
CHAPTER 2

MARCHING CUBES

AND VARIANTS

In the introduction, we mentioned four different approaches to isosurface con-
struction. In this chapter, we describe one of those approaches to isosurface
construction, the widely used Marching Cubes algorithm by Lorensen and
Cline [Lorensen and Cline, 1987a].

The Marching Cubes algorithm is based on two ideas. First, the isosurface
can be constructed piecewise within each cube of the grid without reference to
other grid cubes. Second, the combinatorial structure of each isosurface patch
in a grid cube can be retrieved from a lookup table. Since the main operation
is retrieving this structure from the lookup table, the algorithm runs in time
proportional to the number of grid cubes.

We first present a two-dimensional version of the algorithm, calledMarching

Squares, for constructing two-dimensional isocontours. Before discussing the
Marching Squares algorithm, we define some terminology that will be used
by the algorithms in this chapter.

2.1 Definitions
Given a regular scalar grid and an isovalue σ, it is convenient to assign “+” and
“−” labels to each grid vertex based on the relationship between its scalar value
and σ.

Definition 2.1.

• A grid vertex is positive, “+”, if its scalar value is greater than or equal to σ.

• A grid vertex is negative, “−”, if its scalar value is less than σ.

• A positive vertex is strictly positive if its scalar value does not equal σ.
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18 2. Marching Cubes and Variants

Since the scalar value of a negative vertex never equals the isovalue, there is no
point in defining a similar “strictly negative” term.

Grid edges can be characterized by the labels at their endpoints.

Definition 2.2.

• A grid edge is positive if both its endpoints are positive.

• A grid edge is negative if both its endpoints are negative.

• A positive grid edge is strictly positive if both its endpoints are strictly pos-
itive.

• A grid edge is bipolar if one endpoint is positive and one endpoint is nega-
tive.

Note that a grid vertex or edge is only positive or negative in relationship to
some isovalue.

The definitions given above apply not just to regular scalar grids but also to
curvilinear grids. They also apply to the vertices and edges of polyhedral meshes
such as tetrahedral and simplicial meshes.

2.2 Marching Squares

2.2.1 Algorithm
Input to the Marching Squares algorithm is an isovalue and a set of scalar
values at the vertices of a two-dimensional regular grid. The algorithm has
three steps. (See Figure 2.1.) Read in the isocontour lookup table from a pre-
constructed data file. For each square, retrieve from the lookup table a set of

Read isocontour lookup table

��
For each grid square, retrieve isocontour edges

��
Compute isocontour vertex coordinates using linear interpolation

Figure 2.1. Marching Squares.
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Figure 2.2. Square configurations. Black vertices are positive.

6 7 81 2 3 4 5

14 15 169 10 11 12 13

Figure 2.3. Square isocontours. Configurations 1 and 9 have no isocontour. Isocontours
for configurations 2–7 and 10–15 are single line segments. Isocontours for configurations
8 and 16 are two line segments.

isocontour edges representing the combinatorial structure of the isocontour. The
endpoints of these edges form the isocontour vertices. Assign geometric locations
to the isocontour vertices based on the scalar values at the square edge endpoints.
We explain the last two steps of the algorithm next.

Each grid vertex is labeled positive or negative as described in Section 2.1.
(See Figure 2.4(b) for an example.) Since a square has four vertices, there are
24 = 16 different configurations of square vertex labels. These configurations are
listed in Figure 2.2.

The combinatorial structure of the isocontour within each square is deter-
mined from the configuration of the square’s vertex labels. In order to separate
the positive vertices from the negative ones, the isocontour must intersect any
square edge that has one positive and one negative endpoint. An isocontour
that intersects a minimal number of grid edges will not intersect any square edge
whose endpoints are both strictly positive or whose endpoints are both negative.

For each square configuration κ, let E
+/−
κ be the set of bipolar edges. Note

that the size of E
+/−
κ is either zero, two, or four. Pair the edges of E

+/−
κ . Each

such pair represents an isocontour edge with endpoints on the two elements
of the pair. Figure 2.3 contains the sixteen square configurations and their
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(a) Scalar grid. (b) The +/− grid.
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(c) Midpoint vertices. (d) Isocontour.

Figure 2.4. (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar
value sv is positive if sv >= 5 and negative if sv < 5. Note that sv = 5 for one grid
vertex v. (c) Isocontour with vertices at edge midpoints (before linear interpolation).
(d) Isocontour with isovalue 5.

isocontours. The isocontour lookup table, Table, contains sixteen entries, one for

each configuration. Each entry, Table[κ] is a list of the E
+/−
κ pairs.

In Figure 2.3 the isocontour edges are drawn connecting the midpoints of
each square edge. This is for illustration purposes only. The geometric locations
of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices
(0, 0), (1, 0), (0, 1), (1, 1). To construct the isocontour in grid square (i, j), we
have to map pairs of unit square edges to pairs of square (i, j) edges. Each
vertex v = (vx, vy) of the unit square maps to v + (i, j) = (vx, vy) + (i, j) =
(vx + i, vy + j). Each edge e of the unit square with endpoints (v, v′) maps to
edge e+ (i, j) = (v + (i, j), v′ + (i, j)). Finally, each edge pair (e1, e2) maps to
(e1 + (i, j), e2 + (i, j)).

The endpoints of the isocontour edges are the isocontour vertices. To map
each isocontour edge to a geometric line segment, we use linear interpolation to
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Input : F is a 2D array of scalar values.
Coord is a 2D array of (x, y) coordinates.
σ is an isovalue.

Result : A set Υ of isocontour line segments.

MarchingSquares(F, Coord, σ, Υ)

1 Read Marching Squares lookup table into Table;
/* Assign “+” or “−” signs to each vertex */

2 foreach grid vertex (i, j) do
3 if F[i, j] < σ then Sign[i, j]← “−”;
4 else Sign[i, j]← “+”; /* F[i, j] ≥ σ */

5 end
6 S← ∅;
/* For each grid square, retrieve isocontour edges */

7 foreach grid square (i, j) do
/* Grid square vertices are (i, j), (i+1, j), (i, j+1), (i+1, j+1) */

8 κ← (Sign[i, j],Sign[i+1, j],Sign[i, j+1],Sign[i+1, j+1]);
9 foreach edge pair (e1, e2) ∈ Table[κ] do

10 Insert edge pair (e1 + (i, j), e2 + (i, j)) into S;
11 end

12 end
/* Compute isocontour vertex coordinates using linear interpolation */

13 foreach bipolar grid edge e with endpoints (i1, j1) and (i2, j2) do
/* Compute the isosurface vertex we on edge e */

14 we ← LinearInterpolation

15 (Coord[i1, j1], F[i1, j1], Coord[i2, j2], F[i2, j2], σ);

16 end
/* Convert S to set of line segments */

17 Υ← ∅;
18 foreach pair of edges (e1, e2) ∈ S do
19 Υ← Υ ∪ {(we1 , we2)};
20 end

Algorithm 2.1. Marching Squares.

position the isocontour vertices as described in Section 1.7.2. Each isocontour
vertex v lies on a grid edge [p, q]. If sp and sq are the scalar values at p and q
and σ is the isovalue, then map v to (1−α)p+αq where α = (σ− sp)/(sq − sp).
Note that since p and q have different signs, scalar sp does not equal sq and the
denominator (sq − sp) is never zero.

The Marching Squares algorithm is presented in Algorithm 2.1. Function
LinearInterpolation, called by this algorithm, is defined in Algorithm 1.1 in
Section 1.7.2.
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Figure 2.4 contains an example of a scalar grid, an assignment of positive and
negative labels to the grid vertices, the isocontour before linear interpolation, and
the final isocontour after linear interpolation.

2.2.2 Running Time
The Marching Squares algorithm runs in linear time.

Proposition 2.3. Let N be the total number of vertices of a 2D scalar grid. The
running time of the Marching Squares algorithm on the scalar grid is Θ(N).

Proof: Reading the Marching Square lookup table takes constant time. Each
grid square is processed once. At each grid square, at most two isocontour
edges are retrieved from the lookup table. Since the number of grid squares is
bounded by the number of grid vertices, determining the isocontour edges takes
O(N) time.

Computing the isocontour vertex on each grid edge takes time proportional
to the number of isocontour vertices. Since each grid edge has at most one
isocontour edge, the time to compute isocontour vertices is proportional the
number of grid edges. The number of grid edges is less than twice the number
of grid vertices, so the number of grid edges is at most 2N . Thus computing the
isocontour vertices takes O(N) time.

The algorithm examines every grid square, so its running time has an Ω(N)
lower bound. Thus, the running time of the Marching Squares algorithm is
Θ(N). �

2.2.3 Isocontour Properties
To properly discuss the output produced by the Marching Squares algorithm,
we need to differentiate between two cases based on the isovalue. In the first
case, the isovalue does not equal the scalar value of any grid vertex. In this
case, the Marching Squares algorithm produces a piecewise linear 1-manifold
with boundary. The boundary of the 1-manifold lies on the boundary of the
grid. In the second case, the isovalue equals the scalar value of one or more grid
vertices. In this case, the Marching Squares algorithm may not produce a
1-manifold with boundary or the boundary may not lie on the boundary of the
grid. For instance, the Marching Squares algorithm applied to the 3×3 grids
in Figures 2.5 and 2.6 produces non-manifold isocontours or isocontours with
boundary not on the scalar grid. In Figure 2.5(a), four isocontour line segments
intersect at a single point; in Figure 2.5(b), the isocontour is a single point, and
in Figure 2.6, the boundary of the isocontour lies inside the grid.

The two cases also differ in the nature of the line segments produced by the
algorithm. The isocontour produced by the Marching Squares algorithm is
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Figure 2.5. Examples of non-manifolds produced by Marching Squares (isovalue 3).
Black vertices are positive. (a) Four curves joining at the grid vertex with isovalue 3.
(b) Isosurface includes an isolated point at the grid vertex with isovalue 3.
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Figure 2.6. Examples of a manifold produced by Marching Squares whose boundary
does not lie on the grid boundary (isovalue 3). Black vertices are positive.

a set of line segments whose vertices lie on the grid edges. If the isovalue does
not equal the scalar value of any grid vertex, then these line segments all have
positive length. If the isovalue equals the scalar value of one or more grid vertices,
then the isocontour may have zero-length edges. For instance, the Marching

Squares algorithm applied to the three grids in Figure 2.7 produces isocontours
for isovalue 3 with zero-length edges.

In Figure 2.7(a), the lower-left grid square has configuration 4, producing a
single isocontour edge, but both endpoints of that edge map to the vertex in the
middle of the grid. In Figure 2.7(b), each grid square produces an isocontour
edge, but all four edges have zero length and collapse to a single point. In
Figure 2.7(c), leftmost and rightmost grid squares produce zero-length isocontour
edges and two middle grid squares produce two duplicate isocontour edges on a
grid edge.

Marching Squares returns a finite set, Υ, of line segments. The isocontour
is the union of those line segments. The vertices of the isocontour are the endpoints
of the line segments.

The following properties apply to all isocontours produced by the Marching

Squares algorithm.
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Figure 2.7. Examples of zero-length contour edges produced by Marching Squares

(isovalue 3). Black vertices are positive. (a) Isocontour with one zero-length isocontour
edge (from lower-left grid square). (b) Isocontour with four zero-length isocontour
edges. (c) Another isocontour with four zero-length isocontour edges. Isocontour also
has two duplicate nonzero isocontour edges (from the two middle grid squares).

Property 1. The isocontour is piecewise linear.

Property 2. The vertices of the isocontour lie on grid edges.

Property 3. The isocontour intersects every bipolar grid edge at exactly one
point.

Property 4. The isocontour does not intersect any negative or strictly positive
grid edges.

Property 5. The isocontour separates positive grid vertices from negative grid
vertices and strictly separates strictly positive grid vertices from negative grid
vertices.

Set Y ⊆ X separates point p ∈ X from point q ∈ X if every path in X connecting
p to q intersects Y. Set Y strictly separates p from q if Y separates p from q and
neither p nor q is on Y. (See Section 1.7.1 and Appendix B.9.)

Properties 3 and 4 imply that the isocontour intersects a minimum number
of grid edges. If both endpoints of a grid edge have scalar value equal to the
isovalue, then the isocontour may intersect the grid edge zero, one, or two times
or may contain the grid edge. (See Figure 2.8.)

A grid vertex may have scalar value equal to the isovalue and yet no iso-
contour passes through any edge containing that grid vertex. For instance, the
Marching Squares algorithm returns the empty set when run on the scalar
grid in Figure 2.9 with isovalue 3. Each vertex, including the center vertex, is
positive, so each grid square has configuration 9 (Figure 2.2) and has no isocon-
tour edges.

By Property 3, the isocontour intersects every bipolar grid edge. However,
the bipolar grid edge may be intersected by zero-length isocontour edges as in
Figure 2.7(b).

The following properties apply to Marching Squares isocontours whose
isovalues do not equal the scalar value of any grid vertex.
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Figure 2.8. Examples of grid edges with both endpoint scalar values equal to the
isovalue (3). Black vertices are positive. (a) Red grid edge e does not intersect the
isocontour. (b) Red grid edge e intersects the isocontour at one endpoint. (c) Red grid
edge e intersects the isocontour at both endpoints. (d) Red grid edge e is contained in
the isocontour.
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Figure 2.9. Example of a scalar grid whose Marching Squares isocontour is the
empty set, even though the center grid vertex has scalar value equal to the isovalue 3.
All vertices are positive.

Property 6. The isocontour is a piecewise linear 1-manifold with boundary.

Property 7. The boundary of the isocontour lies on the boundary of the grid.

Property 8. Set Υ does not contain any zero-length line segments or dupli-
cate line segments, and the line segments in Υ form a “triangulation” of the
isocontour.

The triangulation in Property 8 simply means that line segments in Υ inter-
sect at their endpoints. The isocontour is one-dimensional and does not contain
any triangles.

2.2.4 Proof of Isocontour Properties
We give a proof of each of the properties listed in the previous section.

Property 1. The isocontour is piecewise linear.

Property 2. The vertices of the isocontour lie on grid edges.
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Figure 2.10. Red, positive regions and blue, negative regions for each square configu-
ration. The green isocontour is part of the positive region. Black vertices are positive.

Proof of Properties 1 & 2: The Marching Squares isocontour consists of a finite
set of line segments, so it is piecewise linear. These line segments intersect only at
their endpoints and thus form a triangulation of the isocontour. The endpoints
of these line segments lie on the grid edges, confirming Property 2. �

Property 3. The isocontour intersects every bipolar grid edge at exactly one
point.

Property 4. The isocontour does not intersect any negative or strictly positive
grid edges.

Proof of Properties 3 & 4: Each isocontour edge is contained in a grid square. Since
the grid squares are convex, only isocontour edges with endpoints (vertices) on
the grid edge intersect the grid edge. If the grid edge has one positive and one
negative endpoint, the unique location of the isocontour vertex on the grid edge
is determined by linear interpolation. Thus the isocontour intersects a bipolar
grid edge at only one point.

If the grid edge is negative or strictly positive, then no isocontour vertex lies
on the grid edge. Thus the isocontour does not intersect negative or strictly
positive grid edges. �

Within each grid square the isocontour partitions the grid square into two
regions. Let the positive region for a grid square c be the set of points which can
be reached by a path ζ from a positive vertex. More precisely, a point p is in the
positive region of c if there is some path ζ ⊂ c connecting p to a positive vertex
of c such that the interior of ζ does not intersect the isocontour. A point p is
in the negative region of c if there is some path ζ ⊂ c connecting p to a negative
vertex of c such that ζ does not intersect the isocontour. Since any path ζ ⊂ c
from a positive to a negative vertex must intersect the isocontour, the positive
and negative regions form a partition of the square c. Figure 2.10 illustrates the
positive and negative regions, colored red and blue, respectively, for each square
configuration.
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Figure 2.11. Adjacent grid squares, c1, c2, c3, and c4, and their positive (red) regions,
R+

c1 , R
+
c2 , R

+
c3 and R+

c4 , respectively. Yellow edges e1, e2 and e3 separate the squares.
Positive regions agree on the grid square boundaries, i.e., R+

c1 ∩ e1 = R+
c2 ∩ e1 and

R+
c2 ∩ e2 = R+

c3 ∩ e2 and R+
c3 ∩ e3 = R+

c4 ∩ e3.

Note the asymmetry in the definitions of the positive and negative regions.
For the positive region the interior of ζ does not intersect the isocontour, while
for the negative region the entire path ζ must not intersect the isocontour. Thus,
the positive region contains the isocontour while the negative region does not.
The positive region is also closed. Any point within the positive region that does
not lie in the isocontour has a neighborhood contained in the positive region.

Every negative vertex is contained in the negative region since the zero-length
path connects the vertex to itself. Similarly, every positive vertex is contained
in the positive region.

Let R+
c be the positive region for a grid square c. We claim that positive and

negative regions agree on the grid square boundaries. For instance, in Figure 2.11
R+

c1 ∩ e1 equals R+
c2 ∩ e1 where R+

c1 and R+
c2 are the positive regions for grid

squares c1 and c2, respectively, and e1 is the edge between c1 and c2. Similarly,
R+

c2 ∩ e2 equals R+
c3 ∩ e2 and R+

c3 ∩ e3 equals R+
c4 ∩ e3.

Lemma 2.4. Let c1 and c2 be adjacent grid squares where each vertex of c1 and
c2 has a positive or a negative label. Let p be a point in c1 ∩ c2. Point p is in
R+

c1 if and only if p is in R+
c2 .

Proof: If p is a grid vertex, then p is in R+
c1 and R+

c2 if it is positive and not in
R+

c1 or R+
c2 if it is negative. Otherwise, p must be in the interior of some grid

edge e. If edge e is positive, then p is in R+
c1 and R+

c2 . If edge e is negative, then
p is not in R+

c1 or R+
c2 . If one endpoint, v1, is positive and the other endpoint,

v2, is negative, then the isocontour in both grid squares intersects the grid edge
in the same interpolated point q. The closed segment [v1, q] is in both R+

c1 and
R+

c2 while the segment (q, v2] (open at q and closed at v2) is in neither. Thus if
p is in [v1, q], then p is in both R+

c1 and R+
c2 and if p is in (q, v2], then p is in

neither. �

Using Lemma 2.4, we prove that the isocontour separates positive vertices
from negative ones.
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Property 5. The isocontour separates positive grid vertices from negative grid
vertices and strictly separates strictly positive grid vertices from negative grid
vertices.

Proof: For all the possible configurations, a path from a positive vertex to a
negative one in a grid square must intersect the isocontour. We must show that
this also holds true for paths through many grid squares.

Let R+ be the union of the positive regions over all the grid squares. Consider
a path ζ in the grid from a positive grid vertex to a negative one. The positive
grid vertex lies in R+ while the negative one does not. Thus ζ must intersect some
point p on the boundary of R+ where it crosses out of R+. Every neighborhood
of p must contain points that are not in R+.

Since R+ is closed, point p lies in R+. Thus point p lies in R+
c′ for some grid

square c′. By Lemma 2.4, point p lies in R+
c for every grid square c containing

p. Assume p is not on the isocontour. Within each grid square containing p,
some neighborhood of p is contained in the positive region for that grid square.
The union of those neighborhoods is a neighborhood of p within the grid and is
contained in R+. Thus ζ does not cross out of R+ at p. We conclude that p must
lie on the isocontour and that ζ intersects the isocontour. Thus the isocontour
separates positive from negative grid vertices.

If the scalar value of a grid vertex does not equal the isovalue, then the grid
vertex does not lie on the isocontour. Thus the isocontour strictly separates
strictly positive grid vertices from negative ones. (By definition, the scalar value
of a negative vertex never equals the isovalue.) �

To prove properties 6 and 7, we prove something slightly more general.

Proposition 2.5. Let p be any point on the Marching Squares isocontour that
is not a grid vertex with scalar value equal to the isovalue.

1. If p is in the interior of the grid, then the isocontour restricted to some
sufficiently small neighborhood of p is a 1-manifold.

2. If p is on the boundary of the grid, then the isocontour restricted to some
sufficiently small neighborhood of p is a 1-manifold with boundary.

Proof: Let v be a grid vertex with scalar value sv. If sv is not the isovalue, then
the isocontour does not contain v, so point p is not v. If sv equals the isovalue,
then, by assumption, point p is not v. Therefore, point p is not a grid vertex.

If p lies in the interior of a grid square, then it lies in the interior of some
isocontour edge. The interior of this edge is a 1-manifold containing p.

Assume p lies on the boundary of a grid square but not on the boundary of
the grid. Since p is not a grid vertex, point p must lie in the interior of some
grid edge e with one positive and one negative vertex. The two grid squares
containing e each contain a single contour edge with endpoint at p. The interior
of these two contour edges and the point p form a 1-manifold containing p.
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Finally, assume p lies on the boundary of the grid. Since p is not a grid
vertex, point p is contained in a single grid square. This grid square contains
a single contour edge with endpoint at p. This contour edge is a manifold with
boundary containing p. �

Properties 6 and 7 apply to Marching Squares isocontours whose isovalues
do not equal the scalar value of any grid vertex.

Property 6. The isocontour is a piecewise linear 1-manifold with boundary.

Property 7. The boundary of the isocontour lies on the boundary of the grid.

Proof of Properties 6 & 7: Consider a point p on the isocontour. Since the isovalue
does not equal the scalar value of any grid vertex, point p is not a grid vertex. By
Proposition 2.5, the isocontour restricted to some suitably small neighborhood of
point p is either a 1-manifold or a 1-manifold with boundary. Thus the isocontour
is a 1-manifold with boundary. Since the restricted isocontour is a 1-manifold
whenever p is in the interior of the grid, the boundary of the isocontour must lie
on the grid boundary. �

The last property is that Υ does not contain any zero-length or duplicate
edges and forms a triangulation of the isocontour.

Property 8. Set Υ does not contain any zero-length line segments or dupli-
cate line segments, and the line segments in Υ form a “triangulation” of the
isocontour.

Proof: Since no grid vertex has scalar value equal to the isovalue, no isocontour
vertex lies on a grid vertex. By Property 4, each bipolar grid edge contains only
one isocontour vertex. Thus, the linear interpolation on isocontour vertices does
not create any zero-length or duplicate isocontour edges. Since isocontour edges
intersect only at their endpoints, Υ forms a triangulation of the isocontour. �

2.2.5 2D Ambiguity

Set E
+/−
κ is the set of bipolar square edges for configuration κ. The combinatorial

structure of the isocontour depends upon the matching of the elements of E
+/−
κ .

If E
+/−
κ has two elements, then there is no choice. However, if E

+/−
κ has four

bipolar edges, then there are two possible pairings and two possible isocontours
that could be constructed for configuration κ. Configurations 8 and 16 from
Figure 2.2 have four bipolar edges. They are called ambiguous configurations.
These two ambiguous configurations are shown in Figure 2.12 along with the
two combinatorially distinct isocontours for each ambiguous configuration.

Choosing different isocontours for the ambiguous configurations will change
the topology of the overall isocontour. For instance, Figure 2.13 shows the same
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Figure 2.12. Ambiguous square configurations.
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Figure 2.13. Topologically distinct isocontours created by using different isocontours
for the ambiguous configuration in the central grid square.

scalar grid with two topologically distinct isocontours created by different resolu-
tions of the ambiguous configurations. The first isocontour has two components
while the second has one.

While the choice of isocontours for the ambiguous configurations changes
the isocontour topology, any of the choices will produce isocontours that are 1-
manifolds and strictly separate strictly positive vertices from negative vertices.
As we shall see, this is not true in three dimensions.

2.3 Marching Cubes

2.3.1 Algorithm

The three-dimensional Marching Cubes algorithm follows precisely the steps
in the two-dimensional Marching Squares algorithm. Input to the March-
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Read isosurface lookup table

��
For each grid cube, retrieve isosurface triangles

��
Compute isosurface vertex coordinates using linear interpolation

Figure 2.14. Marching Cubes.

ing Cubes algorithm is an isovalue and a set of scalar values at the vertices of a
three-dimensional regular grid. The algorithm has three steps. (See Figure 2.14.)
Read the isosurface lookup table from a preconstructed data file. For each cube,
retrieve from the lookup table a set of isosurface triangles representing the com-
binatorial structure of the isosurface. The vertices of these triangles form the
isosurface vertices. Assign geometric locations to the isosurface vertices based
on the scalar values at the cube edge endpoints. We explain the last two steps
below.

Grid vertices are labeled positive or negative as described in Section 2.1. Grid
edges are labeled positive, negative, or bipolar.

The combinatorial structure of the isosurface within each cube is determined
from the configuration of the cube’s vertex labels. In order to separate the posi-
tive vertices from the negative ones, the isosurface must intersect any cube edge
that has one positive and one negative endpoint. An isosurface that intersects
a minimal number of grid edges will not intersect any edge whose endpoints are
both strictly positive or whose endpoints are both negative.

Since each vertex is either positive or negative and a cube has eight vertices,
there are 28 = 256 different configurations of cube vertex labels. Many of these
configurations are rotations or reflections of one another. By exploiting this
symmetry, the number of distinct configurations can be reduced to twenty-two.1

These distinct configurations are listed in Figure 2.15. All other configurations
are rotations or reflections of these twenty-two.

For each cube configuration κ, let E
+/−
κ be the set of edges with one positive

and one negative endpoint. The isosurface lookup table contains 256 entries,

one for each configuration κ. Each entry is a list of triples of edges of E
+/−
κ .

Each triple (e1, e2, e3) represents a triangle whose vertices lie on e1, e2, and e3.
The list of triples define the combinatorial structure of the isosurface patch for

1Lorensen and Cline’s original paper on Marching Cubes [Lorensen and Cline, 1987a] listed
only fifteen configurations. For reasons discussed in Section 2.3.5, twenty-two configurations
are preferable.
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Figure 2.15. Twenty-two distinct cube configurations. Black vertices are positive.
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Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.
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(a) (b)

Figure 2.17. (a) Adjacent configurations sharing a common face. (b) Incompatible
isosurface patches for the adjacent configurations.

Figure 2.18. Compatible isosurface patches for adjacent configurations in Fig-
ure 2.17(a).

configuration κ. The isosurface patch intersects every edge of E
+/−
κ exactly once

and does not intersect any other grid cube edges.
To define the 256 entries in the table, it is only necessary to determine the

table entries for the twenty-two distinct configurations. The table entries for
the other configurations can be derived using rotation and reflection symme-
try. Figure 2.16 contains the twenty-two distinct cube configurations and their
isosurfaces.

The isosurface lookup table is constructed on the unit cube with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), . . . , (0, 1, 1), (1, 1, 1). To construct the isosurface in grid
cube (i, j, k), we have to map unit cube edges to edges of cube (i, j, k). Each
vertex v = (vx, vy, vz) of the unit cube maps to v + (i, j, k) = (vx, vy, vz) +
(i, j, k) = (vx + i, vy + j, vz + k). Each edge e of the unit square with endpoints
(v, v′) maps to edge e + (i, j, k) = (v + (i, j, k), v′ + (i, j, k)). Finally, each edge
triple (e1, e2, e3) maps to (e1 + (i, j, k), e2 + (i, j, k), e3 + (i, j, k)).

In Figure 2.16, the isosurface vertices lie on the midpoints of the grid edges.
This is for illustration purposes only. The geometric locations of the isosurface
vertices are not defined by the lookup table.

The vertices of the isosurface triangles are the isosurface vertices. To map
each isosurface triangle to a geometric triangle, we use linear interpolation to
position the isosurface vertices as described in Section 1.7.2. Each isosurface
vertex v lies on a grid edge [p, q]. If sp and sq are the scalar values at p and q
and σ is the isovalue, then map v to (1− α)p+ q where α = (σ − sp)/(sq − sp).
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Input : F is a 3D array of scalar values.
Coord is a 3D array of (x, y, z) coordinates.
σ is an isovalue.

Result : A set Υ of isosurface triangles.

MarchingCubes(F, Coord, σ, Υ)

1 Read Marching Cubes lookup table into Table;
/* Assign “+” or “−” signs to each vertex */

2 foreach grid vertex (i, j, k) do
3 if F[i, j, k] < σ then Sign[i, j, k]← “−”;
4 else Sign[i, j, k]← “+”; /* F[i, j, k] ≥ σ */

5 end
6 T← ∅;
/* For each grid cube, retrieve isosurface triangles */

7 foreach grid cube (i, j, k) do
/* Cube vertices are (i, j, k), (i+1, j, k), . . . , (i+1, j+1, k+1) */

8 κ← (Sign[i, j, k],Sign[i+1, j, k],Sign[i, j+1, k], . . . ,Sign[i+1, j+1, k+1]);
9 foreach edge triple (e1, e2, e3) ∈ Table[κ] do

10 Insert edge triple (e1 + (i, j, k), e2 + (i, j, k), e3 + (i, j, k)) into T;
11 end

12 end
/* Compute isosurface vertex coordinates using linear interpolation */

13 foreach bipolar grid edge e with endpoints (i1, j1, k1) and (i2, j2, k2) do
/* Compute the isosurface vertex we on edge e */

14 we ← LinearInterpolation

15 (Coord[i1, j1, k1], F[i1, j1, k1], Coord[i2, j2, k2], F[i2, j2, k2], σ);

16 end
/* Convert T to set of triangles */

17 Υ← ∅;
18 foreach triple of edges (e1, e2, e3) ∈ T do
19 Υ← Υ ∪ {(we1 , we2 , we3)};
20 end

Algorithm 2.2. Marching Cubes.

Note that since p and q have different sign, scalar sp does not equal sq and the
denominator (sq − sp) is never zero.

The Marching Cubes algorithm is presented in Algorithm 2.2. Function
LinearInterpolation, called by this algorithm, is defined in Algorithm 1.1 in
Section 1.7.2.

Two configurations can be adjacent to one another if the face they share in
common has the same set of positive and negative vertices. Figure 2.17 contains
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(a) (b)

Figure 2.19. (a) Spherical isosurface of noisy point cloud. (b) Isosurface of noisy point
cloud constructed using incorrect isosurface lookup table. The sphere interior is colored
red and is visible through holes in the sphere. The holes are caused by incompatible
isosurface patches in the isosurface lookup table.

an example of two such configurations. The isosurface patches for each config-
uration should be constructed so that their boundaries align on the common
face. As shown in Figure 2.17, two reasonable isosurface patches for adjacent
configurations can have boundaries that do not align on the common face and
so are incompatible. Isosurfaces constructed using such incompatible isosur-
face patches for adjacent configurations may have “holes” and may not be a
2-manifold. (See Figure 2.19.) Compatible isosurface patches for the configura-
tion in Figure 2.17(a) are given in Figure 2.18.

The isosurface patches for the twenty-two distinct configurations in Fig-
ure 2.16 were constructed so that they and all the 256 derived configurations
are compatible. The isosurface patch boundaries align on the common face of
any two adjacent configurations. As will be discussed in Section 2.3.5, Lorensen
and Cline’s original Marching Cubes algorithm [Lorensen and Cline, 1987a]
lacked this property.

If the constructed isosurface is a manifold, then the manifold is orientable.
After the construction of the isosurface, the isosurface can be assigned an orien-
tation by assigning consistent orientations to all its triangles. However, a better
approach is to properly orient the triangles in the lookup table. Each isosurface
patch in a lookup table entry separates a positive region from a negative one. As
noted in Section 1.7.1, a triangle orientation determines a vector orthogonal to
the triangle. Orient each triangle in the isosurface patch so that the induced or-
thogonal vector points toward the positive region. Retrieve the oriented triangles
from the lookup table to determine the orientation of the isosurface triangles.
The orientations of the triangles are consistent and form an orientation of the
isosurface.
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2.3.2 Running Time
The Marching Cubes algorithm runs in linear time.

Proposition 2.6. Let N be the total number of vertices of a 3D scalar grid. The
running time of the Marching Cubes algorithm on the scalar grid is Θ(N).

The proof is similar to the proof for the 2D Marching Squares algorithm
in Section 2.2.2 and is omitted.

2.3.3 Isosurface Properties
The isosurface produced by the Marching Cubes algorithm has the same prop-
erties as the isocontour produced by the Marching Squares algorithm. As in
the 2D version, we differentiate between the case where the isovalue equals the
scalar value of one or more grid vertices and the case where it does not. If the
isovalue does not equal the scalar value of any grid vertices, then the isosurface
is a piecewise linear, orientable 2-manifold with boundary. If the isovalue equals
the scalar value of some grid vertex, then the isosurface may not be a 2-manifold
and the isosurface may have zero-length edges and zero-area triangles.

Marching Cubes returns a finite set, Υ, of oriented triangles. The isosur-
face is the union of these triangles. The vertices of the isosurface are the triangle
vertices.

The following properties apply to all isosurfaces produced by the Marching

Cubes algorithm.

Property 1. The isosurface is piecewise linear.

Property 2. The vertices of the isosurface lie on grid edges.

Property 3. The isosurface intersects every bipolar grid edge at exactly one
point.

Property 4. The isosurface does not intersect any negative or strictly positive
grid edges.

Property 5. The isosurface separates positive grid vertices from negative ones
and strictly separates strictly positive grid vertices from negative grid vertices.

Properties 3 and 4 imply that the isosurface intersects a minimum number
of grid edges. As in two dimensions, if both endpoints of a grid edge have scalar
value equal to the isovalue, then the isosurface may intersect the grid edge zero,
one, or two times or may contain the grid edge.

By Property 3, the isosurface intersects every bipolar grid edge. However,
the bipolar grid edge may be intersected by zero-area isosurface triangles.
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The following properties apply to the Marching Cubes isosurfaces whose
isovalues do not equal the scalar value of any grid vertex.

Property 6. The isosurface is a piecewise linear, orientable 2-manifold with
boundary.

Property 7. The boundary of the isosurface lies on the boundary of the grid.

Property 8. Set Υ does not contain any zero-area triangles or duplicate triangles
and the triangles in Υ form a triangulation of the isosurface.

Scanning devices usually produce data sets whose scalar values are 8-bit,
12-bit, or 16-bit integers. For such data sets, a Marching Cubes isosurface
with noninteger isovalues has no degenerate triangles and is always a manifold.
Typically, the isovalue (x+ 0.5) is used, where x is some integer.

2.3.4 Proof of Isosurface Properties
We give a proof of each of the properties listed in Section 2.3.3. The proofs are
the same as the proofs for Marching Squares isocontours.

Property 1. The isosurface is piecewise linear.

Property 2. The vertices of the isosurface lie on grid edges.

Proof of Properties 1 & 2: The Marching Cubes isosurface consists of a finite
set of triangles, so it is piecewise linear. By construction, the vertices of these
triangles lie on the grid edges. �

Property 3. The isosurface intersects every bipolar grid edge at exactly one
point.

Property 4. The isosurface does not intersect any negative or strictly positive
grid edges.

Proof of Properties 3 & 4: Each isosurface triangle is contained in a grid cube.
Since the grid cubes are convex, only isosurface triangles with vertices on the
grid edge intersect the grid edge. If the grid edge has one positive and one neg-
ative endpoint, the unique location of the isosurface vertex on the grid edge is
determined by linear interpolation. Thus the isosurface intersects a bipolar grid
edge at exactly one point.

If the grid edge is negative or strictly positive, then no isosurface vertex lies
on the grid edge. Thus the isosurface does not intersect negative or strictly
positive grid edges. �
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Figure 2.20. Positive regions (red) for the twenty-two distinct cube configurations.
Visible portion of each isosurface is green. Portion of the isosurface behind each positive
region is colored dark red.
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c1 c2

ff

Figure 2.21. Adjacent cubes c1 and c2 and (red) positive regions R+
c1 and R+

c2 . Black
cube vertices are positive. Shared facet f lies between the two cubes. Note that R+

c1 ∩ f
equals R+

c2 ∩ f .

The proof of Property 5, the separation property, is similar to the proof of
Property 5 for the Marching Squares isosurface (Section 2.2.4). We first
extend the definition of positive and negative regions from grid squares to grid
cubes.

Within each grid cube the isosurface partitions the grid cube into two regions.
Define the positive region for a grid cube c to be points p ∈ c where some path
ζ ⊂ c connects p to a positive vertex of c and the interior of ζ does not intersect
the isosurface (Figure 2.20). Define the negative region for a grid cube c to be
points p ∈ c where some path ζ ⊂ c connects p to a negative vertex of c and
ζ does not intersect the isosurface. Since any path ζ ⊂ c from a positive to a
negative vertex must intersect the isosurface, the positive and negative regions
form a partition of the cube c.

The positive region is closed and contains the isosurface. Any point within the
positive region that does not lie on the isosurface has a neighborhood contained
in the positive region.

Every negative vertex is contained in the negative region since the zero-
length path connects the vertex to itself. Every positive vertex is contained in
the positive region since a path in a cube from any negative cube vertex to a
positive one must intersect the isosurface.

We claim that positive and negative regions agree on the grid cube boundaries
(Figure 2.21). Let R+

c be the positive region for a grid cube c.

Lemma 2.7. Let c1 and c2 be adjacent grid cubes where each vertex of c1 and c2
has a positive or a negative label. Let p be a point in c1 ∩ c2. Point p is in R+

c1
if and only if p is in R+

c2 .

The proof of Lemma 2.7 is based on an exhaustive examination of all possible
adjacent configurations and is omitted. A more detailed and satisfying analysis
is given in Chapter 5, which contains an algorithm for generating the lookup
table for the Marching Cubes and similar algorithms.
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Using Lemma 2.7, we prove that the isosurface separates positive vertices
from negative ones.

Property 5. The isosurface separates positive grid vertices from negative ones
and strictly separates strictly positive grid vertices from negative grid vertices.

Proof: For all the possible configurations, a path from a positive vertex to a
negative one in a grid cube must intersect the isosurface. We must show that
this also holds true for paths through many grid cubes.

Consider a path ζ in the grid from a positive grid vertex to a negative one.
The positive grid vertex lies in R+ while the negative one does not. Thus ζ must
intersect some point p on the boundary of R+ where it crosses out of R+. Every
neighborhood of p must contain points that are not in R+.

Since R+ is closed, point p lies in R+. Thus point p lies in R+
c′ for some

grid cube c′. By Lemma 2.7, point p lies in R+
c for every grid cube c containing

p. If p does not lie on the isosurface, then some neighborhood of p is contained
in the positive region R+

c of each grid cube c containing p. The union of those
neighborhoods is a neighborhood of p within the grid and is contained in R+.
Thus ζ does not cross out of R+ at p. We conclude that p must lie on the
isosurface and that ζ intersects the isosurface. Thus the isosurface separates
positive from negative grid vertices.

If the scalar value of a grid vertex does not equal the isovalue, then the
grid vertex does not lie on the isosurface. Thus the isosurface strictly separates
strictly positive grid vertices from negative ones. (By definition, the scalar value
of a negative vertex never equals the isovalue.) �

As in two dimensions, to prove Properties 6 and 7, we first prove something
slightly more general.

Proposition 2.8. Let p be any point on the Marching Cubes isosurface that is
not a grid vertex with scalar value equal to the isovalue.

1. If p is in the interior of the grid, then the isosurface restricted to some
sufficiently small neighborhood of p is a 2-manifold.

2. If p is on the boundary of the grid, then the isosurface restricted to some
sufficiently small neighborhood of p is a 2-manifold with boundary.

Proof: Let v be a grid vertex with scalar value sv. If sv is not the isovalue, then
the isosurface does not contain v, so point p is not v. If sv equals the isovalue,
then, by assumption, point p is not v. Therefore, point p is not a grid vertex.

If p lies in the interior of a grid cube, then it lies in the interior of some
isosurface patch. The interior of this patch is a 2-manifold containing p.

Assume p lies on the boundary of a grid cube but not on the boundary of the
grid. Since p is not a grid vertex, point p either lies in the interior of a grid edge
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or the interior of a square grid facet. If point p lies in the interior of a square
grid facet, then it is contained in two isosurface triangles lying in two adjacent
grid cubes. The interior of the union of these two isosurface triangles forms a
2-manifold containing p. If point p lies in the interior of a grid edge e, then p
is contained in four isosurface patches lying in the four grid cubes containing e.
The interior of the union of these four patches forms a 2-manifold containing p.

Finally, assume p lies on the boundary of the grid. Since p is not a grid
vertex, point p either lies in one or two grid cubes. If p lies in a single grid cube,
then a single isosurface triangle in this grid cube contains p. This triangle is
a 2-manifold with boundary containing p. If p lies in two grid cubes, then the
union of the isosurface patches in these two grid cubes form a 2-manifold with
boundary containing p. �

Properties 6 and 7 apply to Marching Cubes isosurfaces whose isovalues
do not equal the scalar value of any grid vertex.

Property 6. The isosurface is a piecewise linear, orientable 2-manifold with
boundary.

Property 7. The boundary of the isosurface lies on the boundary of the grid.

Proof of Properties 6 & 7: Consider a point p on the isosurface. Since the isovalue
does not equal the scalar value of any grid vertex, point p is not a grid vertex. By
Proposition 2.8, the isosurface restricted to some suitably small neighborhood of
point p is either a 2-manifold or a 2-manifold with boundary. Thus the isosurface
is a 2-manifold with boundary. All of the triangles in the isosurface are oriented
so that the induced orthogonal vector points toward the positive vertices; thus,
all the triangle orientations are consistent and the manifold is orientable.

Since the restricted isosurface is a 2-manifold whenever p is in the interior of
the grid, the boundary of the isosurface must lie on the grid boundary. �

The last property is that Υ does not contain any zero-area or duplicate tri-
angles and forms a triangulation of the isosurface.

Property 8. Set Υ does not contain any zero-area triangles or duplicate triangles
and the triangles in Υ form a triangulation of the isosurface.

Proof: Since no grid vertex has scalar value equal to the isovalue, no isosurface
vertex lies on a grid vertex. By Property 3, each bipolar grid edge contains only
one isosurface vertex. Thus, the linear interpolation on isosurface vertices does
not create any zero-area or duplicate isosurface triangles. The isosurface triangles
within a grid cube are a subset of the triangulation of an isosurface patch and
so the nonempty intersection of any two such triangles is either a vertex or an
edge of both. The isosurface patches in Figure 2.16 were constructed so that
the intersection of any two isosurface triangles in adjacent grid cubes is either a
vertex or an edge of both. Since the nonempty intersection of any two triangles
in Υ is a face of both triangles, Υ forms a triangulation of the isosurface. �
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2.3.5 3D Ambiguity
The 256 configurations of positive and negative vertices are generated from the
twenty-two configurations in Figure 2.15 using rotational and reflection symme-
try. There is another kind of symmetry that is not being used. Configuration κ1
is the complement of configuration κ2 if κ1 can be derived from κ2 by switching
κ2’s positive and negative vertex labels. The configurations with five, six, seven,
or eight positive vertices are all complements of configurations with three, two,
one, and zero positive vertices. Complementary symmetry reduces the number
of unique configurations from twenty-two to fourteen.

Unfortunately, complementary symmetry creates incompatible isosurface
patches in the isosurface table. For instance, the configuration on the left in
Figure 2.17 is a rotation of configuration 6B from Figure 2.15 while the config-
uration on the right is a rotation of configuration 2B. Configuration 2B is the
complement of configuration 6B. Both isosurface patches on the left and on the
right come from a rotation of the isosurface patch for 6B in Figure 2.16. The
boundaries of the isosurface patches clearly do not align on the square between
the two cubes.

Lorensen and Cline’s paper [Lorensen and Cline, 1987a] used complementary
symmetry and so created incompatible isosurface patches in the isosurface table
[Dürst, 1988].2 The problem configurations were the ones that had ambiguous
configurations on their square facets. These are configurations 2B, 3B, 3C, 4C,
4E, 4F, 5B, 5C and 6B. Numerous papers were written on how to handle these
problematic configurations. The most widely adopted approach, proposed in
[Montani et al., 1994] and in [Zhou et al., 1994], is to simply drop complementary
symmetry. This is the approach adopted in the previous section.

As discussed in Section 2.2.5, the two-dimensional ambiguous configurations
have two isocontour edges and two combinatorially different ways to position
those edges. One of these edge positions separates the two negative vertices
by isocontour edges (8-I and 16-I in Figure 2.12) while the other separates the
positive vertices (8-II and 16-II in Figure 2.12).

The border of a cube’s three-dimensional isosurface patch defines an isocon-
tour on each of the cube’s square facets. If some configuration’s isosurface patch
separates the negative vertices on the facet while an adjacent configuration’s
isosurface patch separates the positive ones, then the isosurface edges on the
common facet will not align. The isosurface patches in Figure 2.16 do not sepa-
rate the positive vertices on any facet.3 Moreover, the derived isosurface surface
patches in any rotation or reflection of the configurations also do not separate
positive vertices on any facet. Thus the isosurface patches in any two adjacent

2Lorensen and Cline’s paper did not use reflection symmetry and so they had fifteen, not
fourteen, distinct configurations.

3Note that in configuration 2C, the two positive vertices do not share a facet. The isosurface
patch separates the two positive vertices, but not on any facet. Since these vertices do not
share a facet, the isosurface patch aligns with all possible adjacent configurations.
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Figure 2.22. Two “natural” isosurface patches for the ambiguous 3D configurations.
Isosurface patches in the first and third rows separate negative vertices. Isosurface
patches in the second and fourth rows separate positive vertices.

cubes are properly aligned on their boundaries. An equally valid, but combina-
torially distinct, isosurface table could be generated by using isosurface patches
that do not separate the negative vertices on any square facet.

The ambiguous configurations in R3 are 2B, 2C, 3B, 3C, 4C, 4E, 4F, 5B,
5C, 6B and 6C. These configurations have topologically distinct piecewise linear
isosurfaces with all the properties listed in the previous section. Ambiguous
configurations admit two “natural” isosurface patches, one separating positive
vertices and one separating negative vertices. (See Figure 2.22.)

As we have already discussed, configurations 2B, 3B, 3C, 4C, 4E, 4F, 5B, 5C
and 6B have square facets with ambiguous 2D configurations. Configurations 2C
and 6C are the exceptions.4 None of their square facets have an ambiguous con-
figuration, yet they admit two topologically distinct piecewise linear isosurfaces.
(See Figure 2.22.) Usually, isosurface patches 2C-II and 6C-I are used since they
each require only two isosurface triangles and do not create the “tunnel” in 2C-I
and 6C-II.

4The numerous papers on resolving the ambiguous 3D configurations do not discuss these
two, but they do admit topologically distinct isosurfaces and they are ambiguous.


