 
as a spring and the equivalent stiffness at the mid-span is 192EIA/L3, where E is the 
modulus of elasticity of beam material and IA is the area moment of inertia about 
the beam’s longitudinal axis.   

 a. Derive the differential equation of motion for the system.
 b. Using the differential equation obtained in Part (a), determine the transfer 

function X(s)/F(s). Assume that the initial conditions are x(0) = 0 and x( )0 0= .
 c. Using the differential equation obtained in Part (a), determine the state-space 

representation. Assume that the output is the displacement x of the mass.
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 4. An accelerometer attached to an object can be modeled as a mass–damper–spring 
system, as shown in Figure 5.122. Denote the displacement of the mass relative to 
the object, the absolute displacement of the mass, and the absolute displacement 
of the object as x(t), y(t), and z(t), respectively, where x(t) = y(t) – z(t) and x(t) is mea-
sured electronically.

 a. Draw the necessary free-body diagram and derive the differential equation in 
terms of x(t).

 b. Using the differential equation obtained in Part (a), determine the transfer 
function X(s)/Z(s). Assume that the initial conditions are x(0) = 0 and x( )0 0= .

 c. Using the differential equation obtained in Part (a), determine the state-space 
representation. The input is the absolute displacement of the object z(t) and the 
output is the displacement of the mass relative to the object x(t).
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FIGURE 5.121
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FIGURE 5.119
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 5. Consider a quarter-car model shown in Figure 5.123, where m1 is the mass of the 
seats including passengers, m2 is the mass of one-fourth of the car body, and m3 is 
the mass of the wheel–tire–axle assembly. The spring k1 represents the elasticity 
of  the seat supports, k2 represents the elasticity of the suspension, and k3 repre-
sents the elasticity of the tire. z(t) is the displacement input due to the surface 
of the road. Draw the necessary free-body diagrams and derive the differential 
equations of motion. Write the differential equations of motion in the second-
order matrix form.

 6. The system shown in Figure 5.124 consists of a uniform rod of mass m and length 
L and a translational spring of stiffness k at the rod’s tip. The friction at the joint O 
is modeled as a damper with coefficient of torsional viscous damping B. The input 
is the force f and the output is the angle θ. The position θ = 0 corresponds to the 
static equilibrium position when f = 0.

 a. Draw the necessary free-body diagram and derive the differential equation of 
motion for small angles θ.
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FIGURE 5.122
Problem 4.

k1

k2

k3

x3

m3

z

b2

m2

x2

b1

x1

m1

FIGURE 5.123
Problem 5.
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 b. Using the linearized differential equation obtained in Part (b), determine the 
transfer function Θ(s)/F(s). Assume that the initial conditions are θ(0) = 0 and 
θ( )0 0= .

 c. Using the differential equation obtained in Part (b), determine the state-space 
representation.

 7. Consider the system shown in Figure 5.125. Assume that a cylinder of mass m rolls 
without slipping. Draw the necessary free-body diagram and derive the differen-
tial equation of motion for small angles θ.

 8. The pulley of mass M shown in Figure 5.126 has a radius of r. The mass moment 
of inertia of the pulley about the point O is IO. A translational spring of stiffness 
k and a block of mass m are connected to the pulley, as shown. Assume that the 
pulley rolls without slipping. Derive the equation of motion by using (a) the force/
moment approach and (b) the energy approach.   
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 9. Consider a half-car model shown in Figure 5.127, in which IC is the mass moment 
of inertia of the car body about the pitch axis, mb is the mass of the car body, mf 
is the mass of the front wheel-tire-axle assembly, and mr is the mass of the rear 
wheel-tire-axle assembly. Each of the front and rear wheel-tire-axle assemblies is 
represented by a mass–spring–damper system. The input is the force f, and the car 
undergoes vertical and pitch motion. Derive the equations of motion by using the 
force/moment approach.   

 10. Consider the mechanical system shown in Figure 5.128, in which a uniform rod of 
mass m and length L is attached to a massless rigid link of equal length. Assume 
that the system is constrained to move in a vertical plane. Denote the angular dis-
placement of the link as θ1 and the angular displacement of the rod as θ2. Derive 
the equations of motion for small angles by using (a) the force/moment approach 
and (b) the energy approach.   

 11. Consider the mechanical system shown in Figure 5.129, in which a block of mass m 
is connected to a spring of stiffness k, and it can slide without friction inside a ver-
tical tube. Assume that the tube pivots at the joint O, and it can be approximated as 
a uniform rod of mass M and length L. The unstretched length of the spring is L/2. 
Denote the angular displacement of the tube as θ and the relative displacement of 
the block with respect to the tube as x. Derive the nonlinear equations of motion 
by using (a) the energy approach and (b) the force/moment approach.   
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 12. A rack and pinion is a pair of gears that converts rotational motion into transla-
tion. As shown in Figure 5.130, a torque τ is applied to the shaft. The pinion rotates 
and causes the rack to translate. The mass moment of inertia of the pinion is I and 
the mass of the rack is m. Draw the free-body diagram and derive the differential 
equation of motion.    

 13.  Consider the mass–spring–damper system shown in Problem 9 of Problem 
Set 5.2, in which the cam and follower impart a displacement z(t) in the form of a 
periodic sawtooth function (Figure 5.131) to the lower end of the system. The val-
ues of the system parameters are m = 12 kg, b = 200 N ⋅ s/m, k1 = 4000 N/m, and 
k2 = 2000 N/m. 

 a. Build a Simulink model based on the differential equation of motion of the 
system and find the displacement output x(t).

 b. Build a Simscape model of the physical system and find the displacement out-
put x(t).

 14. Case study
 Consider the ball and beam system [10] shown in Figure 5.132, in which I and Ib are 

the mass moments of inertia of the beam and the ball, respectively, m is the mass 
of the ball, and r is the radius of the ball. The beam is made to rotate in a vertical 
plane by applying a torque τ at the center of rotation and the ball is free to roll 
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(with one degree of freedom) along the beam. It is assumed that the ball remains 
in contact with the beam and that the rolling occurs without slipping. The system 
parameters are I = 0.02 kg·m2, Ib = 2 × 10−6 kg · m2, m = 0.05 kg, and r = 0.01 m. 

 a. Choosing the beam angle θ and the ball position x as generalized coordinates, 
derive the nonlinear equations of motion of the system by using the Lagrange’s 
equations.

 b. Choosing θ, θ, x, and x as state variables and τ as the input, find the state vari-
able equations of the nonlinear system.

 c. Assuming small angular motion, find the state-space form for the linearized 
system (with θ and x as outputs).

 d.  Build two Simulink block diagrams, one using the differential equations 
obtained in Part (a) and the other using the state-space form found in Part (c). 
Compare the beam angle θ(t) and the ball displacement x(t) when the torque 
applied to the system is a pulse function, τ(t) = 1 Nm for 1 ≤ t ≤ 2 s. 
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6
Electrical, Electronic, and Electromechanical Systems

Many engineering systems have electrical, electronic, or electromechanical subsystems as 
important components, such as power supplies, motors, sensors, and controllers. In this 
chapter, we discuss the modeling techniques for these systems. We first introduce the fun-
damentals of electrical elements, which include resistors, inductors, and capacitors. The 
two main physical laws, Kirchhoff’s voltage law and Kirchhoff’s current law, are then 
reviewed and applied to develop mathematical models of electrical circuits. For electronic 
systems, we study simple operational amplifiers (op-amps), and present the op-amp  equation, 
which is useful for obtaining models of amplifiers. This is followed by the modeling of 
electromechanical systems. The coupling between electrical and mechanical subsystems is 
established and applied to motor modeling. To simplify the modeling of electrical systems, 
the concept of impedance is introduced, which provides an alternative way of obtaining 
mathematical models of systems. The chapter concludes with simulation of electrical, elec-
tronic, and electromechanical systems by using MATLAB®, Simulink®, and SimscapeTM 
computer tools.

6.1 Electrical Elements

Electrical systems, or electrical circuits, can usually be considered as interconnections 
of lumped elements, such as sources, resistors, inductors, and capacitors. Sources are 
active electrical elements, which can provide energy to the circuit and serve as the inputs. 
Resistors, inductors, and capacitors can store or dissipate energy available in the circuit; 
however, they cannot produce energy. They are referred to as passive electrical elements.

Two primary variables used to describe the dynamic behavior of an electrical circuit are 
current and voltage. Current is the time rate of change of charge, 

 i
q
t

=
d
d

 (6.1)

where:
q is charge in coulomb (C)
i is current in ampere (A)

For a two-terminal electrical element, the current entering one end of the element must be 
equal to the current leaving the other end. As shown in Figure 6.1, an arrow denotes the 
direction in which the positive current (or charge) flows.
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The voltage at a point in a circuit is a measure of the electrical potential difference 
between that point and a reference point called the ground. The unit of voltage is volt (V). 
If a point has the same electrical potential as the ground, it has a voltage of zero. For a two-
terminal electrical element, the voltages at both ends are different. As shown in Figure 6.1, 
v1 and v2 denote the terminal voltages with respect to the ground, and 

 v v v= −1 2 (6.2)

where v is the voltage across the element. The sense of the voltage v is indicated by plus 
and minus signs. The terminal with the plus sign has a higher voltage than that with 
the minus sign. The positive sense of the current associated with an electrical element 
is defined such that within the element, the positive current is assumed to flow from the 
high-voltage terminal to the low-voltage terminal. If the current flow has the same direc-
tion as the voltage drop, then the energy is supplied to the element. The supplied energy is 
either stored in the element or dissipated by the element. This type of electrical element is 
passive. For an active electrical element, current flows in the direction opposite to the volt-
age drop, and it supplies energy to the rest of the circuit. The power supplied to a passive 
element or generated by an active element is 

 P vi=  (6.3)

An active electrical element can be modeled as an ideal current source or an ideal volt-
age source, as shown in Figure 6.2. An ideal current source provides specified current no 
matter how much voltage is required by the circuit. An ideal voltage source provides speci-
fied voltage no matter how much current flows in the circuit.

To derive the dynamic model of an electrical circuit, it is important to understand the 
voltage–current relations for all passive electrical elements.

(a) (b)

+

−
v і

FIGURE 6.2
Active electrical elements: (a) ideal voltage source and (b) ideal current source.
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FIGURE 6.1
A two-terminal electrical element.
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6.1.1 Resistors

The voltage–current relation for a linear resistor, as shown in Figure 6.3, is an algebraic 
relationship, 

 v Ri=  (6.4)

where R is the resistance in units of ohm (Ω). Equation 6.4 is known as Ohm’s law, 
which states that the voltage and current of a linear resistor are directly propor-
tional to each other. It is an empirical formula and can be obtained by a series of 
measurements.

A resistor dissipates energy by converting it into heat. The power dissipated by a linear 
resistor is given by 

 P Ri
v
R

= =2
2

 (6.5)

In many electrical circuits, multiple resistors are used. They are arranged in different 
ways, such as series connections, parallel connections, or both. The equivalent resistance 
for several resistors arranged in any of these configurations can be obtained to simplify 
the modeling procedure.

Figure 6.4 shows a circuit with two resistors in series. It is known that the current (or 
charge) remains unchanged when crossing an electrical element. Thus, for the series con-
nection, the current is the same through each resistor. Ohm’s law gives v1 = R1i and v2 = R2i, 
where the voltages v1 and v2 also represent a measure of the energy required to move a 
charge through resistor R1 or resistor R2, respectively. The total voltage required to move 
a charge across the two resistors is v = v1 + v2 = (R1 + R2)i. Comparing this result with the 
equivalent circuit, where v = Reqi, we have 

 R R Req = +1 2 (6.6)

A circuit with parallel resistors is shown in Figure 6.5. Note that the parallel resistors 
share the same terminals. Thus, the voltage across each resistor must be the same, v1 = v2. 
Ohm’s law gives v  =  R1i1 and v  =  R2i2, where i1 and i2 are currents through resistors 
R1 and R2, respectively. Because of the conservation of charge, i = i1 + i2 = v(1/R1 + 1/R2). 
Comparing this result with the equivalent circuit, where i = v/Req, we have 

 
1 1 1

1 2R R Req
= +  (6.7)

+ −v

Rі

FIGURE 6.3
A resistor and its variables.
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or 

 R
R R

R R
eq =

+
1 2

1 2
 (6.8)

The results for series or parallel resistance can extend to n resistors. For a circuit of 
n resistors in series, the equivalent resistance is equal to the sum of all the individual 
 resistances Ri: 

 R R R Rneq = + + +1 2   (6.9)

For a system of n resistors in parallel, the reciprocal of the equivalent resistance Req is equal 
to the sum of all the reciprocals of the individual resistances Ri: 

 
1 1 1 1

1 2R R R Rneq
= + + +  (6.10)
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6.1.2 Inductors

Figure 6.6 shows the symbol for an inductor. The voltage–current relation for a linear 
inductor is 

 v L
i
t

= d
d

 (6.11)

or 

 i
L

v t= ∫1
d  (6.12)

where L is the inductance, and the unit is henry (H).
The energy supplied to an inductor is stored in its magnetic field. The stored energy can 

be derived by performing integration of the power 

 P vi L
i
t

i= = 







d
d

 (6.13)

as follows: 

 E t P t t Li t i Li Li t Li Li
t t t

( ) ( ) ( ) ( ) ( ) (= = = = − =∫ ∫d d
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2
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2 2 21
2

1
2

1
2

0
1
2

tt) (6.14)

In Equation 6.14, it is assumed that the current through the inductor is zero at t = 0. Note 
that the energy stored in an inductor is dependent on the square of the current through the 
inductor and is independent of how the current is established.

6.1.3 Capacitors

Figure 6.7 shows the symbol for a capacitor, where C is the capacitance in units of farad 
(F). The capacitance is a measure of how much charge can be stored for a given voltage 
difference across the capacitor, and the mathematical description is q = Cv or v = q/C. Note 

+ −v

Ci

FIGURE 6.7
A capacitor and its variables.
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FIGURE 6.6
An inductor and its variables.
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that the charge q is related to the current via i = dq/dt or q = ∫idt. Thus, the voltage–current 
relation for a capacitor is expressed as 

 v
C

i t= ∫1
d  (6.15)

or 

 i C
v
t

= d
d

 (6.16)

A capacitor is also designed to store energy. The energy supplied to the capacitor is stored 
in its electrical field and can be derived by performing integration of the power 

 P vi v C
v
t

= = 







d
d

 (6.17)

as follows: 

 E t P t t Cv t v Cv Cv t Cv Cv
t t t
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tt) (6.18)

In Equation 6.18, it is assumed that the voltage across the capacitor is zero at t = 0. Note 
that the energy stored in a capacitor is dependent on the square of the voltage across the 
capacitor and is independent of how the voltage is acquired.

PROBLEM SET 6.1

 1. Determine the equivalent resistance Req for the circuit shown in Figure 6.8.
 2. Determine the equivalent resistance Req for the circuit shown in Figure 6.9.
 3. Determine the equivalent resistance Req for the circuit shown in Figure 6.10. 

Assume that all resistors have the same resistance of R.
 4. Determine the equivalent resistance Req for the circuit shown in Figure 6.11. 

Assume that all resistors have the same resistance of R.
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FIGURE 6.8
Problem 1.
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 5. A potentiometer is a variable resistor with three terminals. Figure 6.12a shows a 
potentiometer connected to a voltage source. The two end terminals are labeled 
as 1 and 2, and the adjustable terminal is labeled as 3. The potentiometer acts as 
a voltage divider, and the total resistance is separated into two parts, as shown in 
Figure 6.12b, where R13 is the resistance between terminal 1 and terminal 3, and R32 
is the resistance between terminal 3 and terminal 2. Determine the relationship 
between the input voltage vi and the output voltage vo.
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 6. The output voltage of a voltage divider is not fixed; it varies according to the load. 
 a. Find the output voltage vo in Figure 6.13 for two different values of load resistance: 

(1) RL = 10 kΩ and (2) RL = 100 kΩ.
 b. Is it possible to get an output voltage vo of greater than 9 V? If yes, determine 

the minimum value of the load resistance.
 7. Consider an inductive divider shown in Figure 6.14. For an alternating current 

(AC) input vi, prove that the output voltage of the inductive voltage divider is 

v
L

L L
vo i=

+
2

21
.

 8. Consider a capacitive divider shown in Figure 6.15. For an AC input vi, prove that 

the output voltage of the capacitive voltage divider is v
C C

v
C

o i=
+

1

1 2
.

 9. Consider a circuit of two inductors, L1 and L2, in series. Prove that the equivalent 
inductance of the circuit is Leq = L1 + L2.

 10. Consider a circuit of two inductors, L1 and L2, in parallel. Prove that the equivalent 

inductance of the circuit is 
1 1 1

1 2L L Leq
= + .

 11. Consider a circuit of two capacitors, C1 and C2, in series. Prove that the equivalent 

capacitance of the circuit is 1 1 1

1 2C C Ceq
= + .
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FIGURE 6.13
Problem 6.
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FIGURE 6.12
Problem 5: (a) Potentiometer and (b) voltage divider.
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 12. Consider a circuit of two capacitors, C1 and C2, in parallel. Prove that the equiva-
lent capacitance of the circuit is Ceq = C1 + C2.

 13. The current through an inductor of 5 mH is shown in Figure 6.16. Find the voltage 
across the inductor. What is the energy stored in the inductor when (1) t = 4 s and 
(2) t = 6 s?

 14. The voltage across a capacitor of 500 μF is shown in Figure 6.17. Find the current 
through the capacitor. What is the energy stored in the capacitor when (1) t = 1 s 
and (2) t = 4 s?
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6.2 Electric Circuits

When electrical elements are interconnected to form an electrical circuit, the dynamics 
model of the circuit can be developed using the voltage–current relations for electrical 
elements, along with two main physical laws. The two laws are known as Kirchhoff’s 
voltage law and Kirchhoff’s current law.

6.2.1 Kirchhoff’s Voltage Law

For a closed path, or a loop, in a circuit, Kirchhoff’s voltage law states that the algebraic 
sum of voltages around the loop must be zero, 

 vj

j
∑ = 0 (6.19)

where vj is the voltage across the jth element in the loop.
As an example, let us consider a series RLC circuit shown in Figure 6.18, where a 

 resistor (R), an inductor (L), and a capacitor (C) are connected in series. An ideal voltage 
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FIGURE 6.18
A series RLC circuit.
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273Electrical, Electronic, and Electromechanical Systems

source provides the desired voltage to the circuit. The current flows from the high-voltage 
terminal of the source, crosses three passive elements, and enters the low-voltage terminal 
of the source. If we sum the voltages around the loop in a clockwise direction, a volt-
age drop occurs for each of the three passive elements, and a voltage gain occurs for the 
source. Assigning a positive sign to a voltage drop, and a negative sign to a voltage gain, 
Kirchhoff’s voltage law gives vR + vL + vC − va = 0 or va = vR + vL + vC, which implies that 
the voltage of the source must equal the sum of the voltages across the resistor, the induc-
tor, and the capacitor.

Example 6.1: A Series RLC Circuit

Consider the series RLC circuit shown in Figure 6.18.

 a. Derive the differential equation in terms of the loop current i.
 b. Determine the transfer function I(s)/Va(s), which relates the source voltage va(t) 

to the loop current i(t). Assume that all the initial conditions are zero.
 c. Determine the transfer function VC(s)/Va(s), which relates the source voltage 

va(t) to the capacitor voltage vC(t). Assume that all the initial conditions are zero.

Solution

 a. Applying Kirchhoff’s voltage law to the single loop along the clockwise direc-
tion gives

 v v v vR L C a+ + − = 0 

 For the series loop, the same current flows through each element. The expres-
sions for vR, vL, and vC are

 

v Ri

v L
i
t

v
C

i t

R

L

C

d
d

d

=

=

= ∫1
 

 We then have

 
Ri L

i
t C

i t v+ + =∫d
d

d a
1

 

 Note that the above-mentioned equation is an integral–differential equation, 
not a differential equation. To eliminate the integral term, we take the time 
derivative of both sides of the equation. Rearranging the terms results in

 
L

i
t

R
di
dt C

i
dv
dt

d
d

a
2

2

1
+ + =

 

 which is a second-order differential equation for current i, with the time deriv-
ative of the applied voltage as the forcing function.

 b. Taking the Laplace transform of the previous differential equation yields

 
Ls I s RsI s

C
I s sV s2 1

( ) ( ) ( ) ( )+ + = a
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 The transfer function relating the input voltage va(t) and the output current 
i(t) is

 
I s

V s
s

Ls Rs C
( )
( ) ( )a /

=
+ +2 1  

 c. Note that the capacitor voltage vC does not appear explicitly in the differen-
tial equation. To determine the transfer function VC(s)/Va(s), we use the result 
of the transfer function I(s)/Va(s) and apply the voltage–current relation for a 
capacitor

 
v

C
idtC = ∫1

 

 which gives

 
V s

Cs
I sC( ) ( )=

1
 

 Thus, the transfer function relating the input voltage va(t) and the capacitor 
voltage vC(t) is

 
V s
V s Cs

I s
V s LCs RCs
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a a
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= =
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1 1
12  

 The circuit in Figure 6.18 can also be modeled using a differential equation for 
charge q. Recall that current is the time rate of change of charge, i = dq/dt or q = ∫idt. 
Rewriting the current-related terms in the equation Ri + L(di/dt) + (1/C)∫idt = va 
in terms of q gives

 
L

q
t

R
q
t C

q v
d
d

d
d

a

2

2

1
+ + =

 

 which is a second-order differential equation for the charge q(t), with the 
applied voltage as the forcing function.

6.2.2 Kirchhoff’s Current Law

When the terminals of two or more circuit elements are connected together, the common 
junction is referred to as a node. For a node in a circuit, Kirchhoff’s current law states 
that the sum of the currents entering the node must be equal to the sum of the currents 
leaving that node. If we assign a positive sign to the current entering the node and a 
negative sign to the current leaving the node, the algebraic sum of the currents at the 
node must be zero, 

 ij

j
∑ = 0 (6.20)

where ij is the current of the jth element at the node.
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Example 6.2: A Parallel RLC Circuit

Consider the parallel RLC circuit shown in Figure 6.19, in which an ideal current source 
supplies the desired current to the circuit.

 a. Derive the differential equation relating the input current ia to the output voltage vo.
 b. Determine the transfer function Vo(s)/Ia(s), which relates the input current ia(t) 

to the output voltage vo(t). Assume that all the initial conditions are zero.
 c. Determine the transfer function IL(s)/Ia(s), which relates the input current ia(t) 

to the current through the inductor iL(t). Assume that all the initial conditions 
are zero.

Solution

 a. The currents, iR, iL, and iC are defined in Figure 6.19. Each passive element has 
one terminal connected to the ground and the other terminal connected to a 
common node. We can apply Kirchhoff’s law to either the ground or node 1. 
Applying Kirchhoff’s current law to node 1 gives

 i i i ia R L C− − − = 0 

 For the parallel connection, the voltages across all three elements are the same. 
The expressions for iR, iL, and iC are
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FIGURE 6.19
A parallel RLC circuit.
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 which is an integral–differential equation. To eliminate the integral term, we 
take the time derivative of both sides of the equation. Rearranging the terms 
results in
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v
t R

v
t L

v
i
t

d
d

d
d

d
d

o o
o

a
2

2

1 1
+ + =

 

 which is a second-order differential equation for the output voltage vo(t).
 b. Taking the Laplace transform of the previous differential equation yields
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R
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 The transfer function relating the input current ia(t) and the output voltage 
vo(t) is
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s
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 c. To find the transfer function IL(s)/Ia(s), note that

 
i

L
v dtL o= ∫1

 

 which gives
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Ls
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 Thus,
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The above-mentioned two simple examples illustrate how one can develop a differential 
equation for a series or parallel RLC circuit by using Kirchhoff’s voltage law or Kirchhoff’s 
current law. However, if circuit components are series connected in some parts and paral-
lel in others, we must selectively apply Kirchhoff’s voltage law and Kirchhoff’s current law 
to obtain the desired differential equation.

Example 6.3: An RC Circuit

Consider the circuit shown in Figure 6.20. Derive the differential equation relating the 
output voltage vo(t) to the input voltage va(t).

Solution

The currents through the three passive elements (iR1 , iR2 , and iC) are defined in 
Figure 6.20. Applying Kirchhoff’s current law gives 

 i i iR R1 2= + C 
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Applying voltage–current relations and Kirchhoff’s voltage law give 
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Substituting the above-mentioned expressions into the Kirchhoff’s current law, we 
have 

 

v
R R

C
v
t

v va oo o d
d

−
= +

1 2  

Rearranging the terms results in 
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v
t R R R

vv
d
d

o
ao+ +







 =

1 1 1

1 2 1  

As shown in Example 6.3, the procedure for deriving the differential equation of a circuit 
consists of applying Kirchhoff’s laws and voltage–current relations for the components of 
the circuit. However, obtaining a set of equations for more complicated circuits is not that 
easy. Instead, a formal method is needed that produces a small, simple set of equations 
leading directly to the input–output relation. The two commonly used methods are the 
node method (which relies on Kirchhoff’s current law) and the loop method (which relies 
on Kirchhoff’s voltage law).

6.2.3 Node Method

If a node in a circuit is chosen as the reference, any other node can be assigned a volt-
age, which is defined between this node and the reference. This common reference 
node is usually referred to as the ground. To apply the node method to a circuit, we 
start by labeling all currents at each node whose voltage is unknown. The current 
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va v R2
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FIGURE 6.20
An RC circuit.
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through each passive circuit element is expressed in terms of the node voltages, using 
the voltage–current relations given in Section 6.1. We then apply Kirchhoff’s current 
law to each node, and the resulting set of equations can be combined to obtain the 
complete model of the circuit. The following two examples show details of the node-
voltage method.

Example 6.4: Circuit Modeling Using the Node Method: One Node

Consider the circuit shown in Figure 6.21. Derive the differential equation relating the 
output voltage vo(t) to the input voltage va(t).

Solution

Note that the voltage at node 1 is unknown and we denote it as v1. All currents entering 
or leaving node 1 are labeled as shown in Figure 6.21. Applying Kirchhoff’s current law 
to node 1 gives 

 i i iL R C− − = 0 

Expressing the current through each element in terms of the node voltage, we have 
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Differentiating the above-mentioned equation with respect to time results in 
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Because the node voltage v1 is essentially the output voltage vo, the aforementioned 
equation can be rewritten as 

 RLCv v Rv vL R o o o a+ =+  

which is the input–output equation relating the applied voltage va and the output 
 voltage vo.
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FIGURE 6.21
A circuit containing one node.
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Example 6.5: Circuit Modeling Using the Node Method: Two Nodes

Consider the circuit shown in Figure 6.22.

 a. Using the node method, derive the differential equations of the system in 
terms of node voltages.

 b. Determine the transfer function Vo(s)/Va(s). Assume that all initial conditions 
are zero.

Solution

 a. Note that the voltages at node 1 and node 2 are unknown. Denote the voltage 
at node 1 as v1 and the voltage at node 2 as v2. All currents entering or leaving 
node 1 and node 2 are labeled as shown in Figure 6.22.

 At node 1, applying Kirchhoff’s current law gives

 i i iL L C1 2 0− − =  

 Expressing the current through each element in terms of the node voltages, we 
have
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 Differentiating the previous equation with respect to time results in
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 which can be rearranged to give the first differential equation
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 Similarly, applying Kirchhoff’s current law to node 2 yields
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FIGURE 6.22
A circuit containing two nodes.
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 Expressing the current through each element in terms of the node voltages, we 
have
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 Differentiating the previous equation with respect to time results in
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 which can be rearranged to give the second differential equation
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 In second-order matrix form, we have
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 b. Taking Laplace transform of the above-mentioned two equations gives
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 Note that vo = v2. Applying Cramer’s rule gives
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6.2.4 Loop Method

In a circuit carrying some current, there exists at least one loop. Starting from any loop, a 
current circulating that loop can be assigned. For any additional loop containing at least 
one new element that is not in any previous loops, a new loop current can be assigned. 
To apply the loop method to a circuit, we start by assigning each loop current. Generally, 
assume that all unknown currents flow in the clockwise direction, and all known currents 
follow the directions of the current sources. The voltage across each passive element is 
expressed in terms of loop currents, using the voltage–current relations given in Section 
6.1. We then apply Kirchhoff’s voltage law to each loop with unknown current, and the 
resulting set of equations can be combined to obtain the complete model of the circuit. The 
following example shows the details of the loop-current method.
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Example 6.6: Circuit Modeling Using the Loop Method: Two Loops

Reconsider the circuit in Figure 6.22 and solve Example 6.5 by using the loop method.

Solution

Assign loop currents as shown in Figure 6.23. Note that there are two loops with 
unknown currents.

For loop 1, applying Kirchhoff’s voltage law gives 

 v v vL C a1 0+ − =  

Expressing the voltage across each element in terms of the loop currents, we have 
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Differentiating the above-mentioned equation with respect to time results in 
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Similarly, applying Kirchhoff’s voltage law to loop 2 gives 
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L

i
t

Ri
C

i i t2
2

2 2 1
1

0
d
d

d+ + −( ) =∫  

Differentiating the previous equation with respect to time results in 
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FIGURE 6.23
A circuit containing two loops.
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The above-mentioned two differential equations can be written in second-order 
matrix form, as
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Note that the output voltage vo is related to the current through the resistor, that is, 
vo = Ri2 or Vo(s) = RI2(s). Taking the Laplace transform of the differential equations gives 
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Using Cramer’s rule, we have 
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Thus, the transfer function Vo(s)/Va(s) = RI2(s)/Va(s), gives the same result obtained pre-
viously in Example 6.5.

Example 6.6 shows that the loop method is similar to the node method. The choice between 
the two methods is often made based on the circuit at hand. For example, considering the 
circuit in Figure 6.21, there is one independent node, but two independent loops. Therefore, 
the node method is expected to be easier to apply (see Example 6.4). The reader can try the 
loop method to solve the same problem. We will emphasize the node method to obtain 
mathematical models of circuits in this book.

6.2.5 State Variables of Circuits

To represent a circuit model in state-space form, we need to choose an appropriate set 
of state variables, whose time derivatives are expressed in terms of the state variables 
and inputs. Since the choice of state variables is not unique, it is difficult to identify 
the appropriate states for expressing a circuit in state-space form. Here, we introduce 
a customary choice of state variables by identifying the energy storage elements. As 
stated in Section 6.1, both inductors and capacitors can store energy. In a given circuit, 
knowledge of the voltage signals across capacitors and of the current signals through 
inductors is sufficient to calculate other circuit variables by using only algebraic equa-
tions. Generally, inductor currents and capacitor voltages are continuous in nature and 
are often chosen as the state variables. To determine the state-space form of an electric 
circuit, we need to find the expression of diL/dt or dvC/dt for each inductor or capacitor. 
Based on the voltage–current relations, we have 

 d
d

L Li
t

v
L

=  (6.21)

and 

 d
d

C Cv
t

i
C

=  (6.22)



283Electrical, Electronic, and Electromechanical Systems

where:
vL is the inductor voltage
iC is the capacitor current

Thus, the problem is converted to expressing vL and iC in terms of state variables and 
inputs, using Kirchhoff’s laws and voltage–current relations for electrical elements.

Example 6.7: State-Variable Model of the Circuit in Example 6.4

Reconsider the circuit shown in Figure 6.21.

 a. Derive the state-variable model with inductor currents and capacitor volt-
ages as states. The input is the applied voltage va, and the output is the voltage 
across the capacitor C.

 b. Based on the state-space form obtained in Part (a), determine the differential 
equation relating the output voltage vo(t) to the input voltage va(t).

Solution

 a. We first label the nodes and currents as we did in Example 6.4. Note that the 
circuit has two independent energy storage elements, L and C. This implies 
that two state variables are needed, and they are

 x i x v1 2= =L C,  

 Their time derivatives are 
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 We need to express the voltage across the inductor, vL, and the current through 
the capacitor, iC, in terms of the state variables and the input. Note that 
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Kirchhoff’s voltage law
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 Thus, the complete set of two state-variable equations is 
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 The output equation is 

 y v v x= = =o C 2 
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 The state equation and the output equation can be written in matrix form as 
follows: 
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 b. Note that Y(s) = Vo(s) and U(s) = Va(s). As presented in Section 4.4, the state-
space form can be converted to a transfer function by using
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 Substituting A, B, C, and D matrices obtained in Part (a) gives 
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 Taking the inverse Laplace transform gives the same input–output equation as 
the one obtained in Example 6.4.

As shown in the example above, if inductor currents and capacitor voltages are chosen as 
state variables, the key to derive the state-variable model of a circuit is to express all other 
circuit variables by using only algebraic equations by applying Kirchhoff’s voltage law, 
Kirchhoff’s current law, Ohm’s law, and the properties of series and parallel connections.

Example 6.8: State-Variable Model of the Circuit in Example 6.5

Reconsider the circuit shown in Figure 6.22. Derive the state-variable model with induc-
tor currents and capacitor voltages as states. The input is the applied voltage va(s), and 
the output is the voltage across the resistor R.

Solution

Refer to Figure 6.22 shown in Example 6.5. Note that the circuit has three independent 
energy storage elements, L1, L2, and C. This implies that three states are needed, and 
they are 

 x i x i x v1 2 3= = =L L C1 2, ,  
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Their time derivatives are 
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where: 
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Thus, the complete set of three state-variable equations is 
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The output equation is 

 y v v Ri Rx= = = =o R L2 2  

The state equation and the output equation can be written in matrix form as follows: 
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PROBLEM SET 6.2

 1. Consider the first-order RC circuit shown in Figure 6.24.
 a. Derive the input–output differential equation relating vC and va.
 b. Determine the transfer function I(s)/Va(s), which relates the loop current i(t) to 

the applied voltage va(t). Assume that all the initial conditions are zero.
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 2. Consider the first-order RL circuit shown in Figure 6.25.
 a. Derive the input–output differential equation relating iL and va.
 b. Determine the transfer function VL(s)/Va(s), which relates the voltage across 

the inductor vL(t) to the applied voltage va(t). Assume that all the initial condi-
tions are zero.

 3. Consider the circuit shown in Figure 6.26. Use the node method to derive the 
input–output differential equation relating vo and va.

 4. Repeat Problem 3, using the loop method.

+

−

−

+

C

R

Lva v vo

FIGURE 6.26
Problem 3.

+

+

–

–

vLL

R

va v

iL

FIGURE 6.25
Problem 2.

+

–

v

+

−

vCva C

R

i

FIGURE 6.24
Problem 1.
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 5. Consider the circuit shown in Figure 6.27. Use the node method to derive the 
input–output differential equation relating i and va.

 6. Repeat Problem 5, using the loop method.
 7. Consider the circuit shown in Figure 6.28. Use the node method to derive the 

input–output differential equation relating vo and va.
 8. Repeat Problem 7, using the loop method.
 9. Consider the circuit shown in Figure 6.29. Use the node method to derive the 

transfer function Vo(s)/Va(s). Assume that all initial conditions are zero.
 10. Reconsider the circuit shown in Figure 6.29. Use the loop method to derive the 

transfer function Vo(s)/Va(s). Assume that all initial conditions are zero.
 11. Consider the circuit shown in Figure 6.26. Determine a suitable set of state vari-

ables and obtain the state-space representation with vo as the output.
 12. Repeat Problem 11 for the circuit shown in Figure 6.27.
 13. Repeat Problem 11 for the circuit shown in Figure 6.28.
 14. Repeat Problem 11 for the circuit shown in Figure 6.29.
 15. Repeat Problem 11 for the circuit shown in Figure 6.30.
 16. Repeat Problem 11 for the circuit shown in Figure 6.31.

+

−

+

−

C

R

vva

L

vo

FIGURE 6.28
Problem 7.

+

−

v
R

L

i

C

va

FIGURE 6.27
Problem 5.
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6.3 Operational Amplifiers

An op-amp is an electronic element that is used to amplify electrical signals and drive 
physical devices. Figure 6.32 shows the schematic diagram of an op-amp, which is a 
voltage amplifier with a high gain K. Unlike the electrical elements discussed in earlier 
sections, op-amps have more than two terminals. The diagram in Figure 6.32 does not 
show all the terminals connected to the physical devices. It only shows a pair of input 
terminals and one output terminal. The output voltage is 

 v K v vo = −+ −( ) (6.23)

+

+

–

–

C voR2R1vva

L1 L2

FIGURE 6.31
Problem 16.

+

+

−

−

vva R2 L2

R1 L1

vo

FIGURE 6.30
Problem 15.

+

−

+

−

L

Cv R2va

R1

vo

FIGURE 6.29
Problem 9.
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where K is a very large positive number, typically 105–106. Because the output voltage vo 
must be a finite number and K is very large, the voltage difference between the input ter-
minals must approach zero. Thus, 

 v v+ −≈  (6.24)

which is considered to be the op-amp equation.
Note that the diagram in Figure 6.32 is a simple symbol for an op-amp, which typically 

contains many resistors, inductors, and capacitors built on an integrated chip.

Example 6.9: An Op-Amp Multiplier

Consider the op-amp circuit shown in Figure 6.33, in which one resistor R2 is in paral-
lel connection with an op-amp, and the resulting parallel circuit is in series connection 
with another resistor R1. Determine the relation between the input voltage vi and the 
output voltage vo. Assume that the current drawn by the op-amp is very small.

Solution

Label the currents at the nodes with unknown voltages. The system has only one sig-
nificant node: node 1. Applying Kirchhoff’s current law to node 1 gives 

 i i i1 2 3 0− − =  

Because the current drawn by the op-amp is very small, that is, i3 ≈ 0, we have 

 i i1 2≈   

+

−
+

−

1

vi

i1 i3

i2

R2

R1

vo

FIGURE 6.33
An op-amp multiplier circuit.

+

−v–

v+

vo

FIGURE 6.32
An op-amp.
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Using the voltage–current relation for each resistor yields 

 

v v
R

v v
R

i o−
=

−1

1

1

2  

Note that the input terminal marked with the plus sign is connected to the ground. 
From the op-amp equation v+ ≈ v−, we have 

 v v v1 0= ≈ =− +  

Thus, the relation between the input voltage vi and the output voltage vo is 

 

v
R

v
R

i o

1 2
= −

 

or 

 
v

R
R

vo i= − 2

1  

This circuit is known as an op-amp multiplier and is widely used in control systems. 
Op-amps can also be used for integrating and differentiating signals.

Example 6.10: An Op-Amp Differentiator

Consider the op-amp circuit shown in Figure 6.34. Derive the differential equation 
relating the input voltage vi and the output voltage vo.

Solution

Note that the current drawn by the op-amp is very small. Applying Kirchhoff’s current 
law to node 1 gives 

 

i i

C
t

v v
v v

R

1 2

1

=

− =
−d

d
i 1

o( )
 

1

+

−

−

+

C

R

vi vo

i1
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FIGURE 6.34
An op-amp differentiator circuit.
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Because the input terminal marked with the plus sign is connected to the ground, the 
op-amp equation yields v1 = v− ≈ v+ = 0. Thus, the differential equation for the op-amp 
circuit in Figure 6.34 is 

 
Cv

v
R

i
o= −

 

or 

 v RCvo i= −   

This implies that the output voltage vo is proportional to the time derivative of the 
input voltage vi. The circuit in Figure 6.34 is therefore called a differentiator. Switching 
the resistor and the capacitor in Figure 6.34 results in an op-amp integrator shown 
in Figure 6.35. The relation between the output voltage and the input voltage is 
v v RCo i= − ( ). We leave the derivation as an exercise for the reader.

Example 6.11: An Op-Amp Circuit

Consider the op-amp circuit shown in Figure 6.36. Derive the differential equation 
relating the output voltage vo(t) and the input voltage vi(t).

Solution

Note that the current flowing into the input terminal of the op-amp is very small. 
Applying Kirchhoff’s current law to node 1 yields 

 i i i iR C R C1 1 2 2 0+ − − =  

Using the voltage–current relations for electrical elements to express each term in the 
equation, we obtain 
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Because v+ = 0, the op-amp equation yields v1 = v− ≈ v+ = 0. Substituting this into the 
previous equation results in 
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FIGURE 6.35
An op-amp integrator circuit.
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which can be rearranged into 

 
C v

R
v C v

R
v2

2
1

1

1 1
 o o i i+ = − −

 

PROBLEM SET 6.3

 1. The op-amp circuit shown in Figure 6.37 is a summing amplifier. Determine the 
relation between the input voltages v1, v2, and the output voltage vo.

 2. The op-amp circuit shown in Figure 6.38 is a difference amplifier. Determine the 
relation between the input voltages v1, v2, and the output voltage vo.

 3. The op-amp circuit shown in Figure 6.39 is a noninverting amplifier. Determine 
the relation between the input voltage vi and the output voltage vo.

 4. Consider the op-amp integrator circuit shown in Figure 6.35. Derive the differen-
tial equation relating the input voltage vi and the output voltage vo.

 5. Consider the op-amp circuit shown in Figure 6.40. Derive the differential equation 
relating the input voltage vi and the output voltage vo.

 6. Repeat Problem 5 for the op-amp circuit shown in Figure 6.41.

vo

v1

v2

R1

R2

R3

−

+

FIGURE 6.37
Problem 1.

+

−
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–

vi C1

R1
C2

R2

iR1

iR2

iC1

iC2

vo

FIGURE 6.36
An op-amp circuit.
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FIGURE 6.41
Problem 6.
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Problem 2.
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Problem 3.
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Problem 5.
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6.4 Electromechanical Systems

Many useful devices, such as motors, generators, speakers, microphones, and accelerom-
eters, are constructed by combining electrical elements and mechanical elements. For such 
electromechanical systems, we must apply electrical principles (e.g., Kirchhoff’s laws) and 
mechanical principles (e.g., Newton’s second law) to develop the dynamics model of the 
system. In this section, we discuss the modeling of direct current (DC) motors, which can 
generate forces or torques by using electrical subsystems and are essential actuators in 
control systems.

6.4.1 Elemental Relations of Electromechanical Systems

In a variety of electromechanical systems, electrical and mechanical subsystems are cou-
pled by a magnetic field. Figure 6.42 shows a DC motor, which consists of basic elements 
(including the stator, the rotor, the armature, and the commutator). The stator provides a 
magnetic field across the rotor. The current is conducted to coils attached to the rotor via 
brushes, and the rotor is free to rotate. The combined unit of coils attached to the rotor 
is called the armature. The brushes are in contact with the rotating commutator, which 
causes the current to always be in the proper conductor windings, so as to produce a 
torque and keep it in the proper direction. The magnetic coupling relations between the 
electrical and mechanical subsystems in a DC motor can be derived using fundamental 
electromagnetic laws in introductory physics textbooks [4].

For simplicity, let us first consider a wire carrying a current within a magnetic field. 
Assume that the wire is either a straight conductor perpendicular to a uniform magnetic 
field or a circular conductor in a radial magnetic field. These are two common situations 
in many applications. Then, a force will be exerted on the wire, and the relation between 
the force f and the current i is 

 f BLi=  (6.25)

where:
B is the magnetic flux density in tesla (1 T = 1 Wb/m2)
L is the length of the conductor in the magnetic field

The direction of the force can be determined using the right-hand rule, as shown in 
Figure 6.43a. Curl four fingers from the positive current direction to the positive direction 
of the magnetic field, and the thumb will point to the positive direction of the force.

Commutator

Brush

Shaft
Rotor windings

Stator magnet

FIGURE 6.42
A DC brush motor.
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If the conductor moves relative to the magnetic field, a voltage will be induced in the 
conductor. Figure 6.43b shows a straight conductor moving upward in a magnetic field. 
Assume that the direction of the motion is perpendicular to the direction of the magnetic 
field. Then, the scalar relation between the induced voltage eb and the velocity v of the 
conductor is 

 e BLvb =  (6.26)

To avoid confusion, we use e to denote the voltage instead of v as we did in the previous 
sections. Again, using the right-hand rule, curl four fingers from the positive direction of 
the velocity to the positive field direction, and the thumb will point to the positive direc-
tion of the induced voltage eb. Note that the induced voltage eb opposes the current, and is 
known as back electromotive force (emf, an old term for voltage).

For the DC motor shown in Figure 6.42, assume that the armature current is i and the 
number of armature coils is n. By Equation 6.25, the force generated on the armature due 
to the magnetic field is f = nBLi. If the radius of the armature is r, the torque produced by 
the motor is 

 τm t= = =fr nBLir K i (6.27)

where Kt = nBLr is the torque constant of the motor. Note that the linear velocity of the coils 
is proportional to the angular velocity, v = ωr. Then, by Equation 6.26, the back emf gener-
ated in the armature due to the rotating motion is 

 e nBLv nBL r Kb e= = =ω ω (6.28)

where Ke  =  nBLr is the back emf constant of the motor. The two constants, Kt and Ke, 
have the same expression and they will have the same numerical value if expressed in the 
same system of units. Equations 6.27 and 6.28 are used to model the coupling between the 
electrical and mechanical subsystems in a DC motor. Two primary types of DC motors, 
armature-controlled DC motors and field-controlled DC motors, are discussed next.

6.4.2 Armature-Controlled Motors

Figure 6.44 shows an electromechanical system with an armature-controlled DC motor. 
The electrical system is represented by an armature circuit, in which va is applied armature 
voltage, Ra is armature resistance, La is armature inductance, and eb is back emf generated 
in the armature. The mechanical part is represented by a rotational system, in which I is 

(a) (b)

i
B

f

B

−

+
eb

v

FIGURE 6.43
The direction of (a) the force on a conductor and (b) the voltage induced in a moving conductor.
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the mass moment of inertia due to the rotor and the load, B is the viscous rotational damp-
ing associated with the load, τm is the torque produced by the motor, and τL is an additional 
torque applied to the load. In general, the load torque acts in the direction opposite to the 
motor torque. The differential equations of the system can be derived by using Kirchhoff’s 
voltage law, the moment equation, and the electromechanical coupling relations.

For the electrical circuit, applying Kirchhoff’s voltage law gives 

 
vj

j
∑ = 0

 

 R i L
i
t

e va a a
a

b a
d
d

+ + − = 0 (6.29)

For the mechanical part, applying the moment equation gives 

 + : =∑ M IC Cα 

 τ τ θ θm L− − =B I  (6.30)

Substituting the coupling relations between the electrical and mechanical subsystems, 
e K Kb e e= = ω θ  and τm = Ktia, into Equations 6.29 and 6.30, we obtain 

 L
i
t

R i K va
a

a a e a
d
d

+ + =θ  (6.31)

 I B K i θ θ τ+ − = −t a L (6.32)

Note that the stiffness terms associated with the variable θ do not appear in Equations 6.31 
and 6.32. Thus, the system dynamics can also be expressed in terms of ω instead of θ, as 

 L
i
t

R i K va
a

a a e a
d
d

+ + =ω  (6.33)

 I B K iω ω τ+ − = −t a L (6.34)

Assume that all the initial conditions are set to zero. Taking the Laplace transform of 
Equations 6.33 and 6.34 results in 

 L sI s R I s V s K sa a a a a e( ) ( ) ( ) ( )+ = − Ω  (6.35)

v B

I

v
+

−

+

−
va eb

LaRaia

τm

τL

θ

FIGURE 6.44
An electromechanical system with an armature-controlled DC motor.
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 Is s B s T s K I sΩ Ω( ) ( ) ( ) ( )+ = − +L t a  (6.36)

Figure 6.45 shows a block diagram of the above-mentioned system. Using the basic rules 
for block diagram operation and reduction (see Section 4.5), we obtain the transfer func-
tion relating the armature voltage va(t) and angular velocity ω(t), with τL = 0, 
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a a a a t e
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The transfer function relating the load torque τL(t) and ω(t), with va(t) = 0, is 

 
Ω( )

( )
( ( ))

( ( )) ( ) ( ( ))
s

T s
Is B

Is B K L s R K
L

L e a a t

/
/ /

= − +
− + ⋅ − ⋅ + ⋅

= −1
1 1 1

aa a

a a a a t e

s R
L Is L B R I s R B K K
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 (6.38)

Note that the two transfer functions have the same denominator, which is the character-
istic of the system. The order of the characteristic polynomial implies that the system is 
second-order. The transfer functions Ω(s)/Va(s) and Ω(s)/TL(s) can also be obtained by 
solving Equations 6.35 and 6.36 by using Cramer’s rule, and this is left as an exercise for 
the reader.

The motor model can be represented in state-space form by choosing appropriate 
states. We choose the armature current ia and the angular velocity ω as the states. As 
shown in Figure 6.44, the armature voltage and the load torque are the two inputs. Let 
u1 = va and u2 = τL. Solving for the time derivatives dia/dt and ω from Equations 6.33 and 
6.34 yields 
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Thus, the state equation is 
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FIGURE 6.45
Block diagram of an armature-controlled DC motor.
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If we select ω as the output, the output equation is 

 y
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u
u

=  








+  








0 1 0 0
1

2

1

2
 (6.42)

Example 6.12: A Single-Link Robot Arm Driven by a Direct Current Motor

Consider the dynamic system shown in Figure 6.46, in which a single-link robot arm is 
driven by a DC motor. The differential equation of the robot arm in terms of the motor 
variable θm was determined in Example 5.20 to be 

 ( ) ( )I N I B N Bm m m m m+ + + =2 2
 θ θ τ  

where:
Im and I are the mass moments of inertia of the motor and the load, respectively
Bm and B are the coefficients of the torsional viscous damping of the motor and the 

load, respectively
τm is the torque generated by the motor
N is the gear ratio

Assume that the armature inductance is negligibly small, that is, La ≈ 0. The torque and 
the back emf constants of the motor are Kt and Ke, respectively.

 a. Derive the differential equation relating the applied voltage va and the link 
angular displacement θ.

 b. Determine the transfer function Θ(s)/Va(s) by using the differential equation 
obtained in Part (a). Assume that all initial conditions are zero.

Solution

 a. For the electrical circuit, applying Kirchhoff’s voltage law gives

 R i e va a b a+ − = 0 

where e Kb e m= θ . With the given gear ratio,

 θ θ= N m 

θm

θ

B

I

+ +

− −
vvva

Bm

eb Im

Raia

τm

FIGURE 6.46
The model of a single-link robot arm driven by an armature-controlled DC motor.
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we have
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Thus, the current ia can be expressed as
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The model of the mechanical part in terms of θ is given by

 
( ) ( )I N I

N
B N B

N
m m m+ + + =2 21 1

 θ θ τ
 

where τm = Ktia. Substituting the expression of the current ia, we obtain
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Rearranging the equation yields
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 b. Taking the Laplace transform results in
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 This electromechanical system can be modeled using Simulink and Simscape. 
The details will be discussed in Section 6.6.

6.4.3 Field-Controlled Motors

In all but the smallest motors, the magnetic field is established by a current in separate field 
windings on the stator. For an armature-controlled DC motor, a constant current source 
is supplied to the field windings and the applied armature voltage, va, varies. Another 
way of controlling a DC motor is to keep the armature current ia constant, while varying 
the voltage applied to the field windings. A simple model of a field-controlled DC motor 
is shown in Figure 6.47, in which the shaft in the mechanical subsystem is assumed to be 
massless, rigid, and undamped. The electrical part is represented by a field circuit, where 
Rf is field resistance, Lf is field inductance, vf is field voltage, and if is field current. Note 
that there is no back emf created in the field circuit. The torque generated by the motor is 
proportional to the field current, 

 τm t f= K i  (6.43)
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The system under consideration has two inputs, vf and τL. Two independent variables, 
if and θ, can be used to describe the system dynamics. For the electrical part, we apply 
Kirchhoff’s voltage law to the field circuit, 

 L
i
t

R i vf
f

f f f
d
d

+ =  (6.44)

For the mechanical part, introducing the motor equation (Equation 6.43) and applying the 
moment equation gives 

 I B K i θ θ τ+ − = −t f L (6.45)

or 

 I B K iω ω τ+ − = −t f L  (6.46)

Equations 6.44 and 6.45, or Equations 6.44 and 6.46, are the system differential equations 
of the field-controlled DC motor.

Assuming zero initial conditions and taking the Laplace transform of Equations 6.44 
and 6.46, we have 

 L sI s R I s V sf f f f f( ) ( ) ( )+ =  (6.47)

 Is s B s K I s T sΩ Ω( ) ( ) ( ) ( )+ = −t f L  (6.48)

A block diagram of the system is shown in Figure 6.48.
The transfer functions Ω(s)/Vf(s) and Ω(s)/TL(s) can be easily derived from the diagram, 
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FIGURE 6.47
An electromechanical system with a field-controlled DC motor.
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If we choose the field current and the angular velocity as the state variables (x1 = if and 
x2 = ω), the field voltage and the load torque as the inputs (u1 = vf and u2 = τL), and the 
angular velocity as the output (y = ω), the state-space form is 
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0 1 0 0,  (6.51)

PROBLEM SET 6.4

 1. Reconsider the armature-controlled motor in Figure 6.44. Equations 6.31 and 6.32 
represent the dynamics of the system in terms of the variables ia and θ. 

 a. Assuming the angle θ to be the output, draw a block diagram to represent the 
dynamics of the armature-controlled motor.

 b. Derive the transfer functions Θ(s)/Va(s) and Θ(s)/TL(s). All of the initial 
conditions are assumed to be zero.

 c. Determine the state-space form.
 2. Reconsider the field-controlled motor in Figure 6.47. Equations 6.44 and 6.45 

 represent the dynamics of the system in terms of the variables if and θ. 
 a. Assuming the angle θ to be the output, draw a block diagram to represent the 

dynamics of the field-controlled motor.
 b. Derive the transfer functions Θ(s)/Vf(s) and Θ(s)/TL(s). All of the initial con-

ditions are assumed to be zero.
 c. Determine the state-space form.
 3. Consider the electromechanical system shown in Figure 6.49a. It consists of a 

cart of mass m moving without slipping on a ground track. The cart is equipped 
with an armature-controlled DC motor, which is coupled to a rack and pinion 
mechanism to convert the rotational motion to translation and to create the driv-
ing force f for the system. Figure 6.49b shows the equivalent electric circuit and 
the mechanical model of the DC motor, where r is the radius of the motor gear. 
The torque and the back emf constants of the motor are Kt and Ke, respectively.

 a. Derive the differential equation of the system relating the cart position x and 
the applied voltage va.

 b. Determine the transfer function X(s)/Va(s) by using the differential equation 
obtained in Part (a). Assume that all initial conditions are zero.

Lfs + Ra
1 1 Ω(s)ΣVf(s) Is + BKt

+ −If(s)

TL(s)

FIGURE 6.48
Block diagram of a field-controlled DC motor.
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 4. Consider the single-link robot arm, as shown in Figure 6.50a. It is driven by an 
armature-controlled DC motor through spur gears with a total gear ratio of N 
and θ = Nθm. The mass moments of inertia of the motor and the load are Im and I, 
respectively. The coefficients of torsional viscous damping of the motor and the 
load are Bm and B, respectively. Figure 6.50b shows the equivalent electric circuit 
and the mechanical model of the DC motor. The torque and the back emf con-
stants of the motor are Kt and Ke, respectively.

 a. Determine the transfer function Θ(s)/Va(s). Assume that all initial conditions 
are zero.

 b. Determine the differential equation relating the applied voltage va and the link 
angular displacement θ.

 5. A more complicated model of the armature-controlled motor is shown in 
Figure 6.51, in which the rotor is connected to an inertial load through a flexible 
and damped shaft. Km and Bm represent the torsional stiffness and the torsional 
viscous damping of the shaft, respectively. The mass moments of inertia of the 
motor and the load are Im and IL, respectively. Let ω θm m=   and ω θL L=  .

 a. Assuming zero initial conditions, derive the transfer functions ΩL(s)/Va(s) and 
ΩL(s)/TL(s).

(a)

τm

θ

θm

DC motor

I, B

(b)

τm θmebvvva

ia Ra La

Im

Bm

+

−

+

–

FIGURE 6.50
Problem 4. (a) A DC motor–driven single-link robot arm and (b) the equivalent electric circuit and the mechani-
cal model of the DC motor.
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FIGURE 6.49
Problem 3. (a) A DC motor–driven cart and (b) the equivalent electric circuit and the mechanical model of the 
DC motor.
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 b. Assuming the angular velocity ωL to be the output, draw a block diagram to 
represent the dynamics of the armature-controlled motor.

 c. Determine the state-space form.
 6. A more complicated model of the field-controlled motor is shown in Figure 6.52, 

in which the rotor is connected to an inertial load through a flexible and damped 
shaft. Km and Bm represent the torsional stiffness and the torsional viscous damp-
ing of the shaft, respectively. The mass moments of inertia of the motor and the 
load are Im and IL, respectively.

 a. Assuming zero initial conditions, derive the transfer functions ΩL(s)/Vf(s) and 
ΩL(s)/TL(s).

 b. Assuming the angular velocity ωL to be the output, draw a block diagram to 
represent the dynamics of the field-controlled motor.

 c. Determine the state-space form.

6.5 Impedance Methods

The concept of impedance is very useful in electrical systems because it provides an 
alternative to transfer functions and differential equations for the derivation of system 
mathematical models.

Km, Bm KL, BL

τmeb θm
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τLIm
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vvf Lf

Rfif

+

−
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−

FIGURE 6.52
Problem 6.
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Km, Bm IL
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FIGURE 6.51
Problem 5.
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6.5.1 Impedances of Electric Elements

Impedance is a generalization of the concept of resistance. Mathematically, electrical 
impedance is defined as the ratio of the voltage to the current in the s domain, 

 Z s
V s
I s

( )
( )
( )

=  (6.52)

For a resistor, we have v = Ri, hence the impedance is its resistance R, 

 Z s R( ) =  (6.53)

For an inductor, we have v  =  Ldi/dt. Assuming zero initial conditions, this yields 
V(s) = LsI(s). Thus, the impedance of an inductor is 

 Z s Ls( ) =  (6.54)

Similarly, for a capacitor, i = Cdv/dt yields I(s) = CsV(s). Thus, the impedance of a capacitor is 

 Z s
Cs

( ) = 1
 (6.55)

6.5.2 Series and Parallel Impedances

Because impedance can be viewed as a generalized resistance, it is easy to find the equiva-
lent impedance for series-connected or parallel-connected electrical elements. Figure 6.53 
shows n impedances in series. Note that the same current flows through n impedances and 
the total voltage drop across them is 

 V s I s Z s I s Z s I s Z sn( ) ( ) ( ) ( ) ( ) ( ) ( )= + + +1 2   (6.56)

In the equivalent diagram, the relation between the current and the voltage is 

 V s I s Z s( ) ( ) ( )= eq  (6.57)

Thus, 

 Z s Z s Z s Z sneq( ) ( ) ( ) ( )= + + +1 2   (6.58)

That is, the equivalent impedance Zeq is equal to the sum of all the individual imped-
ances Zi.

If there are n impedances in parallel, as shown in Figure 6.54, all the impedances have 
the same voltage drop. The total current through all the elements is 

 I s
V s
Z s

V s
Z s

V s
Z sn

( )
( )
( )

( )
( )

( )
( )

= + + +
1 2

  (6.59)

For the equivalent impedance, 

 I s
V s

Z s
( )

( )
( )

=
eq

 (6.60)
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Therefore, 

 1 1 1 1

1 2Z s Z s Z s Z sneq( ) ( ) ( ) ( )
= + + +

 (6.61)

That is, the reciprocal of the equivalent impedance Zeq is equal to the sum of all the 
reciprocals of the individual impedances Zi.

Note that impedance is essentially a transfer function, which has no integral or 
 derivative signs. If we redraw an electrical system in the s domain by replacing passive 
elements with their corresponding impedances, we can determine the transfer function 
of the system by using Kirchhoff’s laws along with series and parallel laws. The differential 
equation of the system can then be obtained by converting the transfer function back 
from the s domain to the time-domain. Thus, the concept of impedance provides another 
way of modeling electrical systems, without writing any time-domain equations.

Example 6.13: Impedance Method: An RLC Circuit

For the electric circuit in Example 6.4, use the impedance method to derive the 
 differential equation relating the output voltage vo(t) to the input voltage va(t). Assume 
zero initial conditions.

Solution

The original electric circuit is shown in Figure 6.55a. We can replace the passive 
 elements with their impedance representations and redraw the circuit in the s domain, 
as shown in Figure 6.55b. Note that the resistor R is in parallel connection with the 
capacitor C. The corresponding equivalent impedances are 

 

Z s Ls

Z s R Cs

1

2

1 1 1
1

( )

( ) )

=

= +
/(  

Z2(s)

Z1(s)

I(s)

Zn(s)

I(s) Zeq(s)

FIGURE 6.54
Equivalence for impedances in parallel.

Z1(s) Z2(s) Zn(s) Zeq(s)I(s) I(s)

FIGURE 6.53
Equivalence for impedance in series.
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or 

 
Z s

R
RCs

2
1

( ) =
+  

For the equivalent impedance circuit in Figure 6.55c, we apply Kirchhoff’s voltage law, 

 Z s I s Z s I s V s1 2 0( ) ( ) ( ) ( ) ( )+ − =a  

where the current is related to the output voltage by 

 V s Z s I so( ) ( ) ( )= 2  

Thus, we have 

 
Z s

V s
Z s

V s V s1
2

( )
( )
( )

( ) ( )o
o a+ =

 

which gives the transfer function relating the input voltage va and the output voltage vo,

 

V s
V s

Z s
Z s Z s

R
RLCs Ls R

o

a

( )
( )

( )
( ) ( )

=
+

=
+ +

2

1 2
2

 

or 

 RLCs Ls R V s RV s2 + +( ) =o a( ) ( ) 

By taking the inverse Laplace transform with the assumption of zero initial conditions, 
we obtain the differential equation of the system 

 RLCv Lv Rv Rv o o o a+ + =  

which is the same as the one obtained in Example 6.4.
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va v R 1
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−

v

I(s)
Z1

va voZ2

FIGURE 6.55
An RLC circuit drawn (a) in time domain, (b) in s domain, and (c) using impedances.
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Example 6.14: Impedance Method: An Op-Amp Circuit

For the op-amp circuit in Example 6.11, use the impedance method to derive the 
 differential equation relating the output voltage vo(t) to the input voltage vi(t). Assume 
zero initial conditions.

Solution

The original op-amp circuit is shown in Figure 6.56a. Replacing the passive elements 
with their impedance representations gives the equivalent op-amp circuit, as shown in 
Figure 6.56b, where 

 

1 1 1
1

1 1 1
1

1 1 1

2 2 2

Z s R C s

Z s R C s

( ) )

( ) )

= +

= +

/(

/(  

or 

 

Z s
R

R C s

Z s
R

R C s

1
1

1 1

2
2

2 2

1

1

( )

( )

=
+

=
+  

Because the current drawn by the op-amp is very small, applying Kirchhoff’s current 
law to node 1 yields, 

 

I s I s

V s V s
Z s

V s V s
Z s

1 2

1

1

1

2

( ) ( )

( ) ( )
( )

( ) ( )
( )

=

−
=

−i o

 

where the voltage at node 1 obeys 

 V s V s V s1( ) ( ) ( )= = =− + 0 
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I1(s) I2(s)

FIGURE 6.56
An op-amp circuit drawn (a) in time domain and (b) using impedances.
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Consequently, we have 

 
V s
Z s

V s
Z s

i o( )
( )

( )
( )1 2

= −
 

which gives the transfer function relating the input voltage vi and the output voltage vo, 

 
V s
V s

Z s
Z s

R R C s R
R R C s R

o

i

( )
( )

( )
( )

= − = −
+
+

2

1

1 2 1 2

1 2 2 1  

or 

 R R C s R V s R R C s R V s1 2 2 1 1 2 1 2+( ) = − +( )o i( ) ( ) 

By taking the inverse transform with the assumption of zero initial conditions, we 
obtain the differential equation of the system 

 R R C v R v R R C v R v1 2 2 1 1 2 1 2 o o i i+ = − −  

which is the same as the one obtained in Example 6.11.

6.5.3 Mechanical Impedances

Analogous to electrical impedance, mechanical impedance is defined as 

 Z s
V s
F s

( )
( )
( )

=  (6.62)

where V(s) and F(s) are the Laplace transforms of velocity v(t) and force f(t), respectively. 
The impedance concept can also be used to obtain models of mechanical systems along 
with the linear graph, which is a topic beyond the scope of this text. Here, we only give the 
definitions of impedances for fundamental mechanical elements.

For a viscous damper, the damping force is related to the velocity by f = bv or F(s) = bV(s). 
Thus, the impedance of a damper is 

 Z s
b

( ) = 1
 (6.63)

For a spring element, the spring force is proportional to the displacement, f kx k v t= = ∫ d  
or F(s) = kV(s)/s. Thus, 

 Z s
s
k

( ) =  (6.64)

For a mass element, by Newton’s second law, f ma mv= =   or F(s) = msV(s). Thus, the imped-
ance of a mass element is 

 Z s
ms

( ) = 1
 (6.65)
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When comparing the two sets of equations, Equations 6.53 through 6.55 and 6.63 through 
6.65, we note that the corresponding electrical and mechanical elements are not equivalent, 
although they have similar physical effects. For example, both the resistor and the damper 
dissipate energy. But the mathematical expressions for their impedances are different.

PROBLEM SET 6.5

 1. Reconsider the RC circuit shown in Figure 6.24. Use the impedance method to 
determine the transfer function I(s)/Va(s) and the input–output differential 
 equation relating vC and va. Assume that all the initial conditions are zero.

 2. Reconsider the RL circuit shown in Figure 6.25. Use the impedance method to 
determine the transfer function VL(s)/Va(s) and the input–output differential 
 equation relating iL and va. Assume zero initial conditions.

 3. Reconsider the RLC circuit shown in Figure 6.26. Use the impedance method to 
determine the input–output differential equation relating vo and va. Assume zero 
initial conditions.

 4. Reconsider the RLC circuit shown in Figure 6.27. Use the impedance method to 
determine the input–output differential equation relating i and va. Assume that all 
the initial conditions are zero.

 5. Reconsider the RLC circuit shown in Figure 6.28. Use the impedance method to 
determine the input–output differential equation relating vo and va. Assume zero 
initial conditions.

 6. Reconsider the RLC circuit shown in Figure 6.29. Use the impedance method to 
determine the input–output differential equation relating vo and va. Assume zero 
initial conditions.

 7. Reconsider the RL circuit shown in Figure 6.30. Use the impedance method to 
determine the input–output differential equation relating vo and va. Assume that 
all initial conditions are zero.

 8. Reconsider the op-amp circuit shown in Figure 6.41. Use the impedance method 
to determine the differential equation relating the input voltage vi and the output 
voltage vo.

6.6 System Modeling with Simulink and Simscape

Electrical systems, or electrical circuits, can be modeled as systems with interconnected 
electrical elements, such as resistors, inductors, capacitors, op-amps, and others. These 
passive electrical elements are connected with active electrical elements, including current 
sources and voltage sources. The common output signals of electrical systems are cur-
rents and voltages. Similar to modeling of mechanical systems, the dynamics of electrical 
systems can be represented by ordinary differential equations, transfer functions, or the 
state-space form. Therefore, the Simulink modeling techniques discussed in Section 5.6 
can also be applied to electrical systems.
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This section focuses on physical modeling of electrical systems with Simscape. The 
blocks in the library of Simscape\Foundation Library\Electrical are cat-
egorized into three types, Electrical Elements, Electrical Sources, and 
Electrical Sensors. The Simscape library of Electrical Elements includes 
basic electrical building blocks, such as resistors, inductors, capacitors, op-amps, elec-
tromechanical convertors, switches, grounds, etc. The Simscape library of Electrical 
sources includes DC, AC, and controlled voltage and current sources. The Simscape 
library of Electrical Sensors includes two types of sensors, current and voltage 
sensors. The examples in this section illustrate Simscape modeling of electric circuits, 
op-amp circuits, and DC motors.

6.6.1 Electric Circuits

To correctly model an electric circuit by using Simscape, it is very important to verify 
polarity and connection to ground. First, the + and − signs seen on the ports of a block 
indicate how the current flows through that block. Second, each topologically distinct elec-
tric circuit must contain at least one Electrical Reference block, which represents a 
connection to the ground.

Example 6.15: A Series RLC Circuit 

Consider the series RLC circuit shown in Figure 6.57, where R  =  1 Ω, L  =  1  H, and 
C =  0.5 F. When the switch is closed at 1  second, the circuit is driven by a 24 V DC 
 voltage source. Assume that all initial conditions are zero.

 a. Build a Simscape model of the physical system and find the loop current i(t) 
and the voltage across the capacitor vC(t).

 b. Refer to the results obtained in Example 6.1. Build a Simulink model of the 
system based on the transfer function I(s)/Va(s) and find the loop  current i(t).

 c. Refer to the results obtained in Example 6.1. Build a Simulink model of the 
system based on the transfer function VC(s)/Va(s) and find the voltage across 
the capacitor vC(t).

+

+
−

−

va v

vC

C

Li

R

FIGURE 6.57
A series RLC circuit with a switch closed at 1 second.
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Solution

 a. The Simscape block diagram corresponding to the physical system is shown in 
Figure 6.58, which can be created by following these steps.
1. Type ssc_new at the MATLAB Command window to open the main 

Simscape library and create a new model.
2. Open the library of Simscape/Foundation Library/Electrical/ 

Electrical Elements and drag the Resistor, Inductor, and 
Capacitor blocks into the model window. Double-click these blocks to 
define the parameters Resistance, Inductance, and Capacitance 
as 1  Ohm, 1  H, and 0.5  F. Also, drag the Switch and Electrical 
Reference blocks into the model window.

3. To add a 24  V DC voltage source, open the library of Simscape/
Foundation Library/Electrical/Electrical Sources and drag 
the DC Voltage Source block into the model window. Double-click the 
block and define the parameter Constant voltage as 24 V.

4. To measure the loop current and the voltage across the capacitor, open the 
library of Simscape/Foundation Library/Electrical/Electrical 
Sensors and drag both the Current Sensor and Voltage Sensor 
blocks into the model window. Each sensor has ports + and −, through 
which the sensor is connected to the circuit. The third port, I for the 
Current Sensor or V for the Voltage Sensor, is a physical signal port 
that outputs either current or voltage value.
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Voltage sensor

PS S

PS-Simulink
converter 1

Scope 1

+
−

V

A

V

+

+

+

+

+

−

−

−

−

−

FIGURE 6.58
Simscape block diagram corresponding to Example 6.15.
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5. Note that the Switch is closed at 1 second. To add the time source, open 
the library of Simulink/Sources and drag the Clock block, which is 
connected to the Simulink-PS Converter block and then the Switch 
block. Double-click the Switch block and type 1 for the Threshold. This 
implies that the switch is closed if the time is greater than 1 second, other-
wise the switch is open.

6. To display the loop current and the voltage across the capacitor, open 
the library of Simulink/Sinks and drag two Scope blocks, which are 
connected to the sensor blocks through the PS-Simulink Converter 
blocks. Note that the Current Sensor is connected in series with the 
circuit and the Voltage Sensor is connected in parallel with the 
Capacitor block.

7. Orient the blocks and connect them as shown in Figure 6.58.
 Set the simulation time to 15 seconds and run the model. The plots of the 

resulting loop current i(t) and the voltage across the capacitor vC(t) are 
shown in Figures 6.59 and 6.60, respectively.

 b. Refer to the results obtained in Example 6.1. The transfer function relating the 
input va(t) to the output i(t) is

 

I s
V s

Cs
LCs RCs

( )
( )a

=
+ +2 1 

 When the switch is closed at 1 second, the circuit is driven by a 24V DC voltage 
source. Mathematically, this can be modeled using a Step block with the Step 
time set as 1 and the Final value set as 24. The corresponding Simulink 
block diagram is shown in Figure 6.61, where a Transfer Fcn block is used to 
represent the series RLC circuit. Double-click the block and type [C 0] for the 
Numerator coefficient and [L*C R*C 1] for the Denominator coeffi-
cient to define the transfer function I(s)/Va(s).
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FIGURE 6.59
Loop current output i(t) of the series RLC circuit in Example 6.15.
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 c. Similarly, the transfer function relating the input va(t) to the output vC(t) is 
obtained as

 

V s
V s LCs RCs

C

a

( )
( )

=
+ +

1
12

 

 The corresponding Simulink block diagram is similar to the one shown in 
Figure 6.61, except that the Numerator coefficient of the Transfer Fcn 
block is [1], instead of [C 0]. Running the Simulink models, we will obtain 
the same current output as shown in Figure 6.59 and the voltage output as 
shown in Figure 6.60.

Example 6.16: An RC High-Pass Filter 

A passive, analog, first-order high-pass filter can be realized by an RC circuit 
(see Figure 6.62), which passes high-frequency signals but attenuates signals at low 
frequencies. Assume that the resistance is R = 100 Ω and the capacitance is C = 10 μF. 
The circuit is connected to an AC voltage source, which has an amplitude of 1 V and a 
frequency varying from 1 to 1000 Hz. Build a Simscape model of the physical system 
and find the output voltage vo(t) when the frequency of the input voltage is 1, 10, 100, 
and 1000 Hz.

Step Transfer Fcn Scope
LCs2 + RCs + 1

Cs

FIGURE 6.61
Simulink block diagram built based on the transfer function I(s)/Va(s).
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FIGURE 6.60
Voltage across the capacitor vC(t) in Example 6.15.
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Solution

The Simscape block diagram of the RC high-pass filter is shown in Figure 6.63, where 
the AC Voltage Source block outputs a sinusoidal voltage. To better understand 
high-pass filtering, two Voltage Sensor blocks are included to measure the input 
and output voltages. They are displayed on the same scope through a Mux block, 
which can be found in the Simulink library of Signal Routing. Double-click the 
AC Voltage Source block, type 1 for the Peak amplitude, and choose the unit as 
V. Vary the Frequency from 1, 10, 100, to 1000 Hz and run the simulations. The 
comparison between the input voltage and output voltage is given in Figure 6.64, in 
which solid lines are the output voltages and the dashed ones are the input voltages. 
It is obvious that the filter passes high-frequency signals but attenuates signals at low 
frequencies. The reader can derive the transfer function of the system and build a 
Simulink block diagram as an exercise.
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va vo

FIGURE 6.62
A passive, analog, first-order high-pass filter realized by an RC circuit.
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FIGURE 6.63
Simscape block diagram corresponding to Example 6.16.
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6.6.2 Operational Amplifiers

The Op-Amp block in the Simscape library of Electrical Elements models the ideal 
behavior of an op-amp. The block has three electrical conserving ports. As discussed in 
Section 6.3, the voltage at the positive pin is equal to the voltage at the negative pin. In 
other words, the op-amp gain is assumed to be infinite. This implies that the current from 
the positive terminal to the negative terminal is zero. Building an op-amp circuit by using 
the Op-Amp block, combined with other electrical elements, such as resistors, capacitors, 
and so on, is very straightforward.

Example 6.17: An Op-Amp Differentiator 

Consider the op-amp differentiator in Example 6.10. Assume that the parameter values 
are R = 1 MΩ and C = 1 μF. Build a Simscape model of the op-amp circuit and find the 
output voltage vo(t) when the input voltage is vi = −0.1t V.
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FIGURE 6.64
Comparison between the input and output voltages of the high-pass filter in Example 6.16.
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Solution

The Simscape block diagram of the op-amp differentiator is shown in Figure 6.65, in 
which a Clock block and a Gain block are used to generate the input voltage vi = −0.1t V. 
The Simulink input signal is converted into an equivalent voltage source by using a 
Controlled Voltage Source block. According to the result in Example 6.10, the out-
put voltage vo is proportional to the time derivative of the input voltage vi via v RCvo i= −  . 
Substitute the parameter values, and a constant value of 0.1 is expected to be the output 
voltage. The problem of building a Simulink block diagram based on the differential 
equation is left to the reader as an exercise.

6.6.3 Direct Current Motors

As presented in Section 6.4, the mathematical model of a DC motor can be represented 
using a set of differential equations, a set of transfer functions, or in the state-space 
form. For each representation, a Simulink model can be built using the corresponding 
blocks, such as Transfer Fcn and State-Space blocks. To build a Simscape model of 
a DC motor, which is an electromechanical system, we need to use the blocks in both 
the Simscape\Foundation Library\Electrical and the Simscape\Foundation 
Library\Mechanical libraries. Two blocks, Translational Electromechanical 
Converter and Rotational Electromechanical Converter, in the Simscape library 
of Electrical Elements provide an interface between the electrical and mechanical 
translational or rotational domains. The following example illustrates how to model an 
armature-controlled DC motor with Simulink and Simscape.

Example 6.18: An Armature-Controlled Direct Current Motor 

Consider the dynamic system shown in Figure 6.66, which represents an armature-
controlled DC motor. Assume that the armature inductance is negligibly small, that is, 
La = 0. The system dynamics can be expressed as 
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Voltage
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Simulink-PS
converter

S PS Electrical reference
PS-Simulink

converter
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f (x) = 0

+

+ +

+

−

− −

−

FIGURE 6.65
Simscape block diagram corresponding to Example 6.17.
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 R i K va a e am+ =θ  

 I B K im m m m t a
 θ θ+ − = 0 

where the armature resistance is Ra = 0.5 Ω, the back emf constant is Ke = 0.05 V·s/rad, 
the torque constant is Kt  =  0.05  N·m/A, the mass moment of inertia of the motor is 
Im  =  0.00025  kg⋅m2, the coefficient of the torsional viscous damping of the motor is 
Bm = 0.0001 N·m·s/rad, and the applied voltage is va = 10 V.

 a. Denote ω θm m=  . Following Figure 6.45, build a Simulink block diagram by 
using the given equations and find the armature current output ia(t) and the 
rotor speed ωm(t).

 b. Assume zero initial conditions, determine the transfer functions Ia(s)/Va(s) and 
Ωm(s)/Va(s). Build a Simulink block diagram by using these two transfer func-
tions and find the armature current output ia(t) and the rotor speed ωm(t).

 c. Choose θm and θm as state variables and determine the state-space form of the 
system. Build a Simulink block diagram based on the state-space form and 
find the armature current output ia(t) and the rotor speed ωm(t).

 d. Build a Simscape model of the DC motor and find the armature current output 
ia(t) and the rotor speed ωm(t).

Solution

 a. This electromechanical system includes an armature circuit

 R i v ea a a b= −  

 a rotational system

 I Bm m m m mω ω τ+ =  

 and couplings between the electrical and mechanical subsystems

 e K K ib e m m t a= =ω τ,  

 Following Figure 6.45, we can construct a Simulink block diagram (Figure 6.67), 
which shows the major components of the DC motor and their interconnec-
tions. The dynamics of the mechanical rotational system is represented using a 
Transfer Fcn block. The armature resistance, torque constant, and back emf 
constant, are represented using Gain blocks. 

v
+ +

−−
va eb

τm θm

v

Bm

Im

Raia

FIGURE 6.66
An armature-controlled DC motor with negligible inductance.
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 b. Taking Laplace transform of the two equations given and denoting 
s s sΘ Ωm m( () )=  yields

 R I s K s V sa a e a( ) ( ) ( )+ =Ω  

 I s s B s K I sm m m m t aΩ Ω( ) ( ) ( )+ − = 0  

 Using Cramer’s rule to solve for the transfer functions Ia(s)/Va(s) and Ωm(s)/Va(s) 
yields

 

I s
V s

I s B
R I s R B K K

a

a

m m

a m a m t e

( )
( )

=
+

+ +  

 

Ωm

a

t

a m a m t e

( )
( )

s
V s

K
R I s R B K K

=
+ +  

 both of which can easily be represented using a Transfer Fcn block 
(Figure 6.68).

 c. Let x1 = θm, x2 = θm, and u = va, and the state-variable equations are

 

x x1 = =θm 2  

Voltage input

Ω(s)/Va(s)

Kt

Rotor speed
RaIms + RaBm + KtKe

Armature currentIa(s)/Va(s)

RaIms + RaBm + KtKe

Ims + Bm

FIGURE 6.68
Simulink block diagram built based on the transfer functions.
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FIGURE 6.67
Simulink block diagram built based on the dynamics equations.
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 The output equations are
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 The system can be represented using a State-Space block (Figure 6.69) with 
A, B, C, and D matrices defined earlier. A Demux block from the Simulink 
library of Signal Routing is used to split the output vector signal into two 
scalar signals ia(t) and ωm(t).

 d. The Simscape block diagram of the DC motor (Figure 6.70) consists of 
 elements from  two domains, electrical and mechanical rotational. Note that 
each domain requires at least one reference block. As shown in Figure 6.70, 

Voltage input DC motor

Rotor speed

Armature currentx′ = Ax + Bu
y = Cx + Du

FIGURE 6.69
Simulink block diagram built based on the state-space form.
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both Electrical Reference and Mechanical Rotational Reference 
blocks are attached to the appropriate circuit.

  Define all the parameters in MATLAB Workspace and run the Simulink 
or Simscape models. The result can be plotted as shown in Figures 6.71 
and 6.72.
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FIGURE 6.71
Armature current output ia(t) in Example 6.18.

Solver
configuration

Current sensor Resistor

DC voltage
source

Af (x) = 0

PS-Simulink
converter

Scope

PS S Inertia

Ideal rotational
motion sensor

R
A
W
C

PS S

PS-Simulink
converter 1

Scope 1

R C

Rotational damper Mechanical
rotational reference 1Rotational

electromechanical
converter

Electrical reference
Mechanical
rotational reference

C
R

+

+
+

−

−
−

+
+

−
−

FIGURE 6.70
Simscape block diagram of the DC motor in Example 6.18.
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PROBLEM SET 6.6

 1.  Consider the RL circuit shown in Figure 6.25 (Problem Set 6.2, Problem 2), in 
which R = 35 Ω and L = 10 H. When the switch is closed at 0 seconds, the circuit is 
driven by a 6 V DC voltage source. Assume that all initial conditions are zero. 

 a. Build a Simscape model of the physical system and find the loop current iL(t) 
and the voltage across the inductor vL(t).

 b. Build a Simulink model of the system based on the differential equation relat-
ing iL and va, and find the loop current iL(t).

 c. Build a Simulink model of the system based on the transfer function VL(s)/Va(s), 
and find the voltage across the inductor vL(t).

 2.  Consider the parallel RLC circuit shown in Example 6.2, in which R =  2 Ω, 
L = 1 H, and C = 0.5 F. The circuit is driven by a controlled current source ia(t) = 10u(t), 
where u(t) is a unit-step function. 

 a. Build a Simscape model of the physical system and find the voltage across the 
capacitor vC(t) and the current through the inductor iL(t).

 b. Refer to the results obtained in Example 6.2. Build a Simulink model of the 
system based on the transfer function VC(s)/Ia(s) and find the voltage across the 
capacitor vC(t).

 c. Refer to the results obtained in Example 6.2. Build a Simulink model of the 
system based on the transfer function IL(s)/Ia(s) and find the current through 
the inductor iL(t).

 3.  A simple low-pass filter can be realized by an RLC circuit (see Figure 6.21 in 
Example 6.4), which passes signals with frequencies lower than a certain cutoff fre-
quency and attenuates signals with a frequency higher than the cutoff frequency. 
Assume that the parameter values are R =  500 Ω, L =  100 mH, and C =  10 μF. 
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FIGURE 6.72
Rotor speed output ωm(t) in Example 6.18.
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The circuit is connected to an AC voltage source, which has an amplitude of 1 V 
and a varying frequency. 

 a. Build a Simscape model of the physical system and find the output voltage vo(t) 
when the frequency of the input voltage is 500, 1000, and 2500 rad/s.

 b. Build a Simulink model of the system based on the transfer function Vo(s)/Va(s), 
and verify the results obtained in Part (a).

 4.  A simple band-pass filter can be realized by an RLC circuit (Figure 6.73), which 
passes frequencies within a certain range and attenuates frequencies outside that 
range. Assume that the parameter values are R = 500 Ω, L = 100 mH, and C = 10 μF. 
The circuit is connected to an AC voltage source, which has an amplitude of 1 V 
and a varying frequency.

 a. Build a Simscape model of the physical system and find the output voltage vo(t) 
when the frequency of the input voltage is 1000, 800, and 1200 rad/s.

 b. Derive the transfer function Vo(s)/Va(s), build a Simulink model of the system 
based on this transfer function, and verify the results obtained in Part (a).

 5.  Consider the op-amp integrator in Figure 6.35. Assume that the parameter 
values are R = 1 MΩ and C = 1 μF. Build a Simscape model of the op-amp circuit 
and find the output voltage vo(t) when the input voltage is vi = −0.1 V.

 6.  Consider the op-amp circuit shown in Figure 6.74, in which the parameter val-
ues are C1 = 0.8 μF, R1 = 10 kΩ, C2 = 80 pF, and R2 = 100 kΩ. The circuit is connected 
to an AC voltage source, which has an amplitude of 1 V and a frequency of 200 Hz. 
Build a Simscape model of the op-amp circuit and find the output voltage vo(t).

C1 R1

R2

vo

C2

vi

+

−

FIGURE 6.74
Problem 6.
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Problem 4.
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6.7 Summary

This chapter was devoted to the modeling of electrical, electronic, and electromechanical 
systems. An electrical system or electrical circuit can be considered to be an interconnec-
tion of active and passive electrical elements. Active electrical elements include ideal cur-
rent sources and ideal voltage sources, both of which can provide energy to the circuit and 
serve as the inputs. Passive electrical elements, including resistors, inductors, and capaci-
tors, can either store or dissipate energy available in the circuit, but they cannot produce 
energy. The voltage–current relations for passive electrical elements are given as follows: 

• Resistor: v Ri i v
R

= =,

• Inductor: v L
i
t

i
L

v t= = ∫d
d

d,
1

• Capacitor: v
C

i t= ∫1
d , i C

v
t

= d
d

For the modeling of electrical, electronic, and electromechanical systems, Kirchhoff’s 
voltage law and Kirchhoff’s current law are the two main physical laws to derive the 
governing differential equations.

Kirchhoff’s voltage law states that the algebraic sum of the voltages around a loop (closed 
path) must be zero, 

 
vj

j
∑ = 0

 

where vj is the voltage across the jth element in the loop.
Kirchhoff’s current law states that the sum of the currents entering a node must be equal 

to the sum of the currents leaving that node. If we assign a positive sign to the current 
entering the node and a negative sign to the current leaving the node, the algebraic sum of 
the currents at the node must be zero, 

 
ij

j
∑ = 0

 

where ij is the current of the jth element at the node.
It is usually not easy to obtain a set of differential equations for complicated circuits. For 

this purpose, two systematic methods, the node method that relies on Kirchhoff’s current 
law and the loop method that relies on Kirchhoff’s voltage law, were introduced in Section 6.2.

To represent a circuit model in state-space form, an appropriate set of state variables are 
normally chosen by identifying the energy storage elements. Both inductors and capaci-
tors can store energy, and expressions for the stored electrical energy are given as follows: 

• Inductor: E t Li t Li( ) ( ) ( )= −1
2

1
2

02 2

• Capacitor: E t Cv Cvt( ) ( ) ( )= −1
2

1
2

02 2
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Generally, inductor currents and capacitor voltages are chosen as the state variables. 
To determine the state-space form of an electrical circuit, the expression of diL/dt or 
dvC/dt for each inductor or capacitor is needed. Based on the voltage–current rela-
tions, we have diL/dt = 1/LvL and dvC/dt = 1/CiC. The problem is thus converted to 
expressing the inductor voltage vL and the capacitor current iC in terms of state vari-
ables and inputs by using Kirchhoff’s laws and voltage–current relations for electrical 
elements.

For an op-amp, which is an electronic element used to amplify electrical signals and 
drive physical devices, the differential equation relating the output voltage and the input 
voltage can be derived by applying Kirchhoff’s laws and the op-amp equation 

 v v+ −≈  

where v+ and v− are the voltages at the two input terminals of the op-amp.
For an electromechanical system, the dynamic model can be derived by applying elec-

trical principles (e.g., Kirchhoff’s laws) and mechanical principles (e.g., Newton’s second 
law). The modeling of DC motors was discussed in Section 6.4. For an armature-controlled 
motor, the torque produced by the motor is 

 τm t a= K i  

and the back emf generated in the armature due to the rotating motion is 

 e K Kb e e= =ω θ 

Armature-controlled motors are commonly used, in which a constant current source if is 
supplied to the field windings and the applied armature voltage va varies. Field-controlled 
motors are used in a different way, keeping the armature current ia constant and letting 
the voltage vf applied to the field windings vary. The torque generated by a field-controlled 
motor is proportional to the field current, 

 τm t f= K i  

The impedance concept provides an alternative to transfer functions and differential equa-
tions to obtain mathematical models of systems. The electrical impedance is defined as the 
ratio of the voltage to the current in the Laplace domain. The expressions of impedances 
for passive electrical elements are given as follows: 

• Resistor: Z(s) = R
• Inductor: Z(s) = Ls

• Capacitor: Z s
Cs

( ) = 1

Because the impedance can be viewed as a generalized resistance, it is easy to find the 
equivalent impedance for electrical elements connected in series or parallel and determine 
mathematical models of systems.
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Review Problems

 1. Determine the equivalent resistance Req for the circuit shown in Figure 6.75.
 2. Find R13 and R32 for the voltage divider shown in Figure 6.76 so that the current is 

limited to 2 A when vi = 110 V and vo = 100 V.
 3. Consider the second-order RC circuit shown in Figure 6.77. Assume that all the 

initial conditions are zero.
 a. Use the node or loop method to derive the input–output differential equation 

relating vo and va, and find the transfer function Vo(s)/Va(s).
 b. Use the impedance method to determine the transfer function Vo(s)/Va(s), and 

compare with the result obtained Part (a).
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 4. Consider the RLC circuit shown in Figure 6.78. Assume zero initial conditions.
 a. Use the node or loop method to derive the input–output differential equation 

relating i and va, and find the transfer function I(s)/Va(s).
 b. Use the impedance method to determine the transfer function I(s)/Va(s), and 

compare with the result obtained Part (a).
 5. Consider the RLC circuit shown in Figure 6.79, and assume zero initial conditions.
 a. Use the node or loop method to derive the input–output differential equation 

relating vo and va, and find the transfer function Vo(s)/Va(s).
 b. Use the impedance method to determine the transfer function Vo(s)/Va(s), and 

compare with the result obtained Part (a).
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 6. Consider the circuit shown in Figure 6.77 (Review Problems, Problem 3). 
 a. Determine a suitable set of state variables and obtain the state-space 

representation.
 b. Find the transfer function directly from the state-space form and compare 

with the result obtained in Problem 3.
 7. Repeat Problem 6 for the circuit shown in Figure 6.78 (Review Problems, 

Problem 4).
 8. Repeat Problem 7 for the circuit shown in Figure 6.79 (Review Problems, 

Problem 5).
 9. The op-amp circuit shown in Figure 6.80 is an active low-pass filter. Derive the 

input–output differential equation relating the output voltage vo(t) and the input 
voltage vi(t). Assuming zero initial conditions, find the transfer function Vo(s)/Vi(s) 
directly from the input–output equation.

 10. Repeat Problem 9 for the op-amp circuit shown in Figure 6.81, which represents an 
active band-pass filter.

 11.  Consider the RLC circuit shown in Figure 6.30 (Problem Set 6.2, Problem 15), 
where R1 = 100 Ω, L = 20 H, R2 = 400 Ω, and C = 1/120 F. The circuit is driven by a 
100 V DC voltage source. 

 a. Build a Simscape model of the physical system and find the output voltage vo(t).
 b. Build a Simulink model of the system based on the state-space form and find 

the output voltage vo(t).
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 12. Case study
 Consider the DC motor–driven wheeled mobile robot shown in Figure 6.82a, 

where m is the mass of the wheeled mobile robot, r is the radius of the driving 
wheel, and τ is the torque delivered to the wheeled mobile robot by the DC motor. 
For simplicity, the motion is restricted to one spatial dimension. Figure  6.82b 
shows the simplified drive system, including the equivalent electrical circuit 
of the DC motor, the rotor of the DC motor, the gears, and the driving wheel. 
The motor parameter values are armature inductance La  =  0.001  H, resistance 
Ra = 2.6 Ω, back emf constant Ke = 0.008 V s/rad, and torque constant Kt = 0.008 
N  m/A. The mass moment of inertia of the motor can be negligible. The gear 
ratio is N = θ/θm = τm/τ = 1/3.7. The wheel and axle mechanism converts the 
rotational motion to translation, and the wheel radius is r = 0.00635 m. The mass 
of the cart is m = 0.455 kg.

 a. Derive the equations of motion of the system.
 b. Choose the armature current ia, the robot displacement x, and the robot 

velocity x as state variables, and find the state-space form of the system.
 c. Assuming zero initial conditions, find the transfer function X(s)/Va(s).
 d.  Following Figure 6.45, build a Simulink block diagram by using the dif-

ferential equations obtained in Part (a) and find the displacement output x(t) 
when the voltage applied to the DC motor is a pulse function, va(t) = 1 V for 
1 ≤ t ≤ 2 s.

 e.  Build a Simscape model of the wheeled mobile robot and find the displace-
ment output x(t) when the voltage applied to the DC motor is a pulse function, 
va(t) = 1 V for 1 ≤ t ≤ 2 s.
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FIGURE 6.82
Problem 12. (a) a DC motor–driven wheeled mobile robot and (b) the simplified drive system.



329

7
Fluid and Thermal Systems

Fluid is a general term used to represent a gas or a liquid. A fluid is said to be incompress-
ible if its density does not change with pressure. All gases are considered compressible, 
whereas liquids can be considered incompressible. Although real liquids are actually com-
pressible, the changes in their densities are insignificant when pressure is varied. Fluid 
systems can be divided into pneumatics and hydraulics. A pneumatic system is one in 
which the fluid is compressible, whereas a hydraulic system is one in which the fluid is 
incompressible. A general type of incompressible liquid systems is the liquid-level system. 
These systems are operated by adjusting the heights or levels of liquids in storage tanks.

A thermal system is one in which thermal energy is stored or transferred. The mathemat-
ical model of a thermal system is often complicated because of the complex temperature 
distribution throughout the system. Partial, rather than ordinary, differential equations 
are required for precisely analyzing such a distributed-parameter system. This topic is 
beyond the scope of this text. To simplify analysis, a lumped-parameter model, rather than 
a distributed-parameter model, governed by ordinary differential equations, may be used 
to approximate the dynamics of the system.

The modeling of fluid and thermal systems is presented in this chapter. The three major 
systems that are discussed include pneumatic, liquid-level, and heat-transfer systems. For 
each, we first introduce the concepts of capacitance and resistance. It is useful to think of fluid 
and thermal systems as electrical circuits. Along with the basic elements, two main laws, the 
conservation of mass and the conservation of energy, are then used to develop mathematical 
models of fluid and thermal systems, respectively. The chapter concludes with simulation of 
fluid and thermal systems by using MATLAB®, Simulink®, and SimscapeTM computer tools.

7.1 Pneumatic Systems

Pneumatic systems are often used in industry, particularly for pneumatic switches, pneu-
matic actuators, compressed-air engines, air brakes on buses and trucks, and so on. The 
working medium in a pneumatic system is compressible gas, typically air. To derive the 
mathematical model of a pneumatic system, it is important to understand the thermody-
namic properties of gases.

7.1.1 Ideal Gases

The state of an amount of gas is determined by its pressure, volume, and temperature. In 
other words, pressure, volume, temperature, and mass are functionally related for gases. 
The ideal gas law is the model that is most often used to describe this relation. An ideal gas 
is a hypothetical gas for which the quantity pV/T is constant, where p is the absolute pres-
sure of the gas, V is the volume, and T is the absolute temperature (K or °R). All real gases 
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behave as ideal gases if the pressure is low enough and the temperature is high enough. At 
low pressure and moderate temperature, real gases may be approximated as ideal gases to 
simplify calculations.

The ideal gas law states the relationship 

 pV nR T= u  (7.1)

where:
n is the number of moles of the gas
Ru is the universal gas constant

The mole is the unit of the amount of substance. A mole of an element or a compound con-
tains 6.023 × 1023 atoms or molecules. The numerical value of the universal gas constant Ru 
is 8314.3 N·m/(kg·mol·K) or 1545.3 ft·lb/(lb·mol·°R).

The amount of substance can also be given in mass, instead of moles. The number of 
moles n is equal to m/M, where m is the mass and M is the molar mass. Therefore, an alter-
native form of the ideal gas law is 

 pV mR T= g  (7.2)

where Rg = Ru/M is the specific gas constant that depends on the particular type of gas. For 
dry air, Rg = 287.06 N·m/(kg·K) or 1716.6 ft·lb/(slug·°R). The ideal gas law can be used to 
solve for one of the four variables (p, V, T, and m) if the other three are known.

For a particular thermodynamic process from state 1 to state 2, the ideal gas equation 
can be simplified. Assume that the mass is constant. The following is a list of five possible 
processes, in which the state number is denoted by the subscript. 

 1. Isobaric (or constant-pressure) process (p1  =  p2): The ideal gas law implies that 
T1/V1 = T2/V2 or T1/T2 = V1/V2. When heat is added to the gas, some of it increases 
the temperature and some expands the volume to exert external work.

 2. Isochoric (or constant-volume) process (V1  =  V2): The ideal gas law implies that 
T1/p1 = T2/p2 or T1/T2 = p1/p2. Because the volume is constant, no external work is 
done. The heat added to the gas only increases the temperature.

 3. Isothermal (or constant-temperature) process (T1 = T2): The ideal gas law implies that 
p1V1 = p2V2 or p1/p2 = V2/V1. The heat added to the gas only does external work.

 4. Isentropic process (reversible adiabatic process): An adiabatic process is a process in 
which no heat is transferred to or from the gas. A reversible process is a process 
that, after it has taken place, can be reversed, and it causes no change in the ther-
modynamic conditions of either the system or its surroundings. Any reversible 
adiabatic process is an isentropic process. This process is described by p V p V1 21 2

γ γ= , 
where γ is defined as the heat capacity ratio.

 5. Polytropic process: It is the most general thermodynamic process. The process is 
described by 

 
p

V
m

pn

n






 = =

ρ
constant

 
(7.3)

 where ρ is the density of the gas. For an ideal gas with a constant mass, this process 
reduces to the previous four processes if n is chosen as 0, ∞, 1, or γ, respectively.
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7.1.2 Pneumatic Capacitance

Fluid capacitance is the relation between the stored fluid mass and the resulting pressure 
caused by the stored mass. Specifically, the pneumatic capacitance C is defined as the ratio 
of the change in stored gas mass to the change in gas pressure:  

 
C

m
p

= d
d  

(7.4)

For a container of constant volume V, with a gas of density ρ, Equation 7.4 can be 
rewritten as  

 
C

V
p

V
p

= =d
d

d
d

( )ρ ρ

 
(7.5)

For a polytropic process, we have 

 
d
d

p
n

p npn
nρ

ρ
ρ ρ

=








 =−1  (7.6)

Introducing the ideal gas law presented in Equation 7.2 gives  

 
p pV

m
R T

ρ
= = g  (7.7)

Substituting it into Equation 7.6 gives  

 
d
d g

ρ
p nR T

= 1
 (7.8)

Thus, the capacitance of the container is 

 
C

V
nR T

=
g  

(7.9)

Example 7.1: Pneumatic Capacitance

Dry air passes through a valve into a rigid 27 m3 container at a constant temperature 
of 25°C (298 K). The process is assumed to be isothermal. Determine the capacitance of 
the air container.

Solution

The filling of the container is modeled as an isothermal process. In Equation 7.9, let 
n = 1, and we have 

 
C

V
R T

= =
×

= × ⋅−

g
kg m /N

27
287 06 298

3 16 10 4 2

.
.

 

Note that the same container can have a different pneumatic capacitance. The value of 
C depends on the type of gas, the temperature of gas, and the type of thermodynamic 
process.
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7.1.3 Modeling of Pneumatic Systems

It is rather difficult to precisely model pneumatic systems, owing to their highly nonlinear 
dynamics. To simplify the modeling, each mass storage element in a pneumatic system can 
be represented by a capacitance element, and the resistance due to a valve, an orifice, or 
pipe wall friction can be represented by a resistance element. Such a simple model may be 
adequate to describe the dynamic behavior of the real system.

Consider a pneumatic system shown in Figure 7.1, where pi is the inlet pressure, qi is the 
volume flow rate (m3/s), and p and ρ are the pressure and the density of the gas, respec-
tively, in a container of constant volume V. The gas passes through a valve and flows into 
the rigid container by the pressure difference, Δp = pi – p. Note that the gas meets resistance 
when flowing through the valve. The valve resistance depends on the pressure p and the 
mass flow rate qm (kg/s). Generally, the p versus qm curve is nonlinear. Thus, the value of 
the valve resistance R, which is defined as the slope of the curve, varies with the operating 
conditions. The definition of the resistance R is valid for both pneumatic and hydraulic 
systems, and more details will be given in Section 7.2.  

Although the valve resistance R is nonlinear, it may be linearized about an operating 
point. For a constant pressure pi at the inlet of the valve and a constant volume flow rate qi 
through the valve, the resistance R is given as  

 
R

p
q

p p
q

= =
−∆

∆ m

i

i iρ  
(7.10)

Combining with the capacitance of the container given in Equation 7.9, the pneumatic sys-
tem can be represented using a resistance–capacitance model.

The differential equation of the system can be derived by applying the law of conserva-
tion of mass: 

 
d
d

mi mo
m
t

q q= −  (7.11)

That is, the rate of mass increase in the container equals the mass flow rate into the con-
tainer minus the mass flow rate out of the container. Note that 
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(7.12)

and 

qi
pi

V

p, ρ

R

FIGURE 7.1
A pneumatic system with gas flowing into a container of constant volume.
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 q q
p p

R
mi i i

i= =
−

ρ  (7.13)

For the pneumatic system in Figure 7.1, the mass flow rate out of the container is qmo = 0. 
Thus, Equation 7.11 can be rewritten as  

 C
p
t

p p
R

d
d

i=
−

 (7.14)

or 

 RC
p
t

p p
d
d

i+ =  (7.15)

which is a first-order ordinary differential equation of the pressure p. Introducing the 
expression of the capacitance C given by Equation 7.9, we find  
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p p
g

i
d
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(7.16)

Either one of Equations 7.15 and 7.16 is the mathematical model of the pneumatic system 
undergoing a polytropic process with an ideal gas. It is also valid for an isobaric, isochoric, 
isothermal, or isentropic process if the value of n in the capacitance C is chosen as 0, ∞, 1, 
or γ, respectively.

Example 7.2: A Pneumatic System

Dry air at a constant temperature of 20°C (293 K) passes through a valve into a rigid 
cubic container of 1 m on each side (Figure 7.2). The pressure pi at the inlet of the valve 
is constant, and it is greater than p. The valve resistance is approximately linear, and 
R = 1000 Pa·s/kg. Assume that the filling process is isothermal. Develop a mathematical 
model of the pressure p in the container.  

Solution

Applying the law of conservation of mass gives 

 
d
d

i i
m
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q= ρ  

qi
pi

V

p, ρ

R

FIGURE 7.2
A pneumatic system with a rigid cubic container.
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Note that 
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Air at room temperature and low pressure can be approximated as an ideal gas. For an 
isothermal process, the pneumatic capacitance of the container is 

 C
V

R T
=

air
 

The linear valve resistance R is defined as 

 
R

p p
q

=
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i iρ  

Thus, the differential equation of the system is 
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or 
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where RV/(Rair T) = 1000 × 13/(287.06 × 293) = 1.19 × 10−2 s.

PROBLEM SET 7.1

 1. A car has an internal volume of 2.8 m3. If the sun heats the car from a temperature 
of 20°C to a temperature of 35°C, what will be the pressure inside the car? Assume 
the pressure is initially 1 atm.

 2. Find the pneumatic capacitance of dry air in a rigid container with volume 15 ft3 for 
an isothermal process. Assume that the air is initially at ambient temperature of 76°F.

 3. Figure 7.3 shows a pneumatic system, in which the pneumatic capacitances of the 
two rigid containers are C1 and C2, respectively. Dry air at a constant temperature 
passes through a valve of linear resistance R1 into container 1. The pressure pi at the 
inlet of the valve is constant, and it is greater than p1. The air flows from container 1 to 
container 2 through a valve of linear resistance R2. Derive the differential equations 
in terms of the pressures p1 and p2. Write the equations in second-order matrix form.  

pi
p2, C2p1, C1

R2R1

FIGURE 7.3
Problem 3.
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 4. Figure 7.4 shows a pneumatic piston, which can exert a force in one direction and 
serve as a translational actuator. The displacement of the piston is x, the total mass 
of the piston and the load is m, and the damping coefficient is b. Use subscript i to 
denote the chamber index and i = 1, 2. As shown in Figure 7.4, pi is the absolute 
pressure in the chamber, qmi is the mass flow rate at the port, and Ai is the effective 
area of the piston. The two chambers have the same initial volume of V0. Assuming 
ideal gas and isothermal process, R is the specific gas constant and T is the abso-
lute gas temperature. Derive the dynamic equations of the pressure change in the 
pneumatic chambers and the equation of motion of the mass block.   

7.2 Liquid-Level Systems

Unlike gases, most liquids are generally considered incompressible, and this approxima-
tion greatly simplifies the modeling of hydraulic systems. A general category of hydraulic 
systems is liquid-level systems, which often appear in water treatment, water supply, and 
other chemical processing applications. Such a system usually consists of storage tanks 
interconnected to other systems through valves, pumps, or pistons.

The dynamic behavior of a liquid-level system can be described using volume flow rate q, 
pressure p, and liquid height h. Note that the hydrostatic pressure, rather than the dynamic 
pressure, will be used in the modeling of liquid-level systems. The hydrostatic pressure is 
defined as the pressure that exists in a fluid at rest. It is caused by the weight of the fluid. 
For a liquid of density ρ, the absolute pressure p and the liquid height h are related by 

 p p gh= +a ρ  (7.17)

where pa is the atmospheric pressure.

7.2.1 Hydraulic Capacitance

As introduced in Section 7.1, fluid capacitance is the ratio of the change in stored mass to 
the change in pressure. Because the density of an incompressible liquid is constant, the 
change in mass is equivalent to the change in volume. Some books define the capacitance 
for hydraulic systems in terms of volume instead of mass, 

 
C

V
p

V = d
d  

(7.18)

qm1 qm2

p1 p2

A1 A2
m b

x

FIGURE 7.4
Problem 4.
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which is related to Equation 7.4 as C = ρCV. The definition given in Equation 7.4 is used for 
both pneumatic and hydraulic systems in this text.

To find the expression of capacitance for a hydraulic system, let us consider a container 
whose cross-sectional area varies with the liquid height. The mass stored in the container 
can be determined by integrating ρA from the base of the container to the top of the liquid, 

 
m A y y

h

= ∫ρ ( )d
0

 
(7.19)

By Equation 7.4, 
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Note that Equation 7.19 implies that 
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Also, Equation 7.17 gives 
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h h

p gh g= + =( )ρ ρ  (7.22)

Thus, the hydraulic capacitance of the container is 

 C A h
g

A h
g

= =ρ
ρ

( )
( )1

 (7.23)

If the cross-sectional area of the container is constant, then we have C = A/g. Unlike the 
pneumatic capacitance (see Equation 7.9), which depends on the type of gas and its tem-
perature, the hydraulic capacitance does not depend on any liquid properties.

Example 7.3: Hydraulic Capacitance of a Conical Tank

Derive the capacitance of the conical tank shown in Figure 7.5a by using

 a. C = dm/dp.
 b. C = A(h)/g.   

(a) (b)

R

H

h

R

r

h

H

α

A

FIGURE 7.5
A conical tank: (a) three-dimensional view and (b) cross-sectional view.
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Solution

 a. From Figure 7.5b, the radius r of the cross-section A at an arbitrary height is 

 r h h
R
H

= =tanα  

 Thus, the volume of the liquid is

 V h r h
R

H
h( ) = =

1
3

1
3

2
2

2
3π

π
 

 and the stored mass is

 m V h
R

H
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1
3

2

2
3
 

 Note that the pressure caused by the height of the liquid is

 p p gh= +a ρ  

 which gives
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  Thus, the capacitance of the conical tank is
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 b. The hydraulic capacitance can also be derived directly by using C = A(h)/g, 
which yields 
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R h
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7.2.2 Hydraulic Resistance

When liquid flows through a pipe, a valve, or an orifice, the liquid meets resistance, which 
creates a reduction in the pressure of the liquid. The pressure difference is associated with 
the mass flow rate qm in a nonlinear relationship, p  =  f(qm), as illustrated in Figure 7.6. 
The  slope of the curve is defined as the hydraulic resistance R, which depends on the 
reference mass flow rate qmr and the reference pressure pr. The expression of the hydraulic 
resistance R is given by 
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q p
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d m
mr r( , ) 

(7.24)
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which is also used for pneumatic systems. Near a reference operating point (qmr, pr), we can 
perform linearization and obtain the linearized resistance, which is 
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p
q

p p
q q

= =
−
−

∆
∆ m

r

m mr  
(7.25)

The resistance due to a valve, an orifice, or pipe wall friction can be represented by the 
valve-like symbol, as in Figure 7.7. In many fluid systems, multiple valves, orifices, or pipes 
are used. They are arranged in different ways, such as in series or parallel connections. The 
equivalent linear hydraulic resistances can be obtained similar to electrical resistances.    

Figure 7.8 shows resistances in series. Note that the mass flow rate remains the same 
through each resistance. The pressure reductions across the resistances R1 and R2 are 
p1 – p2 = R1qm and p2 – p3 = R2qm, respectively. Consequently, the total pressure reduction 
across the two resistances in series is p1 – p3 = (R1 + R2)qm. Comparing this result with the 
equivalent fluid system, p1 – p3 = Reqqm, we have 

 R R Req = +1 2 (7.26)  

A fluid system with resistances in parallel is shown in Figure 7.9. Note that the pressure 
reduction across each resistance must be the same. The mass flow rates through the resis-
tances R1 and R2 are qm1 = (p1 – p2)/R1 and qm2 = (p1 – p2)/R2, respectively. Therefore, the total 

qm
p1 p2 p3

R1 R2
qm = qm

Req

p1 p3
qm

FIGURE 7.8
Equivalence for series hydraulic resistances.

p1

R

p2

FIGURE 7.7
A symbol for hydraulic resistance.

qmr
qm

Δqm

pr

p

Slope = R
Δp

FIGURE 7.6
Linearized resistance near a reference point.
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mass flow rate through the two resistances in parallel is qm1 + qm2 = (p1 – p2)(1/R1 + 1/R2). 
Comparing this result with the equivalent fluid system, qm = (p1 – p2)/Req, we have 

 

1 1 1

1 2R R Req
= +

 
(7.27)  

7.2.3 Modeling of Liquid-Level Systems

To obtain a simple model of a liquid-level system, we will use a capacitance element to 
represent each storage tank and a resistance element to represent each valve in the  system. 
The resulting mathematical model may adequately describe the dynamics of the real 
 system. As in the modeling of pneumatic systems, the basic law used to derive the dif-
ferential equation of a liquid-level system is the law of conservation of mass, presented 
in Equation 7.11: dm/dt = qmi – qmo. That is, the time rate of change of fluid mass in a tank 
equals the mass flow rate into the tank minus the mass flow rate out of the tank.

Consider a single tank with a valve, as shown in Figure 7.10, where pa is the atmospheric 
pressure and qi and qo are the volume flow rates into and out of the tank, respectively. 
The cross-sectional area of the tank is A, and the liquid height is h. The liquid leaves the 
tank through the valve, for which the hydraulic resistance is R. The density of the liquid 
is constant, ρ.  

Next, we will show how to derive the differential equation of the system by applying the 
law of conservation of mass, presented in Equation 7.11. Note that the total fluid mass in 
the tank is ρAh. For constant cross-sectional area and constant density, the left-hand side 
of Equation 7.11 can be rewritten as 
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(7.28)
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R2 qm2 p2
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R1 qm1

qm p1 p2

Req
qm

FIGURE 7.9
Equivalence for parallel hydraulic resistances.

p1 p2
qo

A

h

qi pa

R1 2
ρ

FIGURE 7.10
A single-tank liquid-level system with a valve.
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The right-hand side of Equation 7.11 can be rewritten as 

 q q q qmi mo i o− = −ρ ρ  (7.29)

Labeling point 1 at the upstream side of the valve and point 2 at the downstream side of 
the valve, the hydraulic resistance of the valve can be expressed as 
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ρ  
(7.30)

Assume that the pressure p1 can be approximated as the hydrostatic pressure, p1 = pa + ρgh, 
and the pressure p2 can be approximated as the atmospheric pressure, p2 = pa. Substituting 
p1 and p2 into Equation 7.30 gives 
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(7.31)

Consequently, 
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or 
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Substituting Equations 7.28 and 7.33 into Equation 7.11 results in 
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Rearranging the equation gives 
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(7.35)

which is a first-order ordinary differential equation relating the liquid height h and the 
inlet volume flow rate qi. Introducing the expression of the hydraulic capacitance C, given 
by Equation 7.23, we can rewrite Equation 7.35 as 
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(7.36)

Equation 7.36 describes the dynamic behavior of a single-tank liquid-level system with 
capacitance C and resistance R, as shown schematically in Figure 7.10.

Hydraulic systems are usually connected with pumps, which can be considered as pres-
sure sources. The following example shows how to derive the governing differential equa-
tion for a single-tank liquid-level system with a pump.



341Fluid and Thermal Systems

Example 7.4: A Single-Tank Liquid-Level System with a Pump

Consider the single-tank liquid-level system shown in Figure 7.11, where a pump is 
connected to the bottom of the tank through a valve of linear resistance R. The inlet to 
the pump is open to the atmosphere, and the pressure of the fluid increases by Δp when 
crossing the pump. Derive the differential equation relating the liquid height h and the 
volume flow rate qo at the outlet. The tank’s cross-sectional area A is constant. The den-
sity ρ of the liquid is constant.

Solution

We begin by applying the law of conservation of mass to the tank, 
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The fluid mass inside the tank is ρAh. For constant fluid density and constant cross-
sectional area, 
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The mass flow rate into the tank is 

 q
p p

R
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−1 2
 

where p1 = pa + Δp and p2 = pa + ρgh, which is equal to the hydrostatic pressure at the 
bottom of the tank. Thus, 

 
q

p gh
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The mass flow rate out of the tank can be expressed in terms of the volume flow rate qo, 
as 

 q qmo o= ρ  

Substituting these expressions into the law of conservation of mass gives 
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FIGURE 7.11
A single-tank liquid-level system with a pump.
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Rearranging the equation gives 
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For a liquid-level system with two or more tanks, we apply the law of conservation of 
mass to each tank.

Example 7.5: A Two-Tank Liquid-Level System

Figure 7.12 shows a liquid-level system in which two tanks have cross-sectional areas 
A1 and A2, respectively. A pump is connected to the bottom of tank 1 through a valve 
of linear resistance R1. The liquid flows from tank 1 to tank 2 through a valve of linear 
resistance R2 and leaves tank 2 through a valve of linear resistance R3. The density ρ of 
the liquid is constant.

 a. Derive the differential equations in terms of the liquid heights h1 and h2. Write 
the equations in second-order matrix form.

 b. Assume the pump pressure Δp as the input and the liquid heights h1 and h2 as 
the outputs. Determine the state-space form of the system.

Solution

 a. Applying the law of conservation of mass to tank 1 gives
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 The mass flow rate entering and leaving tank 1 can be written as
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FIGURE 7.12
A two-tank liquid-level system.
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 and
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 Substituting these expressions results in
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 Applying the law of conservation of mass to tank 2 gives
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 The mass flow rate entering and leaving tank 2 can be written as

 
q

p gh p
R

gh
R

mi
a a=

+ −
=

( )ρ ρ1

2

1

2  

 and

 
q

p gh p
R

gh
R

mo
a a=

+ −
=

( )ρ ρ2

3

2

3  

 Substituting these expressions results in
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 The system of differential equations in second-order matrix form is found to be
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 b. As specified, the state, the input, and the output are
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 The state-variable equations are
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 or in matrix form

 





x
x

g
A R R

g
A R

g
A R

x
x

1

2

1 1 2

2 2 2 3

1

2

1 1
0









=
− +









−



























+
















1

0
1 1ρA R u

 

 The output equation is
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PROBLEM SET 7.2

 1. Derive the capacitance of the tank shown in Figure 7.13. There is an opening at the 
top of the tank at height H.   

 2. Derive the capacitance of the tank shown in Figure 7.14.   
 3. Consider the rectangular tank in Figure 7.15a and the pyramid tank in Figure 7.15b. 

The volume flow rate into each tank through a pipe is qi. The liquid leaves each tank 
through a valve of linear resistance R. The density ρ of the liquid is constant.   

 a. Derive the dynamic model of the liquid height h for each tank.
 b. For each tank, write the differential equation in terms of hydraulic capacitance 

and hydraulic resistance. Compare the models for the two single-tank systems.

h

H

r

R

FIGURE 7.13
Problem 1.
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 4. Consider the single-tank liquid-level system shown in Figure 7.16, where the volume 
flow rate into the tank through a pipe is qi. A pump is connected to the bottom of 
the tank through a valve of linear resistance R1. The pressure of the fluid increases 
by Δp when crossing the pump. The liquid leaves the tank through a valve of lin-
ear resistance R2. Derive the differential equation relating the liquid height h and 
the volume flow rate qi at the inlet. The tank’s cross-sectional area is constant. The 
density ρ of the liquid is constant.   

 5. Consider the two-tank liquid-level system shown in Figure 7.17. The liquid is 
pumped into tanks 1 and 2 through valves of linear resistances R1 and R2, respec-
tively. The pressure of the fluid increases by Δp when crossing the pump. The 
cross-sectional areas of the two tanks are A1 and A2, respectively. The liquid flows 
from tank 1 to tank 2 through a valve of linear resistance R3 and leaves tank 2 

L1

L2

b

H

FIGURE 7.14
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through a valve of linear resistance R4. The density ρ of the liquid is constant. 
Derive the differential equations in terms of the liquid heights h1 and h2. Write the 
equations in second-order matrix form.   

 6. Figure 7.18 shows a liquid-level system in which two tanks have cross-sectional 
areas A1 and A2, respectively. The volume flow rate into tank 1 is qi. A pump is con-
nected to the bottom of tank 1, and the pressure of the fluid increases by Δp when 
crossing the pump. Tank 2 is located higher than tank 1, and the vertical distance 
between the two tanks is H. The liquid is pumped from tank 1 to tank 2 through 
a valve of linear resistance R1 and leaves tank 2 through a valve of linear resistance R2. 
The density ρ of the liquid is constant. Derive the differential equations in terms 
of the liquid heights h1 and h2. Write the equations in second-order matrix form.   

 7. Consider the single-tank liquid-level system shown in Figure 7.19, where the vol-
ume flow rate into the tank through a pipe is qi. The liquid leaves the tank through 
an orifice of area Ao. Denote Cd as the discharge coefficient, which is the ratio of 
the actual mass flow rate to the theoretical one, and lies in the range of 0 < Cd < 1 
because of friction effects. Derive the differential equation relating the liquid 
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Problem 5.
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height h and the volume flow rate qi at the inlet. The tank’s cross-sectional area is 
constant. The density ρ of the liquid is constant.   

 8. Figure 7.20 shows a hydraulic system of two interconnected tanks that have the 
same cross-sectional area of A. A pump is connected to tank 1. Assume that the 
relationship between the voltage applied to the pump and the mass flow rate 
into tank 1 is linear; that is, qmi = kpva, where kp is called the pump constant and 
can be obtained by experimental measurements. Tank 1 is connected to tank 2, 
which is connected to a reservoir. The liquid leaves each tank through an outlet 
of area Ao at the bottom. Derive the differential equations in terms of the liquid 
heights h1 and h2.   
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FIGURE 7.19
Problem 7.
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7.3 Thermal Systems

Thermal systems are those that involve the transfer of heat from one object to another. 
When an object is at a different temperature than its surroundings or another object, heat 
will transfer from the higher-temperature object to the lower-temperature one, obeying 
the law of conservation of energy. Examples of thermal systems include heaters, air con-
ditioners, refrigerators, and so on. As with fluid systems (either pneumatic or hydraulic), 
for which fluid capacitance, fluid resistance, and the conservation of mass are the basis 
for system modeling, we will introduce thermal capacitance, thermal resistance, and the 
conservation of energy, which together form the basis of modeling for thermal systems.

7.3.1 First Law of Thermodynamics

The first law of thermodynamics is a version of the law of conservation of energy, adapted 
for thermodynamic systems. For a system with well-defined boundaries, the law of con-
servation of energy states 

 ∆E Q W= −  (7.37)

where:
ΔE is the change in energy of the system
Q is the heat flow into or out of the system
W is the work done by or on the system

In Equation 7.37, Q is positive if heat is supplied to the system and negative if heat is given 
off by the system. W is positive if work is done by the system and negative if work is done 
on the system. Based on this sign convention, we have 

 ∆E Q Q W W= − − −( ) ( )in out out in  (7.38)

where Qin, Qout, Win, and Wout are all positive quantities.
In actuality, the net amount of energy added to the system is equal to the net increase in 

the energy stored internally in the system and any change in the mechanical energy of the 
system’s center of mass, 

 ∆ ∆ ∆E U ME= + C (7.39)

U is the internal energy (or internal thermal energy), which is the energy stored at the 
molecular level. It includes the kinetic energy due to the motion of molecules and the 
potential energy that holds the atoms together. MEC stands for the mechanical energy, 
which includes the kinetic energy and the potential energy associated with the system’s 
center of mass. For systems with negligible change in mechanical energy, 

 ∆U Q W Q Q W W= − = − − −( ) ( )in out out in  (7.40)

which is the mathematical expression of the first law of thermodynamics. It basically states 
that the change in internal energy is equal to the amount of energy gained by heating 
minus the amount lost by doing work on the environment.



349Fluid and Thermal Systems

Heat Q is the energy transfer at the molecular level. Work W is the energy transfer that 
is capable of producing macroscopic mechanical motion of the system’s center of mass. For 
thermal systems with pure heat transfer and no work involved, that is, Win = Wout = 0, the 
law of conservation of energy presented in Equation 7.40 can be rewritten as 

 ∆U Q Q Q= = −in out (7.41)

or 

 
d
d

hi ho
U
t

q q= −
 

(7.42)

where qh = dQ/dt is the heat flow rate and has the units of J/s, which is a watt or ft·lb/s.

7.3.2 Thermal Capacitance

For an object, the thermal capacitance C is defined as the ratio of the change in heat flow to 
the change in the object’s temperature,

 C
Q
T

= d
d  (7.43)

where C has the units of J/K, J/°C, or ft·lb/°F. The thermal capacitance is a measure of the 
heat required to increase the temperature of an object by a certain temperature interval.

Strictly speaking, the value of the thermal capacitance of a substance depends on ther-
modynamic processes. For a constant-volume process, no work is involved and all the heat 
goes into the internal energy of the substance,

 Q U mc T= =∆ ∆v  (7.44)

where:
m is the mass of the substance
cv is the constant-volume specific heat capacity of the substance in the units of J·K/kg, 

J·°C/kg, or ft·lb·°F/slug
ΔT is the change in temperature of the substance

For a constant-pressure process, 

 Q H mc T= =∆ ∆p  (7.45)

where:
H is the enthalpy
cp is the constant-pressure specific heat capacity

Combining Equation 7.43 with Equation 7.44 or 7.45 gives 

 C mc= v (7.46)

or 

 C mc= p (7.47)
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For incompressible liquids and solids, because the volume cannot expand, the heat flow in 
a constant-pressure process is equal to the internal energy: Q = ΔU and cp = cv. Assuming 
that the density and the volume of the mass are ρ and V, respectively, we have 

 C mc Vc= = ρ  (7.48)

where c is the specific heat capacity and c = cp = cv. The subscripts p and v will be dropped 
in the rest of the chapter for simplicity.

Note that the value of the specific heat capacity c depends on the substance of the object, 
whereas the thermal capacitance C is an extensive property, because its value is propor-
tional to the mass of the object. For instance, the specific heat capacity of water at room 
temperature (25°C) is a constant value of 4186 J/(kg·°C). However, the thermal capacitance 
for a bathtub of water is greater than that for a cup of water.

7.3.3 Thermal Resistance

There are three mechanisms by which heat is transported: conduction, convection, and 
radiation. Conduction is the transfer of heat between substances that are in direct contact 
with each other. Convection is the transfer of heat due to a flowing fluid, which can be a 
gas or a liquid. Radiation is the transfer of heat through empty space. Here, we only con-
sider conduction and convection.

The thermal resistance R for heat transfer is defined as the ratio of the change in tem-
perature difference to the change in heat flow rate, 

 
R

T
q

= d
d h  

(7.49)

The thermal resistance R has units of K·s/J, °C·s/J, or °F·s/(ft·lb).
For simple one-dimensional conduction, as shown in Figure 7.21, Fourier’s law, also 

known as the law of heat conduction, gives 

 
q kA

T
L

kA
T T

L
h = = −∆ 1 2

 
(7.50)

where:
L is the length of the body in the direction of heat flow
A is the cross-sectional area normal to the direction of heat flow
ΔT is the temperature difference along its length
k is the thermal conductivity of the material in W/(m·K) or W/(m·°C)

L

A
T2

T1 > T2

Heat �owT1

FIGURE 7.21
One-dimensional conduction: heat flow from higher to lower temperature.
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Note that the heat flow is in the direction of decreasing temperature. Fourier’s equation 
is often used only for solids; however, it is valid for both solids and fluids. Combining 
Equations 7.49 and 7.50 gives the thermal resistance for conduction 

 
R

L
kA

=
 

(7.51)  

For convective heat transfer, Newton’s law of cooling states that the rate of heat flow of a 
body is proportional to the difference in temperatures between the body and its surround-
ings or environment. The mathematical expression is 

 q hA T hA T Th s env= = −∆ ( ) (7.52)

where:
A is the surface area from which the heat is being transferred
Ts is the temperature of the body’s surface
Tenv is the temperature of the environment
h is the heat transfer coefficient in W/(m2·K) or W/(m2·°C)

Combining Equations 7.49 and 7.52 gives the thermal resistance for convection 

 
R

hA
= 1

 
(7.53)

It is very useful to utilize the concept of thermal resistance and represent heat transfer by ther-
mal circuits. The heat flow rate qh is analogous to the current, the temperature difference ΔT 
is analogous to the voltage, and the thermal resistance is analogous to the electric resistance.

Figure 7.22 shows the heat transfer across a composite slab, which can be represented 
using a thermal resistance network with series interconnection. The heat flow rate remains 
the same through each component. Assume that the thermal resistances are R1 and R2. As 
a result, the temperature differences across the resistances R1 and R2 are T1 – T2 = R1qh and 
T2 – T3 = R2qh, respectively. The total temperature difference across the composite slab is 
T1 – T3 = (R1 + R2)qh. Thus, the equivalent thermal resistance for a series interconnection is 

 R R Req = +1 2 (7.54)  

Figure 7.23 shows heat transfer across a wall with different materials and how it can be 
represented by using a thermal resistance network with parallel interconnection. Note 
that the temperature difference across each material must be the same. Consequently, the 
heat flow rates through the resistances R1 and R2 are qh1 = (T1 – T2)/R1 and qh2 = (T1 – T2)/R2, 
respectively. The total heat flow rate through the wall is qh1 + qh2 = (T1 – T2)(1/R1 + 1/R2). 
Thus, the equivalent thermal resistance for a parallel interconnection is 

 

1 1 1

1 2R R Req
= +

 
(7.55)

qh

T1 T2 T3 T1
R1 T2

R2 T3

FIGURE 7.22
Heat transfer across series thermal resistance.
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If there are different heat transfer modes in a system, a thermal circuit with thermal resis-
tances representing the different modes of heat transfer can be used to analyze the system.

Example 7.6: Thermal Resistance

Consider heat transfer through an insulated wall, as shown in Figure 7.24. The wall 
is made of a layer of brick with thermal conductivity k1 and two layers of foam with 
thermal conductivity k2 for insulation. The left surface of the wall is at temperature 
T1 and exposed to air, with heat transfer coefficient h1. The right surface of the wall 
is at temperature T2 and exposed to air, with heat transfer coefficient h2. Assume that 
k1 = 0.5 W/(m·°C), k2 = 0.17 W/(m·°C), h1 = h2 = 10 W/(m2·°C), T1 = 38°C, and T2 = 20°C. The 
thickness of the brick layer is 0.1 m, the thickness of each foam layer is 0.03 m, and the 
cross-sectional area of the wall is 16 m2.

 a. Determine the heat flow rate through the wall.
 b. Determine the temperature distribution through the wall.    

Solution

 a. The heat transfer through the insulated wall can be represented using a 
thermal circuit with five thermal resistances connected in series, as shown 
in Figure  7.25. Two modes of heat transfer, conduction and convection, are 
involved. The corresponding thermal resistances are 

T1 T2

L1
L2 L2

AirAir

FIGURE 7.24
Heat transfer through an insulated wall.
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R3 T5
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Air Foam Brick Foam Air

FIGURE 7.25
The equivalent thermal circuit for the heat transfer system in Figure 7.24.
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FIGURE 7.23
Heat transfer across parallel thermal resistance.
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 The total thermal resistance is
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 Thus, the heat flow rate through the insulated wall is
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 b. Note that the heat flow rate stays the same through the insulated wall. Thus, 
from left to right, the heat flow rate through each layer is
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 With the given temperatures T1 and T2, we have T3 =  35.61°C, T4  =  31.40°C, 
T5 = 26.61°C, and T6 = 22.40°C. Figure 7.26 shows the temperature distribution 
through the wall. Note that the temperatures shown in Figure 7.26 are the 
values when the heat transfer process reaches a steady state.    

38

20

FIGURE 7.26
Temperature distribution through the insulated wall.
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7.3.4 Modeling of Heat Transfer Systems

The mathematical model of a thermal system is often complicated because of the complex 
temperature distribution throughout the system. To simplify analysis, in this section, we 
discuss how to obtain a lumped-parameter model, which may approximate the gross sys-
tem dynamics. The validity of this lumped-parameter assumption can be checked using 
the so-called Biot number.

Consider a solid body submerged in hot fluid, as shown in Figure 7.27, in which Tf is the 
fluid temperature, Tw is the temperature at the wall of the object, and T is the temperature 
of an arbitrary point inside the object. There are two modes of heat transfer involved, 
conduction within the body and convection between the fluid and the body. The heat flow 
rates for the two different modes can be approximated to have the same magnitude, 

 
kA
L

T T hA T T( ) ( )w  f w− ≈ −  
(7.56)

where:
h is the heat transfer coefficient
k is the thermal conductivity for the material of the object
L is the relevant length between the wall and the point

The ratio of the temperature differences caused by the different modes of heat transfer is 

 
T T
T T

hL
k

w

f w

−
−

≈
 

(7.57)

Note that the temperature difference within the object can be negligible if the object is thin 
or small enough. The criterion for determining a solid being thin or small is based on the 
Biot number, which is defined as 

 
Bi

hL
k

= c

 
(7.58)

where Lc is the characteristic length of the solid object. The characteristic length is defined 
as the volume of the body divided by the surface area of the body, 

 
L

V
A

c
body

 surface
=

 
(7.59)

T

Tf

Tw

FIGURE 7.27
A solid object submerged in a fluid.
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For a body whose Biot number is much less than one, typically, Bi < 0.1, the interior of the 
body may be assumed to have the same temperature.  

Example 7.7: Temperature Dynamics of a Heated Object

Consider a steel sphere with a radius of r = 0.01 m submerged in a hot water bath, with a 
heat transfer coefficient of h = 350 W/(m2·°C). For steel, the density is ρ = 7850 kg/m3, the 
specific heat capacity is c = 440 J/(kg·°C), and the thermal conductivity is k = 43 W/(m·°C). 
The temperature of the water Tf is 100°C, and the initial temperature of the sphere T0 
is 25°C.

 a. Determine whether the sphere’s temperature can be considered uniform.
 b. Derive the differential equation relating the sphere’s temperature T(t) and the 

water’s temperature Tf.
 c.  Using the differential equation obtained in Part (b), construct a Simulink 

block diagram to find the sphere’s temperature T(t).

Solution

 a. The characteristic length of the sphere is
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 The Biot number of the steel sphere is
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( )
( )
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. .

 

 Thus, the sphere can be treated as a lump-temperature system, and its tem-
perature can be considered uniform within the body.

 b. The dynamic model of the sphere’s temperature can be derived using the law 
of conservation of energy,

 
d
d

hi ho
U
t

q q= −
 

 Note that U = mcT = ρVcT, and we have
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 The heat flow rate into the body is

 
q

T T
R
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−
 

 and the heat flow rate out of the body is qho = 0. Thus, the differential equation 
of the system is

 ρV T t T T Rc ( / ) ( )/d d f= −  

 Introducing the expression for the thermal capacitance ρVc = C, gives
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T
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 The thermal capacitance of the sphere is

 C Vc= = ( ) = °ρ π7850 0 01 440 14 474
3

3( )( . ) ( ) . J/ C 

 and the thermal resistance due to convection is
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hA
= = = °

1 1
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.

π
Cs/J

 

 Thus, the dynamic model of the sphere’s temperature is

 
32 85.

d
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f
T
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T T+ =
 

 c.  Given Tf = 100°C, solving for the highest derivative of the output T gives

 
d
d
T
t

T= −
1

32 85
100

.
( )

 

 which can be represented using the block diagram shown in Figure 7.28. 
Double-click on the Integrator block and define the initial temperature of 
the sphere as 25°C. Run the simulation. The results can be plotted as shown in 
Figure 7.29.
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FIGURE 7.28
A Simulink block diagram representing the thermal system in Example 7.7.
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FIGURE 7.29
Temperature output T(t) of the thermal system in Example 7.7.
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Example 7.7 shows that the temperature dynamics of a thermal system can be expressed 
in terms of thermal capacitance and thermal resistance. For multiple thermal capacitances, 
we apply the law of conservation of energy to each of them. 

Example 7.8: Temperature Dynamics of a House with Double-Layer Walls

As shown in Figure 7.30, the wall of a room consists of two layers, for which the thermal 
capacitances are C1 and C2. Assume that the temperatures in both layers are uniform 
and they are T1 and T2, respectively. The temperatures inside and outside the room are 
Ti and To, respectively. Both layers exchange heat by convection with air and the thermal 
resistances are R1 and R3, respectively. The thermal resistance of the interface between 
the layers is R2.

 a. Derive the differential equations for this system.
 b. Using the differential equations obtained in Part (a), determine the state-space 

form of the system. Assume the temperatures T1 and T2 are the outputs. 

Solution

 a. Assume that the temperature inside the room is lower than the one outside. 
Applying the law of conservation of energy to the outer layer, we have
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dt

q q= −hi ho
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FIGURE 7.30
A room with double-layer walls.
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 Applying the law of conservation of energy to the inner layer, we have
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 Substituting these expressions gives
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 The system of differential equations can be written in matrix form as
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 b. To represent a thermal system in the state-space form, the temperature of each 
thermal capacitance is often chosen as a state variable. As specified, the state, 
the input, and the output are
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 The state-variable equations are
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 The output equation is
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PROBLEM SET 7.3

 1. Consider heat transfer through an insulated frame wall of a house. The thermal 
conductivity of the wall is 0.055 W/(m·°C). The wall is 0.15 m thick and has an area 
of 15 m2. The inside air temperature is 20°C and the heat transfer coefficient for 
convection between the wall and the inside air is 2.6 W/(m·°C). On the outside of 
the wall, the heat transfer coefficient for convection between the wall and the out-
side air is 10.4 W/(m·°C) and the outside air temperature is –10°C. Determine the 
heat flow rate through the wall.

 2. Consider heat transfer through a double-pane window as shown in Figure 7.31a. 
Two layers of glass with thermal conductivity k1 are separated by a layer of 
stagnant air with thermal conductivity k2. The inner surface of the window 
is at temperature T1 and exposed to room air with heat transfer coefficient h1. 
The outer surface of the wall is at temperature T2 and exposed to air with heat 
transfer coefficient h2. Assume that k1 = 0.95 W/(m·°C), k2 = 0.0285 W/(m·°C), 
h1 = h2 = 10 W/(m2·°C), T1 = 20°C, and T2 = 35°C. The thickness of each glass 
layer is 4 mm, the thickness of the air layer is 8 mm, and the cross-sectional area 
of the window is 1.5 m2.   

 a. Determine the heat flow rate through the double-pane window.
 b. Determine the temperature distribution through the double-pane window.
 c. Repeat Parts (a) and (b) for the single-pane glass window shown in Figure 7.31b.
 3. The junction of a thermocouple can be approximated as a sphere with a diam-

eter of 1 mm. As shown in Figure 7.32, the thermocouple is used to measure the 
temperature of a gas stream. For the junction, the density is ρ = 8500 kg/m3, the 
specific heat capacity is c = 320 J/(kg·°C), and the thermal conductivity is k = 40 W/
(m·°C). The temperature of the gas Tf is 120°C and the initial temperature of the 

(a) (b)

Glass Glass

Air

Room
air Air Air

Room
air

4 mm 4 mm 8 mm8 mm

20°C20°C 35°C 35°C

FIGURE 7.31
Problem 2.
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sphere T0 is 25°C. The heat transfer coefficient between the gas and the junction is 
h = 70 W/(m2·°C).   

 a. Determine if the junction’s temperature can be considered uniform.
 b. Derive the differential equation relating the junction’s temperature T(t) and the 

gas’s temperature Tf.
 c.  Using the differential equation obtained in Part (b), construct a Simulink 

block diagram to find out how long it will take the thermocouple to read 99% 
of the initial temperature difference.

 4. Figure 7.33 shows a thin-walled glass of milk, which is taken out of the refrig-
erator at a uniform temperature of 3°C and is placed in a large pan filled with 
hot water at 60°C. Assume that the assumption of the lumped system analysis 
is applicable because the milk is stirred constantly, so that its temperature is 
uniform at all times. The glass container is cylindrical in shape, with a radius 
of 3 cm and a height of 6 cm. The estimated parameters of the milk are density 
ρ = 1035 kg/m3, specific heat capacity c = 3980 J/(kg·°C), and thermal conduc-
tivity k = 0.56 W/(m·°C). The heat transfer coefficient between the water and 
the glass is h = 250 W/(m2·°C).   

 a. Derive the differential equation relating the milk temperature T(t) and the 
water temperature.

 b.  Using the differential equation obtained in Part (a), construct a Simulink 
block diagram. How long will it take for the milk to warm up from 3°C to 
58°C?

Gas

Tf = 120°C

T0 = 25°C

�ermocouple

FIGURE 7.32
Problem 3.

Milk

Hot water

FIGURE 7.33
Problem 4.
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 5. The room shown in Figure 7.34 has a heater with heat flow rate input of q0. The 
thermal capacitances of the heater and the room air are C1 and C2, respectively. 
The thermal resistances of the heater–air interface and the room wall–ambient air 
interface are R1 and R2, respectively. The temperatures of the heater and the room 
air are T1 and T2, respectively. The temperature outside the room is T0, which is 
assumed to be constant.   

 a. Derive the differential equations relating the temperatures T1, T2, the input q0, 
and the outside temperature T0.

 b. Using the differential equations obtained in Part (a), determine the state-space 
form of the system. Assume the temperatures T1 and T2 as the outputs.

 6. For the three-room house shown in Figure 7.35, all rooms are perfect squares 
and have the same dimensions. An air conditioner produces an equal amount 
of heat flow qho out of each room. The temperature outside the house is To. 
Assume that there is no heat flow through the floors or ceilings. The thermal 
resistances through the inner walls and the outer walls are Ri and Ro, respec-
tively. The thermal capacitance of each room is C. Derive the differential equa-
tions for this system.   

Room air

Heater

T2 C2
R2

T0

T1 C1 R1

q0

FIGURE 7.34
Problem 5.

Top view

ToRo

qho

Ro

Ri Ri

FIGURE 7.35
Problem 6.
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7.4 System Modeling with Simulink and Simscape

As in the modeling of mechanical and electrical systems, the dynamics of fluid and ther-
mal systems can be represented by ordinary differential equations, transfer functions, or 
state-space form. Therefore, the Simulink modeling techniques discussed in Sections 5.6 
and 6.6 can also be applied to fluid and thermal systems.

Example 7.9: Modeling of a Pneumatic System with Simulink 

Consider the pneumatic system in Example 7.2. Construct a Simulink block diagram 
to find the pressure inside the container, p(t), which is assumed to be 0 Pa initially. The 
pressure at the inlet is assumed to be 101.325 kPa.

Solution

The dynamics equation obtained in Example 7.2 is 

 
RV

R T
p
t

p p
air

i
d
d

+ =
 

where RV/(RairT) = 1.19 × 10−2 s. Solving for the highest derivative of the output p gives 

 p p= −84 03 101 325. ( ),  

which can be represented by the block diagram shown in Figure 7.36. One 
Integrator block is used to form the container pressure p, which is fed back to 
form the variation rate p . Note that the system input is the inlet pressure pi, which 
is constant and is represented by a Constant block. Run the simulation. Double-
click the Scope block; the resulting output of the pneumatic system p(t) is shown in 
Figure 7.37.    

Example 7.10: Modeling of a Two-Tank Liquid-Level System with Simulink 

Consider the two-tank liquid-level system in Example 7.5. Construct a Simulink block 
diagram to find the liquid levels h1(t) and h2(t). Assume that ρ = 1000 kg/m3, g = 9.81 m/s2, 
A1 = 2 m2, A2 = 3 m2, R1 = R2 = R3 = 400 N·s/(kg·m2), and initial liquid heights h1(0) = 1 m 
and h2(0) = 0 m. The pump pressure Δp is a step function with a magnitude of 0 before 
t = 0 s and a magnitude of 130 kPa after t = 0 s.

Inlet pressure
pi

Add Gain Integrator Scope

101,325 +
− 84.03 1

s

FIGURE 7.36
Simulink block diagram representing the pneumatic system in Example 7.2.
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Solution

The Simulink block diagram can be constructed based on either the differential equa-
tions obtained in Part (a) or the state-space form obtained in Part (b) in Example 7.5. 
Substituting the parameter values into the differential equations gives 
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Figure 7.38 shows the resulting Simulink block diagram, where two Integrator blocks 
are used to form h1 and h2. By double-clicking each Integrator block, we can enter the 
initial liquid level for each tank.

Substituting the parameter values into the state-space equations gives 
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The Simulink block diagram based on the state-space form is shown in Figure 7.39, where 
a State-Space block is used to represent the liquid-level system. By double-clicking 
the State-Space block with the name Liquid-level system, we can define the 
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FIGURE 7.37
Pressure output p(t) for constant inlet pressure pi = 101.325 kPa.
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matrices A, B, C, and D. The initial liquid level is a vector, which is [1;0]. By running 
either of the two simulations, we can obtain the same results as plotted in Figure 7.40.

To model a fluid or thermal system with Simscape, the Simscape\Foundation Library 
can be used, which contains basic pneumatic, hydraulic, and thermal blocks. However, 
connecting pneumatic or hydraulic components requires a good knowledge of the physi-
cal domains and the equations involved. Because this is beyond the scope of this text, this 
section focuses on Simscape modeling of thermal systems only.

Example 7.11: Temperature Dynamics of a Heated Object 

Consider the heat transfer system in Example 7.7, in which a steel sphere is submerged in 
hot water and the temperature of the sphere is assumed to be uniform. Build a Simscape 
model of the physical system, and find the sphere’s temperature output T(t). Compare 
the result with that obtained in Example 7.7.

Pump pressure Liquid-level
system

1
Out1

Liquid levels

x′ = Ax+Bu
y = Cx+Du

FIGURE 7.39
Simulink block diagram constructed based on state-space equations.
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FIGURE 7.38
Simulink block diagram constructed based on differential equations.
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Solution

The Simscape block diagram corresponding to the physical system is shown in Figure 7.41. 
The temperature of hot water is 100°C or 373 K. The Ideal Temperature Source 

block in the library of Simscape/Foundation Library/Thermal/Thermal 
Sources is used to represent the temperature input. A Simulink-PS Converter 
block converts the constant value of 373 K into a physical signal. Double-click the block, 
and define the Input signal unit as K.

Because the temperature of the sphere is assumed to be uniform, only the convective 
heat transfer between the water and the sphere is considered in modeling. The cor-
responding block can be found in the library of Simscape/Foundation Library/
Thermal/Thermal Elements. Double-click the block, and define Area as 0.0013 m2 
and Heat transfer coefficient as 350 W/(m2·K). The block Thermal Mass in 
the same library is used to represent the steel sphere. The associated parameters are 
Mass, Specific heat, and Initial temperature, and their values are 0.0329 kg, 
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Liquid level outputs h1(t) and h2(t).
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Simscape block diagram of the thermal system in Example 7.7. 
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440  J/(kg·K), and 25°C or 298 K. All parameter values can be determined using the 
information given in Example 7.7.

To measure the sphere’s temperature, drag the Ideal Temperature Sensor block 
in the library of Simscape/Foundation Library/Thermal/Thermal Sensors. 
The PS-Simulink Converter block converts the physical signal to a Simulink signal. 
Double-click the block, and define the Output signal unit as K. Since the simula-
tion result in Example 7.7 is given in the unit of °C, we can also define the unit as C and 
check the box of Apply affine conversion.

Run the simulation, and the same curve as shown in Figure 7.29 can be generated, 
which is the resulting temperature output T(t) of the heated sphere.

PROBLEM SET 7.4

 1. Dry air at a constant temperature of 25°C passes through a valve out of a rigid 
cubic container of 1.5 m on each side (Figure 7.42). The pressure po at the outlet of 
the valve is constant, and it is less than p. The valve resistance is approximately 
linear, and R = 1000 Pa·s/kg. Assume that the process is isothermal.   

 a. Develop a mathematical model of the pressure p in the container.
 b.  Construct a Simulink block diagram to find the output p(t) of the pneu-

matic system if the pressure inside the container is initially 2 atm and the pres-
sure at the outlet is 1 atm.

 2. Figure 7.43 shows a liquid-level system in which two tanks have hydraulic capaci-
tances C1 and C2, respectively. The volume flow rate into tank 1 is qi. The liquid 
flows from tank 1 to tank 2 through a valve of linear resistance R1 and leaves tank 
2 through a valve of linear resistance R2. The density ρ of the liquid is constant.   

 a. Derive the differential equations in terms of the liquid heights h1 and h2. Write 
the equations in matrix form.

p, ρ p0
q0

V

R

FIGURE 7.42
Problem 1.
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q0ρ ρ

FIGURE 7.43
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 b. Assume that the volume flow rate qi is the input and the liquid heights h1 and 
h2 are the outputs. Determine the state-space form of the system.

 c.  Construct a Simulink block diagram to find the outputs h1(t) and h2(t) 
of the liquid-level system. Assume that ρ  =  1000  kg/m3, g  =  9.81  m/s2, 
C1 = 0.15 kg·m2/N, C2 = 0.25 kg·m2/N, R1 = R2 = 100 N·s/(kg·m2), and initial 
liquid heights h1(0) = 1 m and h2(0) = 0 m. The volume flow rate qi is a step function 
with a magnitude of 0 before t = 0 s and a magnitude of 0.25 m3/s after t = 0 s.

 3. A chicken is taken out of the oven at a uniform temperature of 150°C and is left out 
in the open air at the room temperature of 25°C. Assume that the chicken can be 
approximated as a lumped model. The estimated parameters are mass m = 1.75 kg, 
heat transfer surface area A = 0.3 m2, specific heat capacity c = 3220 J/(kg·°C), and 
heat transfer coefficient h = 15 W/(m2·°C).  

 a. Derive the differential equation relating the chicken’s temperature T(t) and the 
room temperature.

 b.  Using the differential equation obtained in Part (a), construct a Simulink 
block diagram and find the temperature of the chicken.

 c.  Build a Simscape model of the system, and find the temperature output of 
the chicken.

 d. Assume that the chicken can be served only if its temperature is higher than 
80°C. Based on the simulation results obtained in Parts (b) and (c), can the 
chicken be left at the room temperature of 25°C for 1 hour?

7.5 Summary

This chapter was devoted to the modeling of fluid and thermal systems. For each of them, 
we first introduced the concepts of capacitance and resistance. It is useful to think of fluid 
and thermal systems as electrical circuits. Along with the basic elements, the conservation 
of mass and the conservation of energy are the main laws used to develop mathematical 
models of fluid and thermal systems, respectively.

Fluid systems can be divided into pneumatics and hydraulics. A pneumatic system is 
one in which the fluid is compressible. At low pressure and moderate or high temperature, 
real gases may be approximated as ideal gases to simplify calculations for pneumatic sys-
tems. A hydraulic system is one in which the fluid is incompressible. Most liquids are gen-
erally considered incompressible, and this approximation greatly simplifies the modeling 
of hydraulic systems. A general category of hydraulic systems is the liquid-level systems.

Fluid capacitance is the relation between the stored fluid mass and the resulting pres-
sure caused by the stored mass, 

 
C

m
p

= d
d  

The pneumatic capacitance of a container of constant volume V is defined as 
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where the value of n depends on the type of the thermodynamic process. For a tank of cross-
sectional area A, with a liquid of height h, the hydraulic capacitance of the tank is defined as 

 
C

A h
g

= ( )

 

When a fluid flows through a valve, a pipe, or an orifice, the fluid meets resistance, and 
there is a drop in the pressure of the fluid. The pressure difference is associated with the 
mass flow rate qm in a nonlinear relationship. Near a reference operating point, lineariza-
tion can be performed to obtain the linearized resistance, 

 R
p

q
=

∆
∆ m  

To obtain a simple model of a fluid system, each mass storage element can be represented 
by a capacitance element, and each valve can be represented by a resistance element. The 
differential equation of the system can be derived by applying the law of conservation of 
mass: 
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where the mass flow rate into or out of the system can be related to the resistance at the 
inlet or the outlet of the system, respectively. The resulting mathematical model may ade-
quately describe the dynamics of the real system.

A thermal system is one that involves the transfer of heat from one object to another. For 
an object, the thermal capacitance is defined as the ratio of the change in heat flow to the 
change in the object’s temperature, 

 C
Q
T

= d
d  

For incompressible liquids and solids, 

 C mc Vc= = ρ  

where c is the specific heat capacity.
The thermal resistance for heat transfer is defined as the ratio of the change in tempera-

ture difference to the change in heat flow rate, 
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For simple one-dimensional conduction, Fourier’s law gives 
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and the thermal resistance for conduction is 
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For convective heat transfer, Newton’s law of cooling gives 

 q hA T hA T Th s env= = −∆ ( ) 

and the thermal resistance for convection is 

 R
hA

= 1
 

The mathematical model of a thermal system is often complicated because of the complex 
temperature distribution throughout the system. To simplify analysis, a lumped- parameter 
model may be used to approximate the gross system dynamics. The validity of this 
lumped-parameter assumption can be checked using the so-called Biot number, 

 Bi
hL
k
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where Lc is the characteristic length of the solid object, defined as 
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For a body whose Biot number is much less than one, that is, Bi < 0.1, the interior of the 
body may be assumed to have a uniform temperature. Then, the dynamic model of a heat 
transfer system can be derived using the law of conservation of energy, 
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Review Problems

 1. Dry air at a constant temperature of T passes through a valve into a rigid spheri-
cal container (Figure 7.44). The pressure at the inlet is pi, and the one at the outlet 
is pa. The linear resistances of the two valves at the inlet and the outlet are R1 and 
R2, respectively. Assume that the process is isothermal. Develop a mathematical 
model of the pressure p in the container.  

 2. A single-tank liquid-level system is shown in Figure 7.45, in which water flows 
into the tank at a volume flow rate qi and out of the tank through two valves at 
points 1 and 2. The linear resistances of the two valves are R1 and R2, respectively. 
Assuming that h > h1, derive the differential equation relating the liquid height h 
and the volume flow rate qi at the inlet. The cross-sectional area of the tank A is 
constant. The density ρ of the liquid is constant.   

 3. A watermelon is taken out of the refrigerator at a uniform temperature of 3°C 
and is exposed to 32°C air. Assume that the watermelon can be approximated 
as a sphere and the temperature of the watermelon is uniform. The estimated 
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parameters are density ρ = 120 kg/m3, diameter D = 35 cm, specific heat capacity 
c = 4200 J/(kg·°C), and heat transfer coefficient h = 15 W/(m2·°C).  

 a. Derive the differential equation relating the watermelon’s temperature T(t) and 
the air temperature.

 b.  Using the differential equation obtained in Part (a), construct a Simulink 
block diagram and find the temperature of the watermelon.

 c.  Build a Simscape model of the system.
 d. Based on the simulation results obtained in Parts (b) and (c), how long will it 

take before the watermelon is warmed up to 20°C?
 4. Case study

 Figure 7.46 represents the temperature dynamics of two adjacent objects, where 
the thermal capacitances of the objects are C1 and C2, respectively. Assume that the 
temperatures of both objects are uniform, and they are T1 and T2, respectively. The 
heat flow rate into object 1 is q0, and the temperature surrounding object 2 is T0. 
There are two modes of heat transfer involved, conduction between the objects 
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and convection between object 2 and the air. The corresponding thermal resis-
tances are R1 and R2, respectively.   

 a. Derive the differential equations relating the temperatures T1, T2, the input q0, 
and the outside temperature T0.

 b.  Build a Simscape model of the physical system, and find the temperature 
outputs T1(t) and T2(t). Use default values for the blocks of Thermal Mass 
(mass  =  1  kg, specific heat  =  447  J·K/kg, and initial temperature  =  300  K), 
Conductive Heat Transfer (area = 1 × 10−4 m2, thickness = 0.1 m, and 
thermal conductivity  =  401  W/(m·K)), and Convective Heat Transfer 
(area = 1 × 10−4 m2 and heat transfer coefficient = 20 W/(m2·K)). Assume that 
the heat flow rate is q0 = 400 J/s and the surrounding temperature is T0 = 298 K.

 c.  Build a Simulink block diagram based on the differential equations 
obtained in Part (a), and find the temperature outputs T1(t) and T2(t).
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8
System Response

Mathematical models of dynamic systems were presented in Chapters 5 through 7, and 
 several forms of system model representations were thoroughly covered in Chapter 4. In 
this chapter, we present the transient response and frequency response analysis of dynamic 
systems. Methods to find the solution of the state equation in closed form will also be dis-
cussed. For the most part, linear dynamic systems are considered in this  chapter. Response 
of nonlinear systems by using MATLAB® and Simulink® is presented in the final section 
of the chapter.

8.1 Types of Response

Consider an nth-order dynamic system governed by the differential equation 

 x a x a x a x f tn n
n n

( ) ( ) ( )+ + + + =−
−1

1
1 ...   (8.1)

where:
the coefficients a a an1 2, , , ...  are constants
x t( ) is the dependent variable
t denotes time
f t( ) is the input known as the forcing function

As seen in Chapter 2, the solution x t( ), the total response, comprises the complementary 
(homogeneous) solution x tc( ) and the particular solution x tp( ), that is, x t x t x tc p( ) ( ) ( )= + . 
Note that x tc( ) is the solution of Equation 8.1 when f t( ) = 0, and x tp( ) depends on the nature 
of the forcing function f t( ), as well as on its relation to the independent segments of x tc( ). 
The complementary solution x tc( ) is called the natural response ( free response), because it 
represents the natural behavior of the system in the absence of the input. The particular 
solution x tp( ) is known as the forced response of the system.

8.1.1 Transient Response and Steady-State Response

The total response x t( ) can also be decomposed into transient response x ttr( ) and steady-
state response x tss( ), as x t x t x ttr ss( ) ( ) ( )= + . The transient response consists of those terms in 
x t( ) that decay to zero after a sufficiently long time, that is, as t → ∞. The portion of the 
response x t( ) that remains after the transient terms have vanished is called the steady-state 
response.
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Example 8.1: Transient and Steady-State Responses

The model of a dynamic system is derived as 

 3 7 2 50 0 1 0 1  x x x t x x+ + = = − =sin ( ) ( ),  ,   

Find the system’s total response, and identify the transient and steady-state responses.

Solution

The characteristic values λ = − −2 1
3,  lead to x t c e c ec

t t( ) /= +− −
1

2
2

3 . The particular solution 
is found by the method of undetermined coefficients (Chapter 2) as x t t tp( ) cos sin= − −7 . 
Therefore, 

 x t c e c e t tt t( ) cos sin/= + − −− −
1

2
2

3 7  

Initial conditions yield c1
12
5= − , c2

42
5= . The total response is therefore 

 x t e e t tt t( ) cos sin/= − + − −− −12
5

2 42
5

3 7  

Consequently, x t e etr
t t( ) /= − +− −12

5
2 42

5
3 and x t t tss( ) cos sin= − −7 . Note that in this specific 

example, it turns out that xc is the transient response and xp is the steady-state response. 
This is because the characteristic values are both located in the left half-plane, and the 
forcing function happens to be sinusoidal.

8.2 Transient Response of First-Order Systems

Linear, first-order dynamic systems are modeled as 

 τ τx x f t x x+ = = > =( ) ( ),   const ,   0 0 0 (8.2)

where τ is the time constant. Note that upon division by τ, Equation 8.2 agrees with the 
general form of Equation 8.1. Taking the Laplace transform of Equation 8.2 leads to 
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Subsequently, inverse Laplace transformation yields 
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Noting the inverse Laplace transform in the first term is e t− /τ, the total response is 
expressed as 
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The first term on the right side of Equation 8.3 represents the system response to initial 
condition (initial excitation) only, and is called the zero-input response. The second term 
describes the response to the input, and is known as the zero-state response. In this sec-
tion, we will study the response of first-order systems subjected to specific types of input 
such as step and ramp functions. The system’s free response is discussed first.

8.2.1 Free Response of First-Order Systems

Free response is defined as the response to the initial condition only, hence given by the 
first term in Equation 8.3, 

 x t e xt( ) /= − τ
0 (8.4)

It is readily seen that the smaller the time constant, the faster the response reaches 
equilibrium.

Example 8.2: Free Response

Suppose a first-order system is described by 

 4 3 0 0 3
4

x x x+ = =,  ( )  

The response x t( ) is clearly a free (natural) response as there is no forcing function pres-
ent. Rewriting the ODE as 4

3 0x x+ = , the time constant is identified as τ = 4
3 . With this, 

and noting x( )0 3
4= , the free response of the system is given by Equation 8.4, as 

 x t e t( ) /= −3
4

3 4 

8.2.2 Impulse Response of First-Order Systems

Impulse response refers to x t( ) in Equation 8.2 when f t A t( ) ( )= δ , where δ( )t  is the unit 
impulse and A is a constant magnitude (Section 2.3). The Laplace transform of f t A t( ) ( )= δ  
is F s A( ) = . Inserting this in Equation 8.3, we find 

 x t e x
A

s
t( ) /= +

+








− −τ

τ
0

1

1
  

which simplifies to 

 x t e x
A

et t( ) / /= +− −τ τ

τ
0  (8.5)

Since τ > 0, we have x t( )→ 0 as t → ∞. That is, the impulse response has a steady-state value 
of 0.
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8.2.3 Step Response of First-Order Systems

Step response refers to x t( ) in Equation 8.2 when f t Au t( ) ( )= , where u t( ) is the unit step and 
A is a constant magnitude (Section 2.3). The Laplace transform of f t Au t( ) ( )=  is F s A s( ) /= . 
Inserting this into Equation 8.3, we find 
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Using partial-fraction expansion, it can be shown that 
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Therefore, the step response is described by 

 x t e x A et t( ) / /= + −( )− −τ τ
0 1  (8.6)

Since τ > 0, we have x t A( )→  as t → ∞. In other words, the step response has a steady-state 
value of A.

Example 8.3: Step Response of an RL Circuit

Consider the RL circuit shown in Figure 8.1a, consisting of a resistance R and an induc-
tance L. The initial current is i i( )0 0= . Assuming the applied voltage va is modeled as 
a step function with magnitude V , find the zero-input, zero-state, and steady-state 
responses.

Solution

Using Kirchhoff’s voltage law (KVL), the circuit is modeled as 
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i
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Ri v t i i
L
R

i
t

i
R

va

R

a
d
d

,           
d
d

Divide by 

+ = = ⇒ + =( ) ( )0
1

0 (( ) ( )t i i,   0 0=
 

V
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i

t0

Steady-state current

Zero-state response

i0

Zero-input response
L

R

+

−
i i(0) = i0va v

(a) (b)

FIGURE 8.1
(a) RL circuit and (b) response to a step input.
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Therefore, the time constant is identified as τ = L R/ . Comparing this last equation 
with  Equation 8.2, the forcing function is f t R v ta( ) ( / ) ( )= 1 . But since v t Vu ta( ) ( )= , this 
 forcing function is written as f t V R u t( ) ( / ) ( )= . Therefore, we can interpret f t( ) as a step 
function with magnitude V R/ . As a result, using A V R= /  and x i0 0=  in Equation 8.6, 
we have 

 
i t i e

V
R

eRt L Rt L( ) / /= + −( )− −
0 1

 

The first term describes the zero-input response, while the second term represents the 
zero-state response. It is clear that i t( ) reaches a steady-state value of V R/  after a suffi-
ciently long time, Figure 8.1(b), hence the steady-state current is i V Rss = / .

The Role of Time Constant in Speed of Response

We saw earlier that the smaller the time constant, the faster the response reaches steady-
state. We will elaborate on this as follows. Consider the RL circuit in Example 8.3, and 
assume zero initial current, i( )0 0= . As a result, the current is given by 

 
i t

V
R

e t( ) /= −( )−1 τ

 

where we have replaced L R/  with the generic notation τ for the time constant. After one 
time constant ( )t = τ , the current is calculated as 

 
i

V
R

e
V
R

iss( )τ = −( ) = 





 =−1 1 0.632 0.632

 

This means 63.2% of the steady-state current is recovered after one time constant. 
Similarly, the percentage recovery at t = 2τ is 86.5% and at t = 3τ is 95%. At t = 4τ, we have 

 
i

V
R

e
V
R

iss( )4 1 4τ = −( ) = 





 =− 0.982 0.982

 

Therefore, after four time constants, the response is within 2% of the steady-state value; 
see Figure 8.2. This essentially serves as the settling time for the step response curve. 
As we discover in Chapter 10, settling time is one of the four transient-response specifi-
cations of second-order systems and plays a central role in the control of such systems.

iss = V/R
i

t0 4τ

0.982iss

0.632iss

τ

FIGURE 8.2
Role of time constant in speed of response.
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8.2.4 Ramp Response of First-Order Systems

Ramp response refers to response x t( ) in Equation 8.2 when the forcing function is 
f t Au tr( ) ( )= , where u tr( ) is the unit ramp and A is a constant slope (Section 2.3). Inserting 
F s A s( ) /= 2 in Equation 8.3, we find 

 
x t e x

A
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/= +
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− −τ
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1
2 1


 

Noting that 

 
− −
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= − −( )
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1
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A t e t
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τ
τ τ

 

the ramp response is expressed as 

 x t e x A t et t( ) / /= + − −( )





− −τ ττ0 1  (8.7)

8.2.4.1 Steady-State Error

For simplicity, suppose the initial condition is zero so that Equation 8.7 simplifies to 

 
x t A t e t( ) /= − −( )





−τ τ1
 

The error between the ramp input and the ramp response is 

 
e t At A t e A et t( ) / /= − − −( )



 = −− −

Ramp input Ramp response

τ ττ τ1 1(( )
 

As t → ∞, this error approaches Aτ; thus, the steady-state error is 

 e Ass = τ 

The ramp input, ramp response and the corresponding steady-state error are shown in 
Figure 8.3.

ess = Aτ

xss = A(t − τ)

x

t0 t = τ

Ramp input

Ramp response

FIGURE 8.3
Ramp response of a first-order system.
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PROBLEM SET 8.1

 1. Find the transient and steady-state responses of a system modeled as 
2 3 0 0 0 1  x x e x xt+ = = =− , ( ) , ( ) .    

 2.  Consider a first-order system with time constant τ and zero initial condition. 
Find the system’s unit-impulse response for τ = 1

4  and τ = 3
4 , plot the two curves 

versus 0 2≤ ≤  t  in the same graph, and comment.
 3.  Consider a first-order system with time constant τ and zero initial condition. 

Find the system’s unit-step response for τ = 1
3  and 2

3 , plot the two curves versus 
0 2≤ ≤  t  in the same graph, and comment.

 4. The temperature of a steel sphere with initial temperature T0 submerged in water 
with temperature Ti is governed by the initial-value problem

 RCT T T T Ti
 + = =, ( )  0 0

where:
R is the thermal resistance due to convection
C  is the thermal capacitance of the sphere

Find the temperature of the sphere at any time, as well as its steady-state value.
 5. Repeat Problem 4 for the case when the temperature of the water tank increases 

linearly with time at a rate of r.
 6. A single-tank liquid-level system with inflow rate qi as its input and liquid level h 

as its output is modeled as RAh gh Rq t hi
 + = =( ), ( ) 0 0, where R A g, , = const. If the 

inflow rate is a unit step, find the liquid level in terms of the physical parameters. 
Also find the steady-state value of the liquid level.

 7. The equation of motion of the mechanical system in Figure 8.4 is by k y x + − =( ) 0 
where x and y are the input and the output, respectively, and b k, = const . Assuming 
zero initial condition, find the response when x is a

 a. Unit impulse
 b. Unit step
 8. The equation of motion for the torsional mechanical system in Figure 8.5 is 

derived as J B T t θ θ+ = ( ), where J B, = const, θ is the angular displacement, and T 
is a constant applied torque. Express the model as first-order in angular velocity 
ω θ=  . Assuming ω ω( )0 0= , find ω( )t . Also identify the transient and steady-state 
responses.

b

x
k

y

FIGURE 8.4
Problem 7.
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 9. The governing equation for an RC circuit driven by an applied voltage v t( ) is 
derived as

 RCV V v t V V + = =( ) ( ),  0 0

where:
V is the voltage across the capacitor
V0 is the capacitor voltage at the initial time

 Assume that the applied voltage is a ramp with slope of 1
2 . Find the steady-state 

error between the input and the system response.
 10. Find the unit-ramp response of the RL circuit in Example 8.3.
 11. A first-order dynamic system is modeled as

 y y f t y+ = =3 0 1( ) ( ),  

 Assuming the input f t( ) is a step function with magnitude 0.8, find yss.
 12. A first-order dynamic system is modeled as 

 1
2

2
35 0w w g t w+ = =( ) ( ),  

 If the input g t( ) is a ramp function with a slope of 5
2 , find the steady-state response 

and the steady-state error.

8.3 Transient Response of Second-Order Systems

Linear, second-order dynamic systems are mathematically modeled as 

    x x x f t x x x xn n+ + = = =2 0 02
0 0ζω ω ( ) ( ) ( ),   ,    (8.8)

where:
ζ is the damping ratio
ωn is the (undamped) natural frequency, in radians/second

Although Equation 8.8 represents the model for any second-order dynamic system, it is 
best understood when it is viewed in relation to a mechanical system. To that end, consider 
the mass–spring–damper system in Figure 8.6.

B

θ

J T

FIGURE 8.5
Problem 8.
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The system’s (undamped) natural frequency is defined as 

 
ωn

k
m

=   rad/sec
 

The damping ratio is defined as the ratio of the actual damping c and the critical damping*: 

 
ζ = =

c
c

c
mkcr 2  

As shown in Chapter 5, the equation of motion is derived as 
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Divide by 1

 

Noting that 

 
ω ζωn n

k
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c
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k
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c
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2 2 2
2

= = =,
 

the equation of motion can be expressed in the form of Equation 8.8, with the force 
( / ) ( )1 m f t  re-named f t( ). The transient-response analysis of second-order systems is per-
formed as follows. Laplace transformation of Equation 8.8, taking into account the initial 
conditions, yields 

 s X s sx x sX s x X s F sn n
2

0 0 0
22( ) ( ) ( ) ( )− −  + −[ ] + = ζω ω  

Collecting like terms and solving for X s( ), we find 
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Finally, 
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− 1 0 0
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2
2
ζω
ζω ω



Zero-input responsee Zero-state response

+
+ +









− 1
2 2

1
2s s

F s
n nζω ω

( )  (8.9)

* Critical damping ccr is the value of c that satisfies c mk2 4 0− = , that is, c mkcr = 2 .

x

m

k

c

f

FIGURE 8.6
A mass–spring–damper system.
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The first term on the right side represents the zero-input response, which is the response 
to initial conditions only. The second term describes the zero-state response, which is the 
response to the input only.

8.3.1 Free Response of Second-Order Systems

Free response is the response to initial conditions only, defined by the first term in Equation 8.9, 

 x t
s x x
s s

n

n n
( )

( )= + +
+ +









− 1 0 0
2 2

2
2
ζω
ζω ω



 (8.10)

This inverse Laplace transform depends on the nature of the poles, that is, the roots of the 
characteristic equation 

 s sn n
2 22 0+ + =ζω ω  

Solution of this equation yields the poles 

 s n n n n n= − ± − = − ± −ζω ζω ω ζω ω ζ( )2 2 2 1 (8.11)

The system is undamped if ζ = 0, underdamped if 0 1< <ζ , critically damped if ζ = 1, and 
overdamped if ζ > 1. The free response analysis for all these damping cases is presented 
in the following. 

Case (1): Undamped ( )ζ = 0

Inserting ζ = 0 in Equation 8.10, we find

 x t
sx x
s

x t
x

t
n

n
n

n( ) cos sin= +
+









= +− 1 0 0
2 2 0

0 

ω
ω

ω
ω  (8.12)

Case (2): Underdamped ( )0 1< <ζ
In this case, rewrite 

 

s s s
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2 2 2 2 2
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+ + = + − +

= + + −

= +
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ζω ω ζ
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( ) ( )

( ) ( )

( ))2 2+ ωd  

where ω ω ζd n= −1 2  is the (damped) natural frequency. With this, Equation 8.10 yields
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Case (3): Critically damped ( )ζ = 1

Using ζ = 1 in Equation 8.10 leads to
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s x x

s
e x x x tn

n
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n

n( )
( )

( )
( )= + +
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= + +[ ]− − 1 0 0
2 0 0 0
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Case (4): Overdamped ( )ζ > 1
In this case, the two poles are real and distinct as in Equation 8.11. Let 
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2
21 1= − + − = − − −ζω ω ζ ζω ω ζ,       

Then 
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(8.15)

Note that besides the response for the undamped case, which is oscillatory, all other 
responses stabilize at zero. The response for the underdamped case exhibits decaying 
oscillations.

8.3.1.1  Free Response in MATLAB

The initial command finds the free response of a state-space model with an initial 
condition on the states: 

 

x Ax x x

y Cx

= =
=





,  
                   

( )0 0

 

Then, initial(sys,x0) plots the response of system sys to an initial condition  vector 
x0. The duration of simulation is determined automatically to reflect adequately the 
response transients. If it is desired to save the output data for future use, then type 
[out, t]=initial(sys,x0). The output is now saved under out and may be plotted 
via plot(t,out).

Example 8.4: Free Response

A second-order dynamic system is modeled as 

 4 4 5 0 0 0 0  x x x x x+ + = = =,   0.4,  ( ) ( )  

 a. Find the free response x t( ).
 b.  Plot the free response by using the initial command.

Solution

 a. Rewriting in standard form, we have  x x x+ + =5
4 0. Comparing with 

Equation 8.8,
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 Since the system is underdamped, we also calculate ω ω ζd n= − =1 12  rad/sec. 
Using these and the given initial conditions in Equation 8.13, we find 
x t e t tt( ) ( cos sin )/= +−1

5
2 2 .
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 b.  Choosing the state variables as x x1 =  and x x2 = , the state-variable equa-
tions are 

 



x x
x x x

1 2

2
1
4 2 14 5

=
= − −





                  
( )

 so that A =
− −











0 1
15

4

 Since the free response is represented by x, which happens to be the first state 
x1, the output equation is y x= 1 so that C = [ ]1 0 . The following script will 
generate the plot of x versus t.

>> A = [0 1;-5/4 -1]; C = [1 0]; x0 = [0.4;0];
>> sys = ss(A,[],C,[]);
>> initial(sys,x0) %Figure 8.7

 Note that t = 10(sec) has been automatically decided by the initial com-
mand. The result clearly agrees with that in (a).

8.3.2 Impulse Response of Second-Order Systems

Impulse response refers to x t( ) in Equation 8.8 when the input is f t A t( ) ( )= δ , where δ( )t  is the 
unit impulse and A is a constant. Inserting F s A( ) =  in Equation 8.9, the response is given by 
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 (8.16)

As in free response analysis, different damping cases must be studied separately. 

Case (1): Undamped ( )ζ = 0

 x t x t
x A
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n

n( ) cos sin= + +
0

0ω
ω

ω


 (8.17)
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FIGURE 8.7
Free response (Example 8.4).
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Case (2): Underdamped ( )0 1< <ζ

 x t e x t
x x A

tnt
d

n

d
d( ) cos sin= + + +





−ζω ω ζω

ω
ω0

0 0  (8.18)

Case (3): Critically damped ( )ζ = 1

 x t e x x x A tnt
n( ) ( )= + + +[ ]−ω ω0 0 0  (8.19)

Case (4): Overdamped ( )ζ > 1

 x t
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s x x A
s s
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1 2
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1 2
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 (8.20)

where: 

 s sn n n n1
2

2
21 1= − + − = − − −ζω ω ζ ζω ω ζ,       

As in the case of free response, the impulse response of the undamped system is oscilla-
tory. In each of the other cases where damping is present, the response will stabilize at 
zero, while the underdamped response exhibits decaying oscillations.

8.3.2.1  Impulse Response in MATLAB 

Zero initial conditions: The command impulse(sys) returns the unit-impulse 
response of the linear, time-invariant (LTI) model sys created with either trans-
fer function (TF) or state-space (ss) function, with the assumption of zero initial 
conditions. For multi-input models, independent impulse commands are applied 
to each input channel. The time range and number of points are chosen automati-
cally in MATLAB. If it is desired to save the output (named out) for future use, 
simply type [out,t]=impulse(sys).

Non-zero initial conditions: Equations 8.17 through 8.20 provide impulse responses of 
second-order systems with different damping levels. These equations are gener-
ated by Equation 8.9, which gives the response as the sum of the zero-input and 
zero-state responses. The zero-input response is clearly handled by the initial 
command in MATLAB. Since the input is an impulse, the zero-state response is 
handled by the impulse command. Therefore, the total response is simply the 
superposition of the outputs generated by the initial and impulse commands; 
see Problem Set 8.2.

Example 8.5: Impulse Response, Zero Initial Conditions

A mechanical system model is derived as 

   x x kx t x x+ + = = =2 10 0 0 0 0δ( ) ( ) ( ),   ,    

where k represents the coefficient of stiffness.

 a. Find the response x t( ) associated with k = 2 and k = 4.
 b.  Plot the responses associated with k = 2 4,  in the same graph by using the 

impulse command.
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Solution

 a. Comparing with Equation 8.8, we have
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 Since the system is underdamped in both cases, we calculate ω ω ζd n k= − = −1 12  
for each. By Equation 8.18, the two responses are then found as
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 b.  Since the initial conditions are zero, the impulse command is used. We 
will create our system by using the transfer function. Because the impulse 
command returns the unit-impulse response, we must define the transfer 
function as

 
10
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2 42s s k
k

+ +
=  ( , )

 

 The following script will generate and plot the impulse responses:

>> n = 10; d1 = [1 2 2]; d2 = [1 2 4];
>> sys1 = tf(n,d1); sys2 = tf(n,d2);
>> impulse(sys1,sys2) %Figure 8.8

 Since the damping ratio and stiffness are related via ζ = 1/ k , the damping 
ratio associated with k = 2 is larger than that for k = 4.
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FIGURE 8.8
Impulse responses (Example 8.5).
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8.3.3 Step Response of Second-Order Systems

Step response refers to x t( ) in Equation 8.8 when the input is f t Au t( ) ( )= , where u t( ) is the 
unit step and A is a constant. Using F s A s( ) /=  in Equation 8.9, the response is obtained as 
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 (8.21)

As always, different cases of damping are considered separately as follows.

Case (1): Undamped ( )ζ = 0
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Case (2): Underdamped ( )0 1< <ζ
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Case (3): Critically damped ( )ζ = 1
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Case (4): Overdamped ( )ζ > 1
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 (8.25)

where: 

 s sn n n n1
2

2
21 1= − + − = − − −ζω ω ζ ζω ω ζ,       

Besides the undamped case where the response oscillates, it is readily seen that the step 
response for each of the damping cases has a steady-state value of A n/ω2.

8.3.3.1  Step Response in MATLAB

Zero initial conditions: The command step(sys) returns the unit-step response of 
the LTI model sys created with either transfer function (TF) or state-space (ss) 
function, with the assumption of zero initial conditions. For multi-input models, 
independent step commands are applied to each input channel. The time range 
and number of points are chosen automatically in MATLAB. If it is desired to save 
the output (named out) for future use, simply type [out,t]=step(sys).



388 Modeling and Analysis of Dynamic Systems

Non-zero initial conditions: Equations 8.22 through 8.25 provide step responses of 
 second-order systems with different damping levels. These equations are gener-
ated by Equation 8.9, which gives the response as the sum of the zero-input and 
zero-state responses. The zero-input response is handled by the initial com-
mand in MATLAB. Since the input is a step, the zero-state response is handled by 
the step command. The total response is simply the superposition of the outputs 
generated by the initial and step commands.

Example 8.6: Step Response, Zero Initial Conditions

The mechanical system in Figure 8.9 is subjected to zero initial displacement and velocity.

 a. Find the response x t( ).
 b.  Plot the response by using the step command.

Solution

 a. Using the given physical parameter values, the equation of motion is written as

 2 2 3 20 0 0 0 0  x x x u t x x+ + = = =( ) ( ) ( ),   ,    
 Dividing by 2 and comparing with the standard form of Equation 8.8, we find
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 This implies the system is underdamped and ω ω ζd n= − =1 2 5
2  rad/sec. 

Using Equation 8.23, with zero initial conditions and A = 10, we find the response 
as (in meters)
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 Note that the steady-state value of response is A
nω2

20
3= .

 b.  Since the step command returns the unit-step response, we will define 
the transfer function as

 
20

2 2 32s s+ +  

 Subsequently, the following script will generate the desired plot.

x

f (t) = 20u(t) N

m = 2 kg

k = 3 N/m

c = 2 Ns/m

FIGURE 8.9
Mechanical system (Example 8.6).



389System Response

>> n = 20; d = [2 2 3]; sys = tf(n,d);
>> step(sys)      %Figure 8.10

Note that t = 12(sec) has been automatically determined by the step command, and 
that the step response has a steady-state value of 20

3 , as asserted in (a).
Figure 8.11 gives a summary of the behavior of unit-impulse and unit-step responses 

of second-order systems subjected to zero initial conditions for all three cases of damp-
ing. Note that the oscillatory response curves associated with the undamped cases have 
been omitted.
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FIGURE 8.10
Step response of the mechanical system in Example 8.6.
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Unit-impulse and unit-step responses of second-order systems.
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8.3.4  Response Analysis Using Simulink

The MATLAB built-in function initial returns the system response to initial excita-
tions only, while impulse and step return responses to impulse and step functions with 
assumption of zero initial conditions. These tasks may also be achieved through simula-
tion of the Simulink model of the system. This approach proves particularly valuable in 
applications in which the input is not one of the aforementioned special functions and the 
initial conditions are non-zero. These general cases can also be handled by the built-in 
command lsim.

8.3.4.1 The lsim Command

The lsim command, with function call lsim(sys, u,t, x0), plots the time response of 
the LTI model sys to the arbitrary input signal described by u and t. The time vector 
t consists of regularly-spaced time samples and u is a matrix with as many columns as 
inputs and whose ith row specifies the input value at time t(i). For state-space models 
only, x0 is the initial state vector at t(1). It is set to zero when omitted.

Example 8.7:  Response Using lsim and Simulink

A dynamic system is modeled as 

 4 4 5 10 0 0 01
2

1
2

  x x x t x x+ + = = =sin( ), ( ) , ( )     

Plot the response x t( ) for 0 20≤ ≤  t  by
 a. Using the lsim command.
 b. Simulating the Simulink model.

Solution

 a. With state variables x x1 = , x x2 = , we first obtain the state-space model as

 

x x x=
− −









 +









 =









=
0 1

1
0

5
4

5
2

1

2

1
2u

x
x

u t,   ,   sin( )

yy =  1 0 x                                                               













 

 Note that the output matrix is chosen as C =  1 0  since x x= 1 is to be plotted. 
The following script will generate the desired plot.

>> A = [0 1;-5/4 -1]; B = [0;5/2]; C = [1 0];
>> sys = ss(A,B,C,[]); x0 = [1/2;0];
>> t = 0:0.01:20; u = sin(t/2);
>> lsim(sys,u,t,x0)    %Figure 8.12

 The lsim command returns the input, as well as the response curve as shown 
in Figure 8.12.

 b. The Simulink model shown in Figure 8.13 is built according to the state-space 
model in (a). Double-clicking on each integrator allows us to enter the initial 
condition for the output signal of that integrator block. Double-clicking on the 
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input block allows us to select a sine wave with amplitude of 1 and frequency 
of 1

2  rad/sec. Running the simulation and double-clicking on the scope block 
reveals the response plot which agrees with that in Figure 8.12. As always, the 
plot may be directly accessed by simply typing

>> plot(tout,yout)

It should be mentioned that the portion of the model that includes the gain of 5
2  and 

the two negative feedback loops can be replaced with the State-Space block from the 
Continuous library. Double-clicking on the block lets us define the proper matrices, as 
well as the initial conditions; see Example 8.8.

 Impulse Response in Simulink

Even though there is no Impulse block in the Sources library of Simulink, the impulse 
response of a state-space model, subjected to zero initial conditions, may still be obtained 
using the Simulink model of the system. The model is built as follows. Drag the State-
Space block from the Continuous library into the model. Double-clicking on this 
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FIGURE 8.12
Simulation result in Example 8.7.
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FIGURE 8.13
Simulink model of the system in Example 8.7
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block allows us to enter the state-space matrices A B C D, , , . For the initial conditions, use 
the input matrix B. Use a Constant block (Commonly Used Blocks) of zero for input. 
Complete the model by adding the Out and Scope blocks. Running the simulation 
yields the impulse response of the system. This is illustrated in the following example.

Example 8.8:  Impulse Response in Simulink

The model of a dynamic system is derived as 2 3 3 x x x t+ + = δ( ) subject to zero initial 
conditions. Plot x t( ) by

 a. Using the impulse command.
 b. Simulating the system’s Simulink model involving the state-space block.

Solution

 a. Selection of state variables x x1 = , x x2 =  leads to the state-space matrices

 
A B C=

− −








 =









 =   =

0 1 0
1 0 0

3
2

3
2

1
2

, , ,   D
 

>> A = [0 1;-3/2 -3/2]; B = [0;1/2]; C = [1 0];
>> sys = ss(A,B,C,[]);
>> impulse(sys)     %Figure 8.14

 b. The model is built as shown in Figure 8.15. Double click on the state-space 
block and enter the matrices A, B, C and D as in (a). Set the initial conditions as 
[0;1/2], that is, the input matrix B. Running the simulation yields the response 
shown in Figure 8.14.

So far in this chapter, we have mostly studied single-input-single-output (SISO) systems. 
The following two examples demonstrate how multiple-input-multiple-output (MIMO) 
systems may be handled through the state-space description of the model.
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FIGURE 8.14
Impulse response in Example 8.8.
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Example 8.9:  MIMO System (unit-step input)

In the mechanical system shown in Figure 8.16, all parameter values are in consistent 
physical units. Assume that the applied forces f1 and f2 are unit-step functions and that 
the system is subject to zero initial conditions. Plot two response curves for x1: one for the 
case when f1 is the only input, and another for the case when f2 is the only input. Find 
the superposition of the two plots to determine the total response x1.

Solution

The equations of motion are 

 

2 21 1 1 2 1 1

2 2 1 2

 



x x x x x f
x x x f

+ + − − =
+ − =

0.8
                  

( )
       



  

Selecting state variables x x x x x x x x1 1 2 2 3 1 4 2= = = =,  , ,   , the state equation is formed as 
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The following script produces a pair of plots, one showing the contribution of f1 to x1 
(labeled x11), the other reflecting the contribution of f2 to x1 (labeled x12). Since the inputs 
are unit-step functions, and initial conditions are zero, we will use the step command 
in MATLAB.

>> A = [0 0 1 0;0 0 0 1;-3/2 1/2 -0.4 0;1 -1 0 0];
>> B = [0 0;0 0;1/2 0;0 1];
>> C = [1 0 0 0];    % x1 is to be plotted

For ICs, use B

1
Output

x(t)

Scope

x′ = Ax+Bu
y = Cx+Du

State-space

0

Constant

FIGURE 8.15
Simulink model in Example 8.8.
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FIGURE 8.16
Mechanical system in Example 8.9.
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>> sys = ss(A,B,C,[]); % Define system
>> [x1,t] = step(sys); % Results suppressed (see Notes below!)
>> subplot(1,2,1), plot(t,x1(:,:,1)), % Initiate Figure 8.17a
>> title('Contribution of f1 to x1')
>> subplot(1,2,2), plot(t,x1(:,:,2)),
>> title('Contribution of f2 to x1') % Complete Figure 8.17a
>> x1 = x1(:,:,1)+x1(:,:,2); % Total response by superposition
>> plot(t,x1) %Figure 8.17b

Notes

• If only interested in the plots in Figure 8.17a, and not the returned data, simply type

0
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(a) Contributions of the two inputs to x1 in Example 8.9 and (b) time variations of response x1 in Example 8.9.
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>> step(sys)

• The step command automatically determines the suitable time range. A user- 
specified time range may also be imposed. For example, to generate the plots 
for up to 100 units of time, type

>> step(sys,100)

Example 8.10:  MIMO System (general input)

Assume the mechanical system in Example 8.9 is subjected to forces f e tt
1

2= − / sin , f2 0=  
and initial conditions x x x x1

1
2 2 1 20 0 0 0 1 0 0( ) ( ) , ( ) , ( )= = = − =,   . Plot x1 versus 0 40≤ ≤  t .

Solution
>> A = [0 0 1 0;0 0 0 1;-3/2 1/2 -0.4 0;1 -1 0 0]; 
>> B1 = [0;0;1/2;0]; % Input f2 is not contributing
>> C = [1 0 0 0]; % x1 is to be plotted
>> t = linspace(0,40,200); % 200 points for a smooth response curve
>> x0 = [1/2;0;-1;0]; % Initial state
>> sys = ss(A,B1,C,[]); % Define system
>> u = exp(-t/2).*sin(t); % Define f1
>> lsim(sys,u,t,x0) %Figure 8.18
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FIGURE 8.18
Response x1 in Example 8.10.
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PROBLEM SET 8.2

 1. Show that the free response of an overdamped, second-order system has a steady-
state value of zero.

In Problems 2 through 5, for each given system model, 
 a. Identify the damping type and find the free response.
 b.  Plot the free response by using the initial command.
 2. 3 2 0 0 0 0 1

3
  x x x x x+ + = = =,   ,   ( ) ( )

 3.   x x x x x+ + = = =3 4 0 0 0 02
5,   ,   ( ) ( )

 4. 4 8 3 0 0 1 0 1  x x x x x+ + = = = −,   ,   ( ) ( )
 5. 4 4 0 0 0 11

3
  x x x x x+ + = = =,   ,   ( ) ( )

 6.  A dynamic system is modeled as 

 4 5 0 0 1 0 0  x cx x x x+ + = = =,   ,   ( ) ( )

 Plot (in the same graph) the system’s free response associated with c = 4 5, , and 
comment.

 7. Show that the impulse response of an underdamped, second-order system has a 
steady-state value of zero.

 8. Show that the response of an underdamped, second-order system to an impulsive 
input δ( )t a− , a = >const 0, and zero initial conditions, is described by

 

1
ω

ωζω

d

t a
de t a u t an− − −





−( ) sin ( ) ( )

 where u t( ) is the unit-step function. Hint: Use shift on t-axis, Section 2.3. Use this 
result to find the response x t( ) of

   x x x t x x+ + = − = =0.89     δ( ), ( ) , ( )1 0 0 0 0

In Problems 9 and 10, assuming zero initial conditions, 
 a. Find the response x t( ) in closed form.

 b.  Plot the response by using the impulse command.

 c.  Plot the response through the simulation of the Simulink model of the system.
 9.  x x x t+ + =4 5δ( )
 10. 2 2 3 x x x t+ + = 0.6δ( )
 11. The governing equation for an RLC circuit driven by the applied voltage v ta( ) is 

derived as

 
L

di
dt

Ri
C

i dt v ta+ + =∫1
 ( )

 where L = 4 H, R = 4 Ω, and C = 1
2  F. 

 a. Write the governing equation in terms of the electric charge q.

 b.  Assuming zero initial conditions, plot q and i versus t (same figure) when 
the applied voltage va is a unit impulse.
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 12. Consider the RLC circuit in Problem 11. 
 a. Write the governing equation in terms of the electric charge q.
 b.  Assuming initial conditions are q( )0 0= , q( )0 1= , plot q and i versus t (same 

figure) when the applied voltage va is a unit impulse.
 13.  Consider a single-degree-of-freedom mechanical system as in Figure 8.6 of this 

section, where m k= =3 20 kg,  N/m. Assuming zero initial conditions, plot (in a 
single figure) the response x to a unit-impulse force for two cases of c = 2 N-sec/m 
and c = 4 N-sec/m, and discuss the results.

 14. Consider a single-degree-of-freedom mechanical system as in Figure 8.6, where 
the applied force is 10δ( )t  and m c k= = =9 6 5 kg,  N-sec/m  N/m, . Assume 
x( )0 = 0.5, x( )0 = 0. 

 a. Find the response x in closed form.

 b.  Plot the response x by using the initial and impulse commands. Also 
plot the closed-form response of (a) to confirm the result.

In Problems 15 and 16, u t( ) denotes the unit step. Assuming zero initial conditions, 
 a. Find the response x t( ) in closed form.
 b.  Plot the response by using the step command.
 15. 9 12 13 x x x u t+ + = ( )

 16. 3 12 10 10 x x x u t+ + = ( )

 In Problems 17 through 20, u t( ) denotes the unit step. 
 a. Plot the response x by using the step and initial commands, showing the 

step response, the initial response and the total response in one figure. Verify the 
steady-state value of x.

 b. Plot the response x by using the lsim command.
 17. 1

4
5
4

1
22 0 0 0  x x x u t x x+ + = = =( ), ( ) , ( )  

 18.   x x x u t x x+ + = = =4 3 0 0 0 1( ), ( ) , ( )  
 19. 9 12 4 0 0 02

3
  x x x u t x x+ + = = =0.6   ( ), ( ) , ( )

 20. 6 11 3 0 1 0 1
2

  x x x u t x x+ + = = = −( ), ( ) , ( )  

 21.  The mechanical system in Figure 8.19, where all parameter values are in con-
sistent physical units, is subject to zero initial conditions. Plot two response curves 
for x2: one corresponding to f1 as the only input, and another to f2 only. Finally, plot 
the total response x2.

b = 0.6

k2 = 2
k1 = 5

m2 = 1m1 = 0.7

f1 = 5u(t)
f2 = u(t)

x1 x2

FIGURE 8.19
Problems 21 and 22.
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 22.  The mechanical system in Figure 8.19, where all parameter values are in consistent 
physical units, is subject to initial conditions x x x x1 2 1 20 1 0 1 0 1 0 1( ) , ( ) , ( ) , ( ) .= = = − =      
Plot the response x2 .

 23.  Reconsider Problem 22. Plot the response x2  by simulating the Simulink model 
of the system by using the state-space block.

 24.  In the mechanical system in Figure 8.20, the parameter values in consistent 
physical units are

 m k k b b= = = = =1 10 10 5 81 2 1 2, , , ,    

 The system is subject to initial conditions x x x1 2 10 0 0 0 0 1( ) , ( ) , ( )= = = −    and unit-step 
applied forces. Plot the response x1.

 25.  Reconsider Problem 24. Plot the response x1 by simulating the Simulink model 
of the system by using the state-space block.

 26.  Reconsider Problem 24 but assume f1 0=  and f2 is a unit-impulsive force. All 
parameter values remain unchanged. Assuming zero initial conditions, plot the 
response x2 .

 In Problems 27 through 30, the governing equations and initial conditions of a 
dynamic system are provided. Plot the specified output(s), together with the input(s), by 
using the lsim command. Note that u t( ) denotes the unit-step function.

 27. 8 4 5 0 0 0 0 153
5

3 2
3

  x x x e t x x tt+ + = = = ≤ ≤− / sin , ( ) , ( ) ,      

 Output : ( )x t

 28. 64 16 17 1 0 0 0 1 0 40  x x x u t x x t+ + = − = = ≤ ≤( ), ( ) , ( ) ,      

 Output : ( )x t

 29.   

  

x x x x x u t
x x x x x

1
5
3 1

2
3 2 2 1

2
2
3 2 1 2 1

3
3

+ − − − =
+ − + − =

( ) ( )
( ) ( ) sinn

,
( ) , ( )
( ) , ( )

,
t

x x
x x

t




= =
= =

≤ ≤  
 
 

  
1 1

2 2

0 0 0 1
0 1 0 0

0 20




 Outputs  : ( ), ( )x t x t1 2

 30. 2 2 3 4
4

1 1 1
3
2 2 1 2 1

4

3
2 2 1

   



x x x x x x x e t
x x

t+ + − − − − =
− +
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xx x e

x
t
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1

− =
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FIGURE 8.20
Problems 24, 25, and 26.
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8.4 Frequency Response

When an LTI system is subjected to a sinusoidal input, characterized by its amplitude and 
forcing frequency, its response will contain two portions: one that vibrates at the natural 
frequency of the system, and another that follows the forcing frequency. In the presence 
of damping, the portion that vibrates at the system’s natural frequency will eventually die 
out, as discussed earlier in this chapter. Therefore, the response at steady-state is sinusoi-
dal and has the same frequency as the input (forcing frequency). The steady-state response 
to a sinusoidal input is known as the frequency response; Figure 8.21.

8.4.1 Frequency Response of Stable, Linear Systems

Consider a stable, linear time-invariant system described by its transfer function G s( ) as 
in Figure 8.21, with input f t( ) and output x t( ). Assume that the input is sinusoidal in the 
form f t F t( ) sin= 0 ω , where F0 is the amplitude and ω denotes the forcing frequency. The 
frequency response, denoted by xss, is the steady-state portion of the response and is deter-
mined as follows.

Assume the transfer function is a ratio of two polynomials in s, that is, 

 G s
K s z s z s z

s p s p s p
Km

n
( )

( )( ) ( )
( )( ) ( )

= + + ⋅⋅⋅ +
+ + ⋅⋅⋅ +

=1 2

1 2
,    consst (8.26)

Note that since xss is independent of the initial conditions, they are simply omitted. The 
transfer function is G s X s F s( ) ( )/ ( )= ; thus, X s G s F s( ) ( ) ( )= , where F s F s( ) /( )= +0

2 2ω ω . If G s( ) 
has distinct poles only, then partial-fraction expansion yields 

 
X s G s F s

K s z s z s z
s p s p s p

m

n
( ) ( ) ( )

( )( ) ( )
( )( ) ( )

= = + + ⋅⋅⋅ +
+ + ⋅⋅⋅ +

⋅1 2

1 2

FF
s
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s p
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s p
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0
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1

1

2

2

ω
ω+

=
+

+
+

+ ⋅⋅⋅ +                             nn

ns p
d

s j
d

s j+
+

+
+

−ω ω

 (8.27)

where:
c i ni   ... ( , , , )= 1 2  and d are constants
d  is the complex conjugate of d

Inverse Laplace transformation of X s( ) yields 

 x t c e c e c e de dep t p t
n

p t j t j tn( ) = + + ⋅⋅⋅ + + +− − − −
1 2

1 2   ω ω
 

G(s)

System

Transfer function

Response

Transient response

Steady-state response

Frequency response

Sinusoidal
Input

FIGURE 8.21
Frequency response of a linear, time-invariant system.
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Because the system is assumed stable, the poles −p1, −p2, …, −pn all have negative real parts. 
Therefore, except for the last two, all terms on the right side die out at steady state. The 
same result holds for the case of one or more multiple poles. If a typical pole −pk  has multi-
plicity q, then x t( ) will contain terms t e r qr p tk− = −  ... ( , , , )0 1 1  so that they too will die out at 
steady state. Therefore, regardless of the multiplicity of the poles, we have 

 x t de dess
j t j t( ) = +− ω ω  (8.28)

The constants d and d  are evaluated from Equation 8.27 via 

 d s j X s s j G s
F

s
F

j
G j

s j
s j

= + = +
+







= − −
=−

=−

( ) ( ) ( ) ( ) (ω ω ω
ω

ω
ω

ω

0
2 2

0

2
)) 

 
d s j X s s j G s

F
s

F
j
G j

s j
s j

= − = −
+







=
=

=

( ) ( ) ( ) ( ) ( )ω ω ω
ω

ω
ω

ω

0
2 2

0

2  

These results clearly confirm that d  and d are complex conjugates. The quantity G j( )ω  is 
known as the frequency response function (FRF) and is obtained by replacing s with jω in 
G s( ). Since G j( )ω  is generally complex, it can be expressed in polar form as 

 G j G j e G j
G jj( ) ( ) ( ) tan

( )
ω ω φ ω

ωφ= = ∠ = −,     
imaginary part of 

r
1

eeal part of G j( )ω







 

where φ is measured from the positive real axis and is considered positive in the counter-
clockwise direction. Similarly, 

 G j G j e G j ej j( ) ( ) ( )− = − =− −ω ω ωφ φ 

Using these in the expressions for d and d , and inserting the outcomes into Equation 8.28, 
we find 

 

x t
F

j
G j e e

F
j

G j e e

F G j

ss
j j t j j t( ) ( ) ( )

(

= − +

=

− −0 0

0

2 2
ω ω

ω

φ ω φ ω

        )) ( ) sin( )
( ) ( )e e

j
F G j t

j t j tω φ ω φ

ω ω φ
+ − +− = +

2
0

 

In summary, if the input of a stable, linear time-invariant system with transfer function 
G s( ) is F t0 sinω , the system’s frequency response is 

 x t F G j tss( ) ( ) sin( )= +0 ω ω φ  (8.29)

where G j( )ω  and φ denote, respectively, the magnitude and phase of the FRF G j( )ω .

8.4.1.1 Frequency Response of First-Order Systems

Linear, first-order systems (Section 8.2) are described by 

 τ τx x f t+ = = >( ),   time constant 0 
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Assuming the system is subjected to f t F t( ) sin= 0 ω , its frequency response is obtained as 
follows. First, the system’s transfer function and the ensuing FRF are found as 

 G s
s

G j
js j

( ) ( )=
+

⇒ =
+

1
1

1
1τ

ω
τωω

            
Replace  with 

FRF

 

The magnitude of the FRF is 

 G j( )
( )

ω
τω

=
+

1

1 2  

To calculate the phase, however, it is advised that G j( )ω  be expressed in standard rectan-
gular form to determine its location in the complex plane. That is, 

 G j
j

j
j( )

( ) ( ) ( )
ω

τω
τω
τω τω

τω
τω

=
+

=
−

+
=

+
−

+
1

1
1

1
1

1 12 2 2  

Since τω > 0, this indicates that G j( )ω  is always located in the fourth quadrant. As a result, 
the calculation of phase is straightforward, and it is given by 

 φ ω
ω

ω
= ∠ =





−G j
G j

G j
( ) tan

( )
( )

1 imaginary part of 
real part of 





= − = −− −tan ( ) tan ( )1 1τω τω  

Therefore, by Equation 8.29, the frequency response is obtained as 

 x t
F

tss( )
( )

sin tan ( )=
+

−( )−0

2

1

1 τω
ω τω  (8.30)

Example 8.11: Frequency Response of a First-Order System

Find the frequency response corresponding to 

 1
4

9
5

1
23x x t+ = sin( ) 

Solution

Rewrite in standard form as 1
12

9
15

1
2

x x t+ = sin( ) so that τ = 1
12 , F0

9
15= , and ω = 1

2 rad/sec. 
By Equation 8.30, the frequency response is 

 
x t t tss( )

( )
sin tan sin( )=

+
−( ) = −−

9
15

1
24

2
1
2

1 1
24

1
2

1
0.5995 0.0416

 

8.4.1.2 Frequency Response of Second-Order Systems

Frequency-response analysis of second-order systems is best understood when applied 
to a single-degree-of-freedom mechanical system. To that end, consider the mechanical 
system shown in Figure 8.22, where x is measured from the static equilibrium position and 
the applied force is f t F t( ) sin= 0 ω . The frequency response xss is obtained as follows.

Laplace transform of the equation of motion mx bx kx f t + + = ( ), assuming zero initial con-
ditions, leads to the system’s transfer function as 

 
G s

X s
F s ms bs k

G j
k m b j

( )
( )
( )

( )= =
+ +

⇒ =
− +

1 1
2 2              

FRF
ω

ω ω  
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As previously mentioned, calculation of phase requires that we write G j( )ω  in rectangular 
form to decide its location in the complex plane. That is, 

 G j
k m

k m b
b

k m b
j( )

( ) ( ) ( ) ( )
ω

ω
ω ω

ω
ω ω

=
−

− +
−

− +

2

2 2 2 2 2 2  

Since ( ) ( )k m b− + >ω ω2 2 2 0 and bω > 0, the imaginary part of G j( )ω  is always negative, placing 
G j( )ω  below the real axis. In particular, G j( )ω  is in the fourth quadrant if k m− >ω2 0 and third 
quadrant if k m− <ω2 0. Therefore, it is necessary to perform this analysis for each given 
situation. The magnitude and phase of the FRF are determined as 

 G j
k m b

G j
b

k m
( )

( ) ( )
( ) tanω

ω ω
φ ω

ω
ω

=
− +

= ∠ = −
−

−1
2 2 2

1
2,       

where φ must be calculated based on the location of G j( )ω . For a fourth quadrant location, 
the calculation is straightforward and is simply given by the above-mentioned expression 
for φ. For a third quadrant location, the phase needs to be adjusted accordingly. Recall from 
Section 8.3 that ωn

k
m=  and ζ = b mk/( )2 , which imply 

 k
m

b
k

n
n

= =ω
ζ

ω
2 2
,      

Multiply and divide the fractions involved in G j( )ω  and φ, and use the above-mentioned 
relations in the resulting expressions, then insert into Equation 8.29 to obtain 

 x t
x

tss
st

n n

n

n
( )

( / ) ( / )
sin tan

/
( /

=
−  +

−
−

−

1 2

2
12 2 2

1

ω ω ζω ω
ω

ζω ω
ω ω ))2









 (8.31)

where x F kst = 0/  is the static deflection and the dimensionless ratio ω ω/ n is the normalized 
frequency. If we let X  denote the amplitude of xss in Equation 8.31, then 

 
X

x X
x

st

n n
st

n

=
−  +

⇒ =
−1 2

1

12 2 2 2( / ) ( / ) ( / )ω ω ζω ω ω ω
            

  +
2 22( / )ζω ωn

 

The dimensionless ratio X xst/  is called the normalized amplitude. Further details of the 
previous findings and, in particular, applications in mechanical vibrations will be pre-
sented in Section 9.2.

m

b k

x

f (t) = F0 sinωt

FIGURE 8.22
Second-order mechanical system.
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Example 8.12: Frequency Response of a Second-Order System

The equation of motion of a mechanical system such as that shown in Figure 8.22 is 
derived as 

 4 4 13 2 2 x x x t+ + = .4sin  

where all parameter values are in consistent physical units. Find the frequency response 
by using

 a. Equation 8.31.
 b. Equation 8.29.

Solution

 a. It is readily seen that F m b k0 2 4 4 13 2= = = = =.4, , ,  rad/sec, ω . Therefore,

 
G s

s s
G j

j
j

( ) ( )=
+ +

⇒ =
− +

=
− −

=

1
4 4 13

1
3 8

3 8
732 2

              
FRF

ω
ω  

which indicates a third quadrant location. We next find

 
x

F
k

st n
n

= = = = =0

13
13
2

1
13

4
13

2
2.4

,    rad/sec,   ,   ,   ω ζ
ω
ω

ζ
ω
ωωn

=
8

13  

To calculate the phase, we first find

 
−

−
= −

−
= =− − −tan

/
( / )

tan
( )

tan1
2

1
8

13
4
13

2
12

1 1
8
3

ζω ω
ω ω

n

n
1.2120 rad

 

 Taking into account the third quadrant location, the negative phase has a mag-
nitude of

 φ π= − =1.2120 1.9296 

The amplitude in Equation 8.31 is

 

xst

n n1 2 12 2 2

2 4
13

16
13

2 8
13

2
−  +

=
− +

=
( / ) ( / ) ( ) ( )

.

ω ω ζω ω
0.2809

 

Finally, substitution into Equation 8.31 yields the frequency response

 x t tss( ) sin( )= −0.2809 1.92962  

 b. The FRF found in (a) is

 G j
j

( )2
3 8
73

=
− −

 (Third quadrant)

 The magnitude is G j( ) /2 1 73= . Due to third quadrant location, the negative 
phase is found as
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tan tan− −











= = ⇒ = −1

8
73
3

73

1 8
3

1.2120 rad        1.212φ π 00 = 1 9296.
 

Noting that F0 2= .4, by Equation 8.29 we have

 
x t F G j t t tss( ) ( ) sin( ) sin( ) sin(= + = − = −0 2 2

73
2 2φ

2.4
1.9296 0.2809 1..9296)

 

This, as anticipated, agrees with the result of (a).

8.4.2 Bode Plot

The FRF of a dynamic system may be represented by a pair of plots, one displaying the 
magnitude versus frequency, the other the phase angle (in degrees) versus frequency. A 
very specific presentation of this pair of plots is known as a Bode plot (or diagram). For 
a given FRF, denoted by G j( )ω , with magnitude G j( )ω  and phase angle φ, a Bode dia-
gram consists of two plots: a curve of the (base 10) logarithm of G j( )ω  and a plot of 
the phase φ, both versus logω. It is common to represent the logarithmic magnitude of 
G j( )ω  by 20 log ( )G jω  with the unit of decibel, abbreviated dB. In a Bode diagram, the 
curves are sketched on semilog paper, using a linear scale for magnitude (in dB) and phase 
(in degrees) and a logarithmic scale for frequency (in radians/second). The logarithmic 
presentation described here allows the low- and high-frequency behavior of the FRF to 
be shown in a single diagram. This is quite valuable because of the significance of low- 
frequency characteristics of systems in practical situations. Bode diagrams play an impor-
tant role in control systems design, as discussed in Section 10.6.

8.4.2.1  Bode Plot in MATLAB

The MATLAB command bode generates the Bode plot for an LTI system. For a system 
sys, the command

>> bode(sys)

will plot the Bode diagram, comprised of a magnitude (dB) plot and a phase (degrees) 
plot. If the numerical values for magnitude and phase calculated by bode are desired, we 
define a range of frequency in the form of vector w, and type

>> [mag,phase,w] = bode(sys,w)

This returns matrices mag and phase but not a plot. The desired plots may be generated 
by executing the following script:

>> w = linspace(0.01,100,1000); % 1000 points for smoothness of curves
>> [mag,phase,w]=bode(sys,w);
>> for i=1:1000,
m(i) = mag(1,1,i);    % Extract the magnitude column
p(i) = phase(1,1,i);  % Extract the phase column
end
>> subplot(2,1,1), semilogx(w,20*log10(m)) % Create the magnitude (dB) plot
>> subplot(2,1,2), semilogx(w,p)          % Complete Bode diagram
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8.4.2.2 Bode Plot of First-Order Systems

Consider a first-order system model in its standard form, 

 τ τx x f t+ = >( ),   0 

so that the standard, first-order transfer function is G s s( ) ( )= +
1

1τ  and the FRF is formed as 

 G j
j

( )ω
τω

=
+

1
1

 

As shown earlier in this section, the magnitude and phase of the FRF are

 G j( )
( )

ω
τω

=
+

1

1 2 , φ τω= − −tan ( )1

The Bode plot is obtained as follows. By definition, the logarithmic magnitude is 

 20 20
1

1
20 1 10 1

2

2 1 2
log ( ) log

( )
log ( ) log ( )

/
G jω

τω
τω τω=

+
= +  = − +

− 22    dB 

The plots of this quantity and the phase φ of the FRF versus τω (logarithmic scale) will 
make up the Bode diagram shown in Figure 8.23. Since τ, the time constant, is in seconds 
and ω is in rad/sec, τω is dimensionless and treated as normalized frequency. The asymp-
totic approximations of magnitude (dB) and phase for low- and high-frequency ranges are 
determined as follows. In a low-frequency range, we have τω << 1 so that ( )τω 2 1<<  and the 
logarithmic magnitude is approximated by −10 1log   dB, or 0 dB. The phase is approxi-
mated by − −tan ( )1 0 , or 0°. In a high-frequency range, we have τω >> 1 so that ( )τω 2 1>>  
and the logarithmic magnitude is approximated by −10 2log( )τω   dB, or −20log τω  dB. 
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FIGURE 8.23
Bode plot for G j j( ) /( )ω τω= +1 1 .
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This represents a straight line with a slope of −20 dB/decade. The phase will approach 
− ∞−tan ( )1 , or −90. The low- and high-frequency asymptotes intersect when τω = 1, so that 
ω τ= 1/  is the corner frequency. The phase at the corner frequency is φ = − = −−tan 1 1 45.

Example 8.13: Bode Plot of a First-Order System 

Find the Bode plot and identify the corner frequency: 

 
G s

s
( ) =

+

2
5

3 2  

Solution

We first rewrite G s( ) as 

 

G s
s s

G( ) (=
+

= ⋅
+

⇒
1
5

3
2

3
21

1
5

1
1

Standard 1st-order TF

FRF
         jj

j
ω

ω
) = ⋅

+
1
5

1
1 3

2
 

This agrees with the standard form 1
1( )+τωj , with τ = 3

2 , except for the constant multiple 
of 1

5 . The corner frequency ω τ= =1 2
3  rad/sec. The magnitude is 

 
G j

G j
( )

log ( )
ω

ω ω
= ⋅

+ ( )
⇒

1
5

1

1 3
2

2 20
        

Logarithmic magnitude

220 20
1

1
1
5

3
2

2
log log+

+ ( )ω
  dB

 

The second term is the standard magnitude (dB) for first-order systems discussed ear-
lier. Since the first term is 20 1

5log = −13.9794, the complete magnitude (dB) for the sys-
tem at hand is obtained by lowering the standard magnitude curve by 13.9794 dB. The 
constant 1

5  does not affect the phase angle because its phase is zero. The following script 
generates the desired Bode plot.

>> sys = tf(2/5,[3 2]);
>> bode(sys) %Figure 8.24

Recall that the same pair of plots can be generated by retaining the numerical values 
of magnitude and phase using the function call [mag, phase, w]=bode(sys, w) and 
plotting them versus frequency. In the low-frequency range, the asymptote for the stan-
dard magnitude is 0 dB as in Figure 8.23. Lowering that by 13.9794 dB yields the result 
depicted in Figure 8.24. As expected, the phase plot is unchanged compared with the 
standard case in Figure 8.23.

8.4.2.3 Bode Plot of Second-Order Systems

Consider a second-order system in the standard (normalized) form* 

  x x x f tn n n+ + =2 2 2ζω ω ω ( ) (8.32)

so that the standard, second-order transfer function is formed as 

 
G s

s s
n

n n
( ) =

+ +
ω

ζω ω

2

2 22  

* This differs slightly from the form given in Section 8.3.  In Equation 8.32, the forcing term is normalized.
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and the FRF is subsequently obtained as 

 
G j

j j
n

n n n n

n

( )
( / ) ( / )

ω
ω

ω ω ζω ω ω ω ζ ω ω

ω

=
− +

=
− +

2

2 2 22
1

1 2

2Divide by 

 
 

The magnitude and phase of the FRF are then calculated as 

 

G j
n n

n

n
( )

( / ) ( / )
tan

/
( / )

ω
ω ω ζω ω

φ
ζω ω
ω ω

=
−  +

= −
−

−1

1 2

2
12 2 2

1,    22

 

(8.33)

The logarithmic magnitude is 

 

20 20
1

1 22 2 2
log ( ) log

( / ) ( / )
G j

n n

ω
ω ω ζω ω

=
−  +

  dB

 

For a fixed damping ratio ζ , both the magnitude (dB) and phase angle φ are functions 
of the normalized frequency ω ω/ n and thus may be plotted versus ω ω/ n. Figure 8.25 
shows several pairs of curves, each pair corresponding to a specific ζ . It turns out that 
some magnitude curves experience a maximum peak, while others do not. To find 
the  frequency at which a maximum peak occurs, we proceed as follows. Maximizing 
the logarithmic magnitude is equivalent to maximizing G j( )ω , which has a constant 
numerator. Therefore, we need to minimize the denominator of G j( )ω , that is, 

 
( ) ( ) ,1 22 2 2− + =r r r

n
ζ

ω
ω    
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Bode plot (Example 8.13).
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It is then readily seen that minimization of this quantity with respect to r leads to the criti-
cal value 

 r
n

= = −
ω
ω

ζ1 2 2  

With this result, we define the resonant frequency ωr as 

 ω ω ζr n= −1 2 2  (8.34)

Based on this, the magnitude curves that attain a maximum peak correspond to 
0 ≤ ≤ζ 0.7071 where 0.7071 is an approximate value for 2 2/ . The maximum peak of the 
magnitude itself is then found as 

 G j G j
n

( ) ( )
max /

ω ω
ζ ζω ω ζ

= =
−= −1 2 22

1

2 1
 (8.35)

For example, the maximum peak for the case of ζ =0.1 occurs at ω ω/ ( )n = − =1 2 20.1 0.9899 and 

 
G j( )

max
ω

ζ ζ
ζ

=
−

= ⇒
=

1

2 1 2
0.1

Logarithmic magnitude

5.0252          5.0252)   dB20 14 0231log( .=
 

All of these are readily verified via Figure 8.25.

Example 8.14: Bode Plot of a Second-Order System 

Find the Bode plot for 

 
G s

s s
( ) =

+ +
4

2 42 1.8 .5 
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FIGURE 8.25
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Solution

Rewrite G s( ) as 

 G s
s s

( ) = ⋅
+ +

⇒
8
9 2

2.25
0.9 2.25

         

Standard 2nd-order TF

FRF
  

2.25
2.25 0.9

G j
j

( )ω
ω ω

= ⋅
− +

8
9 2  

The magnitude is 

G j( )
( ) ( )

logω
ω ω

= ⋅
− +

⇒
8
9

20
2 2 2

2.25

2.25 0.9

Logarithmic magnitude
88
9 2 2 2

20+
− +

log
( ) ( )

2.25

2.25 0.9
dB

ω ω

Since the first term is 20 1 02318
9log .= − , the complete logarithmic magnitude is obtained 

by lowering the standard magnitude curve by 1.0231 dB. Once again, the constant 8
9  does 

not affect the phase angle. The following script generates the Bode plot in Figure 8.26.

>> sys = tf(4,[2 1.8 4.5]);
>> bode(sys) %Figure 8.26

The standard, second-order transfer function yields ωn = 1.5 rad/sec and ζ = 0.3. Since 
ζ ≤ 0.7071, the corresponding magnitude (dB) curve attains a maximum peak, which 
occurs at the resonant frequency 

 
ω ω ζ

ω ζ
r n

n

= − ≅
= =

1 2 2

1.5 0.3
1.3583 rad/sec

,  

The corresponding peak value is calculated as 

 
G j( )

max
ω

ζ ζ
ζ

=
−

= ⇒
=

1

2 1 2
0.3

Logarithmic magnitude

1.7471          1.7471)   dB20 4 8466log( .=
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FIGURE 8.26
Bode plot (Example 8.14).
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However, since the magnitude curve has been lowered by 1.0231 dB, the maximum 
peak for the case at hand is adjusted to 4.8466 1.0231 3.8235 dB− = ; See Figure 8.26.

Bode Plot of Higher-Order Systems

Bode plot of systems of any order can be constructed using the detailed procedure out-
lined in Section 10.6. In this section, however, we consider only a specific class of systems 
whose transfer functions are expressible as 

 G s KG s G s G sn( ) ( ) ( ) ( )= 1 2  ...  

where:
each G si( ) is either a standard, first-order form or a standard, second-order form
K  is a constant

Let the logarithmic magnitude of each G si( ) be 20 log ( )G ji ω  and its phase φi. Then, the 
logarithmic magnitude of G s( ) is 

 20 20 20 201log ( ) log log ( ) log ( )G j K G j G jnω ω ω= + + + ...  

and since K has a phase of 0, the phase of G s( ) is 

 φ φ φ= + +1  ... n 

Therefore, the magnitude (dB) plot for G s( ) is simply obtained by adding the individual 
magnitude plots of Gi’s and raising (or lowering) the result by 20log K . The phase plot of 
G s( ) is obtained by adding the individual phase plots of Gi’s.

Example 8.15: Bode Plot of a Higher-Order System 

Draw the Bode plot for 

 
G s

s s s
( )

( )( )
=

+ + +
5

3 2 2 2 1.8 2.25  

Solution

Rewrite G s( ) as 

 

G s
s s s s

( )
( )( )

=
+ + +

= ⋅
+

5
3 2 2

5
9

1
12 3

21.8 2.25
Constant Standard 1st-oorder Standard 2nd-order

2.25
0.9 2.25

⋅
+ +s s2

 

The first-order transfer function is the one involved in Example 8.13, and the second-
order in Example 8.14. The constant gain 5

9  contributes 20 5
9log = −5.1055 dB and 0 phase. 

Figure 8.27 shows the Bode plots for the three individual terms, as well as their sum 
which represents the Bode plot for the overall transfer function G s( ). The following 
script confirms Figure 8.27.
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>> sys1 = tf(5/9,1); % Constant gain
>> sys2 = tf(1,[3/2 1]); % Standard, first-order
>> sys3 = tf(2.25,[1 0.9 2.25]); % Standard, second-order
>> sys = tf(5,conv([3 2],[2 1.8 4.5])); % Original transfer function
>> bode(sys1)
>> hold on
>> bode(sys2)
>> bode(sys3)
>> bode(sys) %Figure 8.27

PROBLEM SET 8.3

In Problems 1 through 6, find the frequency response of the given system.

 1. 1
3 2 2x x t+ = 2.6sin

 2. y y t+ =5 1
214.5sin( )

 3. 4 12 13 40 1
3

 x x x t+ + = sin( )
 4. 2 5 8 25 3 x x x t+ + = sin
 5. 4 2 10 2 x x x t+ + = 28.8sin( )
 6. 10 20 35 x x x t+ + =0.8 sin
 7. Consider the mechanical system in Figure 8.28. Assuming m = 12 kg, 

b = 20 N-sec/m, k = 200 N/m, F0 47=  N, and ω = 5 rad/sec, find the system’s fre-
quency response.

 8. Find the frequency response of the undamped mechanical system in Figure 8.29, 
assuming m = 10 kg, k = 150 N/m, F0 115=  N, and ω = 4 rad/sec.
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Composition of Bode plots (Example 8.15).
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 9. Show that the frequency response of an RLC circuit driven by a sinusoidal applied 
voltage v t V t( ) sin= 0 ω  is described by

 i t
CV

LC RC
t

RC
LC

ss( )
( )

cos tan=
−( ) +

−
−









−ω

ω ω
ω

ω
ω

0

2 2 2

1
2

1 1

  In Problems 10 through 12, draw the Bode plot and identify the corner fre-
quency, as well as the asymptotic approximations of magnitude for low-frequency 
and high-frequency ranges.

 10. G s
s

( ) =
+

2
5

2 5

 11. G s
s

( ) =
+
4

3 2
3

 12. G s
s

( ) =
+

2.5
5 3

4

 13. The Bode plot of a first-order system indicates that the corner frequency is 
2.25 rad/sec and the approximate low-frequency logarithmic magnitude is 
−23.10 dB. 

 a. Find the transfer function.
 b. Using the results of (a), find the approximate value of the logarithmic gain at 

ω = 100 rad/sec.

m

b k

x

k

f (t) = F0 sin ωt

FIGURE 8.28
Problem 7.

m

k

x

f (t) = F0 sin ωt

FIGURE 8.29
Problem 8.
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 14. Repeat Problem 13 when the corner frequency is 0.45 rad/sec and the approximate 
low-frequency logarithmic magnitude is 56.25 dB.

 15. The Bode plot of a first-order system indicates that the approximate low-frequency 
and high-frequency (at ω = 100 rad/sec) logarithmic magnitudes are 8.34 dB and 
−48.53 dB, respectively. Find the system’s transfer function.

 16. Show that the magnitude G j
n n

( )
( / ) ( / )

ω
ω ω ζω ω

=
−



 +

1

1 22 2 2
 attains a maximum when

 

ω
ω

ζ
n

= −1 2 2

  In Problems 17 through 19, draw the Bode plot, identify the resonant fre-
quency and the peak magnitude (dB), if applicable, and find the approximate low-
frequency logarithmic magnitude.

 17. G s
s s

( ) =
+ +

5
2 92

 18. G s
s s

( )
.

=
+ +

48
2.62 6 76

 19. G s
s s

( )
. .

=
+ +

3
2 8 64 11 522

 20. Show that in the Bode plot of the standard, second-order transfer function, the 
asymptotic approximation of the logarithmic magnitude for the high-frequency 
range is given by

 
−40log

ω
ωn

 which represents a straight line with a slope of −40 dB/decade.

8.5 Analytical Solution of the State Equation

In Section 4.2, we learned that using the state variables, the mathematical model of a linear 
dynamic system can be expressed in the form of the state equation 

 x Ax Bu x x= + =,    ( )0 0 (8.36)

where:
x( )t  is the state vector
A is the state matrix
B is the input matrix
u( )t  is the vector of the inputs
x0 is the initial state vector

In this section, we will learn how to solve the state equation to derive the state vector in 
closed form.
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8.5.1 Formal Solution of the State Equation

The scalar counterpart of Equation 8.36 is the initial-value problem 

 x t ax t bu t x x( ) ( ) ( ) ( )= + =,   0 0 

whose formal solution is obtained as 

 
x t e x e bu dat a t

t

( ) ( )( )= + −∫0

0

τ τ τ 
 

Inspired by this, the formal solution of Equation 8.36 is expressed as 

 
x x BuA A( ) ( )( )t e e dt t

t

= + −∫0

0

τ τ τ 
 

(8.37)

The quantity e tA  is known as the matrix exponential of A. Note that technically eA is the 
matrix exponential, but e tA  is what is often involved in dynamic systems analysis.

8.5.1.1 Matrix Exponential

When a is scalar, eat is defined as 

 
e

k
at ta t aat k

k

= = + + + ⋅⋅⋅
=

∞

∑   
1

1
1
2

0

2 2

!
( )

!  

This idea can be extended to the case involving a square matrix An n× , as 

 
e

k
t t tt k

k

A A I A A= = + + + ⋅⋅⋅
=

∞

∑   
1 1

2
0

2 2

!
( )

!  
(8.38)

where:
t is a scalar

I  is the n n×  identity matrix and A AA Ak
k

=  ... 
 times��� ��

It is readily seen that the matrix exponential e tA  is n n× .

8.5.1.2 Properties of the Matrix Exponential

 1. Given An n×  and scalars t and τ,

 e e et tA A A( )+ =τ τ 
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which can be verified as follows.
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Here,
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m
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is the binomial series, and 
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is the binomial coefficient.
 2. Since the series in Equation 8.38 is absolutely convergent for finite values of t, 

term-by-term differentiation of the series yields

 
d
dt

e e et t tA A AA A= =
 

 3. If An n×  and Bn n×  are similar matrices such that S AS B− =1 , then A S B St t= −[ ] 1 and

 e et tA BS S= −1 

 4. If matrix D = [ ] =
dii i n1 2, ,...,

 is diagonal, then

 
e et d t

i n
iiD =   =1 2, ,...,  

Assuming matrix An n×  is not defective (that is, it does not have any generalized eigenvec-
tors; see Section 3.3), the matrix exponential e tA  can be systematically calculated as fol-
lows. Suppose An n×  has eigenvalues λ λ λ1 2, , ... ,  n and linearly independent eigenvectors 
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v v v1 2, , ... ,  n. Then, as shown in Section 3.3, the modal matrix V v v v= [ ]1 2    ...  n  diagonal-
izes A via 

 V AV D−
=

= = [ ]1
1 2

λi i n, ,...,  

Then, 

 A VDV A V D V= ⇒ =− −1 1        
Multiply by scalar t

t t[ ]  

Finally, by the above-mentioned property 3, we find 

 e et tA DV V= −1 (8.39)

Noting that the modal matrix V is available and e tD  is easy to calculate (property 4), e tA  will 
be readily available.

8.5.1.3  Formal Solution in MATLAB

The command expm calculates the matrix exponential.

expm Matrix exponential.
expm(X) is the matrix exponential of X. expm is computed using
a scaling and squaring algorithm with a Pade approximation.

Although it is not computed this way, if X has a full set
of eigenvectors V with corresponding eigenvalues D, then
[V,D] = EIG(X) and expm(X) = V*diag(exp(diag(D)))/V.

The integration portion of the formal solution, Equation 8.37, is handled by the int 
command.

Example 8.16: Formal Solution 

Find the formal solution of 

 
x x x=

− −








 +









 =









−1 0
1 2

1
3

1
00e t,    

 

Solution

The formal solution is described by 

 
x x BuA A( ) ( )( )t e e dt t

t

= + −∫0

0

τ τ τ 
 

>> A = [1 0;-1 -2]; B = [1;3]; x0 = [1;0];
>> syms t tau
>> x = simplify(expm(A*t)*x0+int(expm(A*(t-tau))*B*exp(-tau),tau,0,t))
x =
                (3*exp(t))/2 - exp(-t)/2
-(exp(-2*t)*(exp(3*t) - 7*exp(t) + 6))/2
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The simplify command is used to ensure that the simplified result is returned. The 
state vector is therefore found as

 
x( )

( )
( )

t
e e

e e e

t t

t t t=
−

− − +













−

−

1
2

1
2

2 3

3
7 6

8.5.2 Solution of the State Equation via Laplace Transformation

The state equation subjected to a specified initial state vector can also be solved using 
Laplace transformation. We first note that 

 x x X=
















⇒ = =
x

x
s

n

1

... { } ( )          
Laplace transform


 {{ }

...
{ }

x

xn

1


















 

Taking the Laplace transform of Equation 8.36, considering the initial state vector x0, yields 

 s s s s s s sX x AX BU I A X x BU( ) ( ) ( ) ( ) ( ) (− = + ⇒ − = +0 0          
Rearrange

)) 

Pre-multiply by ( )sI A− −1, known as the resolvent of matrix A, to obtain 

 X I A x I A BU( ) ( ) ( ) ( )s s s s= − + −− −1
0

1
 

so that 

 x I A x I A BU( ) ( ) ( ) ( )t s s s= −{ } + −{ }− − − − 1 1
0

1 1

 (8.40)

We will next show that this result exactly agrees with the formal solution, Equation 8.37. 
The two terms in Equation 8.40 are manipulated as follows. First, recall that for a scalar m, 

 1
1

2 31− = + + + +m m m m  (converges for m < 1)

Inspired by this, assuming the series converges, we have 

 ( )I M I M M− = + + +−1 2  ... 

Then, 

 
( )s

s s s s s s s
I A I A I A A I A− = −






 = + + + ⋅⋅⋅





= +−
−

1
1

2
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1 1 1 1 1 1 1
 ++ + ⋅⋅⋅1
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Consequently, 

 
 − − −−{ } = + + + ⋅⋅⋅








= + + +1 1 1
2 3

2 2 21 1 1 1
2

( )
!

s
s s s

t tI A I A A I A A   ⋅⋅ ⋅ ⋅ =
By Equation 8.38

e tA

 

This implies the first term in Equation 8.40 is simply e tA x0. The second term may be worked 
out using the convolution integral (Section 2.3) as 
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 − − −−{ } = ∫1 1

0

( ) ( ) ( )( )s s e dt

t

I A BU BuA τ τ τ 
 

Combining the two terms yields 

 
x x BuA A( ) ( )( )t e e dt t

t

= + −∫0

0

τ τ τ 
 

which exactly agrees with the formal solution derived earlier.

Example 8.17: Laplace-Transform Approach 

Solve the state equation in Example 8.16 by using the Laplace-transform approach.

Solution

The following script will use Equation 8.40 to find the state vector:

>> A = [1 0;-1 -2]; B = [1;3]; x0 = [1;0];
>> syms s t
>> U = laplace(exp(-t));
>> x = simplify(ilaplace(inv(s*eye(2)-A))*x0 + 
ilaplace(inv(s*eye(2)-A)*B*U))
x =
                  (3*exp(t))/2 - exp(-t)/2
-(exp(-2*t)*(exp(3*t) - 7*exp(t) + 6))/2

As anticipated, this result matches that in Example 8.16.

8.5.3 Solution of the State Equation via State-Transition Matrix

The solution of the homogeneous state equation 

 x Ax x x= =,    ( )0 0 

can be expressed as 

 x x( ) ( )t t= Φ 0 (8.41)

so that x( )t  is obtained by a transformation of the initial state vector x0. For this reason, Φ( )t  
is known as the state-transition matrix. We next prove that Φ( )t  is the unique solution of 

 Φ Φ Φ= =A I,    ( )0  

First, using Equation 8.41, we have 

 x x I( ) ( ) ( )0 0 00= ⇒ =Φ Φ           

Next, differentiation of Equation 8.41 with respect to t, and further manipulation, yields 

 





x x A x Ax
A x x

( ) ( ) ( )
( )

t t t
t

= = =
= =

Φ Φ
Φ Φ Φ

0 0

0
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which completes the proof. Comparing Equation 8.41 with the homogeneous portions of 
Equations 8.40 and 8.37 reveals that 

 Φ( ) ( )t s e t= −{ } =− − 1 1I A A
 

Based on this, the solution of the nonhomogeneous state equation 

 x Ax Bu x x= + =,    ( )0 0 

is expressed as 

 x x Bu( ) ( ) ( ) ( )t t t d
t

= + −∫Φ Φ0

0

τ τ τ  (8.42)

PROBLEM SET 8.4

 In Problems 1 through 3, find e tA , where t is scalar, using

 a. The expm command.
 b. The inverse Laplace-transform approach.

 1. A =










0 4
1 3

 2. A =
−









2 1
0 2

 3. A =
















1 1 0
1 1 0
0 0 1

 4.  Consider the state equation subjected to an initial state vector described by

 
x x x=

−
−









 +









 =

−








3 1
4 3

0
1

0
0

1
2

u,   ( )

where:

 
u

t
= =

< <



unit-pulse
   if  

     otherwise 

1
2 0 2

0

Find the state vector x by using the formal-solution approach.

 In Problems 5 through 8, find the state vector via the formal-solution approach.

 5. x x x=
−

−








 +









 = =

−



1 1
4 1

1
0

1
01

2

u u,   unit-step,   ( ) 


 6. x x x=
−









 +

−








 = =









5 1
4 1

1
1

0
0
1

u u t,   ,   sin ( )
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 7. x x x=
−
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 = =









0 1
0

0
1

0
1
13

2

u u,   unit-ramp,   ( )

 8. x x=
− − −

















+
















= −

1 0 0
0 1 0
1 2 3

0
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 In Problems 9 and 10, the state-space form of a system model is specified. Using 
the formal-solution approach, find the output y t( ).

 9. 
x Ax B
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A B
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=
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 10. 
x Ax Bu
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8.6 Response of Nonlinear Systems 

So far in this chapter, we have mainly focused on the response of linear systems. In 
Section 4.6, we saw that the linearized model of a nonlinear system is reasonably accurate 
only in a small neighborhood of an operating (equilibrium) point. In order to avoid the 
obvious limitations that come with this approach, we tackle the nonlinear model directly, 
either numerically or via the simulation of the Simulink model of the system.

8.6.1 Numerical Solution of the State-Variable Equations

Mathematical models of dynamic systems of any order can be expressed in terms of state-
variable equations, which may generally be nonlinear (see Section 4.2). If a system model 
has n state variables x x xn1 2, , , ...  and m inputs u u um1 2, , , ... , the state-variable equations 
take the general form 

 





x f x x u u t
x f x x u

n m

n

1 1 1 1

2 2 1 1

=
=

( , , ; , , ; )
( , , ; ,

 ...  ... 
 ...  .... 

 ...  ... 

, ; )
...

( , , ; , , ; )

u t

x f x x u u t

m

n n n m =









 1 1  

where f f fn1 2, , , ...  are algebraic functions of the state variables and inputs. These equations 
may be conveniently expressed in vector form, as 

 x f x u= ( , , )t  (8.43)
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where: 

 

x u=





















=





















× ×
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If the system is linear, then Equation 8.43 reduces to the familiar state equation x Ax Bu= + .

8.6.1.1 Fourth-Order Runge-Kutta Method

Among several methods designed for the numerical solution of Equation 8.43, the most 
commonly used is the very efficient and robust fourth-order Runge-Kutta (RK4) method. 
To introduce this method, we re-formulate the problem as 

 x f x x x= = ≤ ≤( , ) ( )t a a t b,   ,   0  (8.44)

with all variables as defined previously. Divide the interval [ , ]a b  into N evenly-spaced 
subintervals so that the mesh points are a t t t t bN= =0 1 2, , , ,   ...  . Let h b a N= −( )/  denote 
the step size. Knowing the initial state vector x0, the solution vector xi at each of the subse-
quent mesh points ti is obtained via 

 x x k k k ki i h i N+ = + + + +( ) = −1 1 2 3 4
1
6

2 2 0 1 2 1, , , , ,    ...  (8.45)

where: 
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k f x k        

The following user-defined function numerically solves a system of state-variable equa-
tions subjected to a prescribed initial state over a specified time interval. Note that the 
function is also capable of handling a scalar initial-value problem.

function x = RK4System(f,t,x0)
%
% RK4System uses RK4 method to solve a system of first-order
% initial-value problems in the form xdot = f(t,x), x(t0) = x0.
%
%    x = RK4System(f,t,x0), where
%
%        f is an anonymous m-dim. vector function representing f(t,x),
%        t is an (n+1)-dim. vector representing the mesh points,
%        x0 is an m-dim. vector representing the initial state vector, 
%
%        x is an m-by-(n+1) matrix, each column the vector of solution
%        estimates at a mesh point.
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%
x(:,1) = x0; % The first column is set to be the initial vector u0
h = t(2)-t(1); n = length(t);
for i = 1:n-1,
    k1 = f(t(i),x(:,i));
    k2 = f(t(i)+h/2,x(:,i)+h*k1/2);
    k3 = f(t(i)+h/2,x(:,i)+h*k2/2);
    k4 = f(t(i)+h,x(:,i)+h*k3);
   x(:,i+1) = x(:,i)+h*(k1+2*k2+2*k3+k4)/6;
end

Example 8.18: Nonlinear System Response via Fourth-Order Runge-Kutta Method

The nonlinear spring in the mechanical system shown in Figure 8.30 is identified by the 
spring force f xspr = 3 . The system is subjected to a unit-step externally applied force u t( ), 
and initial conditions x( )0 0= , x( )0 2

3= .
 a. Find and express the state-variable equations in vector form.
 b.  Using RK4, plot the displacement x t( ) versus 0 10≤ ≤  t  sec.
 c.  Derive the linearized model analytically about the operating point 

(Section 4.6), plot the response x t( ), and compare with the result of (b).

Solution

 a. The system’s equation of motion is

   x x x u t x x+ + = = =3 2
30 0 0( ) ( ) ( ),   ,   

 With state variables x x1 =  and x x2 = , the nonlinear state-variable equations are 
obtained as

 





x x
x x x u t

x
x

1 2

2 2 1
3

1 0 0=
= − − +





=                    
,    

( )
( )

22
2
30( ) =  

 In vector form,

 
x f x x f x= =









=
− − +









=




( , )t
x
x

x
x x

,  ,  ,  
1

2

2

2 1
3 0 2

31
0




≤ ≤,  0 10t
 

x

m = 1 kgc = 1 Ns/m

f (t) = u(t)

fspr = x3

FIGURE 8.30
Nonlinear mechanical system in Example 8.18.
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 b. 

>> t = linspace(0,10); x0 = [0;2/3];
>> f = @(t,x)([x(2);-x(2)-x(1)^3+1]);
>> x = RK4System(f, t, x0);
>> x1 = x(1,:); % Extract x1 from the state vector
>> plot(t,x1) % Initiate Figure 8.31
>> hold on % Response in (c) to be added

 c. 
 Consider the equation of motion and the initial conditions cited in (a). 

Following the linearization procedure outlined in Section 4.6, the operating 
point is obtained as x = 1. Linearizing the nonlinear element x3 about the oper-
ating point yields x x3 1 3≅ + ∆ , where ∆x x x x= − = − 1. The ensuing linearized 
model is then formulated as

 ∆ ∆ ∆ ∆ ∆  x x x x x+ + = = − =3 0 0 1 0 2
3,  , ( ) ( )  (8.46)

The corresponding state-variable equations are

 
∆ ∆ ∆

∆ ∆
∆ ∆

∆
∆ ∆





x f x x f= =
=
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− −






( , )t

x x
x x

x
x x

,  ,  
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2

2

2 13 
=

−







≤ ≤,  ,  ∆x0 2
3

1
0 10t

 

 Noting that x x= +∆ 1, the plot of ∆x1  must be raised by 1 unit to obtain a vari-
able compatible with x.

>> t = linspace(0,10); x0 = [-1;2/3];
>> f = @(t,x)([x(2);-x(2)-3*x(1)]);
>> x = RK4System(f, t, x0);
>> x1L = x(1,:); % Extract linearized x1L from the state vector
>> plot(t,x1L+1) % Raise by 1 unit and complete Figure 8.31

 It is immediately observed that the nonlinear and linear response curves tend 
to agree only in a small neighborhood of the operating point x = 1.
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Nonlinear
Operating

point

FIGURE 8.31
Responses of nonlinear and linearized models in Example 8.18.
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8.6.2 Response Using Simulink Models

In Section 4.5, we learned how to build a Simulink model based on the block diagram 
representation of the mathematical model of a dynamic system. Running the simulation 
of this model will generate the system response to a specified forcing function, as well as 
a set of prescribed initial conditions. This approach can be easily applied to nonlinear sys-
tem models. The nonlinear elements are generally handled by the Fcn block in the User-
Defined Functions library. In Section 4.6, we learned how to linearize a nonlinear 
system about an (steady-state) operating point in Simulink by using Linear Analysis 
Points. Simulation yields the response of the linearized model. These are addressed in 
Example 8.19 that follows.

Example 8.19: Nonlinear and Linear System Responses in Simulink 

Consider the nonlinear system in Example 8.18.
 a. Plot the response x by simulating the Simulink model of the nonlinear system.
 b. Linearize in Simulink and plot the response of the linearized model. Plot the 

nonlinear and linear response curves in a single figure and compare.

Solution

 a. The Simulink model shown in Figure 8.32 is built based on the state-variable 
equations derived in Example 8.18. Running the simulation and double- 
clicking on the Scope block reveals the response curve. As always, for direct 
access to the returned data, simply type

>> plot(tout,yout) % Initiate Figure 8.34

 b. We will linearize the model in Figure 8.32 by using Linear Analysis 
Points. The linearization input point is placed to the left of the first integra-
tor, the linearization output point at the output signal x1; Figure 8.33.

 The linear model is extracted from the nonlinear system as follows. Note that 
the model, ‘Example819b’, must be open before we can proceed.

>> sys='Example819b';
>> load_system(sys);
>> opspec = operspec(sys);

% Specify the properties of the first state variable
>> opspec.States(1).SteadyState = 1;
>> opspec.States(1).x = 0; % Initial value
>> opspec.States(1).Min = 0; % Minimum value

IC: x1(0) = 0IC: x2(0) = 2/3

1
Out1 = x1

Step +−−

Scope

1
s

1
s

Integrator 1 Integrator 2

u^3

Nonlinear spring force

x2 x1

FIGURE 8.32
Simulink model in Example 8.19(a).
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% Specify the properties of the second state variable
>> opspec.States(2).SteadyState = 1;
>> opspec.States(2).x = 2/3; % Initial value
>> opspec.States(2).Min = 0; % Minimum value

% Find the operating point based on the above specifications
>> [op,opreport] = findop(sys,opspec);

Operating Point Search Report:
---------------------------------

 Operating Report for the Model Example819b.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:
----------
(1.) Example819b/Integrator 1
      x:           0        dx:       -2.36e-09 (0)
(2.) Example819b/Integrator 2
      x:           1        dx:               0 (0)

Inputs: None
----------

Outputs:
----------
(1.) Example819b/Out1 = x1
      y:           1            [-Inf Inf]

% Get the linearization annotations
>> IO = getlinio(sys);

% Extract the linear state-space model
>> LIN = linearize('Example819b',op,IO)

LIN =

a =
                    Integrator 1 Integrator 2
   Integrator 1               -1           -3
   Integrator 2                1            0

IC: x1(0) = 0IC: x2(0) = 2/3

1
Out1 = x1

Step

Scope

1
s

Integrator 2

1
s

Integrator 1

u^3

Nonlinear spring force

x2 x1

+

Linearization
input point Linearization

output point
+−−

FIGURE 8.33
Linearized Simulink model in Example 8.19(b).
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b =
   Integrator 1  1
   Integrator 2  0

c = 
    Integrator 1  Integrator 2
   x1          0             1

d =
   x1  0

 
Continuous-time state-space model.

 The state-space matrices thus obtained are of course the controller canonical 
form (Section 4.4) associated with the linear model, Equation 8.46, obtained 
in Example 8.18(c). The response of this model can be generated using the 
 initial command. Note that the initial state vector is adjusted to agree with 
the order of the state variables demanded by the controller canonical form. 
Also note that the response needs to be raised by one unit to make it compat-
ible with response x of the nonlinear system.

>> A = [-1 -3;1 0]; C = [0 1];
>> sys = ss(A,[],C,[]);
>> x0 = [2/3;-1];
>> [init_resp,t] = initial(sys,x0);
% Raise by 1 unit for compatibility with x and complete Figure 8.34

>> plot(t,init_resp+1) 

 As expected, Figure 8.34 agrees exactly with Figure 8.31.
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FIGURE 8.34
Linear and nonlinear responses in Example 8.19 by using Simulink.
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PROBLEM SET 8.5

 In Problems 1 through 6, plot the specified output by using the RK4 method.

 1. 3 0 0 0 0 203 4
3

1
3

   x x x x x t x+ + = = = ≤ ≤, ( ) ( ) , :  ,    ,  output
 2. 2 9 10 3 0 0 0 0 02 2 5 1

4
    x x x x e x x xt+ + + = = = − =− / , ( ) , ( ) , ( )      ,, :  ,  output0 15≤ ≤t x

 3.    x x x x t x x t x+ + = + = = ≤ ≤2 1 0 1 0 0 0 10sin , ( ) , ( ) , :       ,  output
 4. 4 3 2 0 1 0 1 0 151

2
  x x x x t x x t+ + = + = = − ≤ ≤sin , ( ) , ( ) ,      ,  output :: x

 5. 
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   ,  outtput : x1

 6. 


x x x e t
x x

t
1 1 2

3

2 1

2
4

= − − +
= +







− cos
,

                     
     

  
   ,  outputs

x
x

t x x
1

2
2
3

1 2
0 0
0

0 5
( )
( )

, : ,
=
=

≤ ≤

 7.  A nonlinear dynamic system is described by

 





x x x x
x x x

x
x

1 2 1 1

2 1 2

1

2

1
1

0 0
0

= − − −
= − −







=
= −       

,    
  ( )

( ) 11
3

0 10,   ≤ ≤t

 a. Use the Simulink model to plot x t2( ).
 b. Derive the linearized model analytically, build its Simulink model where the 

linear model is represented by the State-Space block, and use it to plot the 
time variations of the variable that is compatible with x t2( ). Compare the plots 
generated in (a) and (b) and comment.

 8.  Repeat Problem 7 when x1 is the output.

 9.  A nonlinear dynamic system is governed by
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 a. Use the Simulink model to plot x t2( ).
 b. Derive the linearized model analytically, and use the initial command to 

plot the time variations of the variable that is compatible with x t2( ). Compare 
the plots generated in (a) and (b) and comment. Note that the initial com-
mand will automatically determine the most suitable time duration for the 
response curve.

 10.  The mathematical model of a nonlinear system is given in the following, where 
u t( ) is the unit-step input.
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 a. Plot x t2( ) by simulating the Simulink model.
 b. Derive the linearized model analytically, and use the initial command to 

plot the time variations of the variable that is compatible with x t2( ). Compare 
the plots generated in (a) and (b) and comment.
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 c. Find the linear model by using the linearization procedure in Simulink. Plot 
the response x t2( ) to confirm the result of (b).

 11.  Consider the nonlinear model

 x ax x e t x tt+ = = ≤ ≤−2 3 0 0 15/ sin ( ),   0.3,   

 where a is a parameter. Use the RK4 method to plot the response x t( ) for 
a = 0.2  0.8  1.5, ,  versus t in the same graph.

 12.  The pendulum system in Figure 8.35 consists of a uniform thin rod of length 
l and a concentrated mass m at its tip. The friction at the pivot causes the system 
to be damped. When the angular displacement θ is not very small, the system is 
described by the nonlinear model

 ml mgl2 1
2 0 θ θ θ+ + =0.24 sin

 Assume, in consistent physical units, that ml g
l

2 6 8= =1.5  , . . Two sets of initial con-
ditions are to be considered: (1) θ( )0 10= °, θ( )0 0= , and (2) θ( )0 20= °, θ( )0 0= . Using 
the RK4 method plot the two angular displacements θ1 and θ2 corresponding to 
the two sets of initial conditions versus 0 10≤ ≤  t  in the same graph. Angle mea-
sures must be converted to radians.

 13.  A nonlinear dynamic system model is derived as

 x x u t x t+ = = ≤ ≤2 0 0 0 33 ( ) ( ),  ,  

 where u t( ) is the unit-step function. 
 a. Build the Simulink model and use it to plot the response x t( ).
 b. Derive the linearized model analytically. Build a Simulink model and use it to 

plot the time variations of the variable in the linear model that is compatible 
with x t( ). Compare the plots generated in (a) and (b) and comment.

 14. The nonlinear spring in the mechanical system shown in Figure 8.36 is identi-
fied by the spring force f x xspr = . The system is subjected to a unit-step externally 
applied force u t( ), and initial conditions x( )0 0= , x( )0 1= . 

 a. Derive the state-variable equations in vector form.
 b.  Using the RK4 method, plot the displacement x t( ) versus 0 10≤ ≤  t  sec.

l θ

m

Friction torque
at the pivot

FIGURE 8.35
Problem 12.
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8.7 Summary

The total response of a dynamic system consists of transient and steady-state responses. 
The transient response comprises those terms in the total response that decay to zero after 
a sufficiently long time. The portion of the total response that remains after the transient 
terms have vanished describes the steady-state response. Linear, first-order systems are 
modeled as 

 τ τx x f t x x+ = = > =( ) ( ),   time const ,   0 0 0 

where the time constant provides a measure of how quickly the response reaches a steady 
state. Linear, second-order systems are modeled as 

    x x x f t x x x xn n+ + = = =2 0 02
0 0ζω ω ( ) ( ) ( ),   ,    

where ζ and ωn are the damping ratio and (undamped) natural frequency, respectively.
The MATLAB function initial finds system response to initial conditions, while 

impulse and step built-in functions find the responses to impulse and step inputs, 
assuming zero initial conditions. For cases of general input and/or non-zero initial con-
ditions, the lsim command is used. Response analysis may also be performed through 
simulation of the Simulink model of the system at hand.

A system’s steady-state response to a sinusoidal input is called the frequency response. 
The frequency response of a system with transfer function G s( ) to input F t0 sinω  is 

 F G j t G j0 ( ) sin( ), ( )ω ω φ φ ω+ = ∠      

where G j( )ω  is the FRF.
A Bode plot consists of a pair of plots: 20log ( )G jω  with the unit of decibel (dB) versus 

frequency, and the phase φ in degrees versus frequency. The curves are plotted on semilog 
paper, using a linear scale for magnitude (in dB) and phase (in degrees) and a logarithmic 
scale for frequency (in rad/sec). The formal solution of the state equation 

 x Ax Bu x x= + =, ( )   0 0 

x

f (t) = u(t)

m = 1 kg

fspr = x

c = 1 Ns/m

x

FIGURE 8.36
Problem 14.
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is expressed as 

 
x x BuA A( ) ( )( )t e e dt t

t

= + −∫0

0

τ τ τ
 

where e tA  is the matrix exponential of A. The MATLAB built-in function expm handles the 
matrix exponential.

The RK4 method numerically solves a set of state-variable equations 

 x f x x x= = ≤ ≤( , ) ( )t a a t b,   ,   0  

where:
x0 is the initial state vector
[ , ]a b  is the interval in which the system is solved

For an integer N > 0 and step size h b a N= −( )/ , the mesh points t a ihi = + , i N= −0 1 2 1, , , , ... , 
partition [ , ]a b  into N subintervals. Starting with x0, the solution vector xi at each of the sub-
sequent mesh points ti is obtained via 

 
x x k k k ki i h i N+ = + + + +( ) = −1 1 2 3 4

1
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2 2 0 1 2 1, , , , ,    ... 
 

where: 
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Review Problems

 1. A linear system is modeled as

 
2
5

5
33 0 0x x u t u t xr+ = + =( ) ( ), ( )    

 where u t( ) and u tr( ) denote the unit-step and unit-ramp functions, respectively. 
 a. Express the response x t( ) in closed form.
 b.  Plot the response x t( ) by using the lsim command.
 2. The model of a second-order system is given as

 4 4 0 0 0 0 15
4

  x x x x x+ + = = = −,   .5,  ( ) ( )  
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 a. Identify the damping type and express the response x t( ) in closed form.
 b.  Plot the response x t( ) by using the initial command.
 3. A second-order dynamic system is modeled as

 9 6 14 0 0 010
9

1
4

  x x x t x x+ + = = = −δ( ) ( ) ( ),   ,   

 a. Find the response x t( ) in closed form.
 b.  Plot the response x t( ) by using the impulse and initial commands. 

Also, plot the impulse and initial responses in the same figure.
 4.  The mathematical model of a dynamic system is described by

 4 4 5 0 0 010
3

2
3

  x x x u t x xr+ + = = =( ) ( ) ( ),   ,   

where u tr( ) is the unit ramp. Plot the response x t( ) by 
 a. Using the lsim command over 0 5≤ ≤  t .
 b. Simulating the Simulink model of the system.
 5.  A dynamic system model is given as

 

2 1 1
1
3 2 1
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1
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2

1

 



x x x x u t
x x x x u t

x
+ − − =

+ + − =
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( ) ( )

(,  00 1 0 0 02 1
1
5) , ( ) , ( )= = =  x x
 

where u t( ) is the unit step. Plot x1 versus 0 15≤ ≤  t  by 
 a. Using the lsim command.
 b. Simulating the Simulink model of the system.
 6.  The governing equations for a system are derived as

 

3 3 2 10
3 3 0

1 1 1 2

2 1 2

 



x x x x t
x x x

+ + − =
− + =





δ( )
                 

,     x x x1 2 10 1 0 0 0 0( ) , ( ) , ( )= = =

 

 where δ( )t  is the unit impulse. Plot x1 by using the impulse and initial commands.
 7.  The mechanical system in Figure 8.37, where all parameter values are in consistent 

physical units, is subject to initial conditions x x x x1 2 1 20 1 0 1 0 1 0 1( ) , ( ) , ( ) , ( )= = = − =     . 
Plot the response x1 versus 0 25≤ ≤  t .

b = 0.6

k2 = 1

m1 = 0.8 m2 = 1.2

f = 15δ (t)

k1 = 3

x1 x2

FIGURE 8.37
Problem 7.
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 8. The Bode plot of a first-order system indicates that the corner frequency is 
0 35.  rad/sec and high-frequency (at ω = 100 rad/sec) logarithmic magnitude is 
−37.45 dB. 

 a. Find the system’s transfer function.
 b. Using the results of (a), find the approximate low-frequency logarithmic 

magnitude.
 9. Determine the damping ratio associated with a second-order system in the stan-

dard form of Equation 8.32 that corresponds to a maximum (peak) logarithmic 
magnitude of 15.22 dB.

 10. The Bode plot of a second-order system indicates that the approximate low- 
frequency magnitude is 2.28 dB, the approximate high-frequency (ω = 1000 r/s) 
magnitude is −106 dB, and the logarithmic gain attains a peak value of 4.98 dB. 
Find the system’s transfer function.

 11.  Consider
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 where a is a parameter. Using the RK4 method, plot x1 versus 0 10≤ ≤  t  for the two 
cases a = 1.25 and a = 2.5 in the same graph.

 12.  The nonlinear state-variable equations for a dynamic system are derived as
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 Plot x t1( ) versus 0 10≤ ≤  t  by 
 a. Using the RK4 method.
 b. Simulating the Simulink model of the system.
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9
Introduction to Vibrations

Vibration can be regarded as a subset of dynamics, in which a system subjected to restor-
ing forces oscillates about an equilibrium position. The restoring forces are due to elasticity 
or gravity. Two different types of excitations cause a system to vibrate: initial excitation 
and external excitation. The vibration of a system caused by non-zero initial excitations, 
including initial displacements or initial velocities (or both), is known as free vibration. 
The vibration of a system caused by externally applied forces is known as forced vibration.

In this chapter, we first extend the knowledge gathered in Chapters 5 and 8 to 
the   analysis of free vibration and forced vibration of single-degree-of-freedom or 
two-degree-of-freedom systems. Section 9.1 introduces the free vibration of Coulomb 
damped systems, in which energy is dissipated via dry friction. Section 9.2 considers the 
forced vibration of systems with rotating eccentric masses and systems with harmonically 
moving supports. Sections 9.1 and 9.2 also cover topics such as logarithmic decrement 
and bandwidth, both of which can be used to estimate the widely-used viscous damp-
ing model. To reduce the effects of undesired vibration, Section 9.3 discusses the design 
of vibration suppression systems, including vibration isolators and vibration absorbers. 
For multi-degree-of-freedom systems, it is convenient to use the matrix-based method to 
perform vibration analysis. In Section 9.4, the concepts of the eigenvalue problem, natural 
modes, and orthogonality of modes are presented by means of matrix algebra. The modal 
analysis method is developed and used to obtain the response to initial or harmonic 
excitations. The chapter concludes with coverage of vibration measurement technology. 
Section 9.5 introduces the hardware available for vibration testing and the methods used 
to identify system parameters, such as natural frequencies and damping ratios.

9.1 Free Vibration

The governing differential equation for a single-degree-of-freedom viscously damped sys-
tem subjected to non-zero initial excitations is

 mx t bx t kx t ( ) ( ) ( )+ + = 0 (9.1)

or 

  x t x t x t( ) ( ) ( )+ + =2 02ζω ωn n  (9.2)

with x(0) = x0 and x v( )0 0= . As indicated in Section 8.3, the nature of the system response to 
initial excitations depends on the value of the damping ratio ζ. For an overdamped system 
(ζ > 1), the response represents aperiodic decay, which is also true for a critically damped 
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system (ζ = 1). For an underdamped system (0 < ζ < 1), the response represents oscillatory 
decay. For an undamped system (ζ = 0), the response represents harmonic oscillation with 
natural frequency ωn.

Viscous damping is a widely used damping model, but not the only one. Damping is 
a very complex phenomenon and a wide range of damping models can be found in the 
literature. In this section, we first discuss the measurement of the viscous damping ratio 
ζ based on transient time response plots and then introduce another damping model, 
known as Coulomb damping.

9.1.1 Logarithmic Decrement

Unlike mass m and spring stiffness k, which could both be easily measured with static 
tests, the viscous damping coefficient b has to be measured with a dynamic test. A com-
mon way is to use the free response of the whole system to measure the damping ratio ζ 
and then determine the damping coefficient b by using b mk= 2ζ .

As discussed in Section 8.3, the free response of an underdamped single-degree-of-freedom 
system is 

 x t x t
x v

tt( ) cos sin= + +









−e n
d

n

d
d

ζω ω ζω
ω

ω0
0 0  (9.3)

where the damped natural frequency is ω ω ζd n= −1 2 . Equation 9.3 can also be written as 
(see Section 2.2) 

 x t A tt( ) cos( )= −−e n
d

ζω ω φ  (9.4)

where the amplitude A and the phase ϕ are given by 

 A x
x v= + +
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ζω
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 (9.5)

and 

 φ ζω
ω

=
+−tan 1 0 0

0

n

d

x v
x

 (9.6)

Figure 9.1 shows the system response to initial excitations, where T = 2π/ωd is the period 
of damped oscillation.

Note that the peak drops after one cycle of vibration, and the ratio between the first and 
the second peaks is 
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Because ωdT = 2π, we have 

 ζω ζω π
ω

πζ ζ ω φ ωn n
d

d d/ and cos cosT t T t= 







 = − + − = +( )2

2 1 22
1 1[ ] ( ππ φ ω φ− −) ( )= cos dt1  
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Thus, Equation 9.7 reduces to 

 
x
x

1

2

2 1 2
= −e /πζ ζ  (9.8)

Taking the natural logarithm of both sides of Equation 9.8 yields 

 δ πζ

ζ
= =

−
ln

x
x

1

2
2

2

1
 (9.9)

where δ is called the logarithmic decrement. It turns out that the ratio of any two consecu-
tive displacement peaks gives the same result as Equation 9.8, 

 x
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3 1

2 1 2
= = = =

+

−
 e πζ ζ/  (9.10)

Thus, the logarithmic decrement δ can be determined by measuring any two consecutive 
displacement peaks. The damping ratio ζ can be obtained from Equation 9.9, as 

 ζ δ

π δ
=

+( )2 2 2
 (9.11)

For a more accurate estimation, the damping ratio ζ can be determined by measuring 
the displacements of two peaks separated by a number of periods, as opposed to two 
consecutive peaks. If we denote the peak displacements at times t1 and tn+1 as x1 and xn+1, 
respectively, where tn+1 = t1 + nT, then the ratio between the two peak displacements can 
be written as 
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x
x
x
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x
xn

n
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1

1

2

2

3 1+ +
=   (9.12)

x(t)
T

x1

t1 t2

x2

t

FIGURE 9.1
Free response of an underdamped single-degree-of-freedom system to initial excitations.
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Taking the natural logarithm of both sides of Equation 9.12, we have 
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 = + + + =  nnδ (9.13)

which yields the logarithmic decrement as 

 δ =
+

1 1

1n
x

xn
ln  (9.14)

Substituting Equation 9.14 into Equation 9.11 gives the damping ratio. If the damping is 
very small, that is, ζ  1 and 1 12− ≈ζ , then Equation 9.9 gives 

 ζ δ
π

≈
2

 (9.15)

Example 9.1: Logarithmic Decrement

A vibrating system consisting of a mass of 5 kg and a spring of stiffness 5400 N/m is 
viscously damped. The ratio of any two consecutive amplitudes is 3

2 .

 a. Determine the logarithmic decrement δ.
 b. Determine the exact value of the damping ratio ζ.
 c. Determine the damping coefficient b.
 d. Assuming small damping, recalculate the damping ratio ζ and determine the 

percentage of error.

Solution

 a. The logarithmic decrement can be determined by measuring the displace-
ments of any two consecutive peaks, as

 
δ = = =

+
ln ln .

x
x

j

j 1

3
2

0 4055
 

 b. The exact value of the damping ratio is

 
ζ

δ

π δ π
=

+
=

+
=

( )

.

( ) ( . )
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2
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2 0 4055
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2 2 2 2
 

 c. The viscous damping coefficient is

 b mk= = = ⋅2 2 0 0644 5 5400 21 1640ζ ( . ) ( ) . /N s m 

 d. For small damping,

 
ζ

δ
π π

≈ = =
2

0 4055
2

0 0645
.

.
 

 and the percentage of error is 0.16%. Note that the error is close to zero, and 
thus, the assumption of small damping is valid.
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9.1.2 Coulomb Damping

The linear viscous damping model was adopted in the previous chapters. The viscous 
damping force is linearly dependent on velocity, simplifying the analysis. Although this is 
widely used in vibration, it is not the only damping model. Coulomb damping is another 
type of damping in which energy is dissipated via dry friction.

Figure 9.2 shows a mass–spring system subject to Coulomb damping, in which N is the 
normal force and Ff is the dry friction force. Let μk denote the kinetic friction coefficient. 
Note that the friction force remains constant in magnitude, which is μkmg, and the force is 
opposite in direction to the motion or the velocity x. Introducing the sign function sgn (·), 

 sgn( )
,
,







x
x
x

=
>

− <




1 0
1 0

 (9.16)

the friction force can be expressed as 

 Ff f
f

f
sgn= − ( ) =

− >
<





F x
F x

F x






,
,

0
0

 (9.17)

where Ff = μkmg. Equation 9.17 implies that the friction force points to the left if the mass 
moves to the right and points to the right if the mass moves to the left.

Using Equation 9.17, we can write the dynamics equation of motion as 

 mx F x kx + ( ) + =fsgn 0 (9.18)

which is a nonlinear equation that can be separated into two linear equations, 

 mx F kx x + + = >f 0 0,  (9.19)

 mx F kx x − + = <f 0 0,  (9.20)

Without loss of generality, let us assume the initial conditions to be x(0)  =  x0 > 0 and 
x v( )0 00= = . Due to the restoring spring force, the mass first moves from right to left, as 
shown in Figure 9.3a. The velocity is negative and the dynamics of the system is expressed 
by Equation 9.20, which can be rewritten as 

 mx k x+ − =( )∆ 0 (9.21)

k

N

Ff

mg

x

FIGURE 9.2
A mass–spring system subject to Coulomb damping.
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where Δ = Ff/k. For a given system, the mass m, spring stiffness k, and kinetic friction 
coefficient μk are all constants. Thus, Δ is a constant and ∆ = 0. Equation 9.21 can then be 
rewritten as 

 m x k x

−( ) + − =∆ ∆( ) 0 (9.22)

Note that Equation 9.22 has the same format as mx kx+ = 0 if x − Δ is replaced with x. 
Therefore, the free response of the system can be determined by using Equations 9.4 
through 9.6 and neglecting damping. If we let x′ = x − Δ, the initial conditions can be 
expressed as x′(0) = x(0) − Δ = x0 − Δ and  

′ = − =x x( ) ( )0 0 0∆ . Substituting the initial condi-
tions into Equations 9.4 through 9.6 yields 

 x t x t( ) ( )cos( )− = −∆ ∆0 ωn  (9.23)

or 

 x t x t( ) ( )cos( )= − +0 ∆ ∆ωn  (9.24)

When the spring reaches maximum compression, as shown in Figure 9.3b, the velocity of 
the mass reduces to zero, that is, x t x t( ) ( ) )sin(= − − =0 0∆ ω ωn n , which yields t = π/ωn = T/2. 
The corresponding displacement is −(x0 – 2Δ). The mass then starts to move from left to 
right and the velocity becomes positive. Thus, Equation 9.24 is only valid for 0 ≤ t < T/2.

For t ≥ T/2, the dynamics of the system is expressed by Equation 9.19, which can be 
rewritten as 

 mx k x+ + =( )∆ 0 (9.25)

or 

 m x k x

+( ) + + =∆ ∆( ) 0 (9.26)

The response of the system can also be determined by using Equations 9.4 through 9.6 and 
neglecting damping. Let x′ = x + Δ. Note that the initial values of x and x in Equation 9.26 are 
the displacement and the velocity at time T/2, respectively, that is, x(T/2) = −(x0 – 2Δ) and 
x T( / )2 0= . As a result, x′(0) = −(x0 – 3Δ) and x′( )0 0= . The solution of Equation 9.26 is 

 x t x t( ) ( )cos( )+ = −∆ ∆0 3 ωn  (9.27)

or 

 x t x t( ) ( )cos( )= − −0 3∆ ∆ωn  (9.28)

(a) (b)x0

x < 0 x > 0. .

FIGURE 9.3
Motion of the mass with (a) negative velocity and (b) positive velocity.
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When the spring reaches maximum elongation, the velocity of the mass reduces to zero 
once again. By differentiating Equation 9.28 and equating it to zero, we obtain the time cor-
responding to the maximum elongation, that is, T. The displacement at t = T is x0 – 4Δ. After 
this point, the motion reverses in direction and the mass moves from right to left. Thus, 
Equation 9.28 is only valid for T/2 ≤ t < T.

The previous discussion gives the displacement magnitudes at t = 0, T/2, and T, which are 
x0, x0 – 2Δ, and x0 – 4Δ, respectively. It can be concluded that the displacement magnitude is 
reduced by 2Δ after every half-cycle. This process is repeated as the mass oscillates back and 
forth about its equilibrium position. The motion stops when the displacement is not large 
enough for the restoring spring force to overcome the static friction force. The free response 
of the mass–spring system with Coulomb damping is shown in Figure 9.4. The envelope of 
the response for a vibrating system with Coulomb damping is a straight line instead of an 
exponential decay curve for viscously damped systems, as shown in Figure 9.1.

Example 9.2: Coulomb Damping

For a Coulomb damped system, it is observed that the first three consecutive maximum 
displacement amplitudes x0, x1, and x2 for a free vibration are 15, 12.55, and 10.10 cm, 
respectively. The time duration between any two of these amplitudes is 0.6 s.

 a. Determine the value of the kinetic friction coefficient μk.
 b. Determine the position when the oscillation stops.

Solution

 a. The decay per cycle is

 4 15 12 55 12 55 10 10 2 45∆ = − = − =. . . .  cm 

 which gives ∆ = × −6 125 10 3.  m. The time duration between any two of these 
amplitudes is 0.6 s. This implies the period of vibration is T = 0.6 s and

 
ω

π π
n  rad/s= = = =

k
m T

2 2
0 6

10 47
.

.
 

x(t)

t

4Δ

T = 2π/ωn

FIGURE 9.4
Free response of a mass–spring system subject to Coulomb damping.
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 Thus, the kinetic friction coefficient is

 µ
ω

k
f= = = =

×
=

−F
mg

k
mg

m
mg

n∆ ∆2 2 310 47 6 125 10
9 81

0 07
. ( . )

.
.  

 b. Note that the displacement magnitude is reduced by 2Δ after every half-cycle. 
The motion stops at the end of the half-cycle for which the displacement mag-
nitude is smaller than 2Δ. This can be expressed mathematically as

 x n0 2 2− <( )∆ ∆ 

 where n denotes the number of half-cycles before stopping. Solving for n and 
substituting the appropriate values, we find

 n
x

> − =
×

− =−
0

32
1

0 15
2 6 125 10

1 11 24
∆

.
( . )

.  

 The smallest integer satisfying the inequality is n = 12. Thus, the oscillation 
stops after 12 half-cycles, or 6 cycles, with

 x t T x=( ) = − = − × × = ×− −12 2 12 2 0 15 12 2 6 125 10 3 100
3 3( ) . ( . )∆ m 

PROBLEM SET 9.1

 1. A lightly damped single-degree-of-freedom system is subjected to free vibration. 
The response of the system is shown in Figure 9.5. Estimate the value of the vis-
cous damping ratio ζ.

 2. An underdamped single-degree-of-freedom vibrating system is viscously damped. 
It is observed that the maximum displacement amplitude during the third cycle is 
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FIGURE 9.5
Problem 1.
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60% of the first. Calculate the damping ratio ζ and determine the maximum dis-
placement amplitude during the fourth cycle as a fraction of the first.

 3. Figure 9.6 is the free response of a single-degree-of-freedom system subjected to 
Coulomb damping. The parameters of the system include the mass (m = 40 kg) 
and the spring stiffness (k = 2000 N/m). Estimate the value of the kinetic friction 
coefficient μk.

 4. A Coulomb damped vibrating system consists of a mass of 8 kg and a spring of 
stiffness 5000 N/m. The kinetic friction coefficient μk is 0.1. The initial conditions 
are x0 = 0.02 m and v0 = 0 m/s.

 a. Determine the decay per cycle.
 b. Determine the position when the oscillation stops.

9.2 Forced Vibration

The vibration of a system caused by externally applied forces is known as forced vibra-
tion. A very important class of external excitations involves harmonic forces. Consider a 
single-degree-of-freedom viscously damped system subjected to a harmonic excitation, 
f(t) = F0 sin(ωt). The governing differential equation is given by 

 mx t bx t kx t F t ( ) ( ) ( ) sin( )+ + = 0 ω  (9.29)

or 

  x t x t x t
F
k

t( ) ( ) ( ) sin( )+ + =2 2 2 0ζω ω ω ωn n n  (9.30)
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As discussed in Section 8.4, the steady-state response of a system subjected to a harmonic 
excitation f(t) may be obtained using the frequency response, which is a very important 
concept in vibration. The steady-state response of the system described by Equation 9.29 
or 9.30 is 

 x t X t( ) sin( )= +ω φ  (9.31)

where the amplitude and the phase angle are given by 

 X
F k=

−  + [ ]
0

2 2 21 2

/

/ /n n( ) ( )ω ω ζ ω ω
 (9.32)

and 

 φ ζ ω ω
ω ω

= −
−

−tan
( )
( )

1
2

2
1

/
/

n

n

 (9.33)

Note that the value of X depends on the driving frequency ω, and X is called the dynamic 
amplitude. The term F0/k in Equation 9.32 has units of displacement and is known as the 
static deflection. If we use xst to denote the static deflection, we can obtain the dimension-
less ratio 

 
X
xst

n n/ /
=

−  + [ ]
1

1 22 2 2( ) ( )ω ω ζ ω ω
 (9.34)

When compared with other excitations, more information on the steady-state response to 
harmonic excitations can be extracted using the frequency domain technique rather than 
the time domain technique. In this section, we first discuss how to measure the viscous 
damping coefficient ζ based on frequency response plots. Systems subjected to two types 
of harmonic excitations, including rotating unbalance and base excitation, are then intro-
duced and their responses are determined using the frequency response method.

9.2.1 Half-Power Bandwidth

Figure 9.7 shows the frequency response of the dimensionless ratio X/xst near the natural 
frequency for a viscously damped system. As proven in Section 8.4, the maximum peak 
occurs at ω ω ζ/ n = −1 2 2 . If the system is lightly damped, the peak occurs in the immedi-
ate neighborhood of ω/ωn = 1, as shown in Figure 9.7. From Equation 9.34, the correspond-
ing value of the peak amplitude can be approximated as 

 Q
X
x

= 







 ≈

st max

1
2ζ

 (9.35)

for small damping. The symbol Q introduced in Equation 9.35 is known as the quality factor 
or Q factor, which is usually used in electrical engineering applications and is related to the 
amplitude at resonance. Thus, the damping ratio ζ can be obtained from Equation 9.35, as 

 ζ ≈ 1
2Q

 (9.36)
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which can be used as a quick way of estimating the viscous damping ratio by measuring 
the peak amplitude Q.

For a more accurate estimation, the damping ratio ζ can be determined by measuring 
the frequencies at two half-power points instead of the peak amplitude. Note that for a 
viscously damped system subjected to a harmonic force, the velocity response is 

 x t X t( ) cos( )= +ω ω φ  (9.37)

which is obtained by taking the time derivative of Equation 9.31. The maximum kinetic 
energy is 

 T m X m x Qmax max= =1
2

1
2

2 2 2 2 2ω ω st  (9.38)

which is proportional to the square of Q. Half-power points occur at frequencies where the 
power drops to half of its maximum level. As shown in Figure 9.7, points 1 and 2, at which 
the amplitude falls to Q Q/ 2 0 707≈ .  , or drops by 3 dB down from the peak, are half-power 
points.

Let ν = ω/ωn. At the half-power points, combining Equations 9.34 and 9.35 yields 

 1

1 2

1
2

1
22 2 2( ) ( )− +

≈
ν ζν ζ

 (9.39)

or 

 ν ζ ν ζ4 2 2 22 1 2 1 8 0− − + − =( ) ( )  (9.40)

which has the solutions 

 ν ζ ζ ζ2 2 21 2 2 1= − ± +( )  (9.41)
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FIGURE 9.7
Magnitude of the frequency response for a viscously damped system.
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If system is lightly damped, ζ2 can be neglected and Equation 9.41 can be approximated as 

 ν ζ2 1 2= ±  (9.42)

or 

 
ω
ω

ζ1
2

1 2
n









 = −  (9.43)
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n









 = +  (9.44)

Subtracting Equation 9.43 from 9.44 gives 

 
ω ω

ω
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2
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2

2 4
−

=
n

 (9.45)

In general, the natural frequency ωn is between the half-power points and ω ω ωn ≈ +1
2 1 2( ) 

for light damping. Thus, we have 

 
ω ω

ω
ζ2 1 2

−
≈

n
 (9.46)

or 

 ζ ω
ω

≈
∆
2 n

 (9.47)

where Δω = ω2 – ω1 is referred to as the bandwidth of the system.

Example 9.3: Half-Power Bandwidth

A viscously damped system consisting of a mass of 5  kg and a spring of stiffness 
12,500 N/m is subjected to a harmonic force excitation. The frequency ratios ω1/ωn and 
ω2/ωn at half-power points are observed to be 0.9093 and 1.0713, respectively. Assume 
that the system is lightly damped.

 a. Determine the bandwidth of the system.
 b. Determine the damping ratio ζ.

Solution

 a. Note that the undamped natural frequency is ωn / rad/s.= = =k m/ ,12 500 5 50  
The bandwidth of the system is

 
∆ω ω ω ω

ω
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 b. For small damping, the damping ratio is
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9.2.2 Rotating Unbalance

Unbalance in rotating machines is a common source of harmonic excitation. The unbal-
ance is caused by the rotating part, for which the mass center does not coincide with the 
center of rotation. Figure 9.8 shows a system with an unbalanced mass m rotating at a 
constant angular velocity of ω. The distance between the unbalanced mass and the center 
of rotation is e, which represents the eccentricity. The mass of the entire system is M and its 
motion is assumed to be constrained along the vertical direction only. The entire system 
can therefore be considered as a single-degree-of-freedom system.

Choose the static equilibrium position of the entire system as the coordinate origin. 
Denote the mass of the nonrotating part as M – m and the corresponding vertical displace-
ment as the generalized coordinate x. Thus, the vertical displacement of the rotating unbal-
anced mass is x + e sin(ωt). The free-body diagrams of M – m and m are shown in Figure 9.9.

Applying Newton’s second law to M – m and m along the vertical direction yields 

 − − − = −F kx bx M m xV  ( )  (9.48)

 F m
t

x e tV
d
d

= +
2

2 [ sin( )]ω  (9.49)

where FV is the vertical component of the internal force between the rotating and the non-
rotating parts. Combining Equations 9.48 and 9.49, and eliminating FV, gives the differen-
tial equation of the system with rotating unbalance, as 

 ( ) [ sin( )]M m x m
t

x e t bx kx− + + + + = 

d
d

2

2 0ω  (9.50)
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FIGURE 9.8
A system with rotating unbalance.
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Free-body diagram of the system shown in Figure 9.8: (a) nonrotating part M – m and (b) rotating unbalance m.
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Differentiating x + esin(ωt) with respect to time twice yields 

 Mx bx kx me t + + = ω ω2 sin( ) (9.51)

which implies that the effect of a rotating unbalance mass is to exert a harmonic force 
meω2 sin(ωt) on the system.

Note that Equation 9.51 is similar to Equation 9.29, except that the magnitude of the har-
monic force is meω2 instead of F0. Thus, with this modification, we can obtain the steady-
state solution of the system by using Equations 9.31 through 9.33. The dynamic amplitude 
is given by 

 X
me k=

− ( )



 + ( ) 

ω

ω ω ζ ω ω

2

2 2 2
1 2

/

/ /n n

 (9.52)

where ωn /= k M . Replacing k in Equation 9.52 with Mωn
2 yields 

 X
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 (9.53)

For a system with rotating unbalance, the dimensionless ratio 

 MX
me

=
−  + [ ]

( )

( ) ( )

ω ω

ω ω ζ ω ω
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n

n n

2

2 2 21 2
 (9.54)

is usually plotted versus the dimensionless ratio ω/ωn, known as normalized frequency or 
frequency ratio. Figure 9.10 shows the magnitude of the frequency response for a system 
with rotating unbalance, where the vertical axis is MX/(me). For low-speed rotations, that 
is, ω ω/ n 1 , the magnitude of the response MX/(me) is very small, and thus the vibration 
amplitude X is close to zero. Resonance peaks occur in the neighborhood of ω/ωn = 1. For 
high-speed rotations, that is, ω ω/ n 1 , the magnitude of the response MX/(me) approaches 1. 
This implies that the dynamic amplitude X is me/M, which is constant regardless of the driv-
ing frequency and the amount of damping.

Example 9.4: Rotating Unbalance

An electric motor of mass M = 450 kg is mounted on a simply supported beam with 
negligible mass. Assume that the supporting beam is equivalent to a spring of stiffness 
k = 5000 kN/m and the damping ratio of the system is 0.1. The unbalance in the rotor of 
the motor is me = 0.5 kg·m. Determine the dynamic amplitude X of the motor when it 
runs at a speed of 1000 rpm.

Solution

The natural frequency of the system is 

 
ωn = =

×
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k
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When the motor runs at a speed of 1000 rpm, the frequency ratio is 
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which gives the dynamic amplitude as 
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9.2.3 Harmonic Base Excitation

Many applications in vibration involve systems with displacement as the input. Examples 
include a machine placed on a foundation undergoing vibration and a vehicle traveling 
on a wavy road. Assume that each system mentioned can be modeled as a single-degree-
of-freedom system, as shown in Figure 9.11, where x and z are the displacements of the mass 
and the base, respectively.

Applying Newton’s second law gives the differential equation of motion as 

 mx t bx t kx t bz t kz t  ( ) ( ) ( ) ( ) ( )+ + = +  (9.55)
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or 

   x t x t x t t tz z( ) ( ) ( ) ( ) ( )+ + = +2 22 2ζω ω ζω ωn n n n  (9.56)

As discussed in Section 8.4, the system’s frequency response function is 
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whose magnitude and phase are given by 

 G( )
( )

[ ( ) ] ( )
j

/

/ /
n

n n

ω
ζω ω

ω ω ζω ω
=

+

− +

1 2

1 2

2

2 2 2
 (9.58)

and 
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Assume that the motion of the base is harmonic; for example, z(t) = Z0sin(ωt). Then, the 
steady-state response of the system is also harmonic, x(t) = Xsin(ωt + ϕ), where the dynamic 
amplitude X is given by 

 X Z G Z= =
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− +
0 0

2

2 2 2

1 2

1 2
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 (9.60)

Thus, the dimensionless ratio of the dynamic amplitude X and the amplitude of the base 
displacement is 
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A single-degree-of-freedom system undergoing base excitation.
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which is known as the transmissibility. Figure 9.12 shows the magnitude of the frequency 
response for a system with harmonic excitation, where the vertical axis is X/Z0. Note 
that X/Z0  =  1 for all curves when the frequency ratio is ω ω/ n = 2 . This implies that 
the response has the same magnitude as the excitation. The response is amplified when 
ω ω/ n < 2  and is reduced when ω ω/ n > 2 .

Example 9.5: Harmonic Base Excitation

The mass–spring–damper system in Example 5.21 represents a vehicle traveling on a 
rough road. Assume that the surface of the road can be approximated as a sine wave 
z = Z0sin(ωt), where Z0 = 0.01 m and ω = 3.5 rad/s. The mathematical model of the system 
is given by an ordinary differential equation mx bx kx bz kz  + + = + , where m = 3000 kg, 
b = 2000 N·s/m, and k = 50 kN/m. Determine the dynamic amplitude of the vehicle.

Solution

The natural frequency and the damping ratio of the vehicle are 
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and the transmissibility can be calculated via Equation 9.61, as 
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Thus, the dynamic amplitude of the system is X = 3.43 × 10−2 m.

PROBLEM SET 9.2

 1. Figure 9.13 shows the experimental data for the frequency response of a single-
degree-of-freedom system. Use the half-power bandwidth method to estimate the 
damping ratio ζ of the system.

 2. A viscously damped single-degree-of-freedom system is subjected to a harmonic 
force excitation. It is observed that the amplitude of the frequency response X/xst 
reaches the maximum when the driving frequency is 150 rpm. The peak value is 
40. Assume the system to be lightly damped. 

 a. Determine the damping ratio ζ.
 b. Determine the bandwidth of the system.
 3. An industrial machine of mass M = 450 kg is supported by a spring with a static 

deflection xst = 0.5 cm. If the machine has a rotating unbalance me = 0.25 kg·m, 
determine the dynamic amplitude X at 500 rpm. Assume damping to be negligible.

 4. Tires must be balanced so that no periodic forces develop during operation. 
Figure 9.14 shows a tire with an eccentric mass because of uneven wear. The param-
eters are given as follows: the mass of the tire is M  =  11.75  kg, the unbalanced 
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mass is m = 0.1 kg, the radius of the tire is r = 22.5 cm, and the eccentric distance is 
e = 15 cm. Assume that the stiffness of the tire is 120 kN/m. Neglect the damping of 
the system. Determine the amplitude of the steady-state response of the tire caused 
by mass unbalance when the car moves at (a) 40 km/h and (b) 80 km/h.

 5. Reconsider Example 9.5, in which the mathematical model of a vehicle is given 
by an ordinary differential equation mx bx kx bz kz  + + = +  with m  =  3000  kg, 
b = 2000 N⋅s/m, and k = 50 kN/m. It is observed that the base excitation due to 
the roughness of the road surface is also related to the speed of the vehicle, that is, 
z = 0.01sin(0.2πvt). Determine the transmissibility and the dynamic amplitude X 
of the vehicle when it moves at a speed of (a) 25 km/h and (b) 105 km/h.

 6. Precision instruments must be placed on rubber mounts, which act as springs 
and dampers, to reduce the effects of base vibration. Consider a precision  instrument 
of mass 110  kg mounted on a rubber block. For the entire assembly, the spring 
stiffness is 250 kN/m and the damping ratio is 0.10. Assume that the base under-
goes vibration, and the displacement of the base is expressed as y(t) = Y0sin(ωt). 
Determine the dynamic amplitude of the system if the acceleration amplitude of 
the base excitation is 0.15 m/s2 and the excitation frequency is (a) 8 Hz and (b) 24 Hz.

9.3 Vibration Suppressions

Vibrations are undesirable in most cases, particularly in cars, machining tools, precision 
instruments, buildings in an active seismic zone, and so on. To protect these systems and 
enhance their life, it is necessary to reduce vibration. This can be achieved with vibration 
isolators or vibration absorbers.

9.3.1 Vibration Isolators

To isolate an object from the source of vibrations, two types of vibration isolation systems 
are used: passive and active. Passive vibration isolation systems consist of springs and 
dampers. Active vibration isolation systems contain (along with the springs) piezoelectric 
accelerometers, electromagnetic actuators, and control circuits. The topic of active vibra-
tion isolation is beyond the scope of this text, and therefore will not be discussed.

A vibration isolation system attempts either to protect delicate equipment from vibra-
tion transmitted to it from its support system or to prevent transmission of the vibratory 
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force generated by a machine to its surroundings. The essence of these two objectives is 
the same. The concept of transmissibility introduced in Section 9.2 can be used for either 
displacement isolation design or force isolation design.

As shown in Equation 9.61, for a system placed on a support undergoing harmonic 
vibration, the dynamic response depends on the natural frequency ωn and the damping 
ratio ζ. This fact is also shown in Figure 9.12. When the natural frequency ωn is much less 
than the excitation frequency ω, more specifically, ω ω/ n > 2 , the displacement transmis-
sibility X/Z0 is less than 1. This implies that the magnitude of the system response is 
reduced. Thus, it is desirable to design a vibration isolator such that the natural frequency 
of the entire assembly is within the region of ω ω/ n > 2 . This can be achieved by plac-
ing the   system on a spring-damper system. Note that the value of damping should not 
be too large because the displacement transmissibility increases when the damping ratio 
increases for ω ω/ n > 2 .

Example 9.6: Displacement Isolation

A machine of mass 50 kg is mounted on a rubber isolator to protect it from the ground’s 
vibration caused by the operation of other machines nearby. Assume that the ground 
vibrates at 10 Hz. Determine the stiffness of the rubber isolation spring if only 20% of 
the ground’s motion is transmitted to the machine.

 a. Neglect damping.
 b. Assume that the damping coefficient of the rubber isolator is 0.1.

Solution

 a. If only 20% of the ground’s motion is transmitted to the machine, then the 
transmissibility given by Equation 9.61 with damping neglected is
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 Thus, the stiffness of the rubber isolation spring is
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 b. If the damping coefficient of the rubber isolator is 0.1, then the transmissibility is
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 Solving for (ω/ωn)2 gives

 
ω ωn( ) =

2
6 60.  or ω ωn( ) = −

2
3 64.

The negative value is not valid. Thus, the frequency ratio ω/ωn is 6 60. . Repeating the 
 calculation in Part (a) gives k ≈ 29.92 kN/m.

For a machine placed on a rigid base, the machine itself is a vibration source. The 
vibratory force generated by the machine will be transmitted to the base and affect the 
surrounding equipment. To reduce the damaging effect of the vibratory machine on its 
surroundings, it is necessary to isolate it from the base.

Figure 9.15a shows a machine placed on a rigid foundation through a spring and damper 
system. The machine is subjected to a harmonic excitation force f(t). Recall that the dis-
placement response x(t) to harmonic excitation is given by Equations 9.31 through 9.33. 
Differentiating Equation 9.31 with respect to time yields the velocity response, as given 
in Equation 9.37, in which X is the amplitude of the displacement, and the amplitude of 
the velocity is ωX. Moreover, the velocity leads the displacement by the phase angle π/2, 
because cos(ωt + ϕ) in Equation 9.37 can be expressed as sin(ωt + ϕ + π/2).

From the free-body diagram in Figure 9.15b, it is clear that the force transmitted to the 
base includes two parts: the spring force kx and the damping force bx . The amplitudes of 
the spring force and the damping force are kX and bωX, respectively. The force vectors are 
shown in Figure 9.15c. The angle between the two force vectors is π/2. Thus, the amplitude 
of the force transmitted to the base is

 F kX b XT = +( ) ( )2 2ω  (9.62)

Note that b k b m m k/ ( / )( / ) / /= = =2 2n n nζω ω ζ ω2 . Then, Equation 9.62 can be rewritten as

 F kXT n/= +1 2 2( )ζω ω  (9.63)

Substituting Equation 9.32 into Equation 9.63 yields

 F FT
n

n n

/

/ /
=

+

− +
0

2

2 2 2

1 2

1 2

( )

[ ( ) ] [ ( )]

ζω ω

ω ω ζ ω ω
 (9.64)
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kx bx
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mω2X

FT

.

FIGURE 9.15
Force isolation: (a) physical system, (b) free-body diagram, and (c) force vector diagram.
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The dimensionless ratio FT/F0 is the transmissibility given by Equation 9.61, and is a mea-
sure of the force transmitted to the base. Thus, the plot of FT/F0 versus ω/ωn is the same 
as the plot of X/Z0 versus ω/ωn, as in Figure 9.12. When the frequency ratio is ω ω/ n = 2 , 
FT/F0 = 1 and the excitation force is fully transmitted to the base. For ω ω/ n > 2 , the force 
transmissibility FT/F0 is less than 1 and the force transmitted reduces with increasing exci-
tation frequency ω.

Example 9.7: Force Isolation

A rotating machine of mass 2000  kg is mounted on an isolator block of stiffness 
500 kN/m and damping ratio ζ = 0.1. The machine is subjected to a harmonic distur-
bance force, for which the frequency is the same as the rotational speed of the machine. 
Assuming that 10% of the disturbance force is transmitted to the base, determine the 
rotational speed of the machine.

Solution

From Equation 9.64, we have 

 

F
F

T n

n n

/

/ /0

2

2 2 2

1 2 0 1

1 2 0 1
0 1=

+

− +
=

[ ( . )( )]

[ ( ) ] [ ( . )( )]
.

ω ω

ω ω ω ω  

Solving for the frequency ratio yields ω/ωn = 3.40. The natural frequency of the system
is ωn / rad/s= =500 000 2000 15 81, . . Thus, the excitation frequency is 

 ω = =3 40 15 81 53 75. ( . ) . rad/s 

which is also the rotational speed of the machine.

9.3.2 Vibration Absorbers

As discussed in Section 8.4, for a single-degree-of-freedom system subjected to harmonic 
excitation, violent vibration is induced when the excitation frequency is close to the natu-
ral frequency of the system. To protect the system, we can change either the mass or the 
spring stiffness so that the natural frequency is not too close to the excitation frequency. 
However, this may not always be possible. To circumvent this issue, a vibration absorber 
consisting of a second mass and spring can be added to the system to protect the original 
single-degree-of-freedom system from harmonic excitation.

Consider the two-degree-of-freedom system shown in Figure 9.16, where m1 and k1 are 
the mass and the spring stiffness of the primary system, and m2 and k2 are the mass and 
the spring stiffness of the absorber. A harmonic force F1sin(ωt) is applied to the primary 
system, which would undergo violent vibrations if the absorber is not installed.

For the combined system, the equations of motion in matrix form are 
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11
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sin( )ωt  (9.65)

Because the system is undamped, the steady-state response to a sinusoidal input is still 
sinusoidal, which has the same frequency as the excitation frequency and a zero phase 
angle. We can express the steady-state response as 
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ω  (9.66)

Substituting Equation 9.66 into Equation 9.65 yields 
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 (9.67)

Solving for X1 and X2 gives 
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 (9.68)

where 

 ∆( ) ( )( )ω ω ω= − + − −k m k k m k2 2
2

1 2 1
2

2
2 (9.69)

Thus, the amplitudes are 
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 (9.70)

 X
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 (9.71)

Dividing the numerators and denominators in Equations 9.70 and 9.71 by k1k2, we obtain 

 X
m k F k
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1
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2 1 1 1
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 (9.72)

 X
F k

m k k k m k k k
2

1 1

2 2
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2 1 1 1
2

2 11 1
=
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/ / / /[ ( ) ][ ( ) ] ( )ω ω
 (9.73)
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F1sin(ωt)

FIGURE 9.16
A vibration absorber.
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From Equation 9.72, it is clear that the amplitude X1 of the primary system reduces to zero 
when the excitation frequency ω equals k m2 2/ . Correspondingly, the amplitude X2 of the 
absorber becomes 

 X
F
k

2
1

2
= −  (9.74)

where the negative sign indicates that the absorber moves in the opposite direction of the 
force F1. Thus, the force exerted on the primary mass m1 by the spring of the absorber is 

 k x k X t F t2 2 2 2 1= = −sin sinω ω  (9.75)

which exactly balances the externally applied force F1sin(ωt).
Let us denote the natural frequency of the original single-degree-of-freedom system 

alone as ω1 1 1= k m/  and the natural frequency of the absorber alone as ω2 2 2= k m/ . To 
determine the parameters of the absorber, we introduce the following notations: xst = F1/k1, 
μ  =  m2/m1, and ν  =  ω2/ω1, where xst is the static deflection of the original system, μ is 
the mass ratio, and ν is the natural frequency ratio. Then, Equations 9.72 and 9.73 can be 
rewritten as 

 X
x

k k k k
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2
2

2
2

2 1 1
2

2 1

1
1 1
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−
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st  (9.76)
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/ / / /[ ( ) ][ ( ) ] ( )ω ω ω ω
 (9.77)

Note that ω/ω2 = (ω/ω1)(1/ν) and k2/k1 = (m2/m1)(k2/m2)(m1/k1) = μν2. Thus, 
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ν

ν ω ω µν ω ω µν
st

/ /[ ( ) ][ ( ) ]
 (9.79)

From Equations 9.78 and 9.79, it is clear that the values of X1 and X2 depend on the mass 
ratio μ and the natural frequency ratio ν. Note that the natural frequency ratio ν must 
be very close to 1. Adding the absorber aims to alleviate the vibration of the original 
system at resonance, that is, ω = ω1, and the absorber can only be effective when its own 
natural frequency is the same as the excitation frequency, that is, ω2 = ω. Thus, we have 
ω2 = ω1 or ν = 1. If ν is very close to 1, the motion of m1 is not zero, but its amplitude is 
still very small.

Figures 9.17 shows two curves, X1/xst versus ω/ω1 (Figure 9.17a) and X2/xst versus ω/ω1 
(Figure 9.17b) for μ = 0.2 and ν = 1. Note that the horizontal axis can be replaced by ω/ω2 
because ν = 1, that is, ω2 = ω1. As observed from Figure 9.17a, when the excitation frequency 
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ω is in the immediate neighborhood of ω2, the amplitude X1 is very small. However, when 
the excitation frequency ω shifts slightly away from ω2, the amplitude X1 increases signifi-
cantly. This shows that the absorber is only effective when the excitation frequency ω is 
close to ω2.

To design a vibration absorber, we first need to select the operation frequency ω, at which 
the displacement amplitude of the primary mass will be tuned to zero. Then the relation 
between the mass and the spring stiffness of the absorber is obtained by ω ω2

2
2

2 2= = k m/ . 
Select appropriate values for m2 and k2 by considering restrictions on the motion of the 
absorber mass. Once the absorber is designed, the mass ratio μ is checked, for which the 
recommended value is μ < 0.25.

It should be pointed out that one disadvantage of the vibration absorber is that two new 
resonant frequencies in the neighborhood of the excitation frequency are created as seen 
from Figure 9.18. Because the values of X1/xst and X2/xst change dramatically, the vertical 
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FIGURE 9.17
Frequency response curves: (a) main mass and (b) absorber mass.
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axis in Figure 9.18 is given in the decibel units, which can be used to conveniently repre-
sent very large or small numbers. The details on how to determine natural frequencies for 
multi-degree-of-freedom systems will be discussed in the next section.

Example 9.8: Vibration Absorber Design

When an engine operates at a speed of 4500 rpm, vibration is induced through its ped-
estal mount. The amplitude of the excitation force is 300 N. Design a vibration absorber 
that will reduce the vibration when mounted on the pedestal. Assume that the maxi-
mum allowable displacement of the absorber is 2 mm.

Solution

The natural frequency of the absorber is required to be the same as the excitation 
frequency, 

 
ω ω

π
π2

4500 2
60

= = =
( )

150 rad/s
 

The maximum allowable displacement amplitude of the absorber is 2  mm. From 
Equation 9.74, considering the magnitude only, the spring stiffness of the absorber can 
be obtained as 
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Thus, the mass of the absorber is 
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FIGURE 9.18
Frequency response curves (in dB) for the main mass and the absorber mass.



459Introduction to Vibrations

PROBLEM SET 9.3

 1. A 25-kg instrument is suspended from a ceiling by four springs, each of which 
has  a stiffness of 800  N/m. The ceiling vibrates with a frequency of 2  Hz and 
amplitude of 0.05 mm due to the air conditioning compressor and chiller mounted 
on the roof. Neglecting the damping, determine the maximum displacement 
amplitude of the instrument.

 2. Consider a 10-kg instrument placed on a floor that vibrates with a frequency 
of 3000  rpm and amplitude of 2  mm due to nearby machinery. A vibration 
isolator is designed to protect the instrument from the vibration of the floor. 
Assume that the damping ratio of the isolator is 0.05 and the maximum allow-
able acceleration amplitude of the instrument is 2g, where g is the gravitational 
acceleration, 

 a. Determine the stiffness of the isolator.
 b. Determine the maximum displacement amplitude of the instrument.
 3. A 9000-kg air conditioning compressor mounted on a roof is supported by 

four springs. The static deformation of each spring is 4 cm. Assuming damp-
ing is negligible, find the force transmissibility when the compressor works at 
60 Hz.

 4. Consider the single-degree-of-freedom system shown in Figure 9.8. The excita-
tion force due to the rotating unbalance is meω2sin(ωt). Assume that the system 
has the following parameters: m = 5 kg, M = 100 kg, e = 0.1 m, k = 5,000 N/m, and 
b = 200 N·s/m. 

 a. Determine the force transmitted to the support when the system runs at the 
rotating speed ω = 1.5ωn.

 b. Determine the force transmissibility.
 c. The spring is replaced to decrease the force transmissibility at the same excita-

tion frequency to 20%. Determine the stiffness of the new spring.
 5. A rotating machine has a mass of 6 kg and a natural frequency of 5 Hz. Due to 

a rotating unbalanced mass, the machine is subjected to a harmonic disturbance 
force meω2sin(ωt). When the machine operates at a frequency of 3.5 Hz, the ampli-
tude of the disturbance force is 40 N. 

 a. Design a vibration absorber assuming that the maximum allowable displace-
ment of the absorber is 5 cm.

 b.  Using MATLAB®, write an m-file to plot X1/me versus ω. Use the decibel 
units to show the vertical axis.

 6. The pendulum in Figure 9.19 is known as a tuned mass damper. It is mounted 
in a building, which is simplified as a block of mass m1 supported by a spring 
of stiffness k. The mass of the pendulum is m2 and the length l is tunable. The 
tunable pendulum is used to control the vibration of the building under extreme 
wind loads. Assume that the force due to gusty winds can be modeled as a har-
monic force F1sin(ωt), and the excitation frequency ω is very close to the natural 
frequency of the building. Prove that the forced vibration of the building can be 
eliminated when the length of the pendulum is tuned such that ω = g l , where g 
is the gravitational acceleration.
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9.4 Modal Analysis

The systems discussed in the previous sections are mainly single-degree-of-freedom 
systems, for which the vibration can be studied using elementary methods presented in 
Chapter 8. However, for a multi-degree-of-freedom system, more advanced mathemati-
cal tools are required to solve the equations of motion due to coordinate coupling. In this 
section, we first introduce key concepts, such as the eigenvalue problem, natural modes, 
and orthogonality of modes. Then, we develop modal analysis in a rigorous manner to 
decouple coordinates and use it to obtain the response to initial excitations or external 
forces. All derivations in this section are presented in matrix form.

9.4.1 Eigenvalue Problem

Consider a three-degree-of-freedom mass–spring system, as shown in Figure 9.20, where 
the motion of the system is described by the displacement coordinates x1, x2, and x3. In the 
absence of damping and external forces, the system undergoes undamped free vibration, 
and the differential equations of motion in matrix form are 
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 (9.80)

Note that the mass matrix is diagonal but the stiffness matrix is not. Thus, Equation 9.80 
represents a set of three simultaneous (or coupled) second-order differential equations. It 
is generally difficult to obtain the analytical solution of Equation 9.80 because of coordinate 
coupling. If we can find a coordinate transformation that simultaneously diagonalizes the 
mass and stiffness matrices, then the system dynamics can be decoupled into a set of inde-
pendent second-order differential equations, each in the form of mx kx+ = 0, which can 
be easily solved as a single-degree-of-freedom system. Such coordinate transformation, 
which is not unique, indeed exists and may be found by solving the eigenvalue problem.

m2

l

k

m1

x2

x1F1sin(ωt)

FIGURE 9.19
Problem 6.
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The eigenvalue problem is a problem associated with free, undamped vibration, for 
which the differential equation in the general matrix form is given by 

 M Kx 0x+ =  (9.81)

The solution of Equation 9.81 is harmonic. Assume that the solution is in the form 

 x X= ejωt (9.82)

where ω is the frequency of the harmonic motion. Note that x X= −ω ω2 ej t. Thus, 
Equation 9.81 becomes 

 ( )K M X 0− =ω ω2 ej t  (9.83)

Canceling the non-zero term ejωt leads to 

 ( )K M X 0− =ω2  (9.84)

or 

 KX MX= ω2  (9.85)

Either one of Equations 9.84 or 9.85 represents the eigenvalue problem associated with 
matrices M and K. In particular, it is known as the algebraic eigenvalue problem, whose 
solution process is similar to that of the eigenvalue problem associated with a matrix A, 
as discussed in Section 3.3. Equation 9.84 has a nontrivial solution X ≠ 0 if and only if the 
coefficient matrix is singular, 

 K M− =ω2 0 (9.86)

Equation 9.86 is known as the characteristic equation or frequency equation. For an n-degree-
of-freedom system, the determinant |K – ω2M| is a polynomial of degree n in ω2. The n roots 
of Equation 9.86 are referred to as eigenvalues and denoted by ω ω1

2
2
2, ,…, and ωn

2. Once the 
eigenvalues are identified, each eigenvector corresponding to each of the eigenvalues can be 
obtained by solving Equation 9.84 or 9.85. The n eigenvectors are denoted by X1, X2, …, and Xn.

For a vibration system, the eigenvalues and eigenvectors associated with the eigen-
value problem defined in Equation 9.84 or 9.85 have significant physical meanings. The 
square roots of the eigenvalues are the system’s natural frequencies ωr, where r = 1, 2, …, n. 
The natural  frequencies are usually arranged in increasing order of magnitude, that is, 
ω ω ω1 2≤ ≤ ≤ n. The lowest frequency ω1 is referred to as the fundamental frequency, 
which is extremely important for many practical problems. The eigenvectors are referred 
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k2
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m2

x2

k3

m3

x3

FIGURE 9.20
A three-degree-of-freedom mass–spring system.
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to as modal vectors. Each modal vector represents physically the shape of a normal mode, 
a certain pattern of motion in which all masses move harmonically with the same  natural 
frequency associated with this modal vector. The following example shows how to solve 
the eigenvalue problem and describes the physical significance of the eigenvalues and 
eigenvectors.

Example 9.9: Natural Frequencies and Modal Vectors

Consider the three-degree-of-freedom system shown in Figure 9.20. Assume that 
m1 = m2 = m3 = m, k1 = 3k, k2 = 2k, and k3 = k.

 a. Solve the associated eigenvalue problem by hand.
 b.  Assuming m  =  1  kg and k  =  1  N/m, solve the associated eigenvalue 

 problem in MATLAB.

Solution

 a. The differential equations for the system in Figure 9.20 are given by Equation 9.80. 
Thus, the mass and stiffness matrices are
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 Substituting M and K into the frequency equation defined by Equation 9.86, 
we have
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 To simplify the calculation, divide the above-mentioned equation by k and let 
β = ω2m/k. Thus, the determinant is
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 which reduces to

 β β β3 29 18 6 0− + − =  

 The three roots are

 β β β1 2 30 4158 2 2943 6 2899= = =. , . , .  

 which give the three eigenvalues
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 Thus, the three natural frequencies are

 
ω ω ω1 2 30 6448 1 5147 2 5080= = =. , . , .
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m  

 To determine the eigenvectors or modal vectors, we insert ωr r2( , , )= 1 2 3  into 
Equation 9.84. For r = 1, we have

 ( )K M X 0− =ω1
2

1  

 Note that the modal vectors are 3 × 1 column vectors for a three-degree-of- 
freedom system. The above-mentioned equation can be written as
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 Again, to simplify the calculation, we let β1 replace ω1
2m k/  and write the equa-

tions in scalar form
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 Note that combining the first and the third equations by canceling X12 gives
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 Then, expressing X13 in the second equation in terms of X11 yields
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 If we assign an arbitrary value to one element in X1, the other two can be deter-
mined uniquely. This implies that we have three equations and two unknowns. 
Assuming X11 = 1, we find X13 = 3.9235 and X12 = 2.2922. Thus, the first modal 
vector is
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 Similarly, we can find the other two modal vectors as
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 Here, we set the magnitude of the first component in all modal vectors as 1. 
The modal vectors can also be normalized so that the largest component in 
magnitude is equal to 1:
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 The modal vectors represent physically the shape of the natural modes, as 
shown in Figure 9.21. In mode 1, all masses move in the same direction and 
oscillate with a frequency of ω1 0 6448= . k m/ . In mode 2, all masses oscillate 
with a frequency of ω2 1 5147= . k m/ . Masses 1 and 2 move in the same direc-
tion, while mass 3 moves in the opposite direction. The direction change is 
also implied by the one sign change in the second mode X2. In mode 3, there 
are two sign changes in X3. Masses 1 and 3 move in the same direction, while 
mass 2 moves in the opposite direction. All masses oscillate with a frequency 
of ω3 2 5080= . k m/ .

 b.  Given the mass and stiffness matrices, it is easy to use MATLAB to solve 
the associated algebraic eigenvalue problem. The following is the MATLAB 
session.

>> M = eye(3);
>> K = [5 -2 0; -2 3 -1; 0 -1 1];
>> [V,D] = eig(K,M);

 The eig command returns two matrices
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where:
 D is a diagonal matrix containing the eigenvalues
 columns in matrix V are the corresponding eigenvectors
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FIGURE 9.21
Natural modes of the three-degree-of-freedom system shown in Figure 9.20.
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 Note that the modal vectors returned by the MATLAB command eig are nor-
malized so that the magnitude of each vector is equal to 1. For example, the 
first column in matrix V is the first modal vector, and we have

 0 2149 0 4927 0 8433 12 2 2. . .+ + =  

 Comparing the eigenvectors obtained by hand and by MATLAB, we observe 
that the ratios between the elements are the same. For example, for mode 1, 
X11/X13  =  0.2149/0.8433  =  0.2548 and X12/X13  =  0.4927/0.8433  =  0.5843. This 
implies that the shape of modes is unique but the amplitude is not. Due to 
round-off error, the ratios are slightly different from that obtained in Part (a).

9.4.2 Orthogonality of Modes

The natural modes possess an important property known as orthogonality. To show this 
concept, let us consider an n-degree-of-freedom system. Following the same procedure as 
in Example 9.9, we can obtain n natural frequencies and n modal vectors by solving the 
eigenvalue problem. Denote any two pairs of solutions of the eigenvalue problem as ωr

2, Xr 
and ωs

2, Xs. Both pairs should satisfy Equation 9.85, that is, 

 KX MXr r r= ω2  (9.87)

 KX MXs s s= ω2  (9.88)

Pre-multiplying both sides of Equation 9.87 by X s
T  and Equation 9.88 by X r

T  gives 

 X KX X MXs r r s r
T T= ω2  (9.89)

 X KX X MXr s s r s
T T= ω2  (9.90)

Taking the transpose of Equation 9.90 on both sides yields 

 X K X X M Xs r s s r
T T T T= ω2  (9.91)

Recall that the mass and stiffness matrices are symmetric, M = MT and K = KT. Then, 
Equation 9.91 reduces to 

 X KX X MXs r s s r
T T= ω2  (9.92)

Subtracting Equation 9.92 from Equation 9.89, we have 

 ( )ω ωr s s r
2 2 0− =X MXT  (9.93)

For two distinct modes, the frequencies are different, ω ωr s
2 2≠ . Thus, Equation 9.93 is satis-

fied if and only if 

 X MXs r r sT = ≠0,  (9.94)

Substituting Equation 9.94 into Equation 9.89 gives 

 X KXs r r sT = ≠0,  (9.95)
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Equations 9.94 and 9.95 represent the orthogonality relation for two distinct modal vectors, 
Xr and Xs. They are orthogonal with respect to the mass matrix M as well as the stiffness 
matrix K. If r = s, then the values of X MXr r

T  and X KXr r
T  are non-zero, and their values 

depend on the method used to normalize the modal vectors. A convenient scheme is to 
normalize Xr such that 

 X MXr r
T = 1 (9.96)

The modal vector Xr is then called orthonormal. Pre-multiplying both sides of Equation 9.87 
by X r

T  yields 

 X KXr r r
T = ω2 (9.97)

Example 9.10: Normalization of Modal Vectors

Normalize the modal vectors X1, X2, and X3 obtained in Part (a) of Example 9.9 to a set 
of orthonormal modal vectors satisfying Equations 9.96 and 9.97. Assume m = 1 kg and 
k = 1 N/m.

Solution

Note that regardless of how the modal vectors are normalized, they result in the same 
mode shape but scaled in magnitude. So, we can write the first modal vector in the form 

 X X

1 1= α  

where:
 X1 is the modal vector after normalization
 α is a non-zero scaling constant
 Substituting X1 into Equation 9.96 gives 

 X MX X M X X MX 

1 1 1 1
2

1 1
T T T= =( ) ( )α α α  

which should be equal to 1 if X1 is orthonormal. Inserting X1 = [0.2549 0.5842 1]T and M 
obtained in Example 9.9 yields 

 

α α2
1 1

2

0 2549
0 5842

1

1 0 0
0 1 0
0 0 1

0 25
X MXT

T

=
































.

.
. 449

0 5842
1

1 4063 12. .
















= =α

 

Thus, α = 0.8433 and 

 

X X

1 1

0 2150
0 4927
0 8433

= =
















α
.
.
.  

Neglecting round-off error, note that X1 is the same as the first column in matrix V 
obtained in Example 9.9, Part (b). Following the same procedure yields the other two 
orthonormal modal vectors, X 2 and X 3, 
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.
.  

which correspond to the second and third columns in matrix V with all elements multi-
plied by −1. Thus, the MATLAB command eig returns a set of orthonormal modal vectors.

The modal vectors X X1, , ... n are generally assembled side by side to form the modal matrix 

 ΦΦ = [ ]X X1  n  

If the modal vectors are orthonormal, then we have 

 ΦΦ ΦΦT

T

n
T

n

T T
n

M

X

X

M X X

X MX X MX

=



















  =

�

�
�

� � �
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1

1

1 1 1
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� � � � �X MX X MXn

T
n
T

n1



















 (9.98)

Due to the orthogonality of modal vectors as defined in Equation 9.94, all off-diagonal 
entries are zero. Also, the modal vectors  X X1, , ... n are orthonormal. Following Equation 
9.96, each entry along the diagonal should be 1. Thus, 

 ΦΦ ΦΦT
nM I=  (9.99)

Similarly, we have 

 ΦΦ ΦΦT

T

n
T

n

T T
n

K

X

X

K X X

X KX X KX
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�
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1
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� � � � �X KX X KXn
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n
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Following Equations 9.95 and 9.97, 

 ΦΦ ΦΦ ΩΩT

n

K =

















=
ω

ω

1
2

2

0 0
0 0
0 0

  (9.101)

Equations 9.99 and 9.101 are very useful for decoupling equations of motion and obtaining 
responses of vibration systems.

9.4.3 Response to Initial Excitations

Now, let us consider the free, undamped vibration problem described by Equation 9.81, 
in which the initial condition vectors are x(0) and x( )0 . Solving the associated eigenvalue 
problem yields a set of natural frequencies, ω1, ω2, …, and ωn, and a set of orthonormal 
modal vectors, X X� �1 2, , ,  …  and X n. To decouple the equations of motion, we introduce a 
coordinate transformation 

 x q= ΦΦ  (9.102)
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where:
ΦΦ = [ ]X X X� � ��1 2 n  is the modal matrix
q is the vector of modal coordinates

Substituting Equation 9.102 into Equation 9.81 and pre-multiplying by ΦT on both sides 
gives 

 ΦΦ ΦΦ ΦΦ ΦΦT TM q K q 0+ =  (9.103)

Due to the orthogonality of modal vectors given by Equations 9.99 and 9.101, Equation 9.103 
reduces to 

 q q 0+ =Ω  (9.104)

which can be written as n independent modal equations 

 q q r nr r r+ = = …ω2 0 1 2, , , ,  (9.105)

Obviously, modal equations are analogous to differential equations of single-degree-of-
freedom systems, for which the response was given in Section 8.3. Following the discus-
sion in Chapter 8, the solutions to Equation 9.105 are 

 q t q t
q

t r nr r r
r

r
r( ) ( )cos( )

( )
sin( ), , , ,= + = …0

0
1 2ω

ω
ω



 (9.106)

where qr(0) and qr( )0  are the initial displacements and initial velocities of modal coor-
dinates. Note that the prescribed initial conditions are associated with the physical 
coordinates x. To transform the initial conditions, we use Equation 9.102, which gives 
q = Φ–1x. Because of the property of orthonormal modal vectors, ΦTMΦ = In, we have 
Φ−1 = ΦTM. Thus, the initial modal displacements and velocities are 

 q Mx( ) ( )0 0= ΦΦT  (9.107)

  q Mx( ) ( )0 0= ΦΦT  (9.108)

Expanding the modal matrix yields 

 
q

qn

T

n
T

T
1 1 10

0
0

0( )

( )
( )

( )
�

�

�
�

�















=



















=
X

X

Mx

X Mx

��
�X Mxn

T
( )0



















 (9.109)

 

�
�
�

�

�
�

�

� �q

qn

T

n
T

T
1 1 10

0
0

( )

( )
)(

















=



















=
X

X

Mx

X Mxx

X Mx

( )

( )

0

0

�
� �n

T



















 (9.110)



469Introduction to Vibrations

or 

 q r nr r
T

( ) ( ), , , ,0 0 1 2= = …X Mx  (9.111)

 � � �q r nr r
T

( ) ( ), , , ,0 0 1 2= = …X Mx  (9.112)

Then, the modal responses are 

 
q t t t r nr r

T
r

r
r
T

r( ) ( )cos( ) ( )sin( ), , , ,= + = …X Mx X Mx� � �0
1

0 1 2ω
ω

ω
 

(9.113)

Finally, application of Equation 9.102 gives the responses of n-degree-of-freedom systems 
to initial excitations 

 

x X X X( )
( )

( )
( )t

q t

q t
q t qn

n

r

r

n

r r

r

n

=  

















= =
= =

∑� � � � �1

1

1 1
∑∑ ( )t rX�

 

(9.114)

Equation 9.114 represents the so-called expansion theorem, by which the solution x(t) can be 
regarded as a superposition of the normal modes X r t( ) (r = 1, 2, …, n). The modal responses 
qr(t) represent the contributions of the particular configuration X r t( ) to the total solution.

The approach using the orthogonality properties of the modal matrix to obtain a set 
of simultaneous independent equations is known as modal analysis. The basic steps to 
obtain the solutions by using modal analysis are summarized as follows: 

Step 1: Solve the eigenvalue problem and obtain the natural frequencies and modal 
vectors.

Step 2: Normalize the modal vectors to obtain orthonormality.
Step 3: Determine the modal responses and combine them into the response of the 

original system by using the expansion theorem.

Example 9.11: Response to Initial Excitation by Modal Analysis

Consider the three-degree-of-freedom system discussed in Example 9.9. Assume 
m = 1 kg and k = 1 N/m. Using the natural frequencies obtained in Example 9.9 and the 
orthonormal modal vectors obtained in Example 9.10, determine the response of the 
system subjected to initial excitations x(0) = [0 0 0.01]T and x( )0 = [ ]0 0 0 T.

Solution

In Examples 9.9 and 9.10, we obtained the three natural frequencies 

 ω ω ω1 2 30 6448 1 5147 2 5080= = =. , . .rad/s rad/s, rad/s 

and the three orthonormal modal vectors 
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Applying Equation 9.113 gives the modal responses 
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Inserting the modal responses into Equation 9.114, we obtain the response of the system 
to the given initial excitations as follows. 
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9.4.4 Response to Harmonic Excitations

The essence of modal analysis is to determine the response of an n-degree-of-freedom 
system by decomposing it into n single-degree-of-freedom systems, determining 
the response of each single-degree-of-freedom system, and combining the individual 
responses into the response of the original system. The previous subsection showed how 
one can obtain the free response of an undamped system by using modal analysis, which 
can also be used to find the response of an undamped system to harmonic excitations. In 
this case, the equations of motion in matrix form are 

 M Kx fx+ =  (9.115)

where f is an n ×  1 force vector. Following the basic steps of modal analysis given in 
Subsection 9.4.3, we first need to solve the eigenvalue problem (K – ω2M)X  =  0 and 
obtain the solutions ωr

2 and Xr (r = 1, 2, …, n). The n modal vectors are then normalized 
and arranged into the n × n modal matrix ΦΦ =  X X� � �1 n , which satisfies the orthonor-
mality relations ΦTMΦ = In and ΦTKΦ = Ω. Using the expansion theorem, the solution 
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to Equation 9.115 is a linear combination of the modal vectors, x X q= ==∑ q trr
n

r1 ( ) ΦΦ . 
Substituting it into Equation 9.115 and pre-multiplying the result by ΦT gives 

 ΦΦ ΦΦ ΦΦ ΦΦ ΦΦT T TM q K q f+ =  (9.116)

Combining the orthonormality relations, we have 

 q q N+ =Ω  (9.117)

where N = ΦTf. Note that 
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where the entries X f r
T

r n= …( )1 2, , ,  are the products of the 1×n row vectors X r
T
 and the 

n×1 column vector f, resulting in scalars Nr, known as modal forces. Equation 9.117 is 
equivalent to a set of n independent modal equations 

 q q N r nr r r r+ = = …ω2 1 2, , , ,  (9.119)

We consider harmonic excitations, without loss of generality, in the form 

 f f= 0 sin( )ωt  (9.120)

Then, the modal forces Nr can be written as X f r
T

t r n0 sin( ) , , ,ω   1 2= …( ). The solutions to 
Equation 9.119 can be obtained in a manner similar to the response of undamped single-
degree-of-freedom systems to harmonic excitations. Applying Equations 9.31 through 9.33 
with ζ = 0, we have 

 q t t r nr
r
T

r
( ) sin( ), , , ,=

−
= …X f

0
2 2 1 2

ω ω
ω  (9.121)

Thus, the steady-state response of the original system is 

 x X
X f X= =

−
= =

∑ ∑q t tr r

r

n
r
T

r

rr

n

( ) sin( )

 

1

0
2 2

1
ω ω

ω  (9.122)

Example 9.12: Response to Harmonic Excitation by Modal Analysis

Consider the three-degree-of-freedom system discussed in Example 9.9. Assume 
m = 1 kg and k = 1 N/m. Using the natural frequencies obtained in Example 9.9 and the 
orthonormal modal vectors obtained in Example 9.10, determine the response of the 
system if a harmonic force F(t) = 3sin(2t) is applied to mass 3.
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Solution

The force vector can be written as 
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From Examples 9.9 and 9.10, the three natural frequencies are 

 ω ω ω1 2 30 6448 1 5147 2 5080= = =. , . , .rad/s rad/s rad/s 

and the three orthonormal modal vectors are 
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Equation 9.121 gives the modal responses 

 

q t t1 2 2

0 2150 0 4927 0 8433
0
0
3

0 6448 2
2( )

. . .

.
sin( )=

 

















−
== −

=

− 

















0 7058 2

0 5049 0 6831 0 5278
0
0
3

2

. sin( )

( )

. . .

t

q t
11 5147 2

2 0 9283 2

0 8360 0 5392 0 1019

2 2

3

.
sin( ) . sin( )

( )

. . .

−
=

=

−

t t

q t

 

















−
=

0
0
3

2 5080 2
2 0 1335 22 2.

sin( ) . sin( )t t
 

Inserting the modal responses into Equation 9.122, we obtain the response of the system 
to the given harmonic excitation as follows. 
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PROBLEM SET 9.4

 1. Consider the two-degree-of-freedom mass–spring system shown in Figure 9.22. 
Assume that m1 = m, m2 = 2m, and k1 = k2 = k, where m = 5 kg and k = 2000 N/m.

 a. Derive the equations of motion and express them in matrix form.
 b. Solve the associated eigenvalue problem by hand. Plot the two modes and 

explain the nature of the mode shapes.

 c.  Solve the associated eigenvalue problem by using MATLAB.
 2. A three-story building can be modeled as a three-degree-of-freedom system, as 

shown in Figure 9.23, in which the horizontal members are rigid and the columns 
are massless beams acting as springs. Assume that m1 = 1200 kg, m2 = 2400 kg, 
m3 = 3600 kg, k1 = 500 kN/m, k2 = 1000 kN/m, and k3 = 1500 kN/m.

 a. Derive the differential equations for the horizontal motion of the masses.
 b. Solve the associated eigenvalue problem by hand. Plot the three modes and 

explain the nature of the mode shapes.
 c.  Solve the associated eigenvalue problem by using MATLAB.

m1

m2

m3

k1

k2

k3

k1

k2

k3

x1

x2

x3

FIGURE 9.23
Problem 2.

k1

m2m1

k2

x1 x2

FIGURE 9.22
Problem 1.
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 3. Consider the two-degree-of-freedom mass–spring system in Figure 9.22. 
Normalize the modal vectors X1 and X2 obtained in Part (b) of Problem 1 to a set of 
orthonormal modal vectors satisfying Equations 9.96 and 9.97.

 4. Consider the three-story building system in Figure 9.23. Normalize the modal vec-
tors X1, X2, and X3 obtained in Part (b) of Problem 2 to a set of orthonormal modal 
vectors satisfying Equations 9.96 and 9.97.

 5. Consider the two-degree-of-freedom mass–spring system in Figure 9.22. 
Determine the response of the system subjected to initial excitations x(0) = [0 0]T 
and x( )0 1 0= [ ]T by modal analysis. Note that the natural frequencies were found 
in Problem 1 and the modal vectors were normalized in Problem 3.

 6. Consider the three-story building system in Figure 9.23. Determine the response 
of the system subjected to initial excitations x(0) = [0.01 0 0]T and x( )0 0 0 0= [ ]T by 
modal analysis. Note that the natural frequencies were found in Problem 2 and the 
modal vectors were normalized in Problem 4.

 7. Consider the two-degree-of-freedom mass–spring system in Figure 9.22. Find the 
response of the system if a harmonic force F(t) = 2 cos(3t) is applied to mass 2. Note 
that the natural frequencies were found in Problem 1 and the modal vectors were 
normalized in Problem 3.

 8. Consider the three-story building system in Figure 9.23. Determine the response 
of the system if a harmonic force F(t) = 15 sin(0.1t) is applied to the top story. Note 
that the natural frequencies were found in Problem 2 and the modal vectors were 
normalized in Problem 4.

 9.  Solve Problem 5 by using MATLAB.

 10.  Solve Problem 6 by using MATLAB.

 11.  Solve Problem 7 by using MATLAB.

 12.  Solve Problem 8 by using MATLAB.

9.5 Vibration Measurement and Analysis

Models are necessary for designing dynamic systems and understanding system dynam-
ics. For many vibration systems, theoretical models are too difficult to develop. In these 
situations, we resort to experimental models, which may be obtained using experimental 
modal techniques; specifically, the method known as frequency response function testing. 
There are two phases needed to obtain an experimental model of a vibration system. The 
first phase is the measurement phase, in which the frequency response functions of the 
system are measured. The second phase is the analysis phase, in which system parameters 
are estimated from the measured frequency response functions. In this section, we first 
introduce the measurement methods for acquiring frequency response data and then dis-
cuss the parameter estimation methods for extracting system properties.

9.5.1 Vibration Measurement

As presented in Section 8.4, a frequency response function is a transfer function, expressed 
in the frequency domain as opposed to the s domain. For a vibration system, a frequency 
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response function describes the system response to an external excitation force as a 
function of frequency. The response may be displacement, velocity, or acceleration. To 
experimentally obtain the frequency response function of a vibration system, the input 
excitation and output response must be measured simultaneously. The excitation and 
response are both obtained in the frequency domain via fast Fourier transform, and the 
frequency response function is the ratio of the response to the excitation.

Figure 9.24 shows a diagram of the basic components for frequency response function 
measurement. An actuator, or so-called exciter, is used to apply a force to the system under 
test. Sensors, or so-called transducers, are used to measure the force and responses. A data 
acquisition system is used to acquire and process the signals from the sensors. A computer 
with analysis software provides measurement functions such as windowing, averaging, 
and fast Fourier transform computation.

The first step in the measurement process involves selecting an excitation function along 
with an excitation system. The excitation function is the mathematical signal used for the 
input. The excitation system is the physical mechanism used to provide the signal. Two of 
the general categories of excitation functions are steady-state and transient. For example, a 
sine function is a steady-state signal and an impulse function is a transient signal. Two of 
the most common excitation mechanisms are a shaker and an impact hammer.

Figure 9.25 shows an electromagnetic shaker, which is one of the most common shakers 
for vibration testing. With the electromagnetic shaker, a force is generated by an alternating 
current that drives a magnetic coil. Such a shaker can generate a variety of time-varying 
forces, such as a sinusoidal force with a constant frequency and a swept sine function with 
gradually increasing frequency but constant amplitude. The maximum frequency range 
and the maximum force level depend on the size of the shaker. Smaller shakers have a 

Response

System

Transducers
Force

Excitation
system

Data
acquisition Computer

FIGURE 9.24
Basic components for frequency response function measurement.

Force
transducer

Power
amplifier

Shaker

Slender
rod

FIGURE 9.25
An electromagnetic shaker with a power amplifier.
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higher frequency range and a lower force level. When using a shaker for excitation, the 
shaker should be physically mounted on the system via a force transducer.

An impact hammer is another common excitation mechanism, which is used to apply 
impulse. As shown in Figure 9.26, the impact hammer has a transducer at the tip for mea-
suring the impact force. If the system being tested is struck by the hammer quickly, the 
resulting excitation force resembles an impulse. Because the impact hammer does not have 
to be attached to the system under test, this technique is relatively easy to implement, 
but it is difficult to obtain consistent results. The frequency content and the pulse dura-
tion depend on the material of the tip. The harder the tip, the shorter the pulse duration 
included, and thus, the higher the frequency content measured.

The second step in the measurement process is to select the transducers for sensing 
force and response. The piezoelectric type is the most widely used for vibration testing. 
The piezoelectric transducer is an electromechanical sensor that generates an electrical 
output when subjected to vibration. The response measured is usually acceleration. This 
particular type of response transducer is called an accelerometer. Sometimes, the system is 
too small, or the working environment is too hot, to attach an accelerometer to the system 
under consideration. In those situations, a laser Doppler vibrometer can be used to make 
noncontact vibration measurements.

With the selected excitation mechanism and transducers, the frequency response 
function can be obtained in several different ways. For example, if a shaker is used, 
then harmonic excitation is applied to the system under test and the resulting harmonic 
response is measured. This type of test is referred to as sine wave testing. The frequency 
range is covered either by stepping from one frequency to the next or by slowly sweep-
ing the frequency continuously. In both cases, the measurement time should be long 
enough to allow steady-state conditions to be attained. If an impact hammer is used, 
then impulsive excitation is applied to the system under test and the resulting transient 
response is measured.

9.5.2 Identification of System Parameters

After having acquired frequency response data via vibration testing, the next major step 
is to identify the system parameters, more specifically, modal parameters. The basic 
information that can be determined from frequency response functions includes natural 
frequencies, the damping ratio associated with each mode, and mode shapes. The discus-
sions in this subsection are only limited to the identification of natural frequencies and 
damping ratios.

To obtain an accurate estimation, it is important to understand the relationships 
between frequency response functions and their individual modal parameters. The basics 

Force
transducer

Cable

FIGURE 9.26
An impact hammer for vibration testing.
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of a single-degree-of-freedom dynamic system form the basis for parameter estimation 
techniques. As discussed in Section 8.4, the frequency response function is a complex quan-
tity, which can be presented in terms of magnitude and phase versus frequency. Another 
method of presenting the frequency response data is to plot the real part and the imaginary 
part versus frequency. Denote the Fourier transforms of displacement response and excita-
tion force as X(jω) and F(jω), respectively. The expression of the frequency response function 
X(jω)/F(jω) was given in Section 8.4. Figure 9.27 shows the frequency response presented 
in different forms, where the real and imaginary parts are 
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Assume that the system is lightly damped. As shown in Figure 9.27, when the excitation 
frequency approaches the natural frequency, ω = ωn, the system resonates, and the mag-
nitude of the frequency response function reaches its maximum. This conclusion was 
proved in Section 8.4. Also, at resonance, the real part is equal to zero, and the imaginary 
part reaches a peak. The former observation can be easily proved by setting ω = ωn in 
Equation 9.123, whereas the latter will be left as an exercise for the reader. It was discussed 
earlier in Section 9.2 that the damping ratio ζ can be estimated by the half-power band-
width method.

In reality, most dynamic systems cannot be simplified as ideal single-degree-of-freedom 
systems. As presented in Section 9.4, an n-degree-of-freedom system has n modes. For 
systems with lightly damped and well-separated modes, as shown in Figure 9.28a, the 
natural frequencies and damping ratios can be estimated using the single-mode method. 
The basic assumption for single-mode approximation is that in the vicinity of a resonance, 
the response is due primarily to that single mode. Just like a single-degree-of-freedom 
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FIGURE 9.27
Frequency response of a single-degree-of-freedom system represented in terms of (a) magnitude and phase and 
(b) real and imaginary.



478 Modeling and Analysis of Dynamic Systems

system, the natural frequency associated with that single mode can be estimated from the 
frequency response data by observing the frequency at which any of the following trends 
occur: 

• The magnitude of the frequency response is a maximum.
• The real part of the frequency response is zero.
• The imaginary part of the frequency response is a maximum or minimum.

The damping ratio associated with that single mode can be estimated using the half-
power bandwidth method. For systems with heavily damped and closely spaced modes, 
as shown in Figure 9.28b, the adjacent modes can affect each other significantly. In general, 
it will be necessary to implement a multiple-mode method to more accurately identify the 
modal parameters of these types of systems.

PROBLEM SET 9.5

 1. For a single-degree-of-freedom system, denote the Fourier transforms of the 
displacement response and excitation force as X(jω) and F(jω), respectively. The 
expression of the imaginary part of the frequency response function X(jω)/F(jω) 
is given by Equation 9.124. Prove that the imaginary part reaches a peak at 
resonance.

 2.  Accelerations are often measured in vibration testing. For a single-degree-of-
freedom system, denote the Fourier transforms of the acceleration response and 
excitation force as A(jω) and F(jω), respectively. The expression of the frequency 
response function A(jω)/F(jω) is given by
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Frequency response of a multi-degree-of-freedom system with (a) light damping and (b) heavy damping.
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 Using MATLAB, write an m-file to plot the magnitude, phase, real part, and 
imaginary part of the frequency response versus ω/ωn. Assume that m = 60 kg, 
b = 25 N·s/m, and k = 2000 N/m.

 3. Rods, beams, plates, and so on are continuous systems, which have an infinite 
number of degrees of freedom and an infinite number of modes. For simplicity, 
assume that a cantilever beam is approximated as a single-degree-of-freedom 
mass–damper–spring system, for which the natural frequency is close to the first 
mode of the beam. The parameters of the cantilever beam are length L = 0.5 m, 
width b = 0.025 m, thickness h = 0.005 m, density ρ = 7850 kg/m3, and Young’s 
modulus E = 210 × 109 N/m2. 

 a. It is known that the equivalent mass for the beam is meq = m/3, where m is the 
actual mass of the beam. Determine the equivalent stiffness keq for the beam. 
Calculate the natural frequency of the equivalent single-degree-of-freedom 
system.

 b. Figure 9.29 is the measured frequency response of the cantilever beam for the 
first mode. Determine the natural frequency and the damping ratio based on 
the given information in the plot.

 c. Compare the frequencies obtained in Parts (a) and (b). What is the error 
if the cantilever beam is approximated as a single-degree-of-freedom 
system?

 4. Figure 9.30 shows the magnitude of an experimentally determined frequency 
response. Estimate the number of degrees of freedom of the system and its natural 
frequencies.
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9.6 Summary

This chapter presented an introduction to vibrations. Two different types of excitations 
cause a system to vibrate: initial excitation and external excitation. The vibration of a sys-
tem caused by non-zero initial displacements or initial velocities (or both) is known as free 
vibration. The vibration of a system caused by externally applied forces is known as forced 
vibration.

The nature of system response to initial or external excitations depends on the system’s 
damping, which is a very complex phenomenon. Logarithmic decrement and half-power 
bandwidth are two commonly used methods for measuring the damping of a vibration 
system. These two damping identification methods are only valid for the viscous damping 
model, which is widely used in vibration.

In the logarithmic decrement method, the free response to initial excitations is mea-
sured. The damping ratio ζ is estimated using the displacements of two consecutive peaks, 
x1 and x2. The value of the damping ratio ζ is given by 

 
ζ δ

π δ
=

+( )2 2 2
 

where δ is called the logarithmic decrement and δ = ln(x1/x2). For a more accurate 
 estimation, the damping ratio ζ can be determined by measuring the displacements of 
two peaks separated by a number of periods instead of two consecutive peaks.

In the half-power bandwidth method, the frequency response of the system is measured. 
The damping ratio ζ is estimated using a peak in the magnitude curve of the frequency 
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response and two half-power points, which are 3 dB down from the peak. The value of the 
damping ratio ζ is given by 

 
ζ ω ω

ω
≈ −2 1

2 n  

where ω1 and ω2 are the frequencies at the two half-power points. For light damping, the 
natural frequency ωn corresponds to the frequency at the peak or is approximated as 
(ω1+ω2)/2.

Frequency response is a very important concept in vibration. For harmonic excita-
tions, more information on the steady-state response can be extracted using the frequency 
domain technique than the time domain technique. As presented in Chapter 8, the steady-
state response of a single-degree-of-freedom mass–damper–spring system to harmonic 
excitation, for example, f(t) = F0sin(ωt), is still harmonic with a frequency that is the same 
as the excitation frequency. Denote the frequency response function of the system as G(jω); 
then, the steady-state response is x(t) = X sin(ωt + ϕ), where X = F0|G(jω)| and φ ω= ∠G( ).j  
The dimensionless ratio of the dynamic amplitude X and the static deflection xst is given by 
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Rotating eccentric masses and harmonically moving supports are two common har-
monic excitation sources in engineering applications. The steady-state responses to 
these two excitations can be obtained using the same pattern as in the general case. 
The results are summarized in Table 9.1. The magnitude of the dimensionless ratios 

TABLE 9.1

Summarized Results for Rotating Unbalance and Harmonic Base Excitation
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Mx bx kx me t + + = ω ω2 sin( )   x t x t x t z t tz( ) ( ) ( ) ( ) ( )+ + = +2 22 2ζω ω ζω ωn n n n

where the effect of a rotating unbalance mass is to exert a 
harmonic force meω2 sin(ωt)

where the motion of the base is harmonic, 
for example, z(t) = Z0 sin(ωt)

G
k

( )j
/

/ j /n n

ω
ω ω ζω ω

=
− ( ) +

1

1 2
2 G( )j

j /

/ j /
n

n n

ω
ζω ω

ω ω ζω ω
=

+

− ( ) +

1 2

1 2
2

x(t) = X sin (ωt + ϕ) x(t) = X sin (ωt + ϕ)
where where

X
me k

=
− ( )





+ ( ) 

ω

ω ω ζ ω ω

2

2 2 2
1 2

/

/ /n n

X Z=
+ ( )

− ( )





+ ( )
0

2

2 2 2

1 2

1 2

ζω ω

ω ω ζω ω

/

/ /

n

n n

φ
ζ ω ω

ω ω
= −

( )
− ( )

−tan 1
2

2

1

/

/

n

n
φ

ζ ω ω

ω ω ζω ω
= −

( )
− ( ) + ( )

−tan 1
3

2 2

2

1 2

/

/ /

n

n n

MX
me

=
( )

− ( )





+ ( ) 

ω ω

ω ω ζ ω ω

/

/ /

n

n n

2

2 2 2
1 2

X
Z0

2

2 2 2

1 2

1 2
=

+ ( )

− ( )





+ ( )

ζω ω

ω ω ζω ω

/

/ /

n

n n



482 Modeling and Analysis of Dynamic Systems

MX/me or X/Z0 versus the driving frequency can be plotted using MATLAB. These 
plots  provide significant information for harmonic responses.

Vibrations are undesirable in many systems. The reduction of vibration can be 
achieved through vibration isolators or vibration absorbers. A vibration isolation sys-
tem attempts either to protect delicate equipment from vibration transmitted to it from 
its support system or to prevent the vibratory force generated by a machine from being 
transmitted to its surroundings. The essence of these two objectives is the same. The 
concept of displacement transmissibility X/Z0 can be used for displacement isolation 
design, whereas force transmissibility FT/F0 can be used for force isolation design, 
where X/Z0 = FT/F0.

To prevent harmonic resonance for a single-degree-of-freedom system, it is not always 
possible to prevent the natural frequency from being close to the driving frequency by 
changing either the mass or the spring stiffness. To address this issue, a vibration absorber 
consisting of a second mass and spring can be added to the system and protect the original 
single-degree-of-freedom system from harmonic excitation. The vibration of the original 
mass can be reduced to zero, provided that the natural frequency of the absorber is the 
same as the driving frequency. One disadvantage of the vibration absorber is that two new 
resonant frequencies are created.

For multi-degree-of-freedom systems, more advanced mathematical tools are 
required to solve the equations of motion due to coordinate coupling. Modal analysis 
is an approach that utilizes the orthogonality of modal vectors to reduce the equations 
of motion to a set of independent second-order differential equations in modal coordi-
nates. The basic steps in obtaining the response of an n-degree-of-freedom undamped 
system to initial excitations or external forces by using modal analysis are summarized 
as follows. 

Step 1: Solve the eigenvalue problem associated with the mass and stiffness matrices, 
that is,

 ( )K M X 0− =ω2
 

 and obtain the natural frequencies, which are the square roots of eigenvalues 
ω ω1

2
2
2, , ,…  and ωn

2, and the modal vectors, which are eigenvectors X1, X2, …, and 
Xn. The natural frequencies are usually arranged in increasing order of magni-
tude, that is, ω ω ω1 2≤ ≤ ≤ n. The modal vectors represent the shape of the normal 
modes physically.

Step 2: Normalize each modal vector to satisfy the relations  X MXr
T

r =  1  and  X KXT
r r r= ω2, 

where r = 1, 2, …, n. Then, the orthonormal modal matrix ΦΦ =  � � �X X1 r  satisfies

 ΦΦ ΦΦ ΦΦ ΦΦ ΩΩT
n

TM I K= =,  

 where Ω is a diagonal matrix of the squares of the natural frequencies. Introducing 
the modal coordinate vector q and the coordinate transformation x = Φq, we can 
decouple the original equations as n independent modal equations.

Step 3: Determine the modal responses and combine them into the response of the 
original system by using the expansion theorem. Table 9.2 lists the responses to 
initial excitations or external harmonic excitations.
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  For many vibration systems, theoretical models are too difficult to develop. In 
these cases, experimental modal techniques can be used to obtain experimental 
models. There are two phases involved in obtaining an experimental model of 
a vibration system. The first phase is the measurement phase, in which the fre-
quency response functions of the system are measured. Two of the most com-
mon excitation mechanisms are the shaker and the impact hammer. The second 
phase is the analysis phase, in which the system parameters are estimated from 
the measured frequency response functions. The basic information that can be 
determined from the frequency response functions includes natural frequencies, 
the damping ratio associated with each mode, and mode shapes.

Review Problems

 1. Consider the single-degree-of-freedom system shown in Figure 5.42. 
 a. Determine the undamped natural frequency ωn, the damping ratio ζ, and the 

damped natural frequency ωd.
 b. Assume f(t) = 0. Find the free vibration response of the system subjected to the 

initial conditions x(0) = 0 m and x( )0 1= m/s.

 c.  Write a MATLAB m-file to plot the system’s response obtained in Part (b).

 d.  Construct a Simulink® block diagram based on the differential equation of 
motion of the system and find the free vibration response.

 e.  Build a Simscape® model of the physical system and find the free vibration 
response.

 2. Consider the single-degree-of-freedom system shown in Figure 5.42. 
 a. Assume f(t) = 500sin(60t) and initial conditions x(0) = 0 and x( )0 0= . Determine 

the dynamic amplitude X and the static deflection xst of the system. Find the 
forced vibration response of the system.

TABLE 9.2

Responses to Initial Excitations or External Harmonic Excitations Using Modal Analysis

Initial Excitations External Harmonic Excitations

Equations of motion M Kx 0x+ = M Kx fx+ = 0 sin( )ωt
Modal equations q q r nr r r+ = = …ω2 0 1 2, , , ,
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 b.  Write a MATLAB m-file to plot the system’s response obtained in Part (a).

 c.  Construct a Simulink block diagram based on the differential equation of 
motion of the system and find the forced vibration response.

 d.  Build a Simscape model of the physical system and find the forced vibration 
response.

 e.  Assume that the driving frequency varies from 0 to 100  rad/s. Write a 
MATLAB m-file to plot the dimensionless ratio X/xst versus the frequency ratio 
ω/ωn.

 3. A machine can be considered as a rigid mass with a rotating unbalanced mass. To 
reduce the vibration, the machine is mounted on a support system with a stiffness 
of 10 kN/m. Assume that the total mass is M = 10 kg and the unbalanced mass 
is m = 0.5 kg. Determine the range of the damping ratio of the support system so 
that the vibration amplitude will not exceed 5% of the rotating mass’s eccentricity 
when the machine operates at a speed of 300 rpm.

 4. As shown in Figure 9.31, a machine of a mass M = 150 kg is mounted on a fixed-
fixed steel beam with negligible mass. The parameters of the beam are given 
as  follows: Young’s modulus of the beam E  =  210  GPa, width b  =  0.75  m, and 
 thickness h = 3 cm. The rotating unbalance in the machine is me = 0.015 kg m. The 
machine runs at a speed of 2400 rpm and the maximum allowable displacement is 
4 mm. Determine if it is ok to design the length of the beam as 2 m. Assume damp-
ing to be negligible.

 5. An 80-kg machine is placed on a floor that vibrates with a frequency of 50 Hz. 
The maximum acceleration of the floor is 12.5 cm/s2. A vibration isolator consist-
ing of four parallel-connected springs is designed to protect the machine from 
the vibration of the floor. Assume that the damping ratio of the isolator is 0.1 and 
the maximum allowable acceleration is 2.5 cm/s2. Determine the stiffness of each 
spring.

 6. Many vibration-measuring instruments consist of a case containing a mass–
damper–spring system, as shown in Figure 9.32. The displacement of the mass 
relative to the case is measured electrically. Denote the displacement of the 
mass, the displacement of the case, and the displacement of the mass relative to 
the case as x(t), z(t), and y(t), respectively, where y(t) = x(t) – z(t). Assume harmonic 
excitation, z(t) = Z0sin(ωt).

FIGURE 9.31
Problem 4.
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 a. Show that the amplitude Y of y(t) is given by

 

Y Z=
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 b.  Using MATLAB, write an m-file to plot the frequency response Y/Z0 versus 
ω/ωn for different values of damping ratio: ζ = 0.1, 0.25, 0.5, 0.7, and 1.0.

 7. A 110-kg rotating machine is mounted on a vibration isolator consisting of four par-
allel-connected springs. The machine operates at a speed of 3000 rpm. Determine 
the stiffness of each spring so that the force transmitted to the ground is reduced 
by 90%. Assume that all the springs are identical and damping is negligible.

 8. Consider the single-degree-of-freedom system shown in Figure 9.15a, where 
m = 10 kg. When the mass is in equilibrium, the static deformation of the spring 
is 2 mm. When the mass is allowed to vibrate freely, the maximum displacement 
amplitude during the fourth cycle is 20% of the first. Assume that a harmonic exci-
tation force is applied to the system. 

 a. Determine the minimum allowable driving frequency if the force transmitted 
to the ground is less than the excitation force.

 b. If the allowable force transmissibility is 10%, determine the stiffness of the 
spring.

 9. Consider the vibration absorber shown in Figure 9.16. It is known that two new 
resonant frequencies in the neighborhood of the excitation frequency are created. 
Denote the two new natural frequencies as ωn1 and ωn2. Assume ν = 1. Determine 
ωn1/ω1 and ωn2/ω1 for the following cases: μ = 0.05, 0.1, 0.15, 0.2, and 0.25.

 10. A 75-kg table saw is driven by a motor that runs at a constant speed of 1000 rpm 
and produces a 150-N force. Assume that the stiffness provided by the table legs is 
750 kN/m and the damping is negligible. 

 a. Determine the dynamic amplitude of the table.
 b. Design a vibration absorber to reduce the table oscillation to zero. Assume that 

the maximum allowable displacement of the absorber is 2 mm. What is the 
value of the mass ratio μ?
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FIGURE 9.32
Problem 6.
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 11. Consider the linearized model of the double pendulum system in Example 5.16. 
Assume m = 1 kg and L = 1 m. 

 a. Use the modal analysis approach to determine the response of the system to 
the initial excitations θ1(0) =  0.05  rad, θ2(0) =  0.1  rad, θ1 0 0 1( ) .=  rad/s, and 
θ2 0 0 2( ) .=  rad/s.

 b.  Write a MATLAB m-file to plot the response of the system.

 c.  Construct a Simulink block diagram based on the linearized model and 
find the response of the system.

 12. Consider the two-degree-of-freedom mass–spring system in Figure 5.118. 
 a. Use the modal analysis approach to determine the response of the system if a 

harmonic force f = 40sin(7πt) N is applied to mass 1.

 b.  Write a MATLAB m-file to plot the response of the system.
 13. Vibration tests are conducted to estimate parameters of a single-degree-of- 

freedom mass–damper–spring system. 
 a. The frequency response of the system is shown in Figure 9.33. Determine the 

system’s parameters including the mass m, the stiffness k, and the damping b.
 b. The free vibration response of the system is given in Figure 9.34, which shows the 

recorded displacement response of the first three cycles. Using the value of the 
mass found in Part (a), determine the stiffness k and the damping b.

 14. Case study
 Consider a small airplane shown in Figure 9.35. Assume that it can be approxi-

mated as a four-degree-of-freedom system. The values of the physical parameters 
are: m1 = m3 =  250 kg, m2 =  1000 kg, m4 =  75 kg, k1 = k2 =  600 kN/m (wings), 
k3  =  150  kN/m (landing-gear system), and k4  =  350  kN/m (tires). In addition, 
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it is assumed that the damping coefficient for each mode is 0.05. It is desired to 
 investigate the landing dynamics of this airplane. This may be done by examining 
both the response of the system to a set of initial conditions and the response to a 
harmonic input. 

 a. Derive the differential equations of motion for the vertical motion of the 
airplane.

 b.  Determine the natural frequencies and mode shapes. Discuss the mode 
shapes as descriptively as possible.

 c.  Model the initial touchdown event with the following set of conditions: 
z(0) =  [0 0 0 0]T m and z( ) . . . .0 0 5 0 5 0 5 0 5= − − − −  

T
 m/s. Plot the motion of 

each of the masses for the 2 seconds following touchdown.
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FIGURE 9.35
Problem 14. (a) A small airplane model and (b) touchdown.
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 d.  The airplane has a normal landing speed of 120 km/h. The runway has a 
contour that can be modeled by a sine wave with a wavelength of 30 m and 
amplitude Y0 of 0.15 m, as shown. Assume that the plane lands at 120 km/h 
and that it remains in contact with the runway after touchdown so that steady 
state conditions are established. The input motion to the tires is given by

 
y t Y

vt
l

( ) sin= 





0

2π

 Using the modal analysis approach, solve the forced vibration problem for 
the steady-state amplitudes of response relative to the runway. Discuss your 
results.
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10
Introduction to Feedback Control Systems

Control deals with the modeling of a variety of dynamic systems and the design of con-
trollers that will ensure that these systems perform in a desired manner. In Chapters 5 
through 7, we discussed how to derive a mathematical model for a dynamic system, which 
can be mechanical, electrical, electromechanical, fluid, or thermal. In this chapter, we focus 
on how to design a controller for a dynamic system based on its mathematical model. Basic 
concepts such as feedback, open-loop control, closed-loop control, and basic terminolo-
gies in control are introduced in Section 10.1. In general, there are two main reasons why 
control is needed: one is to maintain the system stability and the other is to improve the 
system performance. Section 10.2 covers how to determine the stability, how to define the 
performance in either time domain or frequency domain, and how to identify the model 
of a system. Section 10.3 discusses the advantages of feedback control, which is utilized in 
most cases. Following the overview of feedback in Section 10.3, the classical structure of 
proportional, integral, and derivative control is introduced in Section 10.4. Three different 
control design methods based on root locus, Bode plot, and state variable feedback are 
presented in Sections 10.5 through 10.7, respectively. The chapter concludes with controller 
design and implementation using MATLAB®, Simulink®, and Simscape™ computer tools.

10.1 Basic Concepts and Terminologies

Control is the process of manipulating, manually or automatically, the input of a dynamic 
system, so that the system output will behave as desired. If the output signal is measured 
and fed back for use in computing the input signal, the system is called feedback control. 
A familiar example is the cruise control of an automobile. To maintain a constant vehicle 
speed set by the driver, the actual speed of the vehicle is measured by the speedometer 
and fed back to the controller, which adjusts the engine’s throttle position. The engine 
torque is then changed accordingly, which influences the vehicle’s actual speed.

To analyze and design a feedback control system, a block diagram is usually drawn to 
show the major components and their interconnections in graphical form. Figure 10.1 is 
a general block diagram of an elementary feedback control system. The essential compo-
nents of this feedback control include a system we want to control, a controller we need 
to design, an actuator used to drive the controlled system, and a sensor used to measure 
the system output. The connecting lines in the block diagram carry signals. As shown in 
Figure 10.1, the important signals in this feedback control system include the output, the 
control signal, and the reference. 

In the example of the automobile’s cruise control, the controlled system is the auto-body, 
whose output is the speed. The speedometer, which acts as a sensor, measures the vehicle 
speed. The measured speed is fed back and compared with the desired speed, which is the 
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reference signal. Based on the error between the measured and the reference signals, the 
controller computes the control signal, which is the engine’s throttle position in our case. 
The engine is the actuator, and the torque provided by the engine is applied to the auto-
body, which influences the vehicle speed.

Every control system must have these four essential components. Generally, the con-
trolled system and the actuator are intimately connected, and they are combined as one 
component called the plant. There are two other signals shown in Figure 10.1, disturbance 
and sensor noise. Both of them are undesired system inputs that adversely affect the per-
formance of a system.

Example 10.1: Block Diagram of a Feedback Control System

Consider the electromechanical system described in Problem 3 of Problem Set 6.4. It 
consists of a cart that moves along a linear track and a DC motor that drives the cart. 
An encoder is included to measure the position of the cart. Assume that a controller 
is designed to control the position of the cart. Draw a block diagram for this feedback 
control system. Clearly label essential components and signals.

Solution

Note that the essential components of this feedback control are the cart (the controlled 
system), the controller, the DC motor (the actuator), and the encoder (the sensor). The 
corresponding block diagram is shown in Figure 10.2. The actual position of the cart is 
the output, the desired position is the reference, and the voltage applied to the DC motor 
is the control signal. 

Transfer functions are usually used to represent the mathematical model of each block 
in a block diagram. The input and output signals of each block are also expressed in the 
Laplace domain, and they are denoted by capital letters. If the disturbance and noise sig-
nals are negligible, then the general block diagram of a feedback control system given in 
Figure 10.1 can be redrawn as shown in Figure 10.3, in which G(s) represents the dynamics 
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FIGURE 10.2
Block diagram of a cart position control system.
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FIGURE 10.1
Block diagram of an elementary feedback control system.
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of the plant, C(s) is the controller, H(s) is the sensor, U(s) is the control signal, Y(s) is the 
actual system output, Ym(s) is the measured output, and R(s) is the reference. The difference 
between the reference and the feedback is defined as the error signal, 

 E s R s Y s( ) ( ) )(= − m  (10.1)

For an ideal sensor, its output is exactly the same as its input, that is, H(s) = 1. Therefore, 
we have Ym(s) = Y(s) and 

 E s R s Y s( ) ( ) ( )= −  (10.2) 

A control system with feedback is also called closed-loop control. If the feedback is sub-
tracted, it is called negative feedback, whereas the feedback that is added is called positive 
feedback. The negative feedback is usually required for system stability, whereas positive 
feedback tends to make the system unstable. Unlike feedback control, open-loop control 
does not use the measured output to compute the control signal. The advantages of closed-
loop control over open-loop control will be discussed in Section 10.3.

Example 10.2: Closed-Loop Transfer Function

Reconsider the cart position control system in Example 10.1. The transfer functions of 
the plant (combining the cart and the DC motor), the controller, and the sensor are 

 G s
s s

C s H s( )
.

.
, ( ) , ( )=

+
= =

3 778
16 883

85 12  

Derive the closed-loop transfer functions Y(s)/R(s) and E(s)/R(s).

Solution

Using the result presented in Section 4.5, the equivalent transfer function for a negative 
feedback control system is 
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Substituting the given transfer functions results in 
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FIGURE 10.3
General block diagram of a feedback control system, with transfer function representation.
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Since E(s) = R(s) − Y(s), we have 

 
E s
R s

R s Y s
R s

Y s
R s
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Inserting Y(s)/R(s) gives 
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Note that the system in Example 10.1 is designed to track a reference signal. This type 
of control system is called a tracking or servo system, in which the reference signal usu-
ally varies with time. If the reference signal is constant, usually zero, and the system 
is designed to hold an output steady against unknown disturbances, then the control 
system is known as a regulator.

PROBLEM SET 10.1

 1. Draw a block diagram for the feedback control of a liquid-level system, which 
consists of a valve with a control knob (0%–100%) and a liquid-level sensor. Clearly 
label essential components and signals.

 2. Draw a block diagram for the feedback control of a single-link robot arm system, 
which consists of a DC motor to produce the driving force and an encoder to mea-
sure the joint angle. Clearly label essential components and signals.

 3. Determine the transfer functions U(s)/E(s), Y(s)/R(s), and E(s)/R(s) in Figure 10.4.   
 4. The block diagram in Figure 10.5 represents a rocket attitude control system. 

Determine the transfer function Θ(s)/Θr(s).   

b
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FIGURE 10.5
Problem 4.

kp
10

kI
s

R(s) + +

+−
Σ Σ

E(s) Y(s)U(s)
s2 + 2s + 10

FIGURE 10.4
Problem 3.
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 5.  Consider the control system in Example 10.2. Build a Simulink block diagram 
to simulate reference tracking control, in which the signal R(s) is a sine wave with a 
magnitude of 0.1 m and a frequency of 2 rad/s. Show the actual position response 
and the reference signal in the same scope.

 6. Reconsider the control system in Example 10.2. 
 a. Convert the transfer function G(s) = Y(s)/U(s) to a differential equation of y(t).
 b.  Using the differential equation obtained in Part (a) to represent the plant, 

build a Simulink block diagram to simulate regulation control, in which the 
reference signal R(s) is zero. Assume that the initial conditions are y(0) = 0.1 m 
and y( )0 0=  m/s.

10.2 Stability and Performance

Stability and performance are two important subjects in control. Generally, before 
designing a controller for a dynamic system, control designers check the stability and 
performance of the uncontrolled system. Then they come up with reasonable control 
design objectives from the perspective of the stability and performance. After a con-
troller is designed, the stability and performance of the closed-loop control system are 
verified to meet the design objectives. In this section, we introduce the stability condi-
tion, performance specifications in time domain and frequency domain, and system 
identification.

10.2.1 Stability of Linear Time-Invariant Systems

Intuitively, a system is stable if its transient response decays and is unstable if it diverges. 
Thus, we can determine the stability of a system by solving and plotting the transient 
response of the system. However, this is not the only way to determine the system 
stability.

Consider a linear time-invariant system, whose transfer function is given by 
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(10.3)

Assume that the numerator and denominator polynomials, b(s) and a(s), have no common 
factors. Setting the denominator of the transfer function equal to zero leads to the charac-
teristic equation 

 a s s a s a s an n
n n( ) = + + + + =−

−1
1

1 0  (10.4)

The roots of the characteristic equation are called the poles (see Section 2.3), which are 
complex and can be defined in terms of real and imaginary parts, p = σ + jω. A complex 
s-plane is usually sketched to show pole locations.
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The following is the condition for stability: a linear time-invariant system is said to be 
stable if all the poles of its transfer function have negative real parts, and is unstable other-
wise. In terms of the pole locations in the s-plane, a linear time-invariant system is stable 
if all the poles of the system are inside the left-half s-plane, that is, σ < 0. If even a single 
pole is in the right-half s-plane, the system is unstable. Thus, the imaginary jω-axis, that 
is, σ = 0, is the stability boundary. If the system has nonrepeated poles on the jω-axis, then 
the system is marginally stable. If the system has repeated poles on the jω-axis, then the 
system is unstable. The roots of the numerator of the transfer function are called zeros, and 
are not related to the stability of the system.

Essentially, the transient response of a linear time-invariant system is associated with 
its pole locations in the s-plane. For example, consider a first-order system whose transfer 
function is Y(s)/U(s) =  1/(s − p). Assume that the input is an impulse function. Inverse 
Laplace transformation yields the response y(t) = ept. The transient response ept approaches 
zero if and only if the real part of the pole p is negative. This simple example explains the 
reason why poles can be used to determine stability.

It is not an easy task to solve for the roots of a high-order characteristic equation by 
hand. Routh’s stability criterion is a method for obtaining information about pole locations 
without solving for the poles. Consider the characteristic equation given in Equation 10.4. 
Routh’s stability criterion consists of two conditions:  

• A necessary (but not sufficient) condition for stability is that all the coefficients of 
the characteristic polynomial are positive.

• A necessary and sufficient condition for stability is that all the elements in the first 
column of the Routh array are positive.

If any of the coefficients in the characteristic polynomial is negative, we can conclude 
that the system is unstable by applying the first condition. If all the coefficients in the 
characteristic polynomial are positive, then we need to check the second condition by 
constructing a Routh array, as shown in Equation 10.5. For an nth order characteristic 
polynomial, the Routh array has n + 1 rows. The first two rows are obtained by arrang-
ing the coefficients of the characteristic polynomial, beginning with the first and sec-
ond coefficients and followed by the even-numbered and odd-numbered coefficients, 
respectively. Starting from the third row, the elements are formed from the two previous 
rows using determinants, with two elements in the first column and the other two ele-
ments from successive columns. Equation 10.6 shows how to compute the elements in 
the third and fourth rows. The rest of the rows can be obtained in a manner similar to 
rows 3 and 4. 
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Example 10.3: Stability

The transfer function of a dynamic system is given by 
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Determine the stability of the system
 a. Using Routh’s stability criterion without solving for the poles.
 b.  Using MATLAB to solve for the poles.

Solution

 a. The characteristic equation is s5 + 2s4 + 3s3 + 8s2 + 4s + 5 = 0. The Routh array 
can be formed as follows. 
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 Because the elements in the first column of the Routh array are not all positive, 
we conclude that the system is unstable.
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 b.  One of two MATLAB commands can be used to solve for the poles, pole 
or roots.

 >> num = [1 4]; den = [1 2 3 8 4 5];
 >> sys = tf(num,den);
 >> pole(sys)

The command pole returns the poles of the system: –2.16, 0.31 ± 1.65j, and −0.23 ± 0.88j. 
There are two poles with positive real parts, and thus, the system is unstable. We can 
also use the command roots to solve for the roots of the characteristic equation. 

 >> roots(den)

Routh’s stability criterion was especially useful before the availability of mathematical 
and scientific computing software, such as MATLAB. However, it is still useful for deter-
mining the ranges of system parameters for stability (see Example 10.6 in Section 10.3). 
It should be pointed out that the study of stability discussed here is limited to only linear 
time-invariant systems. The study of stability for nonlinear and time-varying systems is 
very complex and is beyond the scope of this text.

10.2.2 Time-Domain Performance Specifications

Performance specifications are certain requirements associated with the response of the sys-
tem. In the time domain, the requirements are usually given for the step response. Consider 
a second-order system whose transfer function is given in the standard form (see Section 8.4) 
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Figure 10.6 shows a unit-step response, in which the vertical axis is normalized, so that the 
steady-state value is equal to 1. Four quantities are defined to specify the performance of 
the system: rise time (tr), overshoot (Mp), peak time (tp), and settling time (ts). 
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FIGURE 10.6
A unit-step response with time-domain performance specification indicated.
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The rise time tr is the time required for the response to rise from 10% to 90% of its steady-
state value. The shorter the rise time, the faster the system reaches the vicinity of the steady-
state value. The approximated relationship between tr, the natural frequency ωn, and the 
damping ratio ζ for a second- order system in standard form (see Equation 10.7) is given by 

 ω ζ ζn rt ≈ − +1 12 0 078 2 230 2. . .  (10.8)

The overshoot Mp is the maximum amount of the system response exceeding the steady-
state value divided by the steady-state value. It is usually expressed as a percentage value. 
The peak time tp is the time it takes the response to reach the maximum value. As  discussed 
in Section 8.3, assuming zero initial conditions, the unit-step response for the second-order 
system in Equation 10.7 is 
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(10.9)

Differentiating y(t) with respect to t and setting it equal to zero yields the peak time 

 tp
d

=
π

ω  
(10.10)

Substituting Equation 10.10 into Equation 10.9 gives the value of y at the peak time. The 
overshoot Mp can be determined by computing y(tp) − 1, as

 Mp e= − −πζ ζ/ 1 2

 (10.11)

The detailed derivation will be left to the reader as an exercise. As shown in Equation 10.11, 
the overshoot of the step response is related to the damping of the system. Figure 10.7 is 
the plot of Mp versus ζ. The larger the damping ratio is, the smaller the overshoot. 
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FIGURE 10.7
Plot of overshoot versus damping ratio for a second-order system.
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The settling time ts is the time required for the transient to decay to a small value such 
that y(t) almost reaches the steady-state value. Note that Equation 10.9 can be rewritten as 
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1 2ζ
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(10.12)

where 
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It is observed from Equation 10.12 that the value of y(t) is within the bounds 
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where Δ is a small value, such as 1%, 2%, and 5%. Thus, we have 
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(10.16)

and for small damping, 
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(10.17)

As indicated by Equations 10.8, 10.10, and 10.11, as well as 10.16 and 10.17, the time-domain 
performance specifications are related to the system parameters, specifically the undamped 
natural frequency ωn and the damping ratio ζ. From Equation 10.7, the poles of a second-
order system are also related to ωn and ζ, 

 p1 2
21, = − ± − = − ±ζω ω ζ ζω ωn n n dj j  (10.18)

which is a pair of complex conjugate poles for 0 ≤ ζ< 1. Figure 10.8 shows the plot of the 
poles in the s-plane. The two poles are equidistant from the origin with magnitude 

 Re Im n n n
2 2 2 2 21+ = − + − =( ) ( )ζω ω ζ ω  (10.19)

and the angle between the pole and the imaginary axis satisfies 

 
sin

| |θ ζω
ω

ζ=
+

= =Re

Re Im
n

n
2 2  

(10.20)



499Introduction to Feedback Control Systems

Therefore, the time-domain performance specifications are associated with the pole 
locations. In control design, one or more of these requirements are often specified to deter-
mine the allowable region for the poles in the s-plane. The three plots in Figure 10.9 show 
the regions based on the transient requirements tr, Mp, and ts, respectively. 

Example 10.4: Time-Domain Performance Specifications

Consider a second-order system whose transfer function is in standard form as in 
Equation 10.7. Assume that the requirements for the system unit-step response are rise 
time tr ≤ 0.1 s, overshoot Mp ≤ 20%, and 2% settling time ts ≤ 2 s. Sketch the allowable 
region for the poles in the s-plane.

Solution

To express the damping ratio in terms of the overshoot, we take the natural logarithm 
of both sides of Equation 10.11, 
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Regions based on (a) rise time, (b) overshoot, and (c) settling time.
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Squaring both sides and solving for ζ, 
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As shown in both Figures 10.7 and 10.9b, ζ is mono decreasing with respect to Mp. That 
is, ζ will increase if Mp decreases and vice versa. Thus, for Mp ≤ 20%, we have 
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Equation 10.8 gives
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t

and ωn increases when tr decreases. Thus, for rise time tr ≤ 0.1 s and the smallest possible 
damping ζ = 0.46, we have 
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Equation 10.16 indicates that 
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and ζωn increases when ts decreases. Thus, for 2% settling time ts ≤ 2 s and the smallest 
possible damping ζ = 0.46, we have 
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The area to the left of the gray boundary shown in Figure 10.10 is the allowable region 
for the poles in the s-plane, so that the three performance requirements are met. It can 
be seen that the requirement of settling time is automatically satisfied if the require-
ment of rise is met. 

Note that Equations 10.8 through 10.17 are derived based on the assumption that the sys-
tem has no zeros and has two complex poles. Thus, they do not provide precise design 
formulas for all systems. However, they can be used as qualitative guides to provide a 
starting point for design. The transient time response of the system is often checked to 
verify the time-domain specifications after control design.
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10.2.3 Frequency-Domain Performance Specifications

System performance can also be specified in terms of frequency response. Figure 10.11 
illustrates the ideal frequency response magnitude of a closed-loop control system. Two 
frequency-domain specifications are defined: bandwidth ωBW and resonant peak Mr. 

Assume that the transfer function of the closed-loop system is Y(s)/R(s), where Y(s) is the 
system output and R(s) is the reference input. The bandwidth is defined as the frequency 
at which the magnitude of the closed-loop transfer function crosses −3 dB or 0.707. Recall 
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Re

27°

−2.02−15.56

Im

FIGURE 10.10
Allowable region for the poles in the s-plane.



502 Modeling and Analysis of Dynamic Systems

that the steady-state response of a linear system to sinusoidal excitations is called the sys-
tem’s frequency response. As shown in Figure 10.11, if the excitation frequency is lower 
than ωBW, the magnitude |Y(s)/R(s)| is close to 0 dB (or 1). This indicates that the system 
output follows the reference input. If the excitation frequency is higher than ωBW, the mag-
nitude |Y(s)/R(s)| is reduced to a small value, and the system output no longer follows the 
reference input. The higher the bandwidth, the faster the reference signal the system can 
follow. Thus, the bandwidth is a measure of the speed of the response.

The resonant peak Mr was introduced previously in Section 8.4. It is defined as the max-
imum value of the magnitude of the frequency response. As shown in Section 8.4, the 
resonant peak is related to the damping of the system. The smaller the damping is, the 
higher the resonant peak. Compared with the time-domain performance specifications, 
the resonant peak Mr is similar to overshoot Mp, both of which are related to the damping 
ratio ζ, whereas the bandwidth ωBW is similar to the rise time tr, both related to the natural 
frequency ωn.

10.2.4 Identification of Transfer Functions

As stated in Section 10.2.2, the time-domain performance specifications are related to sys-
tem parameters, such as the undamped natural frequency ωn and the damping ratio ζ. 
This relationship can be used to identify the transfer function of a dynamic system if it can 
be approximated as a second-order system.

Example 10.5: System Identification Using Time-Domain Performance Specifications

The unit-step response of a dynamic system is shown in Figure 10.12. Find the transfer 
function of the system if it can be approximated as a s s2 22+ +( )ζω ωn n . 
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Unit-step response of a second-order system in Example 10.5.
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Solution

As shown in Figure 10.12, the unit-response of the system reaches a maximum value 
of 1.47 and the steady-state value is 0.96. Thus, the overshoot is 
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from which the damping ratio can be determined, and 
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Note that the peak time tp = 0.645 s, which gives the damped natural frequency 
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Thus, the undamped natural frequency is 
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To determine the value of a, we apply the final-value theorem (see Section 2.3) to find the 
steady-state value of the unit-step response, that is, 
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which gives 

 a y= = =ss n
2ω 0 96 4 97 23 712. ( . ) .  

Therefore, the transfer function of the system is 23.71/(s2 + 1.98s + 24.70).
The frequency-domain performance specifications can also be used for system identi-

fication. More details will be given in Section 10.6.

PROBLEM SET 10.2 

 1. The transfer function of a dynamic system is given by

 G s
s

s s s s
( ) = +

+ + + +
1

4 5 2 64 3 2

 a. Using Routh’s stability criterion, determine the stability of the system.
 b.  Using MATLAB, solve for the poles of the system and verify the result 

obtained in Part (a).
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 2. The transfer function of a dynamic system is given by

 G s
s

s s s
( ) = +

+ −−
20 50

10 3053 2

 a. Using Routh’s stability criterion, determine the stability of the open-loop 
system.

 b. Suppose that a negative unity feedback is applied to this open-loop system. 
Using Routh’s stability criterion, determine the stability of the resulting closed-
loop system.

 c.  Using MATLAB, solve for the poles of the open and closed-loop systems 
and verify the results obtained in Parts (a) and (b).

 3. The unit-step response for a second-order system Y s U s s s( )/ ( ) /( )= + +ω ζω ωn
2

n n22 2  is 
given by

 y t t tt( ) cos sin= − ( ) +
−

( )












−1
1 2

e n
d d

ζω ω ζ

ζ
ω

 Prove that the relationship between the overshoot Mp and the damping ratio is

 Mp e= − −πζ ζ/ 1 2

 4. Consider a second-order system Y s U s s s( )/ ( ) /( )= + +ω ζω ωn
2

n n 22 2 , which has two 
poles at –4 ± 4j.  

 a. Determine the undamped natural frequency ωn, damping ratio ζ, and damped 
natural frequency ωd of the system.

 b. Estimate the rise time tr, overshoot Mp, peak time tp, and 2% settling time ts in 
the unit-step response for the system.

 5. Consider a second-order system Y s U s s s( )/ ( ) /( )= + +ω ζω ωn
2

n n 22 2 . Sketch the 
allowable region of the poles in the s-plane if the requirements for the system’s 
unit-step response are Mp ≤ 10% and rise time tr ≤ 0.2 s.

 6. Consider a second-order system Y s U s s s( )/ ( ) /( )= + +ω ζω ωn
2

n n 22 2 . Sketch the 
allowable region of the poles in the s-plane if the requirements for the system’s 
unit-step response are Mp ≤ 25%, 5% settling time ts ≤ 2 s, and rise time tr ≤ 0.5 s.

 7.  Consider a second-order system Y s U s s s( )/ ( ) /( )= + +ω ζω ωn
2

n n 22 2 . 
 a. Write a MATLAB m-file to plot the magnitude of the system’s frequency 

response function for the following cases: ωn = 2 rad/s and ζ = 0.01, 0.1, 0.5, 
and 1. Summarize the effects of the damping ratio on the frequency-domain 
performance.

 b. Repeat Part (a) for the following cases: ζ  =  0.1  and ωn  =  1, 2, and 6  rad/s. 
Summarize the effects of the natural frequency on the frequency-domain 
performance.

 8. The unit-step response of a dynamic system is shown in Figure 10.13. The maxi-
mum value of the response is 1.1 and its steady-state value is 0.95. The response 
reaches 10% and 90% of its steady-state value at 0.048 and 0.21 s, respectively. Find 
the transfer function of the system if it can be approximated as a s s2 22+ +( )ζω ωn n . 
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10.3 Benefits of Feedback Control

As discussed in Section 10.1, a closed-loop controller uses feedback to control the output of 
a plant. The input to a plant has an effect on its output, which is measured with a sensor 
and fed back to the controller, and then the computed control signal is used as the input 
to the plant, closing the loop. Feedback control has several advantages over open-loop 
control, such as stabilization, disturbance rejection, improved reference-tracking perfor-
mance, and reduced sensitivity to parameter variations. In this section, we show these 
benefits one by one using MATLAB or Simulink. The controller in each discussion and 
example is assumed to be a gain denoted by K.

10.3.1  Stabilization

Consider a plant represented by a transfer function G(s) = b(s)/a(s), where a(s) and b(s) are 
the denominator and numerator polynomials, respectively. Assume that G(s) is unstable, 
which implies that not all the poles, or the roots of the characteristic equation a(s) =  0, 
have negative real parts. If an open-loop control system is implemented, as shown in 
Figure  10.14, in which the output is Y(s) and the input is R(s), then the transfer function is 

 
Y s
R s

KG s
Kb s
a s

( )
( )

( )
( )

( )
= =  (10.21)

It is obvious that the open-loop control system has the same poles as the plant G(s), and 
thus, it is still unstable.

Now, we use a negative feedback control system. Figure 10.15 shows the corresponding 
block diagram. The closed-loop transfer function is 
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FIGURE 10.13
Problem 8.
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Y s
R s

KG s
KG s

Kb s
a s Kb s

( )
( )

( )
( )

( )
( ) ( )

=
+

=
+1  

(10.22)  

The characteristic equation of the closed-loop system is therefore a(s) + Kb(s) = 0. Properly 
choosing the control gain K can possibly make the closed-loop system stable. Routh’s sta-
bility criterion introduced in Section 10.2 is one way to determine the range of K such that 
the closed-loop control system is stable.

Example 10.6: Stabilization Using Feedback

Consider an unstable plant 

 G s
s

s s s
( ) =

+
+ −

2
4 53 2  

with feedback control, as shown in Figure 10.15. 

 a. Using Routh’s stability criterion, determine the range of the control gain K for 
which the closed-loop system is stable.

 b.  Use MATLAB commands to find the unit-step responses for open and 
closed-loop control. Assuming that the control gain is K  =  20, compare the 
open- and closed-loop responses.

Solution

 a. Solving the characteristic equation of G(s) yields the poles 0, 1, and −5. The 
positive real pole, 1, indicates that the plant G(s) is unstable. The same conclu-
sion can also be made using the first condition of Routh’s stability criterion, 
because the characteristic equation of G(s) has one negative coefficient, −5.

  The closed-loop transfer function is

 

Y s
R s

K
s

s s s

K
s

s s s

Ks K
s s K s

( )
( ) ( )

=

+
+ −

+
+

+ −

=
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4 5

2
4 5 2

3 2

3 2
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 The closed-loop characteristic equation is

 s s K s K3 24 5 2 0+ + − + =( )  

R(s)
E(s) U(s) Y(s)

G(s)KΣ
+

−

FIGURE 10.15
Closed-loop control.

R(s)
U(s) Y(s)

G(s)K

FIGURE 10.14
Open-loop control.
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 for which we can construct the Routh array as follows:

 

s K
s K

s
K K K

s K

3

2

1

0

1 5
4 2

2
5

4 5 2
4

0

2

:
:

:
( )

:

−

− =
− −

 

 To make the closed-loop system stable, all elements in the first column of the 
Routh array must be positive. Therefore,

 

K

K
2

5 0

2 0

− >

>





  

 which leads to K > 10.
 b.  For the open-loop control system shown in Figure 10.14, the controller 

block is connected with the plant in series. The following is the MATLAB 
session.

>> G = tf([1 2],[1 4 -5 0]);
>> K = 20;
>> olp = K*G;
>> step(olp);

 Figure 10.16 shows the unit-step response of the open-loop control system, 
which is obviously unstable because the response diverges. Therefore, the 
unstable plant cannot be stabilized using open-loop control. 
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FIGURE 10.16
Unit-step response of the open-loop control system in Example 10.6.
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 As introduced in Section 4.5, the MATLAB command feedback can be used 
to find the transfer function of the closed-loop system for the feedback control 
system in Figure 10.15.

>> clp = feedback(K*G,1);
>> step(clp);

As observed in Figure 10.17, the unit-step response of the closed-loop control sys-
tem converges and the unstable plant is stabilized. 

10.3.2  Disturbance Rejection

To compare the capabilities of the open-loop and the closed-loop control for disturbance 
rejection, assume that a disturbance is an input to the plant G(s). Figure 10.18 is the block 
diagram for the open-loop control, where 

 Y s G s U s G s D s KG s R s G s D s( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= + = +  (10.23) 

Equation 10.23 shows that the output Y(s) depends on the reference input R(s) and the dis-
turbance input D(s). Letting R(s) = 0 yields the transfer function relating the disturbance 
D(s) and the output Y(s), 

 
Y s
D s

G s
( )
( )

( )=
 

(10.24)

R(s)
U(s)+

K

+

D(s)

G(s) Y(s)
Σ

FIGURE 10.18
Open-loop control with disturbance input.
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FIGURE 10.17
Unit-step response of the closed-loop control system in Example 10.6.
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Note that K does not appear in Equation 10.24 and has no control over the disturbance in 
the open-loop case.

Using closed-loop control as shown in Figure 10.19, we have 

 Y s G s U s G s D s KG s R s Y s G s D s( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( )] ( ) ( )= + = − +  (10.25) 

Solving for Y (s) gives 

 Y s
KG s

KG s
R s

G s
KG s

D s( )
( )

( )
( )

( )
( )

( )=
+

+
+1 1  (10.26)

The transfer function relating the disturbance D(s) and the output Y(s) is 

 
Y s
D s

G s
KG s

( )
( )

( )
( )

=
+1  (10.27)

which indicates that K in the closed-loop case has control over the disturbance.

Example 10.7: Disturbance Rejection Using Feedback 

Consider a plant whose transfer function is 

 
G s

s
( ) =

+
4
10  

 a. Build a Simulink block diagram associated with Figure 10.18 to simulate open-
loop control with disturbance input. Assume that the controller is K = 2.5, the 
disturbance is a constant of −1, and the reference is a unit-step function with 
the step time at t = 0 s. Compare the steady-state values of the responses with-
out and with the disturbance.

 b. Build a Simulink block diagram associated with Figure 10.19 to simulate 
closed-loop control with disturbance input. Assume that the controller is 
K  =  50. The disturbance and the reference are the same as those in Part (a). 
Compare the steady-state values of the responses without and with the 
disturbance.

R(s) +

−

E(s)
K U(s)

+
G(s)

Y(s)
ΣΣ

D(s)

+

FIGURE 10.19
Closed-loop control with disturbance input.
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Solution

 a. The Simulink block diagram of the open-loop control is shown in Figure 10.20, 
in which the Constant block is used to represent the disturbance signal. We 
first set the Constant block to 0 and run the simulation. Then, we change 
the Constant block to −1 and rerun the simulation. The responses for those 
two cases are plotted in Figure 10.21. The steady-state value of the unit-step 
response is 1 without disturbance and 0.6 with disturbance.     

 b. The Simulink block diagram of the closed-loop control is shown in 
Figure  10.22. The responses are plotted in Figure 10.23. The steady-state 
value of the unit-step response is 0.95 without disturbance and 0.93 with 
disturbance.  

Although the closed-loop control is not as good as the open-loop control in the absence 
of disturbance, the error resulting from a constant disturbance can be made smaller in a 
closed-loop feedback system when compared with an open-loop system.
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FIGURE 10.21
Unit-step responses of open-loop control without- and with disturbance input.
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FIGURE 10.20
Simulink block diagram of open-loop control with disturbance input.
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10.3.3 Reference Tracking

As introduced in Section 10.1, there are two types of control systems: regulators and servos. 
The former ones are designed for disturbance rejection and the latter are designed for refer-
ence tracking. With feedback, a control system can achieve improved reference tracking perfor-
mance. To show this, let us consider the closed-loop control case in Figure 10.19, in which the 
disturbance D(s) is now set to zero. As a result, the closed-loop transfer function of the system is 

 
Y s
R s

KG s
KG s

( )
( )

( )
( )

=
+1  

(10.28)

A typical frequency response plot of the closed-loop system was given in Figure 10.11. As 
we discussed in Section 10.2, the output follows the reference input when|Y(s)/R(s)| ≈ 1. 
Equation 10.28 implies that Y(s) is approximately equal to R(s) if the magnitude 
KG s( )  1. In general, this can be done by increasing the value of the control gain K. 
Thus, a large control gain can reduce the steady-state error of the response.
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FIGURE 10.23
Unit-step responses of closed-loop control without- and with disturbance input.
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Simulink block diagram of closed-loop control with disturbance input.
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Example 10.8: Reference Tracking Using Feedback

Consider the closed-loop control system shown in Figure 10.24.   

 a.  Using MATLAB, plot the unit-step responses of the system for the follow-
ing values of K: 5, 50, and 500.

 b. Compute the steady-state errors for the different values of K. 

Solution

 a. The following is the MATLAB script. The unit-step responses of the system 
for the three different values of the control gain are shown in Figure 10.25. 
It is observed that the steady-state error becomes smaller as the control gain 
increases.   

K = [5 50 500]; 

G = tf([4],[1 10]); 

for i = 1:length(K) 

clp = feedback(K(i)*G,1); 

step(clp); 

hold on; 
end
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FIGURE 10.25
Unit-step responses for the system in Figure 10.24, with different values of K.
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FIGURE 10.24
A reference tracking control system with feedback.
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 b. The value of the steady-state error can be computed by applying the final-value 
theorem. The closed-loop transfer function E(s)/R(s) is

 
E s
R s KG s

( )
( ) ( )

=
+

1
1  

 For a unit-step input, we have

 e sE s sR s
E s
R s

s
s KG ss s s s
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=
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lim ( ) lim ( )
( )
( )

lim
( )
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s K K  

The steady-state errors for K = 5, 50, and 500 are 0.3333, 0.0476, and 0.005, respectively. 
It should be pointed out that a large control gain may also result in unsatisfactory tran-
sient response and even destabilize the system. Details will be discussed in Section 10.4.

10.3.4 Sensitivity to Parameter Variations

For model-based control, a controller implemented for a practical system is designed based 
on a mathematical model of the system. Therefore, it is important to obtain a precise model 
of the plant for control design. However, modeling errors do exist due to uncertainties in 
system parameters. For example, the dynamic behavior of a mass–spring system depends 
on the values of the mass and stiffness. The values used for modeling might be differ-
ent from the actual values due to inevitable measurement errors from the start or slight 
parameter changes caused by external effects. To maintain control performance, a control-
ler should be insensitive to parameter changes.

Consider a function f that depends on a parameter a. Denote the change in the parameter 
as δa. If the change in f due to the parameter change is δf, then the sensitivity of the func-
tion f with respect to the parameter a is defined as 

 S
f f
a a

a
f =

δ
δ  (10.29)

where the first-order variation δf is proportional to the derivative df/da and is given by 

 δ δf
f
a

a= d
d  (10.30)

Thus, the sensitivity Sa
f can be written as 

 S
a
f

f
a

a
f = d

d  (10.31)

To compare the sensitivity of open-loop control with that of closed-loop control, we 
assume that one or more parameters in the plant change. Without loss of generality, 
the disturbance is assumed to be zero. For the open-loop control shown in Figure 10.18, 
denote the transfer function from the reference signal to the system output as To(s), which 
is KG(s). Applying Equation 10.31 gives the sensitivity of the open-loop control system 
To(s) to the plant G(s) 
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which implies that open-loop control is very sensitive to the parameter variations in the 
plant. For example, a 5% error in the plant would yield the same percentage error in the 
open-loop transfer function.

For the closed-loop control case as shown in Figure 10.19, in which the disturbance is still 
set as zero, denote the closed-loop transfer function as Tc(s). Applying Equation 10.31 gives 

 S
G
T

T
GG

Tc

c

cd
d

=  (10.33)

The closed-loop transfer function Tc(s) is given by Equation 10.28. Thus, we have 
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Substituting it into Equation 10.33 yields 
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12  (10.35)

which can be made considerably smaller than 1 by adjusting the controller gain K. Thus, 
the overall transfer function in feedback control is less sensitive to variations in the plant 
gain compared with the one in open-loop control.

Example 10.9: Sensitivity to Parameter Variations

Consider a mass–damper–spring system G(s)  =  Y(s)/U(s)  =  1/(ms2  +  bs  +  k), where 
m = 1 kg, b = 8 N·s/m, and k = 40 N/m.

 a. Assume that the system is controlled in an open-loop control system with a con-
troller K = 40. Determine the steady-state value of the response to a unit-step 
input. If the spring stiffness is actually 50 N/m, recalculate the steady-state value 
of the response and determine the fractional change in the steady-state value.

 b. Repeat Part (a) assuming that the system is controlled in a feedback control 
system with a controller K = 2000.

Solution

 a. In the open-loop case, the steady-state value of the response to a unit-step 
input is

 
y sR s

Y s
R s

s
s

KG s
s ss s s

ss = = =
+ +

=
→ → →

lim ( )
( )
( )

lim ( ) lim
0 0 0 2

1 40
8 40

1
 

  If the spring stiffness is 50 N/m, then the steady-state value becomes
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  Note that yss is reduced by 20%, which is the same as the relative error in k.
 b. In the closed-loop case, the steady-state value of the response to a unit-step input is
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  If the spring stiffness is 50 N/m, then the steady-state value becomes
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Note that yss is reduced by 0.49% only, which is much less than the relative error in k. 
Although the closed-loop control is not as good as the open-loop control in the absence 
of modeling error, the tracking error resulting from parameter variations can be made 
smaller in a closed-loop feedback system compared with an open-loop system.

PROBLEM SET 10.3

 1. Consider the feedback system shown in Figure 10.26.   
 a. Using Routh’s stability criterion, determine the range of the control gain K for 

which the closed-loop system is stable.

 b.  Use MATLAB commands to find the unit-step responses for open and 
closed-loop control. Assume that the control gain is K = 30. Compare the open- 
and closed-loop responses.

 2. Consider the feedback system shown in Figure 10.27. Using Routh’s stability criterion, 
determine the range of the control gain K for which the closed-loop system is stable.   

 3. Reconsider Example 10.7. Using the final-value theorem, verify the steady-state 
errors to a unit-step input for open and closed-loop control without- and with 
disturbance.

 4. A stable system can be classified as a system type, which is defined as the degree 
of the polynomial for which the steady-state error is a non-zero finite constant. 
For instance, if the error to a step input, which is a polynomial of zero degree, is a 
non-zero finite constant, then such a system is called type 0, and so on. Consider 
the system in Figure 10.28.   

 a. Compute the following steady-state errors for: (1) a unit-step reference input, 
(2) a unit-ramp reference input u = t, and (3) a parabolic reference input u = 0.5t2.

 b. Determine the system type.

R(s) +
Σ

−
K

1
(s2 − 1)(s + 4)

Y(s)

s + 2
s + 6

FIGURE 10.27
Problem 2.

R(s)
Y(s)+

−

s + 1
KΣ s(s – 2)(s + 5)

FIGURE 10.26
Problem 1.
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 5.  Reconsider Example 10.9. Build Simulink block diagrams to simulate open and 
closed-loop control with parameter variations. Verify the steady-state response 
values yss obtained in Example 10.9.

 6. Consider the feedback control system shown in Figure 10.29.   
 a. Compute the sensitivity of the closed-loop transfer function to changes in the 

parameter τ.
 b. Compute the sensitivity of the closed-loop transfer function to changes in the 

parameter K.
 c.  Assuming τ = 1 and K = 1, use MATLAB to plot the magnitude of each of the 

sensitivity functions for s = jω. Use the logarithmic scale for the y-axis. Comment 
on the effect of parameter variations in τ and K for different driving frequencies ω.

10.4 Proportional–Integral–Derivative Control

A proportional–integral–derivative (PID) controller is a generic feedback control structure 
widely used in industries. The PID controller involves three terms. The proportional term 
determines the control signal based on the current error, the integral term determines the 
control signal based on the integral of error, and the derivative term determines the control 
signal based on the derivative of error. The expression of the PID controller in the time 
domain is given by 

 
u t k e t k e k
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d
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0

τ τ
 

(10.36)

where:
kp is the proportional control gain
kI is the integral control gain
kD is the derivative control gain
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τs + 1Σ

K
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FIGURE 10.29
Problem 6.
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FIGURE 10.28
Problem 4.
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Taking the Laplace transform of Equation 10.36 yields the transfer function of the PID 
controller as 

 
U s
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k s
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= + +p
I

D  (10.37)

Figure 10.30 shows a block diagram of feedback control using a PID controller denoted by 
C(s). In this section, we discuss the advantages and disadvantages of PID control. 

10.4.1 Proportional Control

For proportional feedback control, the controller transfer function is 

 

U s
E s

k
( )
( )

= p
 

(10.38)

Note that the controller structures in the previous sections represent the most basic pro-
portional feedback control. As discussed in Section 10.3, a high proportional control gain 
can result in smaller steady-state error. However, if kp is made too large, the closed-loop 
system may have reduced damping and even become unstable.

Example 10.10: Proportional Control 

Consider the mass–damper–spring system in Example 10.9, 

 
G s

s s
( ) =

+ +
1

8 402  

Use Simulink to build a block diagram for proportional feedback control. Find the unit-
step responses for kp = 25, 250, and 2000. Discuss the effects of the proportional feed-
back on the unit-step response.

Solution

The Simulink block diagram is shown in Figure 10.31. Note that Figure 10.31 also 
includes integral and derivative control loops, which will be used later in this section. Set 
kI and kD to zero for the current example. Run the simulation for kp = 25, 250, and 2000. 
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FIGURE 10.30
A block diagram of PID feedback control.
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Figure 10.32 illustrates the effects of proportional feedback control. It is readily observed 
that as kp increases, the steady-state error to the unit-step input becomes smaller. 
Applying the final-value theorem gives 
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FIGURE 10.31
Simulink block diagram for PID feedback control.
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 Responses of proportional control for (a) kp = 25, (b) kp = 250, and (c) kp = 2000.
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Substituting the three different proportional control gains kp = 25, 250, and 2000 yields 
steady-state errors of ess = 0.62, 0.14, and 0.02. For this particular system, the steady-state 
error will approach zero as kp increases. However, it will never be zero. 

On the other hand, the larger proportional gain results in less satisfactory oscillatory 
response. This is caused by reduced damping. Note that the characteristic equation of 
the closed-loop system with proportional control is 

 s s k2 8 40 0+ + + =p  

For a second-order system, the coefficients in the characteristic equation are related to 
the natural frequency and the damping ratio of the system, that is, 

 8 2 40 2= + =ζω ωn p n, k  

Obviously, if kp is made large, the natural frequency is increased. However, the damp-
ing ratio becomes smaller. This leads to a faster response, but with a bigger overshoot 
and much more severe oscillations.

10.4.2 Proportional–Integral Control

As seen in Example 10.10, increasing the proportional gain kp can reduce steady-state error, 
but cannot achieve zero steady-state error. Adding an integral term to the controller in 
Equation 10.38 results in a proportional–integral (PI) controller 
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If PI control is used in the previous example, the steady-state error becomes 
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Substituting the transfer function G(s) given in Example 10.10, we can obtain the result by 
evaluating the limit in Equation 10.40. The system with PI control has a zero steady-state 
error. Thus, the primary reason to introduce the integral control is to reduce, or possibly 
eliminate, the steady-state error.

Example 10.11: Proportional–Integral Control 

Use the Simulink block diagram built in Example 10.10 to find the unit-step responses 
for kI = 50, 500, and 1550. Set kp = 250 and kD = 0. Discuss the effects of the integral term 
on the unit-step response.

Solution

Figure 10.33 shows the unit-step responses of PI feedback control for kI =  50, 500, 
and 1550. The system response will achieve zero for each case if the simulation time 
is long enough. However, a large integral control gain results in lightly damped 
oscillations.
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10.4.3 Proportional–Integral–Derivative Control

The final term in a PID controller represents the derivative control. The complete three-
term controller is given by Equation 10.37. The main reason to introduce the derivative 
control is to increase the damping and thus to improve the stability of the system.

Example 10.12: Proportional–Integral–Derivative Control  

Use the Simulink block diagram built in Example 10.10 to find the unit-step responses 
for kD = 1, 10, and 50. Set kp = 250 and kI = 500. Discuss the effects of the derivative term 
on the unit-step response.

Solution

Figure 10.34 shows the unit-step responses of PID feedback control for kD = 1, 10, and 50. 
As kD increases, the overshoot of the unit-step response becomes smaller. This implies 
that the damping of the feedback control system becomes larger. However, a large 
derivative control gain kD leads to a slower response. 

In summary, a larger proportional gain kp results in a faster response and a smaller steady-
state error. However, an excessively large proportional gain kp leads to lightly damped 
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FIGURE 10.33
Responses of PI control for (a) kI = 50, (b) kI = 500, and (c) kI = 1550.
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oscillations and even instability. A larger integral gain kI eliminates steady-state errors 
more quickly, but reduces damping and leads to a larger overshoot. A larger derivative 
control decreases the overshoot, but slows down the speed of the response.

If a PID feedback control system is second-order, then any two free control gains 
(among kp, kI, and kD) can be determined based on the system stability and performance 
requirements.

Example 10.13: Proportional-Derivative Control of a Direct Current Motor–Driven Cart

Consider the feedback control system shown in Figure 10.35, in which the plant is the DC 
motor–driven cart given in Example 10.2. The input to the plant is the voltage applied to 
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FIGURE 10.35
Block diagram of a feedback control system.
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Responses of PID control for (a) kD = 1, (b) kD = 10, and (c) kD = 50.
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the DC motor, and the output is the position of the cart. Design a proportional-derivative 
(PD) controller such that the maximum overshoot in the response to a unit-step refer-
ence input is less than 10%, and the rise time is less than 0.15 s.

Solution

The closed-loop transfer function Y(s)/R(s) is 
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which is a second-order system. The closed-loop characteristic equation is 

 s k s k2 16 883 3 778 3 778 0+ + + =( . . ) .D p  

where the coefficients are related to the natural frequency and the damping ratio of the 
closed-loop system via 
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Note that there are two requirements for the transient response of the closed-loop 
system, that is, MP <  10% and tr <  0.15  s. To satisfy these two requirements, a set of 
reasonable values of ωn and ζ can be approximated using the relationships given in 
Section 10.2. 
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The requirement for overshoot indicates 

 ζ > 0 59.  

Letting ζ = 0.59 and substituting it into the requirement for rise time gives 

 ωn  rad/s> 12 33.  

This region is shown in Figure 10.36, which can be used as a starting point for control 
design. Note that damping slows the motion of the system. Thus, for a damping ratio 
higher than 0.59, the critical value of natural frequency should be higher than 12.33 rad/s 
to speed up the motion of the system. If the closed-loop poles are located to the left of 
the gray boundary in Figure 10.36, then the closed-loop response to a unit-step reference 
input will very likely meet the desired requirements. 

Choosing ζ = 0.65 and ωn = 13.5 rad/s yields kp = 48.24 and kD = 0.18. Figure 10.37 
shows the response of the closed-loop system to a unit-step reference input. 
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10.4.4 Ziegler–Nichols Tuning of PID Controllers

As mentioned earlier, all the methods considered in this chapter are model-based control, 
which requires that a dynamic model of the plant be available. To avoid this requirement, 
in the early 1940s, Ziegler and Nichols conducted numerous experiments and proposed 
two useful tuning methods for determining the PID control gains. The form of the PID 
controller used by Ziegler and Nichols is given by 
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FIGURE 10.37
Unit-step response of the cart system with PD control C(s) = 48.24 + 0.18 s.
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where:
TI is the integral time
TD is the derivative time

The gain parameters TI and TD are related to the parameters kp, kI, and kD through kI = kp/TI 
and kD = kpTD.

For the first method, known as the reaction curve method, a step response of the plant 
is measured. As shown in Figure 10.38, the S-shaped curve is characterized by two con-
stants, lag time L and reaction rate R, which are determined by drawing a line tangent 
to the curve and finding the intersections of the tangent line with the time axis and the 
steady-state level line. The values of kp, TI, and TD can be set using the parameters L and R 
according to the rules in Table 10.1.  

For the second method, known as the ultimate sensitivity method, the frequency of the 
oscillations of the plant at the limit of stability is measured. To use this method, a propor-
tional feedback control is applied to the plant and the proportional gain is increased until 
the closed-loop system becomes marginally stable. The corresponding proportional gain 
is defined as Ku, also called the ultimate gain. Figure 10.39 shows the response of a margin-
ally stable system. It is a pure harmonic response, in which the period of oscillation Pu can 
be measured, also known as the ultimate period. The values of kp, TI, and TD can then be 
set using the parameters Ku and Pu according to the rules in Table 10.2.  

TABLE 10.1

Ziegler–Nichols Tuning Based on Reaction Curve

Type of Controller Optimum Gains

P kp = 1/(RL)
PI kp = 0.9/(RL), TI = L/0.3
PID kp = 1.2/(RL), TI = 2L, TD = 0.5L

y
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t

L
τ
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R = A/τ 

FIGURE 10.38
Reaction curve method.
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PROBLEM SET 10.4

 1. Figure 10.40 shows a negative feedback control system.   
 a. Design a P controller such that the damping ratio of the closed-loop system is 0.5.
 b. Estimate the rise time, overshoot, and 2% settling time in the unit-step response 

for the closed-loop system.
 2. Consider the negative feedback control system shown in Figure 10.41.   
 a. Design a P controller such that the maximum overshoot in the response to a 

unit-step reference input is less than 15%, the 2% settling time is less than 1 s, 
and the rise time is less than 0.2 s.

TABLE 10.2

Ziegler–Nichols Tuning Based on Ultimate Gain and 
Ultimate Period

Type of Controller Optimum Gains

P kp = 0.5Ku

PI kp = 0.45Ku, TI = Pu/1.2
PID kp = 0.6Ku, TI = Pu/2, TD = Pu/8

y

t

Pu

FIGURE 10.39
Response of a marginally stable system.
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 b.  Use MATLAB to plot the unit-step response of the closed-loop system. Find 
the overshoot, 2% settling time, and rise time. If the time-domain specifications 
exceed the requirements, fine-tune and reduce them to be approximately the 
specified values or less.

 3. Consider the feedback control system shown in Figure 10.42.   
 a. Design a PD controller such that the closed-loop poles are at p1,2 = −6 ± 8j.
 b.  Use MATLAB to plot the unit-step response of the closed-loop system. 

Find the rise time, overshoot, peak time, and 1% settling time.
 4. Consider the feedback control system shown in Figure 10.43.   
 a. Find the values for kp and TD such that the maximum overshoot in the response 

to a unit-step reference input is less than 5% and the 2% settling time is less 
than 0.5 s.

 b. Compute the steady-state error of the closed-loop system to a unit-step refer-
ence input.

 c.  Verify the results of Parts (a) and (b) using MATLAB by plotting the unit-
step response of the closed-loop system. If the maximum overshoot and the 
settling time exceed the requirements, fine-tune and reduce them to be approx-
imately the specified values or less.

 5. Consider the feedback control system shown in Figure 10.44a.   
 a. If the desired closed-loop poles are located within the shaded regions shown 

in Figure 10.44b, determine the corresponding ranges of ωn and ζ of the closed-
loop system.

 b. Design a PI controller such that the closed-loop poles are at p1,2 = −9 ± 12j.
 c. Compute the steady-state errors of the plant and the closed-loop system to a 

unit-step reference input.

 d.  Verify the results in Part (c) using MATLAB by plotting the unit-step 
responses of the plant and the closed-loop system.
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527Introduction to Feedback Control Systems

 6. Consider the feedback control system shown in Figure 10.45.   
 a. Find the values for kp and TI such that the maximum overshoot in the response 

to a unit-step reference input is less than 15% and the peak time is less than 0.4 s.
 b.  Verify the results in Part (a) using MATLAB by plotting the unit-step 

response of the closed-loop system. If the maximum overshoot and the peak 
time exceed the requirements, fine-tune and reduce them to be approximately 
the specified values or less.

 7. The unit-step response of a plant is shown in Figure 10.46.   
 a. The lag time L and the reaction rate R can be determined from the figure. Find 

the P, PI, and PID controller parameters using the Ziegler–Nichols reaction 
curve method.
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 b.  Assume that the transfer function of the plant is 3/(10s2 +  8s  +  1). Use 
MATLAB to plot the unit-step response of the closed-loop system with P, PI, or 
PID control.

 8. Consider a proportional feedback control system. As shown in Figure 10.47, the 
closed-loop system becomes marginally stable when the proportional gain is 0.75. 
Find the P, PI, and PID controller parameters using the Ziegler–Nichols ultimate 
sensitivity method. 

10.5 Root Locus

Beginning with this section, and for the remainder of this chapter, the discussion focuses 
on how to design a feedback controller to meet stability and performance requirements. 
Root locus, Bode plot, and state-space techniques are three control design methods that 
are introduced in Sections 10.5 through 10.7, respectively. To simplify the discussion, all 
controllers in those three sections are limited to proportional feedback control.

As presented in Section 10.2, the time-domain specifications, such as rise time tr, over-
shoot Mp, peak time tp, and settling time ts, are related to the natural frequency ωn and the 
damping ratio ζ, both of which can be used to express the pole locations of a second-order 
system in the s-plane. Thus, the dynamic response of a system can be influenced by chang-
ing the system’s pole locations. Root locus, developed by W. R. Evans in the late 1940s, is a 
graphical design technique that shows how changes in one of the system parameters will 
modify roots of the closed-loop characteristic equation, or the closed-loop poles, and thus 
change the dynamic response of the system. In this section, we first introduce the procedure 
to sketch the root locus of a feedback control system. Then, we discuss ways to analyze the 
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stability and performance of the closed-loop system based on the root locus. Finally, we 
learn how to design a proportional feedback controller using the root locus technique.

10.5.1  Root Locus of a Basic Feedback System

Consider a basic feedback control system as shown in Figure 10.48, in which G(s) is the 
transfer function of the plant. The controller is assumed to be a proportional gain, C(s) = K. 
The closed-loop transfer function is 
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(10.42)

and the characteristic equation is 

 1 0+ =KG s( )  (10.43)

Note that the roots of the closed-loop characteristic equation are the poles of the closed-
loop system. As observed from Equation 10.43, the closed-loop poles are affected by the 
value of K. When K varies from 0 to ∞, the closed-loop poles will move around the s-plane 
and create a trajectory, or a locus of poles. 

Intuitively, a root locus can be constructed by changing the value of K from 0 to ∞, solv-
ing the characteristic equation for the roots, and plotting the poles in the s-plane. However, 
it was difficult to obtain the poles for high-order systems before the availability of math-
ematical and scientific computing software. In the late 1940s, Evans developed rules to plot 
a locus, without actually solving for the roots of the characteristic equation. The following 
example shows the step-by-step procedure to manually construct a root locus.

Example 10.14: Root Locus Sketching

For the system in Figure 10.49, find the locus of closed-loop poles with respect to K. 
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FIGURE 10.48
Block diagram of a basic feedback control system.
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FIGURE 10.49
Block diagram for the feedback control in Example 10.14.
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Solution

Step 1: Express the closed-loop characteristic equation in the form of
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  From Figure 10.49, the closed-loop transfer function is 

 
Y s
R s

C s G s
C s G s H s

( )
( )

( ) ( )
( ) ( ) ( )

=
+1  

  Thus, the closed-loop characteristic equation is

 
1 1

1
3 2 2

1
2

02+ = +
+

+ + + +
=C s G s H s K

s
s s s s

( ) ( ) ( )
( )( )  

  which is in the form of 1 + Kb(s)/a(s) = 0 with 
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   Denote L(s) = b(s)/a(s), where L(s) is the loop gain. Note that the roots of a(s) 
are the poles of L(s) and the roots of b(s) are the zeros of L(s). The number of 
poles determines the number of branches of the root locus.

Step 2:  Draw the axes of the s-plane to a suitable scale and mark a cross symbol 
“×” for each pole of L(s) and a circle symbol “o” for each zero of L(s).

  RULE 1: Assume that L(s) has n poles and m zeros. The n branches of the 
locus start at the poles of L(s) and the m of these branches end at the zeros 
of L(s).

 Solving a(s) = 0 for the poles gives 

 p p p1 2 3 43 1 2= − = − ± = −, ,, j  

 Solving b(s) = 0 for the zero gives 

 z1 1= −  

 The locations of the four poles and one zero are shown in Figure 10.50.
Step 3: Find the real axis portions of the locus.

  RULE 2: The portions of the root locus on the real axis are to the left of 
an odd number of poles and zeros.

    This implies that a point on the real axis is part of the root locus if there 
is an odd number of poles and zeros to its right. As shown in Figure 10.50, 
there are two poles, −2 and −3, and one zero, −1, located on the real axis, 
which is divided into four segments, (−∞, −3), (−3, −2), (−2, −1), and (−1, +∞). 
To demonstrate RULE 2, consider a point within (−2, −1). There are two 
complex poles and one zero (three in total), to its right. Because three is an 
odd number, this portion of the real axis is part of the root locus. Similarly, 
the segment (−∞, −3) is also part of the root locus because there are four 
poles and one zero (a total of five), to its right. The thick solid lines in 
Figure 10.50 represent the portions of the root locus on the real axis.
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Step 4: Draw the asymptotes for large values of K.
  RULE 3: For large s and K, n − m branches of the locus are asymptotic 

to lines radiating out from the point s = α on the real axis at an angle ϕl, 
where 
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   In our case, n = 4 and m = 1. Thus, there are three asymptotes, which radi-
ate from a centroid α on the real axis 
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  The centroid and asymptotes are shown in Figure 10.50.
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FIGURE 10.50
Real axis portions of the root locus and asymptotes for Example 10.14.
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Step 5: Compute the departure and arrival angles.
  RULE 4: The angle of departure of a branch of the locus from a pole is 

given by 

 ϕ ψ ϕdep = − +∑ ∑i i 180° (10.47)

 where:
  ∑φi is the sum of the angles from this pole to the remaining poles
  ∑ψi is the sum of the angles from this pole to all the zeros

 The angle of arrival of a branch at a zero is given by

 ψ ϕ ψarr = − +∑ ∑i i 180° (10.48)

 where:
  ∑ψi is the sum of the angles from this zero to the remaining zeros
  ∑φi is the sum of the angles from this zero to all the poles

 Note that Equations 10.47 and 10.48 are valid for nonrepeated poles 
and zeros. The formula used for computing the departure or arrival 
angles from a repeated pole or to a repeated zero can be found in con-
trol books.

  In Figure 10.50, two branches of the locus on the real axis have been com-
pletely drawn. One of them starts from the pole at −2 and ends at the zero 
at −1, and the other starts from the pole at −3 and ends at −∞ by approach-
ing the second asymptote. There is no need to compute the departure or 
arrival angles for the poles and the zero on the real axis. Note that there is 
a pair of complex conjugate poles at −1±j, from each of which one branch 
of the locus starts. Selecting the pole at −1+j and applying Equation 10.47 
gives 

 ϕ ψ ϕ ψ ϕ ϕ ϕdep = − − = − + + −∑ ∑i i 180 1801 1 2 3° °( )  

 As sketched in Figure 10.51, ψ1 = 90°, which is the angle of the line connect-
ing the complex pole at −1+j and the zero with respect to the positive real 
axis. Similarly, we can determine the angles φi, as φ1 = 90°, φ2 = 45°, and 
ϕ3

1 1
2 26 57= = °−tan ( ) . . Thus, 

 ϕdep = ° − ° + ° + ° − ° = − ° = °90 90 45 26 57 180 251 57 108 43( . ) . .  

 The departure angle from the pole at −1−j is −108.43° because the root 
locus is symmetric about the real axis.

Step 6: Determine the points where the root locus crosses the imaginary axis.
  RULE 5: The root locus crosses the imaginary axis at points where the 

characteristic equation satisfies

 
1 0+ =K

b
a
( )
( )
j
j
ω
ω  

(10.49)

 or

 a Kb( ) ( )j jω ω+ = 0 (10.50)
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 Note that if a point on the imaginary axis is part of the root locus, then it 
must be a root of the characteristic equation given by Equation 10.44. The 
point on the imaginary axis can be expressed as s = jω and substituting it 
into Equation 10.44 leads to Equation 10.49 or 10.50. Solving either of them 
yields the jω-axis crossing points and the corresponding values of K.

  In this example, we have

 ( )( )( ) ( )s s s s K s+ + + + + + =3 2 2 2 1 02  

 Substituting s = jω and rearranging the equation gives 

 ( ) ( ) ( )j j j j jω ω ω ω ω4 3 27 18 22 12 0+ + + + + + =K K  

 Separating the real and imaginary terms results in

 ( ) ( )ω ω ω ω ω4 2 318 12 7 22 0− + + + − + + =K Kj  

 which is equivalent to two equations

 
ω ω

ω ω ω

4 2

3

18 12 0
7 22 0

− + + =
− + + =







K
K  

 Solving for ω, we obtain 

 ω ω ω1 2 3 4 50 3 44 0 92= = ± = ±, . , ., , j 

 where the last two roots are not valid because ω represents frequency and 
is real. The corresponding values of K are 

 K K1 2 312 60 91= − =, .,  

 where the first value is not valid because the gain K varies from 0 to +∞. 
Thus, the root locus crosses the jω-axis at ±3.44j when K = 60.91.
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Step 7: Complete the sketch.
  As shown in Figure 10.52, two complex branches of the locus depart 

from the complex poles, cross the imaginary axis, enter the right-half 
s-plane, and end at infinity by approaching the asymptotes. Combining 
the complex branches with the real axis portions of the locus, we have the 
sketch completed.

  Rules 1 through 5 can be used to roughly sketch a root locus. One more 
rule is available for computing the so-called break-in or break-away points, 
but this will not be covered in this text. With the availability of MATLAB, 
these rules are not necessary to plot a root locus. However, learning these 
rules can help understand classical control design techniques and evalu-
ate the correctness of a computer-generated root locus.

  The MATLAB command used to sketch a root locus is rlocus, which 
calls the loop gain L(s). The following is the MATLAB session to generate 
the root locus shown in Figure 10.52.

>> num = [1 1];
>> den = conv(conv([1 3],[1 2 2]),[1 2]);
>> sysL = tf(num,den);
>> rlocus(sysL); 

10.5.2  Analysis Using Root Locus

Using the root locus technique, it is very easy to determine the stability of a closed-loop 
system when the proportional gain K varies from 0 to ∞. For a particular value of K, if 
any of the poles are in the right-half s-plane, then the corresponding closed-loop system is 
unstable. If all the poles are in the left-half s-plane, then the closed-loop system is stable. If 
any of the poles are on the imaginary axis and they are nonrepeated, then the closed-loop 
system is marginally stable.
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From the root locus, we can also obtain information about the performance of a closed-
loop system using the concept of a dominant pole. For a system with multiple poles, the 
pole closest to the origin is called the dominant pole. If the dominant poles are a pair of 
complex conjugates, the distance between either one of them and the origin is associated 
with the natural frequency if the system is approximated as a second-order system. If the 
dominant pole is a real pole, the distance between the pole and the origin is associated 
with the time constant if the system is approximated as a first-order system. Both the 
natural frequency and the time constant determine the speed of transient response. The 
dominant pole has the slowest speed of response, and it dominates the effect of all other poles 
with higher frequencies or lower time constants.

Example 10.15: Analysis Using Root Locus 

Refer to the root locus obtained in Example 10.14. Comment on the stability and perfor-
mance of the closed-loop system when K varies from 0 to ∞.

Solution

When K =  0, which corresponds to having no control, the root locus starts from the 
poles of the loop gain L(s). As shown in Figure 10.53, all four open-loop poles are 
located in the left-half s-plane. This implies that the open-loop system is stable. As K 
increases, the four closed-loop poles move along four different branches of the root 
locus. For 0 ≤ K < 60.91, all the poles are in the left-half s-plane, and thus, the closed-loop 
system is stable. When K = 60.91, two complex poles, ±3.44j, appear on the imaginary 
axis, and thus, the closed-loop system becomes marginally stable. For K > 60.91, the two 
complex branches of the root locus cross the imaginary axis and enter the right-half 
s-plane. The closed-loop system becomes unstable. 

When K varies between 0 and 60.91, the pair of complex poles has smaller absolute 
value of real part than the other poles. Consequently, they dominate the effect of all 
other poles, and thus, the closed-loop system exhibits undamped oscillations. For exam-
ple, the closed-loop poles are −3.29, −1.66, and −1.03 ± 1.15j when K = 1. Figure 10.54 
is the corresponding closed-loop unit-step response, which has an overshoot of 21.1%. 
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As  K  increases, the closed-loop system will exhibit severe oscillations because the 
dominant complex poles move toward the imaginary axis and the damping decreases. 
For example, the closed-loop poles are −5.16, −1.06, and −0.39  ±  2.74j when K  =  30. 
Figure 10.55 is the corresponding closed-loop unit-step response, in which the overshoot 
is as high as 110%.  

Note that although the root locus is constructed based on the loop gain L(s), it also gives 
information on the stability and performance of the closed-loop system varying with 
respect to the proportional gain K. This is what makes the root locus technique attractive.
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10.5.3  Control Design Using Root Locus

As we learned in subsection 10.5.1, the root locus is a plot of all possible roots of the closed-
loop characteristic equation 1 + KL(s) = 0 for real positive values of K, which is generally 
the gain of a proportional controller. It is very easy to select K from a particular root locus, 
so that the closed-loop system meets the performance specifications.

Example 10.16: Proportional Control Design Using Root Locus 

Design a proportional controller for the cart system in Example 10.13 using the root 
locus technique.

Solution

For proportional feedback control of the DC motor–driven cart, the loop gain L(s) is 
equal to the transfer function of the plant G(s), 

 L s G s
s s

( ) ( )
.

.
= =

+
3 778
16 8832  

The root locus is plotted in Figure 10.56 using the MATLAB command rlocus. Note 
that the closed-loop system is a second-order system. Two closed-loop poles that are real 
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appear for small values of K, specifically K ≤ 18.9. When K > 18.9, the closed-loop system 
has a pair of complex conjugate poles, which move along the complex portion of the root 
locus as K varies between 18.9 and ∞. 

To select the value of the proportional control gain that will meet the performance 
specifications, we can turn on the grid lines to the root locus using the following 
command.

 >> grid on 

As discussed in subsection 10.2.2, the semicircles in Figure 10.56 indicate lines of con-
stant natural frequencies ωn and the diagonal lines indicate constant damping ratios ζ. 
In this example, we need an overshoot that is less than 10% (which implies ζ > 0.59) and 
a rise time that is less than 0.15 s (which implies ωn > 12.33 rad/s). In Figure 10.56, the 
solid diagonal lines indicate pole locations with a damping ratio of about 0.59. In between 
these lines, the poles have ζ > 0.59 and outside of the lines ζ < 0.59. The solid semicircle 
is the locus of all poles with ωn = 12.33 rad/s, whereas those inside the semicircle have 
ωn < 12.33 rad/s, and those outside correspond to ωn > 12.33 rad/s. Thus, only the part of 
the root locus between the two diagonal lines and outside of the semicircle is acceptable.

Figure 10.57 zooms in on the desired region, in which the vertical line is a part of the 
root locus. Left-clicking the root locus, you will see the values of the pole and the gain 
that is required to place one of the closed-loop poles at that particular location. Holding 
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down the left mouse button and moving the mouse along the root locus, you can see the 
values of the pole and the gain varying correspondingly. 

Let us select K = 50. Figure 10.58 is the corresponding unit-step response of the closed-
loop system with proportional feedback control. The closed-loop system meets the 
given specifications. 

Note that the closed-loop poles cannot be placed arbitrarily in the s-plane with 
only a static proportional controller since the shape of the root locus is fixed for a 
given plant. A more useful design can be obtained by adding a pole or zero to the 
controller and making it a dynamic controller. This results in so-called lead or lag 
compensators, C(s) = (s + z)/(s + p). The reader can refer to the control systems books 
for more details.

PROBLEM SET 10.5

 1. Roughly sketch the root locus with respect to K for the equation of 1 + KL(s) = 0 and 
the following choices for L(s). Make sure to give the asymptotes, arrival or depar-
ture angles, and points crossing the imaginary axis. Verify your results using 
MATLAB.  
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Unit-step response of the cart system with proportional feedback control, K = 50.
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 2. Repeat Problem 1 for the following choices for L(s).  

 a. L s
s s

( ) =
+ +

1
2 102

 b. L s
s s s

( )
( )( )

=
+ + +

1
4 2 102

 c. L s
s s

s s s
( )

( )( )
= + +

+ + +

2

2

4 8
4 2 10

 d. L s
s s s

s s s
( )

( )( )
( )( )

= + + +
+ + +

1 4 8
4 2 10

2

2

 3. A control system is represented using the block diagram shown in Figure 10.59. 
Sketch the root locus with respect to the proportional control gain K. Determine 
all the values of K for which the closed-loop system is stable.   

 4.  A control system is represented using the block diagram shown in Figure 10.60, 
in which the parameter a is subjected to variations. Sketch the root locus with 
respect to the parameter a. Determine all the values of a for which the closed-loop 
system is stable. 

 5.  Figure 10.61 shows the root locus of a unity negative feedback control system, 
where K is the proportional control gain.   

 a. Determine the transfer function of the plant. Use MATLAB to plot the root 
locus based on your choice of the plant, compare it with the root locus shown 
in Figure 10.61, and check the accuracy of your plant transfer function.

 b. Give comments on the stability of the closed-loop system when K varies from 
0 to ∞.

 c. Give comments on the transient performance of the closed-loop system when 
K = 0.5 and 5. Use MATLAB to plot the corresponding unit-step responses and 
verify your comments.
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−
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FIGURE 10.60
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 6.  Figure 10.62 shows the root locus of a unity negative feedback control system, 
where K is the proportional control gain.   

 a. Determine the transfer function of the plant. Use MATLAB to plot the root 
locus based on your choice of the plant, compare it with the root locus shown 
in Figure 10.62, and check the accuracy of your plant transfer function.

 b. Find the range of values of K for which the system has damped oscillatory 
response. What is the value of K when pure harmonic oscillations occur? Also, 
what is the frequency of pure harmonic oscillations? Use MATLAB to plot the 
corresponding unit-step response and verify the accuracy of your computed 
frequency.

 7.  Consider the feedback system shown in Figure 10.63.   
 a. Find the locus of the closed-loop poles with respect to K.
 b. Find a value of K such that the maximum overshoot in the response to a unit-

step reference input is less than 5%. What is the corresponding steady-state 
error of the closed-loop system?

 c. Plot the unit-step response of the closed-loop system to verify the result for 
Part (b).

 8.  Consider the feedback system shown in Figure 10.64. 
 a. Find the locus of the closed-loop poles with respect to K.
 b. Find a value of K such that the maximum overshoot in the response to a unit-

step reference input is less than 20% and the 2% settling time is less than 1.1 s.
 c. Plot the unit-step response of the closed-loop system to verify the result in 

Part (b). 
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10.6 Bode Plot

The Bode plot technique is widely used to display a frequency response function. It also 
gives useful information for analyzing and designing control systems. Stability criteria 
can be interpreted using the Bode plot and numerous control design techniques are based 
on the Bode plot. In Section 8.4, we introduced the concept of the Bode plot and presented 
the Bode plot of the frequency response function for two fundamental systems, first-order 
and second-order. In this section, we first discuss how to use the Bode plot to display the 
frequency response function for a general dynamic system. Then, we learn how the Bode 
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plot is utilized to determine stability. Finally, we will see how the Bode plot technique is 
used to design a proportional feedback controller.

10.6.1  Bode Plot of a Basic Feedback System

Consider the basic feedback control system shown in Figure 10.65. The open-loop transfer 
function is KG(s), which can be written in the form 

 
KG s K

s z s z s z
s p s p s p

m

n
( )

( )( ) ( )
( )( ) ( )

= − − −
− − −

1 2

1 2



  
(10.51)

explicitly showing the poles and zeros. Replacing s with jω yields the frequency response 
function 

 
KG K

z z j z
p p j p

m

n
( )

( )( ) ( )
( )( ) ( )

j
j j
j j

ω
ω ω ω
ω ω ω

=
− − −
− − −

1 2

1 2



  
(10.52) 

The frequency response function can be displayed using two curves: the Bode magnitude 
plot and the Bode phase plot. By definition, the magnitude of KG(jω) in decibels is 

 

KG KG

K z z

( ) log ( )

log log log

j j

j j

dB
ω ω

ω ω

=

= + − + − +

20

20 20 20

10

10 10 1 10 2 

− − − − −20 2010 1 10 2log logj jω ωp p  

(10.53)

and the phase of KG(jω) is 

 ∠ = ∠ + ∠ − + ∠ − + − ∠ − − ∠ − −[ ( )] ( ) ( ) ( ) ( )KG K z z p pj j j j jω ω ω ω ω1 2 1 2  (10.54)

Equations 10.53 and 10.54 show that the magnitude (in decibels) and phase of the fre-
quency response function each is the sum of the magnitudes and phases of simple terms, 
which are similar to each other. If we know how to draw the Bode plot for each individual 
term, then the composite curve can be obtained by combining all the terms involved.

Depending on the locations of poles or zeros, there are four classes of basic terms: 

 1. Constant terms K (no pole or zero)
 2. Integral or derivative terms (jω)±n (with pole(s) or zero(s) at the origin)
 3. First-order terms (jωτ + 1)±1 (with a real pole or zero at −1/τ)
 4. Second-order terms [(jω/ωn)2 + 2ζjω/ωn + 1]±1 (with a pair of complex conjugate 

poles or zeros at − ± −ζω ω ζn nj 1 2 )
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Y(s)
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FIGURE 10.65
Simplified feedback control system.
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Figure 10.66 is an example of a plot with a constant term K = 10. Because K is independent 
of the frequency, both magnitude and phase in the entire frequency region are horizontal 
lines. The magnitude in decibels is 

 K K
dB
= 20 10log  (10.55)

and the phase is 

 ∠ =K 0° (10.56) 

For integral or derivative terms, the magnitude of (jω)±n in decibels is 

 ( ) log ( ) log logj j j
dB

ω ω ω ω± ±= = ± × = ±n n n n20 20 2010 10 10  (10.57)

Note that the magnitude plot is drawn using the logarithmic scale for the frequency, that 
is, log10 ω. Thus, the magnitude plot of an integral or derivative term is a straight line with 
a slope ±20n dB/decade, which means that the magnitude will change by ±20n dB as the 
frequency increases by a factor of 10. Geometrically, a straight line is uniquely determined 
by its slope and one point that it goes through. By Equation 10.57, this line always crosses 
(1 rad/s, 0 dB) regardless of the value of n. Figure 10.67 shows Bode plots for an integral 
term 1/jω and a derivative term jω. Their magnitude plots intersect at (1 rad/s, 0 dB) and 
the slope is −20 dB/decade for 1/jω and +20 dB/decade for jω. The phase of (jω)±n is 

 ∠ = ± ∠ = ± ×± °( ) ( )j jω ωn n n 90  (10.58)

which is independent of frequency. As shown in Figure 10.67, the phase is a horizontal line 
and it is −90° for 1/jω and +90° for jω. 

The Bode plots of the frequency response function for a first-order and second-order 
 system are shown in Figures 8.23 and 8.25. In this section, we discuss the plotting of 
asymptotes for more general cases as indicated in the third and fourth classes.

40

20

0

−20

100

0

−100

M
ag

ni
tu

de
 (d

B)
Ph

as
e (

de
gr

ee
s)

Frequency (rad/s)

10−1 100 101 102

10−1 100 101 102

FIGURE 10.66
Bode plot for K = 10.



545Introduction to Feedback Control Systems

For the first-order terms (jωτ + 1)±1, Figure 10.68 shows the magnitude plots with the 
asymptotes. Let us take jωτ + 1 as an example. At low frequencies, ωτ 1, we have 
jωτ + 1 ≈ 1. Thus, the magnitude approaches a horizontal line crossing 0 dB. At high fre-
quencies, ωτ 1, we have jωτ + 1 ≈ jωτ, for which the magnitude is 

 20 20 20 20 2010 10 10 10 10log log ( ) log log logjωτ ωτ ω τ ω= = + ≈  (10.59) 
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Note that τ is a finite number for a given frequency response function, and its effect on 
the magnitude can be ignored at very high frequencies. Thus, the magnitude approaches 
a straight line with a slope of 20 dB/decade. When ωτ = 1 (or ω = 1/τ), the magnitude is 

 20 1 20 2 310 10log logj dB+ = =  (10.60)

The corresponding frequency 1/τ is the corner frequency, at which the slope of the asymp-
tote changes from 0 to 20 dB/decade. The magnitude plot in the entire frequency region 
can be obtained by drawing a smooth curve following the asymptotes with 3 dB above the 
line at the corner frequency.

Figure 10.69 shows the asymptotes of the phase plots for the terms (jωτ + 1)±1. Again, let 
us take jωτ + 1 as an example. The phase can be approximated as ∠ = °1 0  at low frequencies 
and ∠( ) = °j 9ωτ 0  at high frequencies. The phase at the corner frequency 1/τ is ∠ +( ) = °j 1 45 . 

The Bode plot of the second-order terms [(jω/ωn)2 +  2ζjω/ωn +  1]±1 can be drawn in a 
similar manner as the first-order terms. The asymptotes for magnitude and phase plots 
are shown in Figures 10.70 and 10.71, respectively. Unlike the first-order terms, the cor-
ner frequency is ω = ωn, at which the magnitude changes slope from 0 to +40 dB/decade 
if the term is in the numerator or to −40  dB/decade if the term is in the denominator. 
Correspondingly, the phase changes from 0° to +180° or −180°. The magnitude at the cor-
ner frequency ωn greatly depends on the damping ratio ζ. A rough sketch can be made by 
noting whether the peak is either 20 log10(1/(2ζ)) below or above the asymptotes.  

For a general dynamic system, the frequency response function can always be written 
as the product of several basic terms. Equations 10.53 and 10.54 suggest that the composite 
magnitude curve and the phase curve are the sum of their respective individual curves. 
The following example shows how to obtain a quick sketch of the composite curve using 
the asymptotes of the basic terms.
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Phase plots for (a) (jωτ + 1)+1 and (b) (jωτ + 1)–1.
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Example 10.17: Bode Plot Sketching

Plot the Bode magnitude and phase for the system with the transfer function 

 KG s K
s

s s s
( )

( )
=

+
+ +

2
8 4002  

where K = 1.

Solution

Step 1: Convert the transfer function to the frequency response function 

 KG( )
[( ) ]

. (( / ) )
[( / ) (

j
j

j j j
j

j j
ω

ω
ω ω ω

ω
ω ω

=
+

+ +
=

+
+

2
8 400

0 005 2 1
20 22 2 00 2 20 1. )( / ) ]jω +  

 Note that first-order and second-order terms are expressed in their cor-
responding basic forms, jωτ + 1 and (jω/ωn)2 + 2ζjω/ωn + 1.

Step 2:  Identify the basic terms and the corner frequencies associated with first-
order and second-order terms.

  The basic terms in this example are listed as follows: 
 1. One constant term 0.005
 2. One integral term 1/jω
 3. One first-order term jω/2 + 1 in the numerator with 1/τ = 2 rad/s
 4. One second-order term in the denominator with ωn  =  20  rad/s and 

ζ = 0.2
Step 3: Draw the asymptotes for the magnitude curve.

  We start with indicating the corner frequencies on the frequency axis. 
Then, the asymptote for the derivative term is drawn through the point 
(1 rad/s, 0 dB) with a slope of −20 dB/decade. The asymptote is extended 
until the first corner frequency 2  rad/s is met, which is associated with 
the first-order term in the numerator. At the first corner frequency, the 
slope increases by 20 dB/decade and changes to 0 dB/decade. We then con-
tinue extending the asymptote until the second corner frequency 20 rad/s 
is met, which is associated with the second-order term in the denomina-
tor. At the second corner frequency, the slope decreases by −40 dB/decade 
and changes from 0 dB/decade to −40 dB/decade. Finally, we consider the 
effect of the constant term 0.005 by sliding the asymptotes downward by 
46 dB (i.e., 20log100.005 = −46 dB). This completes the composite magnitude 
asymptotes.

  The approximate Bode magnitude plot can be obtained by drawing a 
smooth curve following the asymptotes. The magnitude is 3 dB above the 
asymptote at the first-order numerator corner frequency. A resonant peak 
is sketched at the second-order denominator corner frequency. Note that 
the associated damping ratio ζ is 0.2. Thus, the peak above the asymptote 
is about 20log10(1/(2ζ)) = 7.9588 dB. Figure 10.72a shows the magnitude plot 
and the asymptotes.

Step 4: Draw the asymptotes for the phase curve.
  Following the same procedure as in Step 3, we can sketch the asymptotes 

for the composite phase plot. We start with sketching the asymptote for the 
derivative term with a horizontal line at −90°. The phase changes by 90° at 
the first-order numerator corner frequency 2 rad/s, and −180° at the second-
order denominator corner frequency 20 rad/s. Because the phase of a con-
stant is 0° for any frequency, the constant is not considered when sketching 
the phase plot. Figure 10.72b shows the phase plot and the asymptotes.   
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In summary, the asymptote for a composite magnitude or phase curve is plotted by 
starting with the (jω)±n term, and changing the slope or the phase at each corner fre-
quency depending on whether the corner frequency is associated with a first-order or 
second-order term in the numerator or denominator. For first-order terms, the changes 
of slope and phase are +20  dB/decade and +90°, respectively, when in the numerator, 
and −20 dB/decade and −90°, respectively, when in the denominator. For second-order 
terms, the changes of slope and phase are +40 dB/decade and +180°, respectively, when 
in the numerator, and −40 dB/decade and −180°, respectively, when in the denominator. 
The asymptote for the magnitude is completed by shifting it up or down depending on 
the value of the constant term.

Bode plots can also be obtained experimentally by measuring the output amplitude and 
phase of a plant undergoing a sinusoidal input excitation. Following the rules of sketching 
Bode plots, we are able to use experimental information to identify the frequency response 
function or transfer function of a dynamic system.
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FIGURE 10.72
Bode plot for the system in Example 10.17: (a) magnitude plot with asymptotes and (b) phase plot with asymptotes.
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Example 10.18: System Identification in Frequency Domain

The Bode plot of a dynamic system is shown in Figure 10.73, in which the asymptotes 
are also given. Following the rules of sketching Bode plots, find the transfer function of 
the system. 

Solution

As shown in Figure 10.73, the Bode magnitude plot starts from −20 dB, the slope changes 
at 10 rad/s from 0 dB/decade to −40 dB/decade, and there is a lightly damped resonant 
peak at 10 rad/s. This implies that the frequency response function of the system con-
sists of one constant term and one second-order term in the denominator, 

 
G

K
( )

( / ) ( / )
j

j jn n
ω

ω ω ζ ω ω
=

+ +2 2 1  

Note that the Bode phase plot starts from 0° and changes at 10 rad/s to −180°. This also 
indicates a second-order term in the denominator.

The initial magnitude −20 dB = 20 log10K, which gives 

 K = =
−

10 0 1
20

20 .  

The slope changes at 10  rad/s, indicating the corner frequency, also the natural fre-
quency, of the second-order term is ωn = 10 rad/s. The value of the peak is −12 dB, or 
8 dB above the asymptotes, indicating 

 20
1

2
810log

ζ
=  dB 

which gives 

 

ζ =
( )

=
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0 20

8
20
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Bode plot for the system in Example 10.18.
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Thus, the frequency response function of the system is 

 G( )
( / ) ( . )( / )

.
j

j j
ω

ω ω
=

+ +
0 1

10 2 0 2 10 12  

and replacing jω with s gives the transfer function of the system as 

 
G s

s s
( ) =

+ +
10
4 1002  

10.6.2 Analysis Using Bode Plot

As with the root locus technique, a Bode plot can be used to determine the stability of 
a closed-loop system without solving for the poles. Consider the proportional feedback 
control system, as shown in Figure 10.65. Often, the Bode plot for K = 1 is first drawn. Two 
margins can be read from the magnitude and phase plots. As shown in Figure 10.74, the 
gain margin (GM) is the amount of the gain that can be added before the magnitude curve 
reaches 0 dB at the frequency where the phase plot crosses −180°. The phase margin (PM) 
is the amount of the phase that can be subtracted before the phase curve reaches −180° at 
the frequency where the magnitude plot crosses 0 dB.

The stability criteria are given by 

 

GM dB stable
GM dB marginally stable
GM dB unstable

>
=
<









0
0
0  

(10.61)

or 

 

PM stable
PM marginally stable
PM unstable

>
=
<









°

°

°

0
0
0  

(10.62) 
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Example 10.19: Stability Analysis Using a Bode Plot 

Consider the feedback control system in Figure 10.65, where 

 KG s K
s s s

( )
( )( )

=
+ +

100
5 20  

and K is assumed to be 1. Plot the Bode magnitude and phase curves using MATLAB. 
Give comments on the stability of the closed-loop system.

Solution

Note that the Bode plot is drawn based on the loop gain 

 L s K
s s s

( )
( )( )

=
+ +

100
5 20  

The MATLAB command used to sketch the Bode plot is bode. Assuming K = 1, the fol-
lowing is the MATLAB session:

>> num = [100];
>> den = conv(conv([1 0],[1 5]),[1 20]);
>> sysL = tf(num,den);
>> bode(sysL);

As observed in Figure 10.75, the phase curve crosses −180° at frequency 10 rad/s, and 
the corresponding magnitude is approximately −28 dB. This implies that a gain of 28 dB 
can be added before the magnitude plot reaches 0 dB at that frequency. Thus, the GM is 
28 dB. The magnitude curve crosses 0 dB at frequency 1 rad/s, and the corresponding 
phase is −104°. This implies that a phase of 76° can be subtracted before the phase plot 
reaches −180°. Thus, the PM is 76°. According to Equations 10.61 and 10.62, the closed-
loop system with the proportional controller K = 1 is stable. 
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Bode plot for the system in Example 10.19.
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More information on stability can be extracted from the GM. Specifically, the GM when 
K = 1 gives the stability range of K for which the proportional feedback control system 
is stable. In our case, GM = 28 dB or 25, and this indicates that the closed-loop system is 
stable for 0 < K < 25. We can also use the MATLAB command margin as follows: 

>> [gm,pm,wcg,wcp] = margin(sysL) 

which returns GM, PM, and the associated frequencies as defined in Figure 10.74. In 
our case, the GM returned by the command margin is 25. Note that the stability range 
of K can be determined in this way only for systems that change from being stable to 
unstable as K increases.

10.6.3  Control Design Using Bode Plot

Unlike the root locus technique, which uses time-domain performance specifications, the 
Bode plot technique deals with control design in the frequency domain. The requirements 
are defined in terms of GM, PM, bandwidth, resonant peak, and so on. If a time-domain 
specification is given, it will usually be converted to one in the frequency domain.

Example 10.20: Proportional Control Design Using a Bode Plot 

Design a proportional controller for the cart system in Example 10.13 using the Bode 
plot technique.

Solution

The Bode plot for the open-loop transfer function KG(s), where 

 G s
s s

K( )
.

.
=

+
=

3 778
16 883

12 and  

is shown in Figure 10.76. 
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Bode plot for the system in Example 10.20, with K = 1.
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Note that the requirements are given as overshoot Mp < 10% and rise time tr < 0.15 s. 
These conditions correspond to ζ > 0.59 and ωn > 12.33 rad/s. It can be shown that the 
relationship between the damping ratio and PM is 

 PM ≈ 100ζ (10.63)

which, for the current example, yields the requirement PM > 59°. In addition, the closed-
loop natural frequency ωn is related to the closed-loop bandwidth, which is somewhat 
greater than the frequency when the Bode magnitude plot of KG(s) crosses −3  dB. 
Letting ωc denote this crossover frequency, we have 

 ω ω ωc BW c≤ ≤ 2  (10.64)

As the crossover frequency increases, so do the bandwidth and the natural frequency.
Figure 10.76 shows that PM = 89.2°, which meets the requirement. However, the cross-

over frequency ωc is only approximately 0.3 rad/s, which is too slow. We must adjust the 
value of the proportional control gain K to meet both requirements. Because the current 
PM is well above the requirement, we decrease the PM and pick PM = 60°. Based on the 
definition of PM, this implies that the frequency at which the magnitude plot crosses 0 dB 
should be −120°. It is observed from Figure 10.76 that the frequency corresponding to −120° 
is 9.7 rad/s, where the magnitude is −34 dB. To make the magnitude 0 dB, the magnitude 
plot should slide upward by 34 dB. This is the effect of multiplying a constant term of 

 10 5034 20/ =  

which is the value of the proportional control gain K.
Let us set K to be 50, which is also what was found in Example 10.16 using the root 

locus design method. The Bode plot of the open-loop transfer function KG(s) with the 
new value of K is shown in Figure 10.77. The PM is 60.1° and the crossover frequency ωc 
is 12.6 rad/s. The Bode plot with K = 1 is also shown in Figure 10.77. Comparing the two 
magnitude plots, we find that the magnitude corresponding to K = 50 is 34 dB above the 
one corresponding to K = 1, as designed. 

M
ag

ni
tu

de
 (d

B)
Ph

as
e (

de
gr

ee
s)

10−1 100 101 102 103

Frequency (rad/s)

100

−3 dB

−90

PM = 89.2°

PM = 60.1°

12.6 rad/s
K = 1

K = 50

50

0

−50

−100

−150

−135

−180

FIGURE 10.77
Bode plots for the system in Example 10.20, with K = 50 and K = 1.
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PROBLEM SET 10.6

 1. Sketch the asymptotes of the Bode plot magnitude and phase for the following 
open-loop transfer functions. Make sure to give the corner frequencies, slopes of 
the magnitude plot, and phase angles. Verify the results using MATLAB. 

 a. G s
s

s
( ) = +

+
1

10

 b. G s
s

s s
( )

( )( )
= +

+ +
1

10 1000

 c. G s
s

s s s
( )

( )( )
= +

+ +
1

10 1000

 d. G s
s

s s s
( )

( )
( )( )

= +
+ +

1
10 1000

2

 2. Repeat Problem 1 for the following open-loop transfer functions. 

 a. G s
s s

( ) =
+ +

1
4 1002

 b. G s
s s

s
( )

.=
+ +
+ 0 5

252

 c. G s
s s

s s
( )

.
.

= + +
+ +

2

2

0 1 25
0 24 144

 d. G s
s s

s s
( )

( )
( )( )

= + +
+ +

100 7 49
1 500

2

 3.  For each of the following open-loop transfer functions, construct a Bode 
plot for K =  1 using the MATLAB command bode. Estimate the GM, PM, and 
their associated crossover frequencies from the plot. Verify the results using the 
MATLAB command margin. Determine the stability of the corresponding closed-
loop system.  

 a. KG s
K

s s s
( )

( )
=

+ +2 2 64

 b. KG s K
s s s

( )
( )( )

=
+ + +

1000
8 2 42

 c. KG s K
s

s s
( )

.
( )

= +
+
0 1
5 2

 d. KG s K
s s

( )
( )( . )

=
+ +

1
5 0 5 2

 4. The Bode plot of a dynamic system is shown in Figure 10.78, in which the asymp-
totes are also given. Following the rules of sketching Bode plots, find the transfer 
function of the system. 

 5. Figure 10.79 shows the Bode plot for an open-loop transfer function KG(s) with 
K = 500.   

 a. Determine the stability of the closed-loop system with K = 500.
 b. Determine the value of K that would yield a PM of 45°.
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 6. The Bode plot for an open-loop transfer function KG(s) is shown in Figure 10.80.   
 a. Determine the stability of the closed-loop system.
 b. Assume that the proportional control gain K is increased by a factor of 

10 and 100, respectively. Will the closed-loop system still be stable with the 
new  values of K?

10−1 100 101 102 103

10−1 100 101 102 103

−100

0

100

M
ag

ni
tu

de
 (d

B)

Frequency (rad/s)

−250

−200

−150

−100

Ph
as

e (
de

gr
ee

s)

39 dB
19 dB

−180°
−135°

−214°

FIGURE 10.79
Problem 5.

Bode diagram

Frequency (rad/s)

−20
−10

0
10
20
30
40
50
60

M
ag

ni
tu

de
 (d

B)

10−2 10−1 100 101 102 103
−90
−60
−30

0
30
60
90

Ph
as

e (
de

gr
ee

s)

FIGURE 10.78
Problem 4.



557Introduction to Feedback Control Systems

 7.  Consider the unity negative feedback system shown in Figure 10.81.   
 a. Use MATLAB to obtain the Bode plot KG(s) for K = 5.
 b. Determine the stability of the closed-loop system when K = 5 using the stabil-

ity margins.
 c. Determine the value of K that would yield a PM of 40°.
 d. Verify the result obtained in Part (c) by using the MATLAB command margin.
 8.  Reconsider the feedback system in Figure 10.64. Using the Bode plot technique, 

find a value of K such that the maximum overshoot in the response to a unit-step 
reference input is less than 20% and the 2% settling time is less than 1.1 s. Plot the 
unit-step response of the closed-loop system to verify the result.

10.7 Full-State Feedback

Unlike the root locus and Bode plot techniques, the state-space method works directly 
with mathematical models in state-space form instead of transfer function form. Often, 
use of the state-space method is referred to as modern control design, and use of transfer-
function–based methods, such as the root locus and Bode plot, is referred to as classical 
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FIGURE 10.81
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control design. Compared with the techniques based on transfer functions, the state-space 
method provides a convenient and compact way to model and analyze systems with 
multiple inputs and multiple outputs. This is one of the advantages of state-space design 
because most practical systems have more than one control input or more than one mea-
sured output. In this section, we only discuss single-input–single-output systems to show 
the basic ideas of state-space design. We first show how to analyze stability of a system 
whose model is given in state-space form. Two other important properties of control sys-
tems, known as controllability and observability, are also briefly introduced. Then, we will 
learn how to design a full-state feedback controller using the pole placement method.

10.7.1  Analysis of State-Space Equations

Consider a linear dynamic system with single input, single output, and n states. The state-
space representation is written in the form (see more details in Section 4.2) 

 
x Ax B

Cx

= +
= +

u
y Du (10.65)

where u, y, and D are scalars. The stability characteristics of a dynamic system in state-
space form can be determined by the eigenvalues of matrix A, which are the roots of 

 sI A− = 0 (10.66)

known as the characteristic equation (see more details in Section 3.3).

Example 10.21: Stability Analysis in State Space

 a. Compute the poles of the system described by

 

x x

x

=
−









 +











=  

0 1
0 16 883

0
3 778

1 0

. .
u

y  

 b. Verify the results by converting the state-space representation to a transfer 
function and then identifying the poles of the transfer function.

Solution

 a. The characteristic equation is

 
s

s
s

s sI A− =
−

+
= + =

1
0 16 883

16 883 02

.
.

 

  which yields the poles s1 = 0 and s2 = −16.883.
 b. As presented in Section 4.4, state-space equations for a single-input–single-

output system can be converted to a transfer function using

 G s s D( ) ( )= − +−C I A B1  

 Substituting the system matrices A, B, C, and D, which has the value of 0 in this 
example, gives 
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 The characteristic equation is s2 + 16.883s = 0, which yields the poles at 0 and 
−16.883. The results agree with the poles obtained in Part (a).

Two other important properties for a control system are controllability and observability. 
Before we introduce their definitions, let us consider the following example.

Example 10.22: Controllability and Observability

Consider a dynamic system given by G(s) = 2/(s + 4), which can be written in the state-
space form 

 

x x u

y x

1 1

1

4 2= − +

=   

 a. A new state is added and the resulting state-space equation is

 





x x u

x x

y x x

1 1

2 2

1 2

4 2

3

= − +

= −

= +  

  Determine the transfer function for this new model.
 b. Determine the transfer function for another model with state-space form

 





x x u

x x u

y x
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2 2

1

4 2= − +

= − +

=  

Solution

 a. The system matrices A, B, C, and D are 
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−
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  The transfer function is
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 b. Similarly, we have
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 and
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 Note that the dynamic models in Parts (a) and (b) are second-order sys-
tems, with state-space forms that differ from the original first-order system. 
However, they both end up with the same transfer function as the given 
first-order system due to pole–zero cancellation. As seen in Part (a), the second 
state cannot be affected by the input matrix B,

  
G s

s s
s s

( )
( )

( )( )
=

+ + 
+ +











1 3 4

1 4

2
0  

  This implies that the second state is uncontrollable by the actuator defined by 
matrix B. Similarly, in Part (b), the second state cannot be seen by the output 
matrix C, 
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s

s s
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+ +
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4

1 4  

 This implies that the second state is unobservable by the sensor defined by 
matrix C.

Now we introduce more rigorous definitions of controllability and observability. A sys-
tem is controllable if there exists a control signal u(t) that will take the state of the system 
from any initial state x0 to any desired final state xf in a finite amount of time. A system is 
observable if for any initial state x0, there is a finite time τ such that x0 can be determined 
from u(t) and y(t) for 0 ≤ t ≤ τ.

An nth-order single-input–single-output system is controllable if and only if the square 
matrix given by 

 P B AB A B A B=  
−2 1



n

 (10.67)

is nonsingular, where P is called the controllability matrix. Similarly, the system is observ-
able if and only if the square matrix given by
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CA

CA

=





















−

2

1



n
 

(10.68)

is nonsingular, where Q is called the observability matrix. Because a nonsingular 
square matrix is of full rank (Section 3.1), we can also check the rank of matrix P or Q 
to determine the controllability or observability.
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Example 10.23: Controllability and Observability

Determine the controllability and observability of the two second-order systems given 
in Example 10.22.

Solution

For the system in Part (a), the controllability matrix is 

 
P B AB=   =

−









2 8
0 0  

which is singular. Thus, the system is uncontrollable. The observability matrix is 
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− −










1 3
4 3  

which is nonsingular. Thus, the system is observable.
For the system in Part (b), the controllability matrix is 

 
P B AB=   =

−
−











2 8
1 1  

which is nonsingular. Thus, the system is controllable. The observability matrix is 
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 =

−










1 0
4 0  

which is singular. Thus, the system is unobservable.
Note that the two systems in Example 10.22 have the same transfer function repre-

sentation but different controllability and observability properties. This implies that 
controllability and observability are functions of the state of the system and cannot be 
determined from a transfer function.

10.7.2  Control Design for Full-State Feedback

Consider an nth-order dynamic system given by Equation 10.65. If all the states are mea-
surable, then they can be fed back and used for computing the control input 
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(10.69)

where K is the feedback gain matrix. The control law defined by Equation 10.69 is called 
full-state feedback. Figure 10.82 shows the block diagram of a closed-loop system with 
full-state feedback.

Substituting Equation 10.69 into Equation 10.65 gives the state equation of the closed-
loop system, that is, 

 x A BK x= −( )  (10.70) 
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Note that the closed-loop poles are the eigenvalues of the matrix A – BK, and the closed-
loop characteristic equation is 

 sI A BK− − =( ) 0 (10.71)

where the left-hand side is an nth-order polynomial in s containing the gains k1, k2, …, kn. 
These gains, and hence the feedback gain matrix K, can be determined using the pole 
placement method.

As discussed in Section 10.2, the performance of a controlled system is associated with 
the closed-loop poles. If a feedback gain matrix K is determined based on desired pole 
locations, then the closed-loop system with the feedback control law u = −Kx will achieve 
the desired performance. This is the basic idea of pole placement. Assume that the desired 
locations of the closed-loop poles are s1, s2, …, and sn. Note that poles of a system are the 
roots of the characteristic equation of the system. Thus, the desired characteristic equation is 

 ( )( ) ( )s s s s s sn− − … − =1 2 0  (10.72)

which is essentially the same as the closed-loop characteristic equation given by 
Equation 10.71, 

 s s s s s s snI A BK− − = − − … −( ) ( )( ) ( )1 2  (10.73)

Equating the coefficients of like powers of s on both sides yields the values of the gains 
k1, k2, …, and kn.

Example 10.24: Full-State Feedback Control Design

Consider the DC motor–driven cart discussed in Example 10.13, in which a PD controller 
was designed to satisfy the requirements: overshoot Mp < 10% and rise time tr < 0.15 s.

 a. Find a full-state feedback controller such that the closed-loop system meets the 
same requirements.

 b.  Use MATLAB to find the control gain matrix K.

D

B +

+

x 1
s

x C

A

u

+
+

y

−K

Σ Σ

FIGURE 10.82
Block diagram of a closed-loop system with full-state feedback.
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Solution

 a. The transfer function of the cart is given by

 G s
Y s
U s s s

( )
( )
( )

.
.

= =
+
3 778
16 8832  

 where:
 the output y is the position of the cart
 the input u is the voltage applied to the DC motor

 Using the position and the velocity as the state variables, that is, x1 = y and 
x y2 = , we find the state-space model as 
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 For a second-order system, the gain matrix K is a 1 × 2 matrix in the form 

 K =  k k1 2  

 Applying Equation 10.71 yields the theoretical characteristic polynomial 
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 The time-domain specifications, Mp  <  10% and tr  <  0.15  s indicate that 
ζ  >  0.59  and ωn  >  12.33  rad/s. Choose the same values of ωn and ζ as in 
Example 10.13, where ωn =  13.5  rad/s and ζ =  0.65. The desired closed-loop 
poles are then located at 

 p1 2
21 8 775 10 26, . .= = − ±− ± −ζω ω ζn nj   j

  Applying Equation 10.72 gives the desired characteristic polynomial 

 ( )( ) . .s p s p s s s s− − = + + = + +1 2
2 2 22 17 55 182 25ζω ωn n  

 Equating the two characteristic polynomials, we have

 
16 883 3 778 17 55
3 778 182 25

2

1

. . .
. .

+ =
=

k
k  

 which gives K = [ . . ]48 24 0 18 . So, the full-state feedback controller is

 u x x= − = − −Kx 48 24 0 181 2. .  
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 b.  The following MATLAB script computes a full-state feedback control gain 
matrix K using pole placement design.

>> A = [0 1; 0 -16.883];
>> B = [0; 3.778];
>> p = [-8.775+10.26j -8.775-10.26j];
>> K = place(A,B,p);

 The command place returns the gain matrix K, for which the full-state feed-
back u = −Kx places the closed-loop poles at the desired locations.

  It is interesting to see that the values of the gains k1 and k2 are the same 
as the values of the proportional and derivative gains kp and kD found in 
Example 10.13. This is because of the way we selected the states. In this example, 
u y y= − −48 24 0 18. .  , and in Example 10.13, u = 48.24(r − y) + 0.18 d(r − y)/dt. 
If the reference signal r is zero, the two controllers will end up with the same 
expression. This implies that the closed-loop system with full-state feedback 
is a regulation system. For tracking control, the control law u = −Kx needs 
to be modified (more details can be found in control texts). Note that if a dif-
ferent set of state variables is selected, the corresponding gain matrix K will 
be different. The reader can solve Problem 5 in Problem Set 10.7 to verify this 
conclusion.

The full-state feedback control method requires that all state variables are measured. 
However, this is usually not a practical assumption. To make a full-state feedback control-
ler practically implementable, an estimator or observer can be designed to compute an 
estimate of the state variables based on the measurements of the system. Then, the control 
law calculations are based on the estimated state rather than the actual state.

PROBLEM SET 10.7

 1. For the system shown in Figure 10.83, derive the state-space equations using the 
state variables indicated. Make sure to give the A, B, C, and D matrices. Also deter-
mine the poles of the system.   

 2. Repeat Problem 1 for the system shown in Figure 10.84.   
 3. Determine the controllability and observability for each of the following systems. 

 a. 
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FIGURE 10.83
Problem 1.
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 b. 
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 4. Consider the two-degree-of-freedom mass–spring system as shown in Figure 10.85, 
in which two masses are to be controlled by two equal and opposite forces f. The 
equations of motion of the system are derived as  

 

mx kx kx f

mx kx kx f





1 1 2

2 1 2

2

2

+ − =

− + = −

 Show that the system is uncontrollable. Using the concept of mode discussed in 
Section 9.4, associate a physical meaning with the controllable and uncontrollable 
modes.

 5. Reconsider Example 10.24. Using the approach in Section 4.4, find the control-
lable canonical form for the plant transfer function and then design a full-state 
feedback controller that places the closed-loop poles at the same locations as in 
the example.
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FIGURE 10.84
Problem 2.
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 6. A regulation system has a plant with the transfer function

 G s
Y s
U s s s s

( )
( )
( )

= =
+ + +

5
3 4 63 2

 a. Transform the plant transfer function into the state-space form with the state 
vector x = [ ]y y y T

  .
 b. Determine the state-feedback gain matrix K such that the closed-loop poles are 

located at p1,2 = −3 ± 4j and p3 = −8.
 c.  Verify the result in Part (b) by using the MATLAB command place.
 7. Consider the system
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 a. Design a state-feedback controller, so that the closed-loop poles have a damping 
ratio ζ = 0.7 and a natural frequency ωn = 3 rad/s.

 b.  Verify the result in Part (a) by using the MATLAB command place.
 8. Consider the system

 G s
Y s
U s s s s

( )
( )
( ) ( )( )( )

= =
+ + +

1
1 2 3

 a. Design a state-feedback controller, so that the closed-loop response has an 
overshoot of less than 5% and a rise time under 0.5 s. Set one of the closed-loop 
poles at −10.

 b.  Verify the result in Part (a) by using the MATLAB command place.

10.8 Integration of Simulink and Simscape into Control Design

The root locus, Bode plot, and state-space techniques are all model-based control design 
methods. The main steps in a model-based control design method are plant modeling, 
controller analysis and synthesis, computer simulation, and real-time implementation. To 
control a dynamic system, a mathematical model is first derived by applying physical laws 
(such as Newton’s second law, Kirchhoff’s law, conservation of mass, etc.) or identified 
using experimental data. Then, closed-loop stability and performance requirements are 
determined by analyzing the dynamics of the plant, and a controller is designed based on 
the mathematical model of the plant to meet all requirements. Before implementing the 
controller on the real dynamic system, computer simulation is usually conducted to verify 
the closed-loop stability and performance requirements. Examples given in this section 
illustrate how to integrate Simulink and Simscape into control design to investigate the 
closed-loop system characteristics.
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10.8.1  Control System Simulation Using Simulink

Simulink is a graphical tool that allows us to simulate a feedback control system. A Simulink 
model representing the block diagram in Figure 10.1 can be constructed, in which the plant 
could be a simple linear time-invariant or even a nonlinear model. Compared with the 
Simulink examples of system modeling discussed in Chapters 5 through 7, there is another 
important and necessary component in control system simulation, which is the controller. 
Several examples in Sections 10.3 and 10.4 have shown how to build a Simulink block dia-
gram of a control system, in which the plant is represented by a transfer function. In this 
section, we will consider simulation of a state feedback control system, in which the plant 
is represented in state-space form.

Example 10.25: Full-State Feedback Control of a Direct Current Motor–Driven Cart 

Consider the full-state feedback control system discussed in Example 10.24, in which 
the state-space representation of the plant is 
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and the mathematical model of the controller is 

 u = −Kx 

with K = [48.24 0.18]. Build a Simulink block diagram of the feedback control system and 
find the closed-loop response if the cart is initially 1 m away from the equilibrium position.

Solution

There are two ways to construct a Simulink block diagram of a full-state feedback con-
trol system. If we treat the state-space model as its scalar counterpart, 

 

x ax bu
y cx

= +
=  

then we can build a block diagram as shown in Figure 10.86, in which the state-
space model is represented by using one Integrator block and three Gain blocks 
(A, B, and C). Note that all the gains, including the control gain K, are in matrix form. 

B

K*u
xdot x1

s

Integrator

K*u

K*u

C y

A

u

−K

K*u

++

FIGURE 10.86
Simulink block diagram of a full-state feedback control system.
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This should be specified explicitly in Simulink. Double-click each Gain block, define 
the corresponding matrix, and choose Matrix (K*u) for the Multiplication param-
eter. Recall that we have chosen x1 = y and x y2 = . Thus, the physical position variable is 
the same as the first state variable. To specify the non-zero initial position, double-click 
the Integrator block and type [1; 0] for the Initial conditions parameter. 

Figure 10.87 presents an alternative Simulink block diagram, in which the state-space 
model is built using the State-Space block instead of the Integrator block. Note 
that all state-variables must be available for a full-state feedback control system because 
the control signal is u = −Kx. To simulate this, double-click the State-Space block and 
define C as an identity matrix and D as a zero matrix with compatible dimensions; 
eye(2) for C and zeros(2,1) for D in this example. The parameter of Initial con-
ditions has the same value as defined in Figure 10.86. To obtain the output y, a Gain 
block is included to define the real matrix C. It should be pointed out that the value of 
the Gain block corresponding to the full-state feedback controller is –K, not K. 

Running both simulations yields the same curve, as shown in Figure 10.88, which 
is the resulting displacement response y(t) due to the non-zero initial condition of 1 m. 
It is interesting to note that the curve in Figure 10.88 is a mirror image of the unit-
step response curve in Figure 10.37 about the x-axis. The reason is left to the reader 
to find out. 

x K*u

K*u

C yState-space

u

−K

x′ = Ax + Bu
y = Cx + Du

FIGURE 10.87
Alternative Simulink block diagram of a full-state feedback control system.
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FIGURE 10.88
Closed-loop response of the cart system with full-state feedback control.
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10.8.2  Integration of Simscape into Control System Simulation

Instead of Simulink blocks, such as Transfer Fcn, State-Space, etc., Simscape models 
can also be integrated into control system simulation to model the open-loop plant 
dynamics and test closed-loop system performance.

Example 10.26: Control of a Single-Degree-of-Freedom Mass–Spring–Damper System

Consider a single-degree-of-freedom mass–spring–damper system as shown in Figure 5.29, 
where m = 2 kg, b = 2 N s/m, and k = 50 N/m. A PD controller, f k x k x= − −p D  , is designed to 
adjust the input force f, so that the mass block can be maintained in the equilibrium position 
regardless of disturbance forces applied to the block. The performance requirements of the 
closed-loop system are overshoot Mp < 5% and rise time tr < 0.25 s.

 a. Design a PD controller to meet the performance requirements.
 b.  Build a block diagram of the feedback control system, in which the plant 

is constructed using Simscape blocks and the controller is constructed using 
Simulink blocks. Find the closed-loop response if the mass block is initially 
0.1 m away from the equilibrium position.

Solution

 a. The dynamics of the plant is described by

 mx bx kx f + + =  
 where the control force

 f k x k x= − −p D   
 Combining the two equations gives the dynamics of the closed-loop system, as
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 which is a second-order system. Thus, the coefficients in the previous differen-
tial equation can be related to the natural frequency and damping ratio of the 
closed-loop system via

 

b k
m

k k
m

+
=

+
=

D
n

p
n
2

2ζω

ω  

 The requirement for overshoot indicates

 ζ > 0 69.  
 Choosing ζ = 0.75 and inserting into the requirement for rise time gives

 ωn  rad/s> 9 26.  
 Pick ωn =  10  rad/s. Simultaneous solution of the two relations given earlier 

yields kp = 150 and kD = 28.
 b. Figure 10.89 is the block diagram of the resulting feedback control system built 

using Simulink and Simscape. The plant is constructed based on the physi-
cal mass–spring–damper system and the details on Simscape modeling can 
be found in Example 5.4. The controller is constructed using Simulink blocks, 
and its structure is similar to the PD control discussed in Section 10.4 with the 
reference signal r set as 0. To specify a non-zero initial position, double-click 
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the Translational Spring block, type 0.1 for the Initial deformation, and 
choose the unit as m. This implies that the spring is initially elongated by 0.1 m. 
Also, double-click the Ideal Translational Motion Sensor block, type 
0.1 for the Initial position, and choose the unit as m. The corresponding dis-
placement response of the system is shown in Figure 10.90.  
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FIGURE 10.89
Simscape block diagram of the feedback control system in Example 10.26.
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Closed-loop response of the mass–damper–spring system with PD control.
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PROBLEM SET 10.8

 1.  Consider the control system shown in Figure 10.42 (Problem Set 10.4, 
Problem 3). Using the results obtained in Part (a) of the cited problem, build a 
Simulink block diagram to simulate the feedback control system and find the unit-
step response of the closed-loop system.

 2.  Repeat Problem 1 for the control system shown in Figure 10.43 (Problem Set 10.4, 
Problem 4).

 3.  Repeat Problem 1 for the control system shown in Figure 10.44 (Problem Set 10.4, 
Problem 5).

 4.  Repeat Problem 1 for the control system shown in Figure 10.45 (Problem Set 10.4, 
Problem 6).

 5.  Consider the control system shown in Figure 10.63 (Problem Set 10.5, Problem 7). 
Using the results obtained in Part (b) of the cited problem, build a Simulink block 
diagram to simulate the feedback control system and find the unit-step response of the 
closed-loop system.

 6.  Repeat Problem 5 for the control system shown in Figure 10.64 (Problem 
Set 10.5, Problem 8).

 7.  Consider Problem 6 in Problem Set 10.7. Using the state-space model obtained in 
Part (a) and the full-state feedback controller obtained in Part (b), build a Simulink 
block diagram to simulate the resulting feedback control system. Find the closed-
loop response if the initial conditions are y(0) = 0.1,  y( )0 0= , and y( )0 0= .

 8.  Consider Problem 7 in Problem Set 10.7. Using the full-state feedback control-
ler obtained in Part (b), build a Simulink block diagram to simulate the resulting 
feedback control system. Find the closed-loop response if the initial conditions are 
x1(0) = 0.1 and x2(0) = 0.

 9. Consider the rotational mass–spring–damper system in Example 5.23. A PD con-
troller, τ θ θ= − −k kp D

 , is designed to adjust the input torque τ so that the rotational 
disk can quickly return to the equilibrium position regardless of disturbances 
applied to the system. The performance requirements of the closed-loop system 
are overshoot Mp < 5% and rise time tr < 0.004 s.  

 a. Design a PD controller to meet the performance requirements.
 b.  Build a block diagram of the feedback control system, in which the plant 

is constructed using Simscape blocks and the controller is constructed using 
Simulink blocks. Find the closed-loop response if the disk is initially 0.1 rad 
away from the equilibrium position.

 10.  Consider the mass–spring–damper system shown in Figure 5.107 (Example 
5.22). Assume that f is a control force to maintain the system at equilibrium regard-
less of disturbances applied to the system. 

 a. Design a full-state feedback controller such that the closed-loop poles are 
located at –10 ± 10j, –15, and –16. Assume the state vector x = [ ]x x x x T

1 2 1 2  .
 b. Build a block diagram of the feedback control system, where the plant is 

constructed using Simscape blocks and the controller is constructed using 
Simulink blocks. Find the closed-loop response if mass 1 is initially 0.1 m from 
the equilibrium position.
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10.9 Summary

This chapter presented an introduction to feedback control systems. The essential 
components of a feedback control include a system we want to control, a controller we need 
to design, an actuator used to drive the controlled system, and a sensor used to measure the 
system output. Generally, the controlled system and the actuator are intimately connected, 
and they can be combined as one component called the plant. Unlike open-loop control, 
the output signal of the plant in a feedback control system is measured and fed back for 
use in computing the control signal. In contrast to open-loop control, feedback can be used 
to stabilize unstable systems, reduce steady-state errors to disturbances, improve reference 
tracking performance, and reduce sensitivity to parameter variations.

Stability and performance are two important considerations in control. A linear time-
invariant system is said to be stable if and only if all its poles have negative real parts and is 
unstable otherwise. In terms of the pole locations in the s-plane, the imaginary axis is the 
stability boundary between the stable left-half s-plane and the unstable right-half s-plane. 
Solving for the poles of a high-order linear system by hand is not an easy task. Routh’s 
stability criterion is a method of obtaining information about pole locations without solv-
ing for the poles. A system is stable if and only if all the elements in the first column of the 
Routh array are positive.

The locations of poles in the s-plane are also associated with performance mea-
sures, which are rise time tr, overshoot Mp, peak time tp, and settling time ts in the time 
domain, and bandwidth ωBW and resonant peak Mr in the frequency domain. For a 
second-order system with poles at − ± −ζω ω ζn nj 1 2 , the correspondences between the 
system parameters and the time-domain specifications are given by 
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where Δ is a small value, such as 1%, 2%, and 5%. The resonant peak Mr is similar to the 
overshoot Mp, both of which are related to the damping ratio ζ, whereas the bandwidth 
ωBW is similar to the rise time tr, both of which are related to the natural frequency ωn.

The PID controller is a generic feedback control structure widely used in industries. It is 
described by the transfer function 
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In general, a larger proportional gain kp results in a faster response and a smaller steady-
state error. However, an excessively large proportional gain kp leads to lightly damped 
oscillations and even instability. A larger integral gain kI reduces steady-state errors more 
quickly, but reduces damping leading to a larger overshoot. A larger derivative control 
decreases the overshoot, but slows down the speed of response. The PID gains can be 
tuned using the reaction curve method or the ultimate sensitivity method developed by 
Ziegler and Nichols.

Three different methods were introduced in this chapter for stability analysis and 
proportional feedback control design: root locus, Bode plot, and state-space methods. The 
root locus and Bode plot work with graphs obtained from open-loop transfer functions, 
whereas the state-space method works directly with mathematical models in state-space 
form.

For a negative feedback system with KL(s) as the open-loop transfer function, a root locus 
is a graph of the closed-loop poles or the roots of the closed-loop characteristic equation 

 1 0+ =KL s( )  

with respect to the control gain K. The rules for sketching a root locus are presented in 
Section 10.5. Using the root locus technique, it is very easy to determine the stability of 
a closed-loop system when the proportional gain K varies from 0 to ∞. For a particular 
value of K, the closed-loop system is stable if and only if all of the poles are in the left-half 
s-plane.

The Bode plot is a graph of the frequency response function, using a linear scale for 
magnitude (in decibels) and phase (in degrees) and a logarithmic scale for frequency (in 
rad/s). For a frequency response function in the form of
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the Bode plot can be easily drawn by hand using the rules described in Section 10.6. The 
stability of the corresponding closed-loop system can be determined by the GM and PM, 
both of which can be found directly by inspecting the open-loop Bode plot.

A dynamic system described in state-space form is stable if all eigenvalues of the state 
matrix have negative real parts. If all the states are measurable, a full-state feedback con-
troller given by 

 u = −Kx 

can be designed to improve stability and performance. The feedback gain matrix K can be 
determined using the pole placement method. Closed-loop poles are selected depending 
on the desired transient response. Equating the theoretical and desired closed-loop char-
acteristic polynomials 

 s s s s s s snI A BK− − = − − −( ) ( )( ) ( )1 2   

yields the values of the elements k1, k2, …, and kn of the gain matrix K.
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Review Problems

 1. Consider the feedback control system as shown in Figure 10.91. Determine the 
range of K for closed-loop stability.   

 2. Consider the feedback control system shown in Figure 10.92.   
 a. Design a PD controller such that the closed-loop poles are at p1 2 2 2, = − ± j.
 b. Estimate the rise time, overshoot, peak time, and 1% settling time for the unit-

step response of the closed-loop system.
 c.  Use MATLAB to plot the unit-step response of the closed-loop system. 

Find the values of the rise time tr, overshoot Mp, peak time tp, and 1% settling 
time ts.

 3. Consider the feedback control system as shown in Figure 10.93.   
 a. Assuming C(s) = kp, determine the value of the proportional gain that makes 

the closed-loop system marginally stable. Find the frequency of the sustained 
oscillation.

 b. Using the gain and the frequency obtained in Part (a), apply the ulti-
mate sensitivity method of Ziegler–Nichols tuning rules to design a PID 
controller.

 c.  Plot the unit-step response of the resulting closed-loop system. Find the 
values of the rise time tr, overshoot Mp, peak time tp, and 1% settling time ts.

s(s + 2)
1R(s) C(s)

Y(s)+

−

Σ

FIGURE 10.92
Problem 2.

1
(s2 − 1)(s + 5)

K
s + 10
s + 2R(s) Y(s)+

−
Σ

FIGURE 10.91
Problem 1.

R(s) C(s)
Y(s)+

−
Σ

s + 5
(s2 + s)(s2 + 4s + 13)

FIGURE 10.93
Problem 3.
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 4.  Consider the feedback control system as shown in Figure 10.94.   
 a. Determine the value of the gain K such that the undamped natural frequency 

ωn and the damping ratio ζ of the dominant closed-loop poles are roughly 
2 rad/s and 0.5, respectively.

 b. Determine the values of all closed-loop poles.
 c. Plot the unit-step response of the resulting closed-loop system. Find the values 

of the rise time tr, overshoot Mp, peak time tp, and 2% settling time ts.
 5. Consider a unity negative feedback system with the open-loop transfer function

 
KG s

K
s s s

( )
( )( )

=
+ +3 6  

 a.  Use MATLAB to draw the Bode plots for K = 1. Determine the range of K 
for which the closed-loop system will be stable.

 b. Determine the range of K for closed-loop stability by sketching the root locus.
 c. Using Routh’s criterion, determine the range of K for closed-loop stability.
 6. The Bode plot of a dynamic system is shown in Figure 10.95, in which the asymptotes 

are also given. Following the rules of sketching Bode plots, find the transfer function 
of the system.

 7. Consider the system
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 a. Design a state-feedback controller, so that the closed-loop unit-step response 
has an overshoot of less than 10% and a peak time under 0.5 s.

 b.  Verify the results of Part (a) in MATLAB.
 8.  Consider the two-degree-of-freedom quarter-car model shown in Figure 5.34, in 

which the force f, applied between the car body and the wheel–tire–axle assembly, 
is controlled by feedback and represents the active components of the suspension 
system. Assume that f x x x x= − − +20568 30493 1278 31891 2 1 2  . Build a block diagram 
of the feedback control system, where the quarter-car model is constructed using 
Simscape blocks and the controller is constructed using Simulink blocks. Find 
the displacement responses x1(t) and x2(t) if initially x1 = –0.05 m and x2 = –0.05 m. 
Ignore the displacement input z(t). What are the system responses x1(t) and x2(t) 
without control?

s + 10

1

10

R(s) Σ
s2

+

−
(s + 20)2

(s + 3)2
K

Y(s)

FIGURE 10.94
Problem 4.
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 9.  Consider the DC motor–driven wheeled mobile robot shown in Figure 6.82, in 
which the voltage applied to the DC motor is computed by a controller. Assume 
that v i x x xra = − + +2 56 0 37 4 61 0 37. . . . , where xr is a reference trajectory that the cart 
should follow. Build a block diagram of the feedback control system, in which the 
mobile robot is constructed using Simscape blocks and the controller is constructed 
using Simulink blocks. Find the displacement response x(t) of the mobile robot if a 
unit-step reference command signal is sent to the system.

 10. Case Study 
   Consider the cart–inverted-pendulum system shown in Figure 5.79. Assume 

that the mass of the cart is 0.8 kg, the mass of the pendulum is 0.2 kg, and the 
length of the pendulum is 0.6 m. 

 a. Determine the poles of the linearized system. Is it stable or unstable?
 b. Design a full-state feedback controller for the linearized system using the pole 

placement method. Assume that two of the closed-loop poles are complex 
conjugate, with a natural frequency of 3.6 rad/s and a damping ratio of 0.6. 
They dominate the effect of the other two poles, which are assumed at −10 and 
−20.

 c. Assume that the initial angle of the inverted pendulum is 5° away from the 
vertical reference line. Using the state feedback gain matrix K obtained in Part (b), 
examine the responses of the nonlinear and linearized closed-loop systems by 
using Simulink.   
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Appendix A

 
TABLE A.1 
The International System (SI) of Units

Basic Units

Quantity Unit Name Symbol or Unit

Length meter m
Mass kilogram kg
Time second s
Electric current Ampere A
Voltage volts V
Temperature kelvin K
Amount of substance mole mol
Solid angle radian rad

SI Derived Units

(Circular) frequency ( )ω rad/s
Acceleration ( )a m/s2

Angular acceleration ( )α rad/s2

Angular velocity ( )ω rad/s
Area ( )A m2

Area moment of inertia ( )I m4

Density, mass density ( )ρ kg/m3

Dynamic viscosity ( , )b c N·s/m
Electric capacitance ( )C farad (F) A·s/V
Electric charge ( )q coulomb (C) A·s
Electric resistance ( )R ohm (Ω) V/A
Force ( )f newton (N) kg·m/s2

Frequency hertz (Hz) 1/s
Inductance ( )L henry (H) V·s/A
Magnetic flux weber (Wb) V·s
Magnetic flux density tesla (T) Wb/m2

Mass moment of inertia ( )I kg·m2

Power watt (W) J/s
Pressure, mechanical stress pascal (Pa) N/m2

Specific heat ( , , )c c cp v J/(kg· K)
Specific volume ( )v m3/kg
Thermal conductivity ( )k W/(s·m· K)
Velocity, speed ( )v m/s
Volume ( )V m3

Wave length ( )λ 1/m
Work ( )W , energy ( )E , heat ( )Q joule (J) N·m
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TABLE A.2
Conversion Factors

Density 1 g/cm3 = 62.43 lbm/ft3

Energy 1 cal = 4.184 J
Force 1 lbf = 4.45 N
Length 1 in. = 2.54 cm

1 ft = 0.3048 m
1 mi. = 1,609 m = 5,280 ft

Mass 1 lbm = 0.4536 kg = 16 oz
1 slug = 32.174 lbm

1 ton = 2,000 lbm

Power 1 W = 3.413 Btu/hr
Pressure 1 atm = 1.0132 × 105 Pa
Temperature °C = (°F–32)/1.8

°F = °C(1.8) + 32
°K = °C + 273.16
°R = °F + 459.69
1 K = 1.8°R

Thermal conductivity 1 W/(m.°C) = 0.5778 Btu/(hr.ft.°F)
Volume 1 liter (L) = 1000 cm3 = 0.0353 ft3 = 1.0564 quart

1 ft3 = 28.316 L
1 gal = 3.785 L = 4 quarts
1 quart = 2 pints = 67.2 in.3 = 0.9466 L
1 pint = 16 oz
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Appendix B: Useful Formulas

Trigonometric Expansions

Sum to Product Product to Sum

sin( ) sin cos cos sina b a b a b± = ± sin sin [cos( ) cos( )]a b a b a b= − − +1
2

cos( ) cos cos sin sina b a b a b± =  cos cos [cos( ) cos( )]a b a b a b= + + −1
2

tan( )
tan tan

tan tan
a b

a b
a b

± =
±

1
sin cos [sin( ) sin( )]a b a b a b= + + −1

2

cos sin [sin( ) sin( )]a b a b a b= + − −1
2

Double-Angle and Half-Angle Formulas

Double-Angle Formulas Half-Angle Formulas

sin ( cos )2 1
2 1 2a a= − cos ( cos )1

2
1
2 1a a= +

cos ( cos )2 1
2 1 2a a= + sin ( cos )1

2
1
2 1a a= −

sin sin cos2 2a a a=

cos cos2 2 12a a= −

Hyperbolic Functions

sinh ( )a e ea a= − −1
2 sinh( ) sinh cosh cosh sinha b a b a b± = ±

cosh ( )a e ea a= + −1
2 cosh( ) cosh cosh sinh sinha b a b a b± = ±

cosh sinh2 2 1a a− = sinh (cosh )2 1
2 2 1a a= −

cosh ( cosh )2 1
2 1 2a a= +
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Integration

        x dx
x
n

c nn
n

∫ =
+

+ ≠ −
+1

1
1( )   e dx e cx x∫ = +

  e dx
a

e cax ax∫ = +
1    e g x dx e cg x g x( ) ( )( )∫ ′ = +

  
1
x

dx x c∫ = +ln   
′

= +∫ g x
g x

dx g x c
( )
( )

ln ( )

  sin cosx dx x c∫ = − +   cos sinx dx x c∫ = +

  tan ln cos ln secx dx x c x c∫ = − + = +   cot ln sin ln cscx dx x c x c∫ = + = − +

  sec ln sec tanx dx x x c∫ = + +   csc ln csc cotx dx x x c∫ = − +

  ln lnx dx x x x c∫ = − +

  
1 1

2 2
1

a x
dx

a
x
a

c
+

= +∫ −tan   
1 1

2
1

2 2
1

a x
dx

a
x a
x a

c
a

x
a−

=
+
−

+ =∫ −ln tanh

  
1

2 2

1

a x
dx

x
a

c
−

= +∫ −sin   
1

2 2

1

a x
dx

x
a

c
+

= +∫ −sinh

  e bx dx
a b

e a bx b bx cax axsin ( sin cos )∫ =
+

− +
1

2 2

  e bx dx
a b

e a bx b bx cax axcos ( cos sin )∫ =
+

+ +
1

2 2
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Index

Note: Page numbers followed by f and t refer to figures and tables respectively.

A

Accelerometer, 476
Active electrical element, 264
Active vibration isolation systems, 451
Actuator, 475, 490
Adiabatic process, 330
Adjoint matrix, 82–84
Algebraic eigenvalue problem, 461
Algebraic multiplicity (AM), 94

and GM, 94–95
defective matrices, 98
generalized eigenvectors, 96–97
matrix diagonalization, 97
similarity transformations, 97

Amplitude, phase shift, 44
Analysis phase, vibration system, 474
Analytical expressions, plotting, 12
Anonymous functions, 7–8
Armature, 295
Armature-controlled DC motor, 295–298

block diagram, 297f
electromechanical system with, 296f
with negligible inductance, 317f
Simulink model, 316–321, 318f, 319f, 320f
single-link robot arm by, 298f

B

Back electromotive force (emf), 295
Backslash (\) operator, 5–6
Beam under transverse force, 176, 177f
Binomial coefficient, 415
Biot number, 354
Block diagonal and triangular matrices, 81, 81f
Block diagram

armature-controlled DC motor, 297f
of closed-loop system, 562f
feedback control system, 490, 490f, 491f, 

521f, 529f
field-controlled DC motor, 301f
of full-state feedback control system, 

567f, 568f
operations, 134

integrator, 137, 137f
parallel combinations, 136–137, 136f, 137f

series combinations, 135–136
summing junction, 134, 135f

PID feedback control, 517f, 518f
position control system, 490f
reduction techniques, 139–144

Mason’s rule, 142–144
moving branch point, 139
moving summing junction, 139–141

representation, 134
Simscape, 187f, 243f, 247f

armature-controlled DC motor, 318f, 
319f, 320f

op-amp differentiator, 316f
of physical system, 249f
RC high-pass filter, 314f
series RLC circuit, 311f
of single-link robot arm, 251f
thermal system, 365f

Simulink, 186f
closed-loop control system, 511f
on differential equation, 242f, 246f, 364f
on dynamics equations, 318f
open-loop control system, 510f
pneumatic system, 362f
on state-space form, 247f, 319f, 364f
thermal system, 356f, 365f
on transfer function, 243f, 313f, 318f

from system model, 144–147, 145f
Block library, MATLAB

Simscape, 21, 21f, 22f, 23f
Simulink, 15, 15f, 16f

bode command, 404
Bode plot, 404, 542–543

analysis using, 551–553
control design, 553–554
feedback system, 543–551
first-order systems, 405–406
higher-order systems, 410–411
in MATLAB, 404
second-order systems, 406–410

Branch line, 18, 18f

C

Capacitance, 267
Capacitors, 267–268, 267f
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Cart–inverted-pendulum system, 219–222, 222f
energy method, 230–232, 231f
free-body diagram, 220f
kinematic diagram, 220f, 231f
mass center of pendulum, 231f
nonconservative force, 231f

Cart position control system, 490, 490f
Characteristic equation, 461
Characteristic length, 354
clc and clear command, 14
Closed-loop control system, 491, 506f

with disturbance input, 509f
block diagram, 511f

with full-state feedback control, 568f
of mass–damper–spring system, 570f
unit-step response, 508f, 511f

Closed-loop (or feedback) system, 138–139
Closed-loop transfer function (CLTF), 

138–139, 491
Coefficient matrix, inverse of, 87–88
Column vectors, 2
Complementary solution, 41
Complex analysis, 31

complex variables and functions, 39
polar form, complex number in, 34–36

complex algebra using, 36–37
division using, 37
integer powers, 38
roots of, 38

rectangular form, complex number in, 31–32
complex conjugate, 33–34
magnitude, 32–33

Complex conjugate, 33–34
Complex functions, 39
Complex number(s)

integer powers, 38
and its conjugate, 37, 37f
magnitude/modulus, 32
multiplication, 32
in polar form, 34–38
pure imaginary, 31
in rectangular form, 31–34
roots, 38
as vectors, 32f

Complex plane, 32
Complex variables, 39
Conduction, 350, 350f
Configuration form, system model, 105–106, 106f

second-order matrix form, 106–107
Connecting line, 18, 18f
Constant-pressure process, 330, 349
Constant-temperature process, 330

Constant-volume process, 330, 349
Controllability

and observability, 559–561
matrix, 560–561

Controlled system, 490
Controller canonical form, 127–129
Convection, 350
Conversion factors, 580t
Convolution method, 61–63
Coordinate origins, mass–spring system, 

188, 189f
Corner frequency, 406
cos (cosine) command, 1
Coulomb damping, 174, 434, 437–440, 437f
Coupled pendulum system, 207–208, 207f
Cramer’s rule, 88–89
Critical damping, 381–382, 385, 387
Current, 263

D

D’Alembert’s principle, 193–194
Damping/damper, 434

Coulomb, 174, 434, 437–440, 437f
critical, 381–382, 385, 387
elements, 173–174
force, 308

on mass, 173, 173f
frequency, 382
ratio, 381, 407, 497
viscous, 173, 173f, 434

DC motor, see Direct current (DC) motor
Definite integrals, 10
Degrees of freedom, 182–183, 182f
det command, 5
Determinant matrix, 5
Diagonalization, 98
Diagonal matrix, 77
Differential equations, 10

defined, 40
ODE

linear, first-order, 40–41
second-order, 41–44

Differentiation, 8–9
Laplace transformation, 48–49
symbolic math toolbox, 8–9

Dirac delta function, 53
Direct current (DC) motor, 294–295, 294f

armature-controlled, 295–298, 296f, 297f
field-controlled, 299–301, 300f, 301f
single-link robot arm by, 298–299, 298f

Disk rotation, 171, 171f
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Dominant pole, 535
Double-angle formula, 581
double command, 7
Double pendulum, 225–229
dsolve function, 10
Dynamic systems

characteristics, 49
critically damped, 382, 385, 387
first-order, 400–401

bode plot, 405–406
frequency response, 400–401
transient response, 374–378

overdamped, 383, 385, 387
response, see Response
second-order

bode plot, 406–410
frequency response, 401–404
transient response, 380–395

undamped, 382, 384, 387
underdamped, 382, 385, 387

E

Eigenvalue problem, 460–462
Eigenvalue properties, 92–94
Electrical circuits, 263, 272

loop method, 280–282
node method, 277–280
physical laws

Kirchhoff’s current law, 274–277
Kirchhoff’s voltage law, 272–274

primary variables, 263
Simscape model, 310–315
state-space form, 282
state variables, 282–285

Electrical elements
active, 264
capacitors, 267–268, 267f
impedance, 304
inductor, 267, 267f
passive, 263
resistors, 265–266, 265f, 266f
two-terminal, 263–264, 264f

Electrical systems, 263
primary variables, 263
with Simscape, 310

Electromagnetic shaker, 475, 475f
Electromechanical systems, 294

DC motor, 294–295, 294f
armature-controlled, 295–298, 296f, 297f
field-controlled, 299–301, 300f, 301f

elemental relations of, 294–295

Elementary row operations (EROs)
on matrix determinant, 80
types of, 77

Element-by-element operations, 6–7, 6t
Energy method, 223

cart–inverted-pendulum system, 
230–232, 231f

double pendulum, 224–229, 226f, 269f
mass–spring–damper system, 

229–230, 230f
pulley system, 223–225, 224f

Equivalence, 174
parallel, springs in, 174–175, 175f
series, springs in, 175–176, 176f

EROs, see Elementary row operations (EROs)
Euler’s formula, 35
Evans, W. R., 528–529
Excitation system, 475
Exciter, 475
expm command, 416
eye(n) command, 5
ezplot command, 12

F

Feedback control systems, 489, 490f
benefits of, 505

disturbance rejection, 508–511
parameter variations, 513–515
reference tracking, 511–513
stabilization, 505–508

block diagram, 490, 490f, 491f, 521f, 529f
bode plot, 542–543, 544f

analysis, 551–553
control design, 553–554
feedback system, 543–551

concepts and terminologies, 489–492
full-state feedback, 557–558

control design, 561–564
state-space equations analysis, 

558–561
PID controller, 516–517, 520–523

block diagram, 517f, 518f
PI controller, 519–520
proportional control, 517–519
Ziegler–Nichols tuning, 523–525

root locus, 528–529
analysis, 534–536
control design, 537–539
feedback system, 529–534
sketching, 529–534

simplified, 543f
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Feedback control systems (Continued)
Simulink and Simscape into control design, 

integration, 566–570
stability and performance, 493

bandwidth, time-domain, 501
frequency-domain, 501–502
linear time-invariant systems, 493–496
time-domain, 496–501
transfer function, identification, 502–503

with transfer function representation, 491f
Field-controlled DC motor, 299–301

block diagram, 301f
electromechanical system, 300f

Figure Window, MATLAB, 11
Final-value theorem (FVT), 64–65
findop function, 158
First law of thermodynamics, 348–349
First-order dynamic systems

bode plot, 405–406
frequency response, 400–401
transient response, 374–375

free response, 375
impulse response, 375
ramp response, 378, 378f
step response, 376–377

Fluid, 329
capacitance, 331, 335
solid object submerged in, 354f
and thermal systems, see Thermal system

Force and moment equations, 216–217
cart–inverted-pendulum system, 219–222, 

220f, 222f
lever mechanism, 217–219, 218f

Forced response, 373
Forced vibration, 433, 441–442

half-power bandwidth, 442–444, 443f
harmonic base excitation, 447–450, 448f, 449f
rotating unbalance, 445–447

Forcing function, 373, 378
Formulas

double-angle and half-angle, 581
hyperbolic function, 581
integration, 582
trigonometric expansion, 581

Fourier’s law, 350
Fourth-order Runge-Kutta (RK4) method, 

421–423
Free-body diagrams, 183–187

cart–inverted-pendulum system, 220f
coupled pendulum system, 207f
D’Alembert’s principle, 194f
disk–shaft system, 203f
force isolation, 453f

gear–train system, 236f, 238f
inverted pendulum-bob system, 206f
lever mechanism, 218f
load, 238f
massless junctions, 192f
mass–spring–damper system, 184–186, 

184f, 187f
motor, 238f
pure rolling disk, 208f, 209f
quarter-car model, 189–190, 189f
rotating unbalance, 445, 445f
rotational mass–spring–damper system, 202f

Free response, 373, 384f
first-order dynamic systems, 375
in MATLAB, 383
second-order dynamic systems, 382–384

Free vibration, 433–434
Coulomb damping, 437–440
logarithmic decrement, 434–436

Frequency equation, 461
Frequency ratio, 446
Frequency response, 399, 399f

bode plot, 404
first-order systems, 405–406
higher-order systems, 410–411
in MATLAB, 404
second-order systems, 406–410

curves, 456, 457f, 458f
first-order systems, 400–401
linear, time-invariant system, 399f
method, 442
second-order systems, 401–404
stable, linear systems, 399–404

Frequency response function (FRF), 400, 
404, 475

bode plot, 573
dynamic system, 546
measurement, 475f
testing, 474

Full-state feedback method, 557–558
closed-loop system, 562f, 568f
control design, 561–564
DC motor–driven cart, 567–568
state-space equations analysis, 558–561

Function versus variable plot, 11, 11f
Fundamental frequency, 461
FVT (final-value theorem), 64–65

G

Gain margin (GM), 551
Gauss elimination method, 87, 87f
Gear ratio, 236
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Gear–train system, 236–237
single-degree-of-freedom, 237
single-link robot arm, 238–239, 238f

Generalized eigenvectors, 96
in MATLAB, 96–97

Generalized forces, 228
General moment equation, 200–201
Geometric multiplicity (GM), 94

AM and, 94–95
defective matrices, 98
generalized eigenvectors, 96–97
matrix diagonalization, 97
similarity transformations, 97

Geometric shapes, mass moments of 
inertia, 205t

getlinio function, 158
Graphical user interface (GUI), 14
Ground (electrical circuits), 264, 277

H

Half-angle formula, 581
Half-power bandwidth, 442–444, 443f
Harmonic base excitation, 447–450, 

448f, 449f
Heat, 349

flow rate, 349
transfer, 350

in insulated wall, 352f
in parallel thermal resistance, 351, 352f
in series thermal resistance, 351, 351f
system modeling, 354–355
thermal circuit of, 352f

Homogeneous solution, second-ODEs, 42
Homogeneous systems, 89
Hydraulic capacitance, 335–336

conical tank, 336–337
Hydraulic resistance, 337–338

parallel, 338–339, 339f
series, 338, 338f
symbol, 338f

Hydraulic system, 329, 335
Hydrostatic pressure, 335
Hyperbolic function formula, 581

I

IC (instantaneous center), 208
Ideal current/voltage source, 264, 264f
Ideal gases/gas law, 329–330
Identity matrix, 5
ilaplace command, 60
Impact hammer, 476, 476f

Impedance, 303
damper, 308
electric elements, 304
mass element, 308
mechanical, 308–309
op-amp circuit, 307–308, 307f
RLC circuit, 305–306, 306f
series and parallel, 304–305, 305f

Impulse response, 386f
first-order dynamic systems, 375
in MATLAB, 385
second-order dynamic systems, 384–385
in Simulink, 391–393
zero initial conditions, 385–386

impulse(sys) command, 385
Inductor, 267, 267f
initial command, 383, 388, 390
Initial-value problems (IVPs), 31, 414
Initial-value theorem (IVT), 65–66
Input–output (I/O) equation, 105, 119

to state-space form, 125–127
controller canonical form, 127–129

from system model, 119–120
Instantaneous center (IC), 208
int command, 9–10
integral command, 10
Integration, 9–10

formula, 582
Laplace transformation, 49

Integrator, 137, 137f
Internal energy/internal thermal energy, 348
The International System (SI) of units, 579t
inv command, 5
Inverse Laplace transformation, 57

convolution method, 61–63
linearity of, 48
partial-fraction expansion method, 57–60

in MATLAB, 60–61
real and complex poles, 59–60

Inverse matrix, 5
Inverted-pendulum–bob system, 206–207
I/O equation, see Input–output (I/O) equation
Irreducible polynomial, 57
Isentropic process, 330
Isobaric process, 330
Isochoric process, 330
Isothermal process, 330
IVPs (initial-value problems), 31, 414
IVT (initial-value theorem), 65–66

J

Jordan matrix, 97–98
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K

Kirchhoff’s current law, 274–277
Kirchhoff’s voltage law, 272–274

L

Laplace transformation, 45
of derivatives, 55–56
differentiation of, 48–49
FVT, 64–65
of integrals, 56–57
integration of, 49
inverse, see Inverse Laplace transformation
IVT, 65–66
linearity of, 48
pairs, 46t–47t
periodic signal, 55, 55f
special functions, 50

periodic, 54–55
unit-impulse, 53–54
unit-pulse, 53
unit-ramp, 52
unit-step, 50–52, 50f, 54

state equation solution via, 417–418
Law of conservation

energy, 348–349
mass, 332, 339

Law of heat conduction, 350
Lever mechanism, 217–219, 218f
Linear, first-order differential equations, 40–41
Linearization, 151, 156

of nonlinear element/model, 151–153, 152f
operating point, 153–154
procedure, 154–156, 155f
small-angle, 157–158

in Simulink, 158–161
linearize built-in function, 158
Linear resistor, 265
Linear time-invariant systems, 493–496
linspace command, 3
Liquid-level system, 329, 335

dynamic behavior, 335
hydraulic capacitance, 335–337
hydraulic resistance, 337–339
linearized resistance, 338
modeling of, 339–340
single-tank

with pump, 341–342, 341f
with valve, 339–340, 339f

two-tank, 342–344, 342f
Simulink model, 362–364

Logarithmic decrement, 434–436
Loop method, electrical circuits, 280–282
Loop path, 142
lsim command, 390–391
Lumped-parameter model, 354

M

Mason’s rule, 142
general case, 143–144, 143f
special case, 142–143, 142f

Mass elements, 169–171, 170f, 171f
Massless junctions, 192–193, 192f, 193f
Mass moment of inertia, 204, 205t

coupled pendulum system, 207–208
inverted-pendulum–bob system, 

206–207, 206f
Mass–spring–damper system, 184, 381f

free-body diagram, 184f
by using D’Alembert’s principle, 194f

nonconservative forces, 230f
physical system, 184f
single-degree-of-freedom, 184–187, 186f, 187f

control, 569–570
energy method, 229–230
rotational, 202–203, 202f, 248–250

two-degree-of-freedom, 203–204, 204f
MATLAB

bode plot in, 404
built-in function "\", 87–88
command

bode, 404
clc, 14
clear, 14
cos (cosine), 1
det, 5
double, 7
dsolve, 10
expm, 416
eye(n), 5
ezplot, 12
impulse(sys), 385
initial, 383, 388, 390
int, 10
integral, 10
inv, 5
matlabFunction, 8
My_script_file, 14
plot, 11
simplify, 417
size, 5
sqrt (square root), 1
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ss2tf, 130–132
step(sys), 387
subplot, 11
syms, 7
window and prompt, 1

Figure Window, 11
formal solution, 416
free response, 383
function, 8
generalized eigenvectors in, 96–97
impulse response in, 385
partial-fraction expansion method in, 60–61
screen capture of, 1, 2f
state-space form in, 114–115
step response in, 387–388
symbolic math toolbox, 8
vectors

column, 2
determinant, transpose, and inverse, 5
element-by-element operations, 6–7, 6t
length, 2
linspace, 3
matrices, 4–5
row, 2
size, 3
slash operators, 5–6

matlabFunction command, 8
Matrix analysis, 75

linear systems of equations, 86–87
Cramer’s rule, 88–89
Gauss elimination method, 87, 87f
homogeneous systems, 89
inverse of coefficient matrix, 87–88

matrix eigenvalue problem, 92
AM and GM, 94–98
solving, 92–94

vectors and matrices, 75–77, 76f
determinant of matrix, 79–81
EROs, 77–78
inverse of matrix, 81–84
rank of matrix, 78–79
special matrices, 77

Matrix diagonalization, 97
Matrix eigenvalue problem, 92

AM and GM, 94–95
defective matrices, 98
generalized eigenvectors, 96–97
matrix diagonalization, 97
similarity transformations, 97

solving, 92–94
Matrix exponential, 414–416
Mechanical energy, 348

Mechanical impedance, 308–309
Mechanical systems, 169

elements, 169
damper, 173–174
equivalence, 174–177
mass, 169–171
spring, 171–173

gear–train, 236–237
single-degree-of-freedom, 237
single-link robot arm, 238–239, 238f

mixed systems, 216–232
rotational, 200

general moment equation, 200–201
mass moment of inertia, 204–208, 205t
pure rolling motion, 208–210
rigid bodies modeling, 201–204
Simulink and Simscape, modeling with, 

248–251
translational, 182

D’Alembert’s principle, 193–194
degrees of freedom, 182–183, 182f
free-body diagrams, 183–187
massless junctions, 192–193
Newton’s second law, 183
Simulink and Simscape, modeling with, 

241–247
static equilibrium position and 

coordinate reference, 188–192
MIMO, see Multiple-input-multiple-output 

(MIMO) systems
Mixed systems, 216

energy method, 223
cart–inverted-pendulum system, 

230–232, 231f
double pendulum, 224–229, 226f, 269f
mass–spring–damper system, 

229–230, 230f
pulley system, 223–225, 224f

force and moment equations, 216–222
cart–inverted-pendulum system, 219–222, 

220f, 222f
lever mechanism, 217–219, 218f

Modal analysis, 460, 469
eigenvalue problem, 460–465
harmonic excitations, response to, 

470–472
initial excitations, response to, 467–470
orthogonality of modes, 465–467

Modal vectors, 461–462
Model-based control design methods, 566
Modern control design, 557–558
Mole, 330
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Multiple-input-multiple-output (MIMO) 
systems, 119–120, 131–132, 393–395

Multiple plots, 12–13, 13f
My_script_file command, 14

N

Natural frequency, 381–382
Natural response, 373
Negative-feedback system, 138f, 139
Newtonian mechanics, 170
Newton’s law of cooling, 351
Newton’s second law, 183, 308
Node method, electrical circuits, 277–278

one node, 278, 278f
two node, 279–280, 279f

Nonlinear system response, 420
RK4 method, 421–423
state-variable equations, solution of, 420–421
using Simulink models, 424–426

Nonsingular square matrix, 560
Normalized frequency, 446

O

Observability matrix, 560
ODEs, see Ordinary differential equations (ODEs)
Ohm’s law, 265
One-dimensional conduction, 350, 350f
Op-amp, see Operational amplifiers (op-amp)
Open-loop control system, 506f, 509f, 510f
Operational amplifiers (op-amp), 288–289, 289f

circuit, 292f
differentiator, 290–291, 290f

Simscape model, 315–316
impedance method, 307–308, 307f
integrator, 291, 291f
multiplier, 289–290, 289f
in time domain, 307f

Ordinary differential equations (ODEs), 31, 40, 108
linear, first-order, 40–41
second-order, 41–44

Orthogonality of mode, 465
Overdamped dynamic system, 383, 385, 387

P

Parallel combination block, 136–137, 136f, 137f
Parallel hydraulic resistance, 338–339, 339f
Parallel impedance, 304–305, 305f
Parallel RLC circuit, 275–276, 275f
Partial differential equations (PDEs), 40

Partial-fraction expansion method, 57–60
Passive electrical elements, 263

capacitors, 267–268
inductor, 267, 267f
resistors, 265–266

Passive vibration isolation systems, 451
PDEs (partial differential equations), 40
Pendulum, motion of, 182, 183f
Periodic functions, 54–55
Phase margin (PM), 551
Physical laws, electric circuits, 272

Kirchhoff’s current law, 274–277
Kirchhoff’s voltage law, 272–274

Physical Network approach, 20
PI (proportional–integral) controller, 519–520
PID controller, see Proportional–integral–

derivative (PID) controller
Piezoelectric transducer, 476
plot command, 11
Plotting, 11

analytical expressions, 12
multiple plots, 12–13, 13f
subplot, 11–12

Pneumatic capacitance, 331
Pneumatic system, 329, 332f

ideal gases, 329–330
mathematical model, 333
modeling of, 332–334

with Simulink, 362, 362f
pneumatic capacitance, 331
resistance, 337–338

Polar form
complex algebra using, 36–37
complex number in, 34–36

complex algebra using, 36–37
division using, 37
integer powers, 38
roots of, 38

Pole, 48
Pole–zero cancellation, 560
Polytropic process, 330
Port symbols, 17
Power

amplifier, 475f
capacitor, 268
complex numbers, integer, 38
inductor, 267
resistor, 265

Proportional–integral (PI) controller, 519–520
Proportional–integral–derivative (PID) 

controller, 516–517
block diagram, 517f, 518f
PI controller, 519–520
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proportional control, 517–519
Ziegler–Nichols tuning of, 523–525

PS-Simulink Converter block, 22
Pulley system, 223–225, 224f
Pure rolling motion, 208–210

Q

Quality factor/Q factor, 442
Quarter-car model, two-degree-of-freedom, 

189–192

R

Radiation, 350
Ramp response, 378, 378f
RC circuit, 276–277, 277f

high-pass filter, 313–315
Reaction curve method, 524, 524f
Rectangular form, complex number in, 

31–32
complex conjugate, 33–34
magnitude, 32–33

REF (row-echelon form), 77, 78f
residue command, 60
Resistors, 265–266, 265f, 266f
Resonant frequency, 408
Resonant peak, 502
Response, 373

analysis using Simulink, 390–395
free, 375, 382–384
frequency, see Frequency response
impulse, 375, 384–386
nonlinear systems, 420

RK4 method, 421–423
state-variable equations, solution of, 

420–421
using Simulink models, 424–426

ramp, 378, 378f
steady-state, 373–374
step, 376–377, 387–390
transient, 373–374

first-order systems, 374–378
second-order systems, 

380–395
types, 373
unit-impulse and unit-step, 389f
using lsim command, 390–391
zero-input, 375
zero-state, 375

Reversible adiabatic process, 330
Right-hand rule, 170, 171f, 294–295

Rigid body
differential element of, 201, 201f
modeling, 201–202

rotational mass–spring–damper system, 
202–204

plane motion, 216, 216f
Rise time, 499f
RK4 (fourth-order Runge-Kutta) method, 

421–423
RLC circuit, 23f

impedance method, 305–306, 306f
parallel, 275–276, 275f
in s domain, 306f
series, 272–273, 272f, 310–313
Simscape model, 22–24, 24f, 25f
in time domain, 306f

RL circuit, step response, 376–377
Root locus technique, 528–529

analysis, 534–536
control design, 537–539
feedback system, 529
sketching, 529–534

Rotating unbalance, 445–447, 447f
Rotational mass, 171
Rotational mass–spring–damper system

single-degree-of-freedom, 
202–203, 202f

two-degree-of-freedom, 203–204, 203f
Rotational systems, 200; see also Mixed 

systems
general moment equation, 200–201
mass moment of inertia, 204, 205t

coupled pendulum system, 
207–208

inverted-pendulum–bob system, 
206–207, 206f

pure rolling motion, 208–210
rigid bodies modeling, 201–204
Simulink and Simscape, modeling with, 

248–251
Routh’s stability criterion method, 

494, 506
Row-echelon form (REF), 77, 78f

S

Script files, 13–14
Second-order differential equations, 41

homogeneous solution, 42
particular solution, 42–44, 42t

Second-order dynamic systems
bode plot, 406–410
frequency response, 401–404
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Second-order dynamic systems (Continued)
transient response, 380–382

free response, 382–384
impulse response, 384–386
step response, 387–390
transient-response analysis, 381–382
unit-impulse and unit-step 

responses, 389f
Second-order matrix form, 106–107
Second-order system, 497, 497f
Sensors, 475
Series combinations block, 135–136
Series hydraulic resistance, 338, 338f
Series impedance, 304–305, 305f
Series RLC circuit, 272–273, 272f

Simscape model, 310–313
Series thermal resistance, 351, 351f
Simple pole, 48
simplify command, 417
Simscape, 20–21

add-on products, 20
armature-controlled DC motor, 318f, 

319f, 320f
block diagram, see Block diagram, 

Simscape
block library, 21
into control system simulation, 569–570
electrical circuits, 310–315
foundation library, 21, 22f
libraries, 21, 21f
modeling, 241
new model building, 22–24
op-amp differentiator, 315–316, 316f
Physical Network approach, 20
of physical system, 249f
RC high-pass filter, 313–315, 314f
RLC circuit, 22–24, 24f, 25f

series, 310–313, 311f
simulation, 24, 25f
single-degree-of-freedom

rotational mass–spring–damper system, 
248–249, 249f

vehicle model, translational, 243–244, 
243f, 244f

single-link robot arm with gearbox, 
250–251, 251f

solver configuration block, 22
thermal system, 364–366, 365f
translational, 241
two-degree-of-freedom mass–spring system, 

246–248, 247f, 248f
utilities, 21, 23f

Simulink, 14–15, 567, 567f
armature-controlled DC motor, 316–321, 

318f, 319f, 320f
block diagram, 186f

closed-loop control system, 511f
on differential equation, 242f, 246f, 364f
on dynamics equations, 318f
open-loop control system, 510f
on state-space form, 247f, 319f, 364f
thermal system, 356f, 365f
on transfer function, 243f, 313f, 318f

block library, 15, 15f, 16f
branch and connecting line, 18, 18f
control system simulation, 567–568
impulse response in, 391–393
library browser, 15, 15f
linearization, 158–161, 425f
mechanical systems, 248–251
model/modeling, 145, 146f, 159f, 241

single and two outputs, 146f
single-degree-of-freedom vehicle model, 

241–243, 242f, 243f
state-space block in, 146–147
two-degree-of-freedom mass–spring 

system, 245–246, 246f
new model building, 16–18, 17f, 18f
nonlinear system responses, 424–426
pneumatic system, 362, 362f
response analysis using, 390–395
simulation, 19, 19f, 20f
two-tank liquid-level system, 362–364, 364f

Simulink-PS Converter block, 22
Sine wave testing, 476
Single-degree-of-freedom

gear–train system, 237
mass–spring–damper system, 184–187, 

186f, 187f
energy method, 229–230, 230f

rotational mass–spring–damper system, 
202–203

Simscape modeling, 248–249, 249f
Simulink modeling, vehicle model, 241–243, 

242f, 243f
Single-input-single-output (SISO) system, 119
Single-link robot arm, 238–239

by DC Motor, 298–299, 298f, 302f
with gearbox, 250–251

Simscape block diagram, 251f
mechanical model of, 238f

Single-tank liquid-level system
with pump, 341–342, 341f
with valve, 339–340, 339f
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SISO (single-input-single-output) system, 119
size command, 5
Slash operators, 5–6
Small-angle linearization, 157–158
Solver Configuration block, 22
Special functions, 50

periodic, 54–55
unit-impulse, 53–54
unit-pulse, 53
unit-ramp, 52
unit-step, 50–52, 50f, 54

Specific gas constant, 330
Specific heat capacity, 349–350
s-plane, 500, 501f
Spring elements, 171–173
Spring equivalence

constant of cantilever beam, 
176–177, 177f

parallel, 174–175, 175f
series, 175–176, 176f

Spring force, 308
sqrt (square root) command, 1
State equation, 110–111

analytical solution of, 413
decoupling, 115–117
formal, 414, 416–417

in MATLAB, 416
matrix exponential, 414–416

via Laplace transformation, 417–418
via state-transition matrix, 418–419

State-space form, 108, 113, 113f
armature-controlled DC motor, 297
electrical circuits, 282
field-controlled DC motor, 301
I/O equation to, 125–129
in MATLAB®, 114–115
output equation and, 111–115
state variables, state-variable equations, and 

state equation, 108–111
to transfer matrix, 129–132

State-transition matrix, 418–419
State variables, 109, 109f

electrical circuits, 282–285
equation, 109–110

Static deflection, 402, 442
Static equilibrium position and coordinate 

reference, 188–192
Steady-state response, 373–374
Step function, 50
Step response, 389f

first-order dynamic systems, 376–377
in MATLAB, 387–388

RL circuit, 376–377
second-order dynamic systems, 387
zero initial conditions, 388–389

step(sys) command, 387
Subplot, 11–12
subplot command, 11
Summing junction, 134, 135f

moving, 139–141
Symbolic math toolbox, 7

anonymous functions, 7–8
differential equations, 10
differentiation, 8–9
MATLAB function, 8

Symbolic matrix, inverse of, 83–84
syms command, 7
System model representation, 105

block diagram representation, 134
construction from, 144–147
operations, 134–139
reduction techniques, 139–144

configuration form, 105–106, 106f
second-order matrix form, 106–107

decoupling state equation, 115–117
I/O equation, 119

and state-space form, transfer matrix 
relations, 119–120

from system model, 119–120
linearization, 151

of nonlinear element, 151–153
of nonlinear model, 153–158
in Simulink, 158–161

state-space form, 108
I/O equation to, 125–129
output equation and, 111–115
state variables, state-variable equations, 

and state equation, 108–111
to transfer matrix, 129–132

and transfer function, 119
from system model, 120–122

System’s frequency response, 502

T

tf2ss command, 127–128
Thermal capacitance, 349–350
Thermal resistance, 350–353

parallel, 351, 352f
series, 351, 351f

Thermal system, 329, 348
first law of thermodynamics, 348–349
Simscape model, 364–366, 365f
Simulink block diagram, 356f
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Thermal system (Continued)
temperature dynamics

heated object, 355–357
house with double-layer walls, 357–359

thermal capacitance, 349–350
thermal resistance, 350–353

Three-degree-of-freedom
mass–spring system, 460, 461f
natural modes, 464f

Time-domain performance specifications, 
496–500, 499f

system identification, 502–503
unit-step response with, 496f

Torque, 295, 299
Torsional damper, 174, 174f
Tracking/servo system, 492
Transducers, 475
Transfer functions, 120–121, 305

armature-controlled DC motor, 297
block, 134f
field-controlled DC motor, 300
from system model, 120–122

Transfer matrix, 121–122
state-space form, 129–130

I/O equation relations, 125–132
MATLAB command ss2tf, 130–132

Transient response, 373–374
first-order systems, 374–375

free, 375
impulse, 375
ramp, 378, 378f
step, 376–377

second-order systems, 380–382
analysis using Simulink, 390–395
free, 382–384
impulse, 384–386
step, 387–390
unit-impulse and unit-step, 389f

Translational spring element, 172–173
Translational systems, 182; see also Mixed systems

D’Alembert’s principle, 193–194
degrees of freedom, 182–183, 182f
free-body diagrams, 183–187
massless junctions, 192–193
Newton’s second law, 183
and rotational, 216–232
Simulink and Simscape, modeling with, 

241–247
static equilibrium position and coordinate 

reference, 188–192
Transmissibility, 448–449
Transpose matrix, 5
Trigonometric expansion formula, 581

Two-degree-of-freedom
coupled pendulum system, 207–208, 208f
defined, 192
with massless junctions, 192–193, 192f, 193f
mass–spring system, 244–248
quarter-car model, 189–192
rotational mass–spring–damper system, 

203–204
Two-tank liquid-level system, 342–344, 342f

Simulink model, 362–364
Two-terminal electrical element, 263–264, 264f

U

Ultimate sensitivity method, 524
Undamped dynamic system, 382, 384, 387
Underdamped dynamic system, 382, 

385, 387
Unit-impulse functions, 53–54
Unit-impulse response, 389f
Unit-pulse functions, 53
Unit-ramp functions, 52
Unit-step functions, 50–52, 50f, 54
Unit-step response, 512f

cart system
with PD control, 523f
with proportional feedback control, 539f

closed-loop control system, 508f, 511f, 536f
open-loop control system, 507f, 510f
second-order systems, 389f, 502f
time-domain performance specification, 496f

User-defined functions and script files, 13–14

V

Valve resistance, 332
Vectors and matrices, 2–5, 75–77

adjoint, 82–84
block diagonal and triangular, 81, 81f
column, 2
determinant, 5, 79–80
element-by-element operations, 6–7
EROs, 77–78
inverse of, 5, 81–82
length, 2
linspace, 3
rank of, 78–79
row, 2
size, 3
slash operators, 5–6
special, 77
specific component(s), 3
transpose, 5
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Vibration, 433
absorbers, 454–458, 455f
external excitation, 433
forced, 433, 441–442

half-power bandwidth, 442–444
harmonic base excitation, 447–450
rotating unbalance, 445–447, 447f

free, 433–434
Coulomb damping, 437–440
logarithmic decrement, 434–436

initial excitation, 433
frequency response, 434, 435f

isolators, 451–452
displacement, 452–454
force, 453f, 454

measurement phase, 474–476
modal analysis, 460

eigenvalue problem, 460–465
harmonic excitations, response to, 470–472
initial excitations, response to, 467–470
orthogonality of modes, 465–467

suppressions, 451
system parameters identification, 476–478, 

477f, 478f
Viscous damping/damper, 173, 173f, 434
Voltage, 264
Voltage–current relation, 264

capacitor, 268
inductor, 267
resistor, 265

W

Work, 349

Z

Zero-input/zero-state response, 375
Zero matrix, 4–5
Ziegler–Nichols tuning of PID controller, 

523–525
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