
Building
Arduino PLCs

The essential techniques you need to
develop Arduino-based PLCs
—
Pradeeka Seneviratne

Building Arduino
PLCs

The essential techniques you need
to develop Arduino-based PLCs

Pradeeka Seneviratne

Building Arduino PLCs: The essential techniques you need to develop Arduino-based PLCs

Pradeeka Seneviratne
Udumulla, Mulleriyawa, Sri Lanka

ISBN-13 (pbk): 978-1-4842-2631-5		 ISBN-13 (electronic): 978-1-4842-2632-2
DOI: 10.1007/978-1-4842-2632-2

Library of Congress Control Number: 2017932449

Copyright © 2017 Pradeeka Seneviratne

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Pramila Balan
Development Editor: Anila Vincent
Technical Reviewer: Jayakarthigeyan Prabakar
Coordinating Editor: Prachi Mehta
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-2631-5.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code

iii

Contents at a Glance

About the Author��� xi

About the Technical Reviewer��� xiii

■■�Chapter 1: Getting Ready for the Development Environment���������� 1

■■Chapter 2: Arduino, Ethernet, and WiFi�� 23

■■Chapter 3: Arduino at Heart��� 57

■■Chapter 4: Your First Arduino PLC��� 69

■■Chapter 5: Building with an ArduiBox��� 85

■■Chapter 6: Writing PLC-Style Applications with plcLib��������������� 109

■■Chapter 7: Modbus�� 127

■■�Chapter 8: Mapping PLCs into the Cloud Using the NearBus
Cloud Connector�� 139

■■Chapter 9: Building a Better PLC��� 165

Index��� 179

v

Contents

About the Author��� xi

About the Technical Reviewer��� xiii

■■�Chapter 1: Getting Ready for the Development Environment���������� 1

Buying an Arduino�� 3

Arduino UNO and Genuino UNO��� 3

Cable and Power Supply�� 5

Arduino UNO Clones and Derived Boards�� 6

Buying an Arduino Ethernet Shield��� 7

Arduino Ethernet Shield 2�� 7

Buying an Arduino WiFi Shield��� 9

Buying a Grove Base Shield��� 9

Buying Grove Components��� 10

Grove Button�� 10

Grove LED�� 11

Grove Relay�� 12

Grove Temperature Sensor�� 13

Grove Speaker��� 13

Grove Infrared Reflective Sensor��� 14

Grove Cables�� 15

Buying a Relay Shield��� 15

Arduino 4 Relays Shield��� 15

SeeedStudio Relay Shield�� 16

■ Contents

vi

Buying an ArduiBox�� 17

Buying a Modbus Shield, Module, and Sensor��������������������������������������� 18

Multiprotocol Radio Shield for Arduino�� 18

RS485/Modbus Module for Arduino and Raspberry Pi�� 19

Downloading Software��� 20

Arduino Software��� 20

plcLib��� 21

Arduino Ethernet2 Library��� 22

WiFi Shield Firmware�� 22

Modbus RS485 Library�� 22

Summary�� 22

■■Chapter 2: Arduino, Ethernet, and WiFi�� 23

Arduino and Genuino�� 23

Digital Pins��� 24

Analog Pins�� 25

Powering the Arduino Board�� 25

Arduino Ethernet�� 27

Arduino Ethernet Shield 2�� 27

Connecting Them Together�� 29

Arduino WiFi��� 32

Arduino Software�� 33

Downloading Arduino Software��� 33

Using the Arduino IDE�� 34

Where Is the libraries Folder?��� 35

Adding the Ethernet2 Library��� 35

Cables�� 36

Basic Configurations�� 37

■ Contents

vii

Writing Sketches for Arduino UNO�� 38

Bare Minimum Code�� 38

Hello World�� 40

Reading Analog Inputs��� 44

Writing Sketches for Arduino Ethernet��� 48

A Simple Web Client�� 48

Writing Sketches for Arduino WiFi�� 52

Summary�� 55

■■Chapter 3: Arduino at Heart��� 57

What Is PLC?�� 58

Arduino at Heart��� 59

Industruino�� 59

Industrial Shields��� 62

Controllino��� 64

Summary�� 68

■■Chapter 4: Your First Arduino PLC��� 69

Grove Base Shield Basics��� 69

Power Switch�� 71

Power Indicator��� 72

Reset Button�� 73

Grove Connectors�� 73

Building a Basic Programmable Logic Controller����������������������������������� 76

The Requirements and Logic��� 77

Required Hardware�� 77

Connecting the Components��� 77

■ Contents

viii

Writing Your First Arduino Sketch for PLCs�� 78

Uploading Your Arduino Sketch�� 79

Testing Your Sketch��� 79

Troubleshooting��� 80

Working with Audio�� 80

Connecting the Components��� 80

Testing Audio��� 81

Adding a Reset Button�� 82

Connecting the Components��� 82

Testing the Reset Button��� 83

Summary�� 83

■■Chapter 5: Building with an ArduiBox��� 85

ArduiBox��� 85

Soldering the Terminal Blocks��� 88

Soldering the Male Headers�� 90

Soldering the Female Headers�� 92

Soldering the Reset Button�� 94

Mapping Arduino Pins to the Terminal Blocks��� 96

Prototyping Area�� 98

Power Supply��� 100

Assembling the Enclosure��� 102

DIN Rails�� 105

Connecting the Temperature Sensor and Fan�� 105

Testing Your ArduiBox�� 107

Summary�� 107

■ Contents

ix

■■Chapter 6: Writing PLC-Style Applications with plcLib��������������� 109

Introduction to the plcLib Library��� 109

Installing plcLib on Arduino��� 109

The Default Hardware Configuration��� 110

Ladder Logic��� 111

Basic Ladder Logic Symbols�� 111

Implementing Simple PLC-Style Applications�������������������������������������� 111

Single Bit Input�� 112

Inverted Single Bit Input�� 116

Inverted Single Bit Output�� 119

Time Delays��� 120

Boolean Operations��� 122

Summary�� 125

■■Chapter 7: Modbus�� 127

Multiprotocol Radio Shield��� 127

RS485/Modbus Module for Arduino and Raspberry Pi������������������������� 129

Installing the RS485 Library for Arduino�� 130

Building a PLC with Modbus�� 131

Building the Hardware Setup��� 131

The Arduino Sketch��� 135

Summary�� 138

■■�Chapter 8: Mapping PLCs into the Cloud Using the
NearBus Cloud Connector�� 139

What Is NearBus?��� 139

Building Your Cloud PLC��� 139

■ Contents

x

Mapping a PLC Into the Cloud Using NearBus Cloud Connector���������� 140

Signing Up with NearBus��� 140

Defining a New Device in NearBus�� 140

Downloading the NearBus Library for Arduino�� 143

Uploading the Sketch�� 144

Controlling the Grove LED from the NearBus Cloud��� 151

Using the IFTTT DIY Light Platform��� 154

Creating a Recipe with IFTTT��� 154

Summary�� 164

■■Chapter 9: Building a Better PLC��� 165

Using Relay Boards�� 165

Boards with a Single Relay�� 165

Boards with Multiple Relays�� 169

Using Relay Shields�� 170

Driving High-Power DC Loads with Relay Shields��� 170

Driving High-Power AC Loads with Relay Shields��� 173

Adding More Relay Channels��� 177

Summary�� 178

Index��� 179

xi

About the Author

Pradeeka Seneviratne is a software engineer with
over 10 years of experience in computer programming
and systems design. He loves programming embedded
systems such as Arduino and Raspberry Pi. Pradeeka
started learning about electronics when he was
at primary college by reading and testing various
electronic projects found in newspapers, magazines,
and books.

Pradeeka is currently a full-time software
engineer who works with highly scalable technologies.
Previously, he worked as a software engineer for several
IT infrastructure and technology servicing companies,
and he was also a teacher for information technology
and Arduino development.

He researches how to make Arduino-based
unmanned aerial vehicles and Raspberry Pi-based
security cameras.

Pradeeka is also the author of the Internet of Things with Arduino Blueprints, Packt
Publishing.

xiii

About the Technical
Reviewer

Jayakarthigeyan Prabakar is an electrical and electronics engineer with more than four
years of experience in real-time embedded systems development. He loves building
cloud-connected physical computing systems using Arduino, MSP430, Raspberry Pi,
BeagleBone Black, Intel Edison, ESP8266, and more.

Jayakarthigeyan started understanding how computing devices and operating
systems work when he started repairing his personal computer in middle school. That
was when he first got his hands on electronics.

From his third year in the undergraduate degree program, he started building
prototypes for various startups around the world as a freelancer. Currently, Jayakarthigeyan
is a full-time technical lead of the R&D division in a home automation startup and works
as a consultant to many other companies involved in robotics, industrial automation, and
other IoT solutions. He helps build prototypes to bring their ideas to reality.

1© Pradeeka Seneviratne 2017
P. Seneviratne, Building Arduino PLCs, DOI 10.1007/978-1-4842-2632-2_1

CHAPTER 1

Getting Ready for the
Development Environment

A Programmable Logic Controller (PLC) is a digital computer that continuously
monitors or scans the state of input devices and controls the state of output devices based
on a custom program. A basic industrial PLC typically consists of an embedded computer,
inputs, outputs, and a power supply with battery backup. They usually automate
industrial electromechanical processes.

Figure 1-1 presents an industrial PLC mounted on a DIN rail. This unit consists
of separate elements, including a power supply, controller, and unit for handling
inputs and outputs. Typically for high voltage levels, the input unit consists of optically
isolated inputs and output unit consists of optically isolated relay outputs. The passive
components are enclosures, terminal block connectors, and DIN rails.

Electronic supplementary material  The online version of this chapter  
(doi:10.1007/978-1-4842-2632-2_1) contains supplementary material, which is available to
authorized users.

http://dx.doi.org/10.1007/978-1-4842-2632-2_1

Chapter 1 ■ Getting Ready for the Development Environment

2

The following are the major components that can be identified in the Figure 1-1.

	 1.	 Power supply

	 2.	 Controller

	 3.	 Relay/non-relay unit for input and output

	 4.	 Enclosure

	 5.	 Terminal block connectors

	 6.	 DIN rail

Arduino Development Environment can be used to build functional PLCs that can
be used with some industrial automation and process control. You’ll learn how to choose
appropriate components for various parts of the PLC, such as the CPU, inputs, outputs,
network interfaces, power supplies, and battery backups.

This chapter provides a comprehensive shopping guide to purchasing various
assembled printed circuit boards, some of the hardware components (active and passive),
and setting up your development environment to make all the projects discussed in the
chapters in the book.

We’ll provide an array of manufacturers and suppliers, but the products may have
same core functionalities and slightly different features. A good example is the Arduino
UNO board that comes with different features depending on the manufacturer, but uses
the same Arduino UNO bootloader.

Figure 1-1.  Modules of an Arduino-based PLC
Image courtesy of Hartmut Wendt at www.hwhardsoft.de

http://www.hwhardsoft.de/

Chapter 1 ■ Getting Ready for the Development Environment

3

■■ Note  This guide is only limited to the major hardware components that will be needed
to build projects discussed in this book. The information presented here gives you a basic
idea when it comes to purchasing those products from various vendors and manufacturers.
The detailed technical guide will provide all the information about the products discussed in
the respective chapters.

Buying an Arduino
Arduino comes with different flavors, including boards, modules, shields, and kits. The
examples and projects discussed in this book use the Arduino UNO board, which is the
basic board of the entire Arduino family. There are plenty of Arduino UNO clones and
derived boards available and you may be confused about which one to buy. Following are
some popular boards that can be used to start building your development environment,
and buying one of them is necessary.

Arduino UNO and Genuino UNO
The Arduino online store is a very good way to purchase an Arduino UNO board.
Currently, there are two brands available for Arduino. The Arduino UNO is now available
for sale (store-usa.arduino.cc) in the United States only and the Genuino UNO is
available for sale (store.arduino.cc) in the rest of the world.

Arduino UNO
You can purchase an Arduino UNO Rev3 board (see Figure 1-2) from the official Arduino
store, which is a Dual Inline Package (DIP) type of ATmega328P microcontroller
preloaded with Arduino UNO bootloader (it’s about $24.95; http://store-usa.arduino.
cc/products/a000066 and https://www.sparkfun.com/products/11021).

http://store-usa.arduino.cc/products/a000066
http://store-usa.arduino.cc/products/a000066
https://www.sparkfun.com/products/11021

Chapter 1 ■ Getting Ready for the Development Environment

4

Also, the SMD version (Rev3) of this board is also available at the following stores if
you’d like to purchase it.

•	 Arduino.org: about €20.90—http://world.arduino.org/en/
arduino/arduino-uno-smd-rev3.html

•	 SparkFun’ about $29.95—https://www.sparkfun.com/
products/11224

Genuino UNO
Genuino UNO (see Figure 1-3) is identical to the Arduino UNO except the brand name
with the same revision that is Rev3. The board is based on the DIP type of ATmega328P
microcontroller. (about €20; https://store.arduino.cc/product/GBX00066).

Figure 1-2.  Arduino UNO Rev3 board. Image courtesy of arduino.cc

http://world.arduino.org/en/arduino/arduino-uno-smd-rev3.html
http://world.arduino.org/en/arduino/arduino-uno-smd-rev3.html
https://www.sparkfun.com/products/11224Please use the figure caption as reference withn the text to explain what the image is about
https://www.sparkfun.com/products/11224Please use the figure caption as reference withn the text to explain what the image is about
https://store.arduino.cc/product/GBX00066

Chapter 1 ■ Getting Ready for the Development Environment

5

Cable and Power Supply
Don’t forget to buy a USB cable and a power supply to work with the Arduino board.

USB Cable
You can use one of the following USB cables or a similar cable to work with Arduino.

•	 Adafruit - USB Cable - Standard A-B - 3 ft/1m (about $3.95;
https://www.adafruit.com/products/62)

•	 SparkFun - USB Cable A to B - 6 Foot (about $3.95; https://www.
sparkfun.com/products/512)

Power Supply
The Arduino board can be supplied with power between 7-12V from the DC power jack.
Choosing a 9V power supply is sufficient to function the Arduino board properly. Here are
some of the power packs that are ready to work with Arduino.

•	 Adafruit -9 VDC 1000mA regulated switching power adapter; UL
listed (about $6.95; https://www.adafruit.com/product/63)

•	 SparkFun - Wall Adapter Power Supply - 9VDC 650mA (about
$5.95; https://www.sparkfun.com/products/298)

Figure 1-3.  Genuino UNO Rev3 board. Image courtesy of arduino.cc

https://www.adafruit.com/products/62
https://www.adafruit.com/products/62
https://www.sparkfun.com/products/512
https://www.sparkfun.com/products/512
https://www.adafruit.com/product/63
https://www.sparkfun.com/products/298

Chapter 1 ■ Getting Ready for the Development Environment

6

Arduino UNO Clones and Derived Boards
There are plenty of Arduino UNO clones and derived boards (also known as derivatives)
available from various manufacturers. The exact replicas of the Arduino boards with
different branding are called clones. Arduino derivatives are different from clones, because
they are derived from the Arduino hardware design but provide a different layout and a
set of features (i.e., Teensy by PJRC and Flora by Adafruit), often to better serve a specific
market. One of the following is a great choice for an alternative Arduino UNO board.

Seeeduino (Figure 1-4) from Seeed Development Limited is a derivative Arduino
board that can be used to build Arduino projects instead of using the official Arduino
board (about $19.95; https://www.seeedstudio.com/Seeeduino-V4.2-p-2517.html).

Figure 1-4.  Seeeduino v4.2. Image courtesy of Seeed Development Limited

You will also need a micro-USB cable to program this board (about $2.5;
https://www.seeedstudio.com/Micro-USB-Cable-48cm-p-1475.html).

SparkFun RedBoard
SparkFun RedBoard (see Figure 1-5) is also a goof solution to use as an alternative
Arduino board to build Arduino-based projects (about $19.95; https://www.sparkfun.
com/products/12757). This shield brings some favorite features like UNO’s optiboot
bootloader, the stability of the FTDI, and the R3 shield compatibility.

https://www.seeedstudio.com/Seeeduino-V4.2-p-2517.html
https://www.seeedstudio.com/Micro-USB-Cable-48cm-p-1475.html
https://www.seeedstudio.com/Micro-USB-Cable-48cm-p-1475.html
https://www.sparkfun.com/products/12757
https://www.sparkfun.com/products/12757

Chapter 1 ■ Getting Ready for the Development Environment

7

You also need a USB Mini-B cable to program this board (about $3.95;
https://www.sparkfun.com/products/11301). You can power the board over USB or
through the barrel jack.

Buying an Arduino Ethernet Shield
The main functionality of Arduino Ethernet Shield is to connect your Arduino board
to the Internet. You only need an Arduino Ethernet Shield if you are planning to build
a cloud-connected PLC that will be discussing in Chapter 8, “Mapping PLCs into the
Cloud Using a NearBus Cloud Connector”.

Arduino Ethernet Shield 2
This is the latest version of the Arduino Ethernet Shield (Figure 1-6) manufactured by
arduino.org at the time of this writing. It is based on the Wiznet W5500 Ethernet chip.
The shield has a standard RJ-45 jack, on board micro-SD card slot, and six TinkerKit
connectors. You learn more about Arduino Ethernet in Chapter 2, “Arduino, Ethernet, and
WiFi” (about €22; http://world.arduino.org/en/arduino-ethernet-shield-2.html).

Figure 1-5.  SparkFun RedBoard. Image From SparkFun Electronics; Photo taken by Juan Peña

https://www.sparkfun.com/products/11301
https://www.sparkfun.com/products/11301
http://dx.doi.org/10.1007/978-1-4842-2632-2_8
http://dx.doi.org/10.1007/978-1-4842-2632-2_2
http://world.arduino.org/en/arduino-ethernet-shield-2.html

Chapter 1 ■ Getting Ready for the Development Environment

8

Alternatively, the POE (Power Over Ethernet) version of this board is also available
at http://world.arduino.org/en/arduino-ethernet-shield-2-with-poe.html and is
about €35.20.

However, you can use the previous version of Arduino Ethernet Shield (Figure 1-7)
based on the Wiznet W5100 Ethernet chip, provided that you already have one and it
works well with the projects discussed in this book.

Figure 1-6.  Arduino Ethernet Shield 2. Image courtesy of arduino.org

Figure 1-7.  Arduino Ethernet Shield (previous version). Image from SparkFun Electronics;
photo taken by Juan Peña

http://world.arduino.org/en/arduino-ethernet-shield-2-with-poe.html

Chapter 1 ■ Getting Ready for the Development Environment

9

Buying an Arduino WiFi Shield
If you’d like to connect your PLC wirelessly to the Internet and build cloud-connected
PLCs, this is the best choice.

The Arduino WiFi Shield (Figure 1-8) connects your Arduino board to the Internet
wirelessly through WiFi.

Figure 1-8.  Arduino WiFi shield. Image courtesy of arduino.org

You will learn more about Arduino WiFi in Chapter 2, “Arduino, Ethernet, and
WiFi”. (about €75.90; http://world.arduino.org/en/arduino/arduino-wifi-shield-
antenna-connector.html).

Buying a Grove Base Shield
This is the Base Shield (Figure 1-9) we will use for building PLC projects discussed in
this book. It is an Arduino UNO compatible shield operating with 5V/3.3VDC directly
received from the Arduino board. The shield is easy to use and provides 4-wire standard
Grove-type connectors to connect sensors, actuators, and devices, hence no soldering
is required and it’s easy to plug and play. So this is perfect for prototyping and you can
make your prototype neatly without jumper wires. Also, you can quickly plug and remove
sensors, actuators, and devices to debug your code.

http://dx.doi.org/10.1007/978-1-4842-2632-2_2
http://world.arduino.org/en/arduino/arduino-wifi-shield-antenna-connector.html
http://world.arduino.org/en/arduino/arduino-wifi-shield-antenna-connector.html

Chapter 1 ■ Getting Ready for the Development Environment

10

Grove provides plenty of sensing and actuating boards with standard 4-wire grove
connectors. You simply plug them directly into the shield, to the analog, digital, UART, or
I2C female connector.

Grove Base Shield has three versions—v1.1, v1.2, and v2.0. In this book we’ll be
using Grove Base shield v2.0. However, if you have an older version of the board, you can
still keep using it with the projects. The v2.0 shield has 16 grove connectors. In Chapter 4,
“Your First Arduino PLC,” you learn more about the Grove Base shield.

Buying Grove Components
Grove provides ready-to-use components for sensors and actuators that you can use
with Grove Base Shield to quickly set up Arduino projects without using a large amount
of wires. The following sections discuss some important Grove components that you will
need in order to build Arduino-based PLC projects.

Grove Button
The Grove button (Figure 1-10) is an ideal hardware component to test your PLCs by
sending input signals (2-level logic) to Arduino boards through the Grove Base Shield.
The Grove button contains a momentary on/off push button, pull-down resistor, and
standard 4-pin Grove connector. The push button outputs a HIGH signal when pressed
and the LOW signal when released. Get a few of them; they will help you add more inputs
(about $1.9; http://www.seeedstudio.com/Grove-Button-p-766.html).

Figure 1-9.  Grove Base Shield v2.0. Image courtesy of Seeed Development Limited

http://dx.doi.org/10.1007/978-1-4842-2632-2_4
http://www.seeedstudio.com/Grove-Button-p-766.html#_blank

Chapter 1 ■ Getting Ready for the Development Environment

11

Grove LED
Grove LED (Figure 1-11) is an another convenient hardware component that we’ll
use with projects to see the output produced by PLCs. It consists of an LED, brightness
controller (potentiometer), and a Grove connector. Get a few of them to use with
the projects; they are available in several different colors. (about $1.9; https://www.
seeedstudio.com/Grove---Red-LED-p-1142.html).

Figure 1-11.  Grove LED. Image courtesy of Seeed Development Limited

Figure 1-10.  Grove button. Image courtesy of Seeed Development Limited

https://www.seeedstudio.com/Grove---Red-LED-p-1142.html
https://www.seeedstudio.com/Grove---Red-LED-p-1142.html

Chapter 1 ■ Getting Ready for the Development Environment

12

■■ Note  All Arduino UNO, Arduino UNO clones, and derivative UNO boards such as
Seeeduino, RedBoard, and Adafruit have an onboard LED normally connected to the digital
pin 13. You can use this LED as a simulation of output.

Grove Relay
Grove Relay (Figure 1-12) can be used to drive a high load from the Arduino board. The
board consists of a Normally Open relay, LED indicator, standard Grove connector, and a
few electronic components. The peak voltage capability is 250VAC at 10amps (about $2.9;
https://www.seeedstudio.com/Grove---Relay-p-769.html).

https://www.seeedstudio.com/Grove---Relay-p-769.html

Chapter 1 ■ Getting Ready for the Development Environment

13

Grove Temperature Sensor
The Grove Temperature Sensor (Figure 1-13) can be used to measure ambient
temperature in the range of -40 to 125 °C with an accuracy of 1.5°C. It outputs variable
voltages depending on the temperature that is turned by the on-board voltage divider
(about $2.9; https://www.seeedstudio.com/Grove-Temperature-Sensor-p-774.html).

Grove Speaker
Grove Speaker (Figure 1-14) is another output device that you can use with PLCs
to make outputs audible. The board equipped with a small speaker, volume control,
standard Grove connector, and a few electronic components (about $6.9;
https://www.seeedstudio.com/Grove---Speaker-p-1445.html).

Figure 1-13.  Grove Temperature Sensor. Image courtesy of Seeed Development Limited

Figure 1-12.  Grove Relay. Image courtesy of Seeed Development Limited

https://www.seeedstudio.com/Grove-Temperature-Sensor-p-774.html
https://www.seeedstudio.com/Grove---Speaker-p-1445.html

Chapter 1 ■ Getting Ready for the Development Environment

14

Figure 1-15.  Grove Infrared Reflective Sensor. Image courtesy of Seeed Development Limited

Grove Infrared Reflective Sensor
Object detection is helpful for ensuring the presence of an object or set of objects and for
generating output signals accordingly. In industrial process automation, these sensors
play a major role in actuating different mechanical devices and making them start
functioning properly. For example, you could use an infrared reflective sensor to detect
the presence of a bottle in the production line and actuating a label passing device.

Grove Infrared Reflective Sensor (Figure 1-15) is an ideal solution to quickly set
up as an object detection sensor with Arduino-based PLCs. This board consists of an IR
LED and a photosensor pair. The sensor produces digital HIGH when the reflected light
is detected. If no reflection detected, it produces digital LOW. It comes with a standard
Grove interface that can be directly plugged in to the Grove Base Shield (about $4.9;
https://www.seeedstudio.com/Grove-Infrared-Reflective-Sensor-p-1230.html).

Figure 1-14.  Grove Speaker. Image courtesy of Seeed Development Limited

https://www.seeedstudio.com/Grove-Infrared-Reflective-Sensor-p-1230.html

Chapter 1 ■ Getting Ready for the Development Environment

15

Grove Cables
Don’t forget to buy a few more Grove cables (Figure 1-16) to connect your inputs and
outputs to the Grove Base Shield. The connector is universal since you can plug it to
either the analog, digital, UART, or I2C connector on the Grove Base Shield. Grove
cables come with different lengths and types. The lengths are 5cm, 20cm, 30cm, 40cm,
and 50cm. Most of them are buckled and a few are unbuckled. Each cable consists of four
wires—red, black, white, and yellow.

Buying a Relay Shield
Relay plays a major role in PLCs to latch the output signals. There are various Arduino
UNO compatible relay shields available, but we’ll present two relay shields that can be
easily used for working with the projects. They can be easily seated on the Arduino UNO
with wire wrap headers without soldering, hence they are easy to plug and remove. These
relay shields can be used to build applications that implement multiple relay outputs.
Typically they will provide four outputs or more.

Arduino 4 Relays Shield
The Arduino 4 Relays Shield (Figure 1-17) allows you to drive high-power loads that are
rated with high current and voltages up to 48VDC; Arduino can’t directly power them
through the digital pins.

Figure 1-16.  Grove Universal 4-Pin Buckled Cable. Image courtesy of Seeed Development
Limited

Chapter 1 ■ Getting Ready for the Development Environment

16

The shield can only handle four output devices and it has two TinkerKit inputs,
two TinkerKit outputs, and two TinkerKit TMI interfaces. You’ll learn in-depth about
this relay shield in Chapter 9, “Building a Better PLC” (about €22; http://world.
arduino.org/en/arduino-4-relays-shield.html).

SeeedStudio Relay Shield
Same as the Arduino 4 Relays Shield, the SeeedStudio Relay Shield (Figure 1-18) also
allows you to drive high-power loads that are rated with high current and voltages up to
35VDC, 120VAC or 250VAC, which Arduino can’t directly power through the digital pins.

Figure 1-17.  Arduino 4 Relays Shield. Image courtesy of arduino.org

Figure 1-18.  SeeedStudio Relay Shield. Image courtesy of Seeed Development Limited

You’ll learn in-depth about this relay shield in Chapter 9, “Building a Better PLC”
(about $20; https://www.seeedstudio.com/Relay-Shield-v30-p-2440.html).

http://dx.doi.org/10.1007/978-1-4842-2632-2_9
http://world.arduino.org/en/arduino-4-relays-shield.html
http://world.arduino.org/en/arduino-4-relays-shield.html
http://dx.doi.org/10.1007/978-1-4842-2632-2_9
https://www.seeedstudio.com/Relay-Shield-v30-p-2440.html

Chapter 1 ■ Getting Ready for the Development Environment

17

Buying an ArduiBox
ArduiBox (Figure 1-19) is a DIY kit for Arduino UNO, Arduino 101, and Arduino Zero.
It allows you to install your Arduino-based PLC in a control cabinet and mount it to a DIN
rail like any other industrial PLC available in the market.

Figure 1-19.  Components of an ArduiBox. Image courtesy of Hartmut Wendt
www.hwhardsoft.de

■■ Note  DIN stands for Deutsches Institut fur Normung (German Institute of
Standardization), which specifies a metal rail of a standard type for mounting circuit
breakers and industrial control equipment inside equipment racks. It’s known as a DIN
rail. Typically, DIN rails are made out of cold rolled carbon steel sheet with a zinc-plated or
chrome-plated bright surface finish. Visit www.din.de/en for more information about the
German Institute of Standardization.

At the time of this writing, the ArduiBox kit was available for €34.99 including
optional parts. The kit doesn’t include any Arduino or shield.

http://www.hwhardsoft.de/
http://www.din.de/en

Chapter 1 ■ Getting Ready for the Development Environment

18

The kit includes:

•	 Milled DIN rail enclosure with transparent top

•	 pcb with prototyping board and landing zone for Arduino and shield

•	 2x 3-terminal blocks

•	 4x 2-terminal blocks

•	 Sockets for Arduino

•	 Sockets for shield

•	 2x self-tapping screws

And has following optional parts:

•	 Parts for 12V voltage regulator (Vin 15 - 30VDC)

•	 Reset button

•	 Additional terminal block for voltage regulator

You can purchase a ArduiBox kit directly from the manufacturer, Hartmut
Wendt (http://www.hwhardsoft.de/english/webshop/raspibox/#cc-m-
product-10145780397) if you’d like to build a PLC that’s housed in a control cabinet and
mount it in a DIN rail as you’ll learn in Chapter 5, “Building with ArduiBox”.

Buying a Modbus Shield, Module, and Sensor
In an industrial environment you’ll need to connect various industrial sensors to your
PLCs. These sensors have serial interfaces like RS232 and RS485 to communicate with
computers using the Modbus communications protocol.

To enable your Arduino PLC with the Modbus communications protocol, you’ll have
to prepare your toolbox with the following boards. Note that they are a bit expensive.

In Chapter 7, “Modbus,” you’ll learn how to connect an industrial temperature
sensor to your Arduino PLC, read temperature values, and make decisions accordingly.

Multiprotocol Radio Shield for Arduino
The Multiprotocol Radio Shield (Figure 1-20) from CookingHacks is an Arduino UNO
compatible shield that’s ideal for building Modbus-enabled PLCs. The shield is designed
to connect two communication modules at the same time.

http://www.hwhardsoft.de/english/webshop/raspibox/#cc-m-product-10145780397
http://www.hwhardsoft.de/english/webshop/raspibox/#cc-m-product-10145780397
http://dx.doi.org/10.1007/978-1-4842-2632-2_5
http://dx.doi.org/10.1007/978-1-4842-2632-2_7

Chapter 1 ■ Getting Ready for the Development Environment

19

(It’s about €33.00; https://www.cooking-hacks.com/multiprotocol-radio-
shield-board-for-arduino-rpi-intel-galileo.)

RS485/Modbus Module for Arduino and Raspberry Pi
The RS485 Module for Arduino and Raspberry Pi (Figure 1-21) allows you to connect
more than one industrial devices to Arduino with only two wires.

Figure 1-20.  Multiprotocol Radio Shield for Arduino. Image courtesy of www.cooking-
hacks.com

Figure 1-21.  RS485/Modbus Module for Arduino. Image courtesy of www.cooking-hacks.
com.TQS3-I: MODBUS RS485 Interior Thermometer

(About €35; https://www.cooking-hacks.com/rs-485-modbus-module-shield-
board-for-arduino-raspberry-pi-intel-galileo.)

The TQS3-I - MODBUS RS485 Interior Thermometer (Figure 1-22) from PAPOUCH
(www.papouch.com) supports Modbus and Spinel communication protocols via an RS485
bus line. It can be used with Multiprotocol Radio Shield and RS485 Modbus modules for
Arduino to easily set up temperature sensor projects (about $57; www.papouch.com).

https://www.cooking-hacks.com/multiprotocol-radio-shield-board-for-arduino-rpi-intel-galileo
https://www.cooking-hacks.com/multiprotocol-radio-shield-board-for-arduino-rpi-intel-galileo
www.cooking-hacks.com
www.cooking-hacks.com
http://www.cooking-hacks.com.tqs3-i/
http://www.cooking-hacks.com.tqs3-i/
https://www.cooking-hacks.com/rs-485-modbus-module-shield-board-for-arduino-raspberry-pi-intel-galileo
https://www.cooking-hacks.com/rs-485-modbus-module-shield-board-for-arduino-raspberry-pi-intel-galileo
http://www.papouch.com/
http://www.papouch.com/

Chapter 1 ■ Getting Ready for the Development Environment

20

Downloading Software
All the code examples in this book have been implemented and tested on a Windows
operating system environment. You’ll need the following software to download and save
them to your local drive.

Generally, the following compressed files will be saved by default in your Windows
computer’s downloads folder. You will learn how to install, run, and configure them in the
next chapters, when required.

Arduino Software
Download the latest Arduino Software from https://www.arduino.cc/en/Main/
Software (Figure 1-23). Use the Windows zip file for non-admins. You run it directly
from your folder after it’s been copied to the local drive without installing it on your
computer. You can also download it directly from https://www.arduino.cc/download_
handler.php?f=/arduino-1.6.11-windows.zip.

Figure 1-22.  TQS3-I: MODBUS RS485 Interior Thermometer. Image courtesy of
www.papouch.com

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/download_handler.php?f=/arduino-1.6.11-windows.zip
https://www.arduino.cc/download_handler.php?f=/arduino-1.6.11-windows.zip
http://www.papouch.com/
http://www.papouch.com/

Chapter 1 ■ Getting Ready for the Development Environment

21

plcLib
You can download the plcLib library for Arduino from http://www.electronics-
micros.com/resources/arduino/plclib/plcLib.zip or from GitHub’s master branch
at https://github.com/wditch/plcLib. It contains the latest commits of the library
(Figure 1-24).

Figure 1-23.  Arduino Software Download page

Figure 1-24.  plcLib download page at GitHub

http://www.electronics-micros.com/resources/arduino/plclib/plcLib.zip
http://www.electronics-micros.com/resources/arduino/plclib/plcLib.zip
https://github.com/wditch/plcLib

Chapter 1 ■ Getting Ready for the Development Environment

22

Arduino Ethernet2 Library
Download the Arduino Ethenet2 library from GitHub (https://github.com/arduino-
org/Arduino). You can download it from the master branch and you will get a
compressed file named Arduino-master.zip.

WiFi Shield Firmware
Download the up-to-date firmware and library for ArduinoWiFi shield at
https://github.com/arduino/wifishield.

Modbus RS485 Library
Download the Modbus RS485 library for Arduino from Cooking Hacks
(www.cooking-hacks.com). You can also use the following file location to directly
download it to your computer:

https://www.cooking-hacks.com/media/cooking/images/documentation/RS-485/
RS485_for_Arduino.zip

Summary
In this chapter you learned about how to prepare your development environment with
ready-to-use hardware and software components. You gained a basic understanding of the
important hardware and software components that can be used to build Arduino-based
PLC projects. In next chapter, you learn the basics about Arduino, Arduino Ethernet Shield,
and WiFi Shield that can be used to build the core hardware of an Arduino-based PLC.

https://github.com/arduino-org/Arduino
https://github.com/arduino-org/Arduino
https://github.com/arduino/wifishield
https://github.com/arduino/wifishield
http://www.cooking-hacks.com/
https://www.cooking-hacks.com/media/cooking/images/documentation/RS-485/RS485_for_Arduino.zip
https://www.cooking-hacks.com/media/cooking/images/documentation/RS-485/RS485_for_Arduino.zip

23© Pradeeka Seneviratne 2017
P. Seneviratne, Building Arduino PLCs, DOI 10.1007/978-1-4842-2632-2_2

CHAPTER 2

Arduino, Ethernet, and WiFi

Arduino can work as the heart of the PLCs that we are going to build. The basic type
of Arduino, Arduino UNO, is best for learning basic concepts behind the PLCs as well
as implementing prototypes with a combination of hardware (inputs, outputs) and
software (Arduino software and libraries like plcLib and Modbus).

In the previous chapter, you learned about how to prepare your development
environment with various hardware and software. In this chapter, you will learn more
about Arduino UNO, Arduino Ethernet shield, and Arduino WiFi shield.

Arduino and Genuino
The Arduino UNO and Genuino boards are identical and share the same quality of
manufacturing. The boards are based on the ATmega328P microcontroller that
is powered with Arduino UNO bootloader. The microcontroller has 32KB of flash
memory and 2KB of RAM. Arduino boards are best for learning electronics and for rapid
prototyping. You can interface your Arduino board with various sensors and actuators.
At the time of this writing, the revision number of Arduino was 3 (Rev3).

Figure 2-1 presents the main components of the Arduino UNO/Genuino board.

Figure 2-1.  Arduino UNO Rev3 board

Chapter 2 ■ Arduino, Ethernet, and WiFi

24

The main components are marked as follows:

	 1.	 ATmega328P microcontroller

	 2.	 USB jack (type B)

	 3.	 Power jack (9V wall wart or 9V battery)

	 4.	 Digital pins

	 5.	 Analog pins

	 6.	 Power IN (9V external)

	 7.	 Power OUT

	 8.	 Power indicator

	 9.	 LED connected to digital pin 13

	 10.	 Voltage regulator

	 11.	 Reset button

Digital Pins
Digital pins can be used to interface with various sensors and actuators; Arduino UNO
has 14 digital pins. These pins can be configured as either input or output with Arduino
software. All digital pins operate at 5V and they can receive or produce about 20mA of
current, but make sure not to supply them with more than 40mA of current to avoid
permanent damage to the microcontroller. The default state of a digital pin is input and
each digital pin has an internal pull-up resistor (disconnected by default) of 20-50kilo
ohm by default.

Some digital pins have specialized functions:

•	 Transmit and receive serial data: Digital pins 0 and 1 can be used
to perform serial communications, where pin 0 can receive (RX)
and pin 1 can transmit (TX) TTL serial data, respectively.

•	 Pulse width modulation: Digital pins 3, 5, 6, 9, 10, and 11 can be
used to provide 8-bit PWM output.

•	 External interrupts: Digital pins 2 and 3 can be configured to
trigger an interrupt on a low value, a rising or falling edge, or a
change in value. These pins are very useful when you want to
make alternative paths in your control process using switches or
sensors, and counting pulses from sensors.

Chapter 2 ■ Arduino, Ethernet, and WiFi

25

Analog Pins
The Arduino UNO has six analog pins that can be used to input analog signals; they are
labeled starting from A0 to A5. You can read analog-to-digital converted values from 0 to
255, which represents the range 0V to 5V. These pins are very useful when you want to
read values from analog sensors, like temperatures, humidity, proximity, and many more.

Powering the Arduino Board
Arduino boards can be powered with different power sources and use relevant methods,
depending on the nature of your project.

USB Power
You can connect the Arduino UNO board to a computer with a USB Type A/B cable
(Figure 2-2). Just connect the Type B end of the cable to Arduino's USB jack and the
Type A end to the computer's USB port. The Arduino board can use USB power while
uploading sketches and testing with a computer or preforming serial communications
with a computer. Alternatively, you can use any type of 5V USB power supply if you are
not planning to use the USB cable as the communications link between Arduino and the
computer.

9V AC/DC Adapter
This is also called a wall wart (Figure 2-3). However, you can use an AC/DC adapter that
can supply between 7-12V with a center-positive connector.

Figure 2-2.  Arduino UNO powered with USB

Chapter 2 ■ Arduino, Ethernet, and WiFi

26

9V Battery Pack
You can power your Arduino UNO board with a 9V battery attached to a 9V battery
holder (Figure 2-4) with a center-positive barrel jack.

Figure 2-4.  9V battery with a holder. Image From SparkFun Electronics; photo taken by
Juan Peña

Figure 2-3.  9V wall wart. Image From SparkFun Electronics; Photo taken by Juan Peña

Chapter 2 ■ Arduino, Ethernet, and WiFi

27

VIN Pin
You can use a VIN pin to supply between 7-12V DC without using a DC plug (Figure 2-5).
The VIN pin is not polarity protected so make sure to connect the positive lead of the power
supply to it.

The power source is automatically either a USB or an external source, depending on
the input voltage by the on-board LMV358 OP-AMP.

Arduino Ethernet
The Arduino Ethernet shield connects your Arduino board to the Internet and it can be
used to build interactive projects for the Internet of Things (IoT) in conjunction with
Arduino software and the Arduino Ethernet library.

Arduino Ethernet Shield 2
The Arduino Ethernet shield 2 is based on a WIZnet W5500 Ethernet chip with
on-board RJ-45 jack, Micro-SD card slot, and TinkerKit connectors. This shield is
manufactured by arduino.org but this is not the latest version of Arduino Ethernet shield
manufactured by arduino.cc. You can use the Arduino Ethernet 2 library to write
sketches for the Arduino Ethernet Shield.

Figure 2-5.  Arduino UNO powered through a VIN pin with an external 9V power source.
Image credited to the “original creator”

Chapter 2 ■ Arduino, Ethernet, and WiFi

28

Figure 2-6 presents some important components on the Arduino Ethernet Shield 2.

The main components are marked as follows:

	 1.	 WIZnet W5500 Ethernet Chip

	 2.	 RJ45 jack

	 3.	 Micro-SD slot

	 4.	 TinkerKit connectors

	 5.	 Headers (digital and PWM)

	 6.	 Headers (analog and power)

	 7.	 Reset button

Table 2-1 lists the technical specifications of the Arduino Ethernet Shield 2
published by arduino.org.

Figure 2-6.  Components of the Arduino Ethernet Shield 2. Image courtesy of arduino.org

Chapter 2 ■ Arduino, Ethernet, and WiFi

29

Connecting Them Together
To connect an Arduino Ethernet Shield 2 to the Internet, you need the following:

•	 RJ-45 cable (Figure 2-7)

•	 Router or switch (Figure 2-8)

An Internet connection is required only if you are planning to
access your board through the Internet by port forwarding or
a dedicated IP.

Table 2-1.  Technical Specifications of the Arduino Ethernet Shield 2

Component Specification

Chip Based WIZnet W5500

Card Reader Micro-SD

Ethernet 802.3 10/100 Mbit/s

ThinkerKit Interface 2x TWI, 2x OUT, 2x IN

Interfaces with Arduino Board SPI

Input Voltage Plug (limits) 6-20V

Input Voltage POE (limits) 36-57V

Operating Voltage 5V

Current Needs 87ma (with webserver sketch and 9V on
the DC plug)

Source http://www.arduino.org/products/shields/arduino-ethernet-shield-2

Figure 2-7.  Cat 6 Ethernet cable. Image from SparkFun Electronics; photo taken by Juan Peña

http://www.arduino.org/products/shields/arduino-ethernet-shield-2

Chapter 2 ■ Arduino, Ethernet, and WiFi

30

Now connect the Arduino Ethernet Shield to the Arduino board using its wire-wrap
headers (Figure 2-9).

Figure 2-8.  Router with four Ethernet ports. Source https://en.wikipedia.org/wiki/
Router_(computing)#/media/File:Adsl_connections.jpg

Figure 2-9.  Arduino Ethernet Shield 2 wire-wrap headers. Image courtesy of arduino.org

https://en.wikipedia.org/wiki/Router_(computing)#/media/File:Adsl_connections.jpg
https://en.wikipedia.org/wiki/Router_(computing)#/media/File:Adsl_connections.jpg

Chapter 2 ■ Arduino, Ethernet, and WiFi

31

Make sure to properly seat it on the Arduino board. The Ethernet board draws power
from the Arduino board and shares the same pin layout through the headers. The Reset
button on Ethernet Shield 2 can be used to reset the Arduino.

You can still use the Arduino Ethernet Shield Rev3 (Figure 2-10) that is manufactured
by arduino.cc but it seems to be discontinued. Search the Internet for Arduino Ethernet
Shield to find online stores if it’s available. If you already have one, use the Arduino
Ethernet library instead of the Arduino Ethernet2 library. Note that the Arduino Ethernet
Shield Rev3 is not the predecessor to the Arduino Ethernet Shield 2.

MAC Address
When you write a sketch for the Arduino Ethernet shield, you should provide a unique
MAC (Media Access Control) address for it. A MAC address is a globally unique identifier
for a network device. If you don't know the dedicated MAC address of your Ethernet
shield, you can use a random MAC address as long as it does not conflict with the
network devices in your local network.

Usually the MAC address of the Ethernet shield can be found on the bottom of the
shield (Figure 2-11). However, you can still use your own MAC address and override the
factory assigned address.

Figure 2-10.  Arduino Ethernet Shield Rev3. Image courtesy of arduino.cc

Chapter 2 ■ Arduino, Ethernet, and WiFi

32

When you are writing sketches for the Ethernet shield, the MAC address should be
rewritten in hexadecimal format with prefixes of 0x and comma-separated. The 0x prefix
indicates the number is in hexadecimal rather than in some other base. The MAC address
printed on the sticker in Figure 2-11, 90-A2-DA-0F-F8-B2, can be written as 0x90, 0XA2,
0xDA, 0x0F, 0XF8, 0XB2 in hexadecimal.

IP Address
In addition to the MAC address, the Ethernet shield should be configured with an IP
address. You can assign a static IP address within the sketch or, if not, the router will
dynamically assign an IP address to the Ethernet shield.

If you want to assign a static IP address, the IP address should be in a comma-separated
format by replacing all the dots (dotted-decimal notation) with commas. For an example,
the IP address 192.168.0.177 can be written as 192, 168, 0, 177 in your Arduino sketch.

Arduino WiFi
Instead of a wired connection to the Internet, Arduino can also connect to the Internet
with a wireless connection. The Arduino WiFi shield (Figure 2-12) provides wireless
connection through a WiFi network to the Internet, and you can build the projects by
replacing the Ethernet shield with a WiFi shield. You can use Arduino with a WiFi shield
for handheld and portable projects. Also, it avoids having to work with tedious network
cables and long-range supports and saves you time.

Figure 2-11.  MAC address printed on the sticker. Image From SparkFun Electronics; photo
taken by Juan Peña

Chapter 2 ■ Arduino, Ethernet, and WiFi

33

The Arduino WiFi shield can be connected to the Arduino UNO board using the
soldered wire-wrap headers, same as the Ethernet shield. It provides the same pin layout
through the headers and draws power from Arduino UNO board, and it shares the Reset
button to reset the complete stack.

A very good reference about the WiFi shield can be found at http://www.arduino.
org/learning/getting-started/getting-started-with-arduino-wifi-shield.

Arduino Software
Arduino software is an Integrated Development Environment (IDE) that allows
you to write sketches (program) and upload them to an Arduino board. The Arduino
development environment is written in Java and based on Processing (processing.org)
and other open source software.

Downloading Arduino Software
Using the instructions provided in the previous chapter, you can download the Arduino
Windows ZIP file for non-admin install to your Windows computer. The advantage of this
is you don't need to install it on your computer and you can run it by just double-clicking
on the executable file.

However, you can download and try the Windows installer instead and it will work
the same as the non-admin installation.

Figure 2-12.  The Arduino WiFi Shield, top view. Image courtesy of arduino.org

http://www.arduino.org/learning/getting-started/getting-started-with-arduino-wifi-shield
http://www.arduino.org/learning/getting-started/getting-started-with-arduino-wifi-shield

Chapter 2 ■ Arduino, Ethernet, and WiFi

34

Using the Arduino IDE
Now extract the downloaded ZIP file (i.e., arduino-1.6.11-windows.zip) using the
WinZip or 7-Zip compression software.

You will get a folder named arduino-1.6.11. Inside the folder you will find an
executable file named arduino, which is an application type file. Simply double-click on
the icon to start the Arduino IDE.

If it prompts you with a Windows Security Alert. Just click on the Allow Access button
to proceed.

The IDE is loaded with a default sketch (Figure 2-13). The menu bar and toolbar
provide a host of options and configurations to work with Arduino boards.

Figure 2-13.  The Arduino IDE

Chapter 2 ■ Arduino, Ethernet, and WiFi

35

Where Is the libraries Folder?
All libraries that can be used to write Arduino sketches are located inside the libraries
folder. Generally, it is a top-level folder (Figure 2-14).

..\arduino-1.6.11-windows\arduino-1.6.11\libraries

Adding the Ethernet2 Library
The Arduino Ethernet2 library isn't included with Arduino IDE developed and provided
by arduino.cc. Therefore, you should manually add it to your Arduino IDE's libraries
folder.

	 1.	 Download the Arduino Ethernet2 library from GitHub
(https://github.com/arduino-org/Arduino). You can
download it from the master branch and you will get a file
in zip format. To download the file as a zip file, click Clone
or download button in the top-right corner of the browser
window, then form the drop-down menu, click Download
ZIP link.

Figure 2-14.  The Arduino libraries folder

https://github.com/arduino-org/ArduinoMaybe a screen shot of how to clone the zip file from Github could be shown, it would help people who are new to Github

Chapter 2 ■ Arduino, Ethernet, and WiFi

36

	 2.	 Extract the zip file and navigate to the libraries folder. You
can see a folder named Ethernet2 (Figure 2-15). Now copy
the Ethernet2 folder to Arduino IDE's libraries folder.
Finally, restart the Arduino IDE.

	 3.	 To confirm the Ethernet2 library has been added to your
Arduino IDE, choose Sketch ➤ Include Library. If you can see
the menu item called Ethernet2 under Contributed Libraries,
you are ready to go.

Cables
The communication link between the Arduino board and your computer can be
established using a USB type A/B cable (See Chapter 1, “Getting Ready for the
Development Environment,” for a shopping guide).

Figure 2-15.  Finding the Ethernet2 library

http://dx.doi.org/10.1007/978-1-4842-2632-2_1

Chapter 2 ■ Arduino, Ethernet, and WiFi

37

The USB type A/B cable consists of USB type A and type B female connectors.
Connect the type A connector side to your computer's USB port and the type B connector
side to your Arduino's USB port (Figure 2-16). The Arduino board can use the DC power
supplied by the USB port from your computer, which is typically 5V DC.

Figure 2-16.  USB type A/B cable (type B end) connected to Arduino UNO. Image credited
to the “original creator”

Basic Configurations
Before uploading any sketches to your Arduino board, you should configure the following
components correctly.

	 1.	 Board Type: This is the board you have currently attached to
your computer. On the menu bar, select the correct board type
by choosing Tools ➤ Board ➤ Arduino/Genuino UNO.

	 2.	 COM Port: This is the computer's COM port, which is what
your Arduino board is currently attached to. You can find the
COM port number under the Device Manager in Windows
(Figure 2-17).

Chapter 2 ■ Arduino, Ethernet, and WiFi

38

Now, on the menu bar, choose Tools ➤ Port and then select the correct port from
the list.

Writing Sketches for Arduino UNO
You have set up your development environment with Arduino software, as well as with
various hardware including boards, shields, USB cables, and power supplies. Now
we are going to take a look at how to write sketches for Arduino, mainly focusing on
building PLCs.

Bare Minimum Code
An Arduino code or program is generally called a sketch. The minimum sketch that
needs to be compiled on Arduino software is called the bare minimum code. The sketch
consists of two functions—setup() and loop()—as shown in Listing 2-1.

Listing 2-1.  Bare Minimum Code Example (BareMinimum.ino)

void setup() {
 // put your setup code here, to run once:

}

Figure 2-17.  Identifying the COM port assigned to Arduino

Chapter 2 ■ Arduino, Ethernet, and WiFi

39

void loop() {
 // put your main code here, to run repeatedly:

}

The setup() function is called when a sketch starts and the loop() function is called
after that. The loop() function loops consecutively whatever things are mentioned inside
it, until you press the Reset button or until the next power cycle.

When you start the Arduino IDE or create a new file, it opens a default sketch file
with the bare minimum code.

Now, let's upload the bare minimum code into the Arduino board. Remember to
configure the Arduino IDE with your board, such as board type and COM port, before
proceeding.

	 1.	 Save the file in to your computer’s local drive by choosing File
➤ Save As and typing the filename as BareMinimum. Click the
Save button to save the file.

Click the Verify button to compile the code. You'll get output
on the Messages section of the IDE that’s similar to the
following (Figure 2-18).

	 2.	 Click Upload button to upload the code to the Arduino
board. While uploading the sketch to the board, you can see
the orange color RX and TX LEDs on the board are flashing
(Figure 2-19). The RX LED blinks when the Arduino is
receiving data and the TX LED blinks when the Arduino is
transmitting data.

Figure 2-18.  Uploading a sketch from Arduino IDE

Chapter 2 ■ Arduino, Ethernet, and WiFi

40

Hello World
Unlike the famous Hello World example presented in many programming books, which
prints the text Hello World on a console, Arduino can provide the next level of greeting
with physical output—that is, making an LED blink (or you can make beeps with a small
buzzer).

Blinking
To get a basic understanding and experience coding with Arduino software, the blinking
LED example is a very good place to start.

You'll need following components to build the hardware setup:

•	 Arduino UNO board

•	 LED

•	 220 Ohm resistor

•	 Small breadboard

Now connect the LED with the Arduino board, as shown in Figure 2-20. You can
use a small breadboard to hook up the circuit using hook-up wires. The following steps
explain how to build it:

	 1.	 Connect the short leg of the LED to the Arduino GND.

	 2.	 Connect the long leg of the LED to the Arduino digital pin 13
through a 220 ohm resistor. The resistor works as a current-
limiting resistor to limit the LED's current.

Figure 2-19.  Arduino UNO’s RX and TX LEDs

Chapter 2 ■ Arduino, Ethernet, and WiFi

41

Now you need an Arduino sketch to blink the LED. A simple sketch can be found
in the Arduino examples folder. To open the sketch, choose File ➤ Examples ➤ Basic ➤
Blink under Built-in Examples from the Arduino IDE's menu bar. A new window will open
with the following sketch (Listing 2-2).

Listing 2-2.  LED Blink Example (Blink.ino)

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

Figure 2-20.  LED blink circuit

Chapter 2 ■ Arduino, Ethernet, and WiFi

42

Now you are ready to upload the sketch to the Arduino board. Using Arduino IDE, do
the following.

	 1.	 Click the Verify button to compile the code.

	 2.	 Click the Upload button to upload the code into the Arduino
board.

Let's briefly take a look at the simple programming concepts behind the blink
sketch.

Inside the setup() function, the Arduino digital pin 13 has initialized as an output
pin by passing the OUTPUT constant as a parameter to the pinMode() function.

void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

Also, inside the loop() function, the digitalWrite() function is used to change the
voltage level on a particular Arduino digital pin. The voltage level should be either 5V
(HIGH) or 0V (LOW).

The digitalWrite() function accepts values for duty cycles between 0 (always off)
and 255 (always on).

Syntax:

digitalWrite(pin, value)

Parameters:

pin: The pin number to write to
value: HIGH or LOW

Returns:

None

Now, to supply 5V to the Arduino digital pin 13, you can write the code as follows:

digitalWrite(13, HIGH);

Likewise, to supply 0V to the Arduino digital pin 13, you can write the code as follows:

digitalWrite(13, LOW);

To make the LED blink, you should add time delays between the HIGH and LOW
voltage states. The delay() function can be used to make delays and it accepts the delay
time in milliseconds.

In this example, the delay between on and off is one second. You can make different
blinking effects by changing the delay time.

The digitalWrite() function is really useful in PLC development projects to output
digital signals.

Chapter 2 ■ Arduino, Ethernet, and WiFi

43

Fading
Now you may have a question about how to work with more than two voltage levels on an
Arduino pin. This can be done using Arduino analog pins. Let's create a quick circuit by
removing the 220 ohm resistor leg from the digital pin 13 and connect it to the PWM
pin 9. Figure 2-21 presents the circuit built on a breadboard.

Now open Arduino IDE and choose File ➤ Examples ➤ Basics ➤ Fade to open the
example sketch (Listing 2-3).

Listing 2-3.  LED Fading Example (Fade.ino)

int led = 9; // the PWM pin the LED is attached to
int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by

// the setup routine runs once when you press reset:
void setup() {
 // declare pin 9 to be an output:
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 // set the brightness of pin 9:
 analogWrite(led, brightness);

 // change the brightness for next time through the loop:
 brightness = brightness + fadeAmount;

Figure 2-21.  LED fading circuit

Chapter 2 ■ Arduino, Ethernet, and WiFi

44

 // reverse the direction of the fading at the ends of the fade:
 if (brightness <= 0 || brightness >= 255) {
 fadeAmount = -fadeAmount;
 }
 // wait for 30 milliseconds to see the dimming effect
 delay(30);
}

Let's learn some programming concepts behind this code that is related to the
analog aspect of Arduino.

The analogWrite() function accepts values for duty cycles between 0 (always off)
and 255 (always on).

Syntax:

analogWrite(pin, value)

Parameters:

pin: The PWM pin number to write to

value: The duty cycle (0-255)

Returns:

None

Initially, the brightness value is set to 0 and then it increases by 5 using the
fadeamount variable. When it becomes greater than or equal to 255 or less than or equal
to 0, the initial value of fadeamount gets inverted and starts to reverse the direction of the
fading.

 // reverse the direction of the fading at the ends of the fade:
 if (brightness <= 0 || brightness >= 255) {
 fadeAmount = -fadeAmount;
 }

The delay between each fading state is set to 30 milliseconds using the delay()
function.

Reading Analog Inputs
The Arduino board has specialized pins for reading analog signals or data from various
sensors and potentiometers. In this simple project, you learn how to read analog data
from a potentiometer connected to the Arduino analog pin A0. To build this circuit, you
need a 10kilo ohm potentiometer.

Build the circuit as shown in Figure 2-22.

	 1.	 Connect the center pin of the potentiometer to the Arduino
analog pin A0.

	 2.	 Connect one of the outer pins to the Arduino 5V pin.

	 3.	 Connect the other (remaining) outer pin to the Arduino GND.

Chapter 2 ■ Arduino, Ethernet, and WiFi

45

	 4.	 Now open the sample sketch by choosing File ➤ Examples
➤ Basics ➤ AnalogReadSerial. The sample sketch will open
in a new window. Verify the sketch and upload it to the
Arduino board. Follow the analog read serial example shown
in Listing 2-4.

Listing 2-4.  Analog Read Serial Example (AnalogReadSerial.ino)

// the setup routine runs once when you press reset:
void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
}

// the loop routine runs over and over again forever:
void loop() {
 // read the input on analog pin 0:
 int sensorValue = analogRead(A0);
 // print out the value you read:
 Serial.println(sensorValue);
 delay(1); // delay in between reads for stability
}

	 5.	 Open the Serial Monitor by choosing Tools ➤ Serial Monitor.
The Serial Monitor will open in a new window (Figure 2-23)
and display the current value of the analog pin A0. The output
will continuously scroll until you disable the Autoscroll
option by deselecting the checkbox. The output value is
between 0 to 1023, so it is a fraction of 5V. Actually, you can
calculate the current voltage on the analog pin by using this
value. Use the following formula to calculate the voltage.

Figure 2-22.  Analog read circuit

Chapter 2 ■ Arduino, Ethernet, and WiFi

46

■■ Note  Voltage = value of the analog read x (5/1023)

As an example, the voltage for an analog read of 500 would be:

500 x (5/1023) = 2.44V

Another tool you can use to see the output is the Serial Plotter, which is found on
the Tools menu (Figure 2-24). It provides a graphical representation of the output.

Figure 2-23.  Arduino Serial Monitor

Chapter 2 ■ Arduino, Ethernet, and WiFi

47

Inside the setup() function, the serial communication between the Arduino and the
computer is initialized to 9600 bits per second using Serial.begin().

Serial.begin(9600);

The begin() function of the Serial class accepts the baud rate in bits per second. It
opens the serial port for communication and sets the data rate to 9600bps. 9600 bits per
second is the default for the Arduino, and is perfectly adequate for the majority of users,
but you could change it to one of these rates: 300, 600, 1200, 2400, 4800, 9600, 14400,
19200, 28800, 38400, 57600, or 115200.

The sensor value on the analog pin can be read with the analogRead() function and
it accepts the analog pin number as the parameter.

int sensorValue = analogRead(A0);

Syntax:

analogRead(pin)

Parameters:

pin: Analog pin number A0 to A5

Returns:

Integer value (0 to 1023)

Figure 2-24.  Arduino Serial Plotter

Chapter 2 ■ Arduino, Ethernet, and WiFi

48

Writing Sketches for Arduino Ethernet
The Arduino Ethernet Shield allows an Arduino board to connect to the Internet and
requires the Ethernet2 library.

A Simple Web Client
In this example, you learn how to build a simple web client using the Ethernet shield that
communicates with a web server by sending and receiving data.

To build this project, you need following things to configure the hardware setup:

•	 Arduino UNO board

•	 Arduino Ethernet Shield 2

•	 Cat 6 Ethernet cable

•	 Router

Use the following steps to build the hardware setup:

	 1.	 Connect the Arduino Ethernet Shield to the Arduino board
using wire-wrap headers.

	 2.	 Connect one end of the Ethernet cable to the Ethernet shield's
Ethernet jack and the remaining end to the router or switch.

	 3.	 Connect the Arduino UNO board to the computer with a USB
type A/B cable.

Now you are ready to upload the sample sketch provided with the Arduino IDE.

	 1.	 Open the Arduino IDE and on the menu bar and choose File
➤ Examples ➤ Ethernet 2 ➤ WebClient. A sample sketch for a
web client (Listing 2-5) will open in a new window.

Listing 2-5.  Web Client Example (WebClient.ino)

#include <SPI.h>
#include <Ethernet.h>

// Enter a MAC address for your controller below.
// Newer Ethernet shields have a MAC address printed on a sticker on the
shield
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(74,125,232,128); // numeric IP for Google (no DNS)
char server[] = "www.google.com"; // name address for Google (using DNS)

Chapter 2 ■ Arduino, Ethernet, and WiFi

49

// Set the static IP address to use if the DHCP fails to assign
IPAddress ip(192, 168, 0, 177);

// Initialize the Ethernet client library
// with the IP address and port of the server
// that you want to connect to (port 80 is default for HTTP):
EthernetClient client;

void setup() {
 // Open serial communications and wait for port to open:
 Serial.begin(9600);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for native USB port only
 }

 // start the Ethernet connection:
 if (Ethernet.begin(mac) == 0) {
 Serial.println("Failed to configure Ethernet using DHCP");
 // try to configure using IP address instead of DHCP:
 Ethernet.begin(mac, ip);
 }
 // give the Ethernet shield a second to initialize:
 delay(1000);
 Serial.println("connecting...");

 // if you get a connection, report back via serial:
 if (client.connect(server, 80)) {
 Serial.println("connected");
 // Make a HTTP request:
 client.println("GET /search?q=arduino HTTP/1.1");
 client.println("Host: www.google.com");
 client.println("Connection: close");
 client.println();
 } else {
 // if you didn't get a connection to the server:
 Serial.println("connection failed");
 }
}

void loop() {
 // if there are incoming bytes available
 // from the server, read them and print them:
 if (client.available()) {
 char c = client.read();
 Serial.print(c);
 }

Chapter 2 ■ Arduino, Ethernet, and WiFi

50

 // if the server's disconnected, stop the client:
 if (!client.connected()) {
 Serial.println();
 Serial.println("disconnecting.");
 client.stop();

 // do nothing forevermore:
 while (true);
 }
}

	 2.	 Change the MAC address according to your Ethernet shield or
just keep it as it is.

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

	 3.	 Next, change the IP address. Be sure to use one within your
network’s valid IP address range.

IPAddress ip(192, 168, 0, 177);

	 4.	 Make sure your router has an active Internet connection,
because you are going to access a live URL (www.google.com).

	 5.	 Click the Verify button to compile the sketch. You'll probably
get the following warning regarding the newly added
Ethernet2 library because the properties file of the library
doesn’t have a category mentioned.

Warning Category '' in library Ethernet2 is not valid. Setting to
'Uncategorized'

A quick fix can be applied to resolve this issue by adding an entry to the library.
properties file in the libraries/Ethernet2 folder. Add the following line just after the
paragraph= entry and then save the file (Figure 2-25).

category=Communication

http://www.google.com/

Chapter 2 ■ Arduino, Ethernet, and WiFi

51

Now try to verify the sketch again. You'll notice that the
warning about the missing category is now resolved.

	 6.	 Click the Upload button to upload the sketch to the
Arduino board. This will take a few seconds to complete the
process.

	 7.	 Now open the Serial Monitor by choosing Tools ➤ Serial
Monitor (Ctrl+Shift+M). You'll see the following output on the
Serial Monitor. Note that the section between <html></html>
contains HTML output from google.com for the search query
arduino (Figure 2-26).

Figure 2-25.  Add the proper category to the library file

Chapter 2 ■ Arduino, Ethernet, and WiFi

52

This is only a basic example that shows how to use the Ethernet Shield to
communicate with the Internet.

Writing Sketches for Arduino WiFi
To write sketches for the Arduino WiFi Shield, you need to use the Arduino WiFi library.

The WiFi shield can connect to three types of WiFi networks:

•	 Open networks: Requires only the SSID of the network.

•	 WPA networks: Requires the SSID and password of the network.

•	 WPE networks: Requires the SSID and key of the network.

To get started with the WiFi shield, let's upload a simple sketch to the Arduino board
that can be used to connect it to a WPA network.

	 1.	 Choose File ➤ Examples ➤ WiFi ➤ ConnectWithWPA. The
ConnectWithWPA example sketch (Listing 2-6) will open in a
new window.

Figure 2-26.  Output from the Serial Monitor

Chapter 2 ■ Arduino, Ethernet, and WiFi

53

Listing 2-6.  WiFi Connection with WPA Example (ConnectWithWPA.ino)

#include <SPI.h>
#include <WiFi.h>

char ssid[] = "yourNetwork"; // your network SSID (name)
char pass[] = "secretPassword"; // your network password
int status = WL_IDLE_STATUS; // the Wifi radio's status

void setup() {
 //Initialize serial and wait for port to open:
 Serial.begin(9600);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for native USB port only
 }

 // check for the presence of the shield:
 if (WiFi.status() == WL_NO_SHIELD) {
 Serial.println("WiFi shield not present");
 // don't continue:
 while (true);
 }

 String fv = WiFi.firmwareVersion();
 if (fv != "1.1.0") {
 Serial.println("Please upgrade the firmware");
 }

 // attempt to connect to Wifi network:
 while (status != WL_CONNECTED) {
 Serial.print("Attempting to connect to WPA SSID: ");
 Serial.println(ssid);
 // Connect to WPA/WPA2 network:
 status = WiFi.begin(ssid, pass);

 // wait 10 seconds for connection:
 delay(10000);
 }

 // you're connected now, so print out the data:
 Serial.print("You're connected to the network");
 printCurrentNet();
 printWifiData();

}

Chapter 2 ■ Arduino, Ethernet, and WiFi

54

void loop() {
 // check the network connection once every 10 seconds:
 delay(10000);
 printCurrentNet();
}

void printWifiData() {
 // print your WiFi shield's IP address:
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);
 Serial.println(ip);

 // print your MAC address:
 byte mac[6];
 WiFi.macAddress(mac);
 Serial.print("MAC address: ");
 Serial.print(mac[5], HEX);
 Serial.print(":");
 Serial.print(mac[4], HEX);
 Serial.print(":");
 Serial.print(mac[3], HEX);
 Serial.print(":");
 Serial.print(mac[2], HEX);
 Serial.print(":");
 Serial.print(mac[1], HEX);
 Serial.print(":");
 Serial.println(mac[0], HEX);

}

void printCurrentNet() {
 // print the SSID of the network you're attached to:
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());

 // print the MAC address of the router you're attached to:
 byte bssid[6];
 WiFi.BSSID(bssid);
 Serial.print("BSSID: ");
 Serial.print(bssid[5], HEX);
 Serial.print(":");
 Serial.print(bssid[4], HEX);
 Serial.print(":");
 Serial.print(bssid[3], HEX);
 Serial.print(":");
 Serial.print(bssid[2], HEX);
 Serial.print(":");

Chapter 2 ■ Arduino, Ethernet, and WiFi

55

 Serial.print(bssid[1], HEX);
 Serial.print(":");
 Serial.println(bssid[0], HEX);

 // print the received signal strength:
 long rssi = WiFi.RSSI();
 Serial.print("signal strength (RSSI):");
 Serial.println(rssi);

 // print the encryption type:
 byte encryption = WiFi.encryptionType();
 Serial.print("Encryption Type:");
 Serial.println(encryption, HEX);
 Serial.println();
}

	 2.	 Replace "yourNetwork" with the actual network SSID.

char ssid[] = "yourNetwork";

	 3.	 Replace "secretPassword" with the network password.

char pass[] = "secretPassword";

	 4.	 Now verify and upload the sketch to the Arduino board.

	 5.	 Open the Serial Monitor by choosing Tools -> Serial Monitor.

	 6.	 The Serial Monitor will output details about the status of the
network connection and its technical details.

The Arduino WiFi library provides classes and functions that can be used to work
with different types of WiFi networks. The following are some good references about the
Arduino WiFi library.

•	 http://www.arduino.org/learning/getting-started/getting-
started-with-arduino-wifi-shield

•	 https://www.arduino.cc/en/Reference/WiFi

Summary
In this chapter, you learned the basics about how to build simple circuits with Arduino,
Arduino Ethernet Shield, and Arduino WiFi Shield by using the Arduino software and
basic electronic components. In next chapter, you will learn about some industrial PLCs
built with Arduino as the core hardware.

http://www.arduino.org/learning/getting-started/getting-started-with-arduino-wifi-shield
http://www.arduino.org/learning/getting-started/getting-started-with-arduino-wifi-shield
https://www.arduino.cc/en/Reference/WiFiAdd a summary for the chapter explaining the topics covered. Also, provide agist of the next chapters, so that the readers are aware what to expect next

57© Pradeeka Seneviratne 2017
P. Seneviratne, Building Arduino PLCs, DOI 10.1007/978-1-4842-2632-2_3

CHAPTER 3

Arduino at Heart

A simple bottle filling process control system is a good example to understand the
fundamentals of PLCs. An assembly line consists of a conveyor belt that’s connected to a
motor drive, nozzle, and a filling stroke. The conveyer belt moves to one direction with empty
bottles on it and the presence of a bottle is captured by a sensor at the point of the nozzle.
It stops the conveyor belt, starts the liquid pump to fill the bottle, detects the liquid level of
the bottle by another sensor, stops the liquid pump, and starts the conveyor belt again. The
process continues again and again until the process control system receives an interrupt.

This process can be controlled by a piece of software that is running on an
embedded computer. Figure 3-1 presents the graphical representation of a bottle filling
system that is controlled by a PLC. Note that the conveyor, nozzle, and filling stroke are
connected to the PLC with a set of sensors and actuators.

The software scans all the inputs and process them according to the user-defined set of
instructions, makes decisions, and produces outputs for another set of user-provided devices.

Figure 3-1.  Bottle filling control using PLC

Chapter 3 ■ Arduino at Heart

58

In this example, the presence of a bottle at the nozzle can be detected using an
infrared sensor or proximity sensor. The liquid level inside the bottle can also be detected
using an infrared sensor. These sensors can produce inputs to the PLC. The actuators
(output devices) can be controlled using digital or analog output signals coming from
the PLC. For this process control, the conveyor can be controlled using a relay controlled
motor, the nozzle can be controlled using a set of servo motors, and the filling stroke can be
controlled using an electric valve.

What Is PLC?
PLC is a solid state industrial control device that receives inputs from devices such
as sensors and switches, processes them using a piece of software with user-defined
instructions and logics, and provides outputs for devices such as relays and motors to
control the entire process.

Instead of using a general-purpose computer to control industrial manufacturing
processes, PLCs build flexible, modular based, and easy-to-program automation systems.

Figure 3-2 shows a basic PLC that’s mounted on a DIN rail with a power supply unit.

The heart of a PLC is a microcontroller that’s capable of running the user-provided
software. The opto-isolated inputs and outputs can be used to protect the microcontroller
unit from external circuitry. These opto-isolated inputs and outputs are exposed through
the terminal blocks to connect user-provided devices such as sensors, switches, and
actuators. A power supply unit can be mounted on the same DIN rail to use with the PLC
to supply regulated voltage and adequate current. Some PLCs have built-in or additional

Figure 3-2.  A basic PLC. Image courtesy of Hartmut Wendt Hard & Softwareentwicklung

Chapter 3 ■ Arduino at Heart

59

communication modules such as Ethernet or WiFi to connect to the Internet. Most of
the PLCs have a USB interface to program the microcontroller's flash memory by using a
computer.

Basically, a PLC consists of the following parts and accessories.

•	 Microcontroller unit (CPU)

•	 I/O module

•	 Digital inputs/outputs

•	 Analog inputs

•	 PWM outputs

•	 Power supply unit

•	 Enclosure

•	 DIN rail

There are much more advanced PLCs for use in industrial process automation, but
we'll only discuss the basic PLCs throughout this book.

■■ Note  The National Electrical Manufacturers Association (NEMA) defines a PLC as a
“digitally operating electronic apparatus that uses a programmable memory for the internal
storage of instructions by implementing specific functions, such as logic, sequencing,
timing, counting, and arithmetic to control through digital or analog I/O modules various
types of machines or processes.”

Arduino at Heart
There are some PLCs based on Arduino and currently available in the market for
industrial use. In this section, you learn about the flavors and features of Arduino-based
PLCs from various manufacturers.

Industruino
Industruino (https://industruino.com/) is based on an Arduino Leonardo compatible
board, which is another flavor of board in the Arduino family.

Industruino comes with two different flavors:

•	 Industruino Proto Kit

•	 Industruino Industrial I/O Kit

https://industruino.com/

Chapter 3 ■ Arduino at Heart

60

Industruino Proto Kit
The Industruino Proto Kit (Figure 3-3) consists of the following accessories:

•	 Topboard (AT32U4 or AT90USB1286 microcontroller and LCD
screen)

•	 Proto baseboard

•	 Mounting hardware

•	 Enclosure with membrane button panel

The topboard, which is the heart of Industruino, can be purchased based on two
types of microcontrollers. They are:

•	 ATmega 32u4 (32KB flash; Leonardo compatible)

•	 ATmega AT90USB1286 (128KB flash)

The ATmega AT90USB1286 microcontroller-based topboard provides 128KB of
flash memory to execute large Arduino sketches. The microcontroller unit is soldered on
the backside of the PCB.

The topside of the topboard consists of the following components:

•	 UC1701-based 128x64 LCD

•	 FPC connector for three-button membrane panel connected

•	 Micro-USB connector for programming

Figure 3-3.  Industruino Proto Kit. Image courtesy of Industruino (https://industruino.com/)

https://industruino.com/

Chapter 3 ■ Arduino at Heart

61

Protoboard offers a large prototyping area to build small electronic circuits that
interface with Arduino. It also provides a 14-pin IDC expansion port and a 5V/2A out
voltage regulator that can be used with your prototypes.

Industruino Industrial I/O Kit
The Industrial I/O Kit (Figure 3-4) can be used to build industrial-level automation
systems. The Industrial I/O Kit includes the following parts:

•	 Topboard (AT32U4 or AT90USB1286 microcontroller and LCD
screen)

•	 IND-I/O baseboard (Industrial I/O interface board)

•	 Mounting hardware

•	 Enclosure with membrane button panel

The Topboard is identical to the Proto Kit and the Baseboard offers a host of
interface options with industrial peripherals.

Figure 3-4.  Industruino Industrial I/O Kit. Image courtesy of Industruino (https://
industruino.com/)

https://industruino.com/
https://industruino.com/

Chapter 3 ■ Arduino at Heart

62

Industrial Shields
Industrial Shields comes with a basic controller and two ranges of PLCs, which are based
on the Arduino platform. They are:

•	 20 I/Os

•	 Ethernet PLC

Each product has different number of I/O ports, input voltages, and output voltages,
so you can select a suitable product according to your project requirements.

All PLCs are equipped with an original Arduino board with industry grade
enclosures that can be mounted on a DIN rail. All PLCs can be programmed using the
Arduino IDE and support USB, serial, RS232, RS485, and I2C communications protocols.

At the time of writing this book, the 20 I/Os PLC range consisted of two PLC
products. They were:

•	 PLC Arduino ARDBOX 20 I/Os Analog 7.0

•	 PLC Arduino ARDBOX PLC 20 I/Os RELAY 7.0

Figure 3-5 shows the PLC Arduino ARDBOX 20 I/Os Analog 7.0.

Figure 3-5.  PLC Arduino ARDBOX 20 I/Os Analog 7.0. Image courtesy of Industrial
Shields (http://www.industrialshields.com/)

http://www.industrialshields.com/

Chapter 3 ■ Arduino at Heart

63

Figure 3-6 shows the PLC Arduino ARDBOX PLC 20 I/Os RELAY 7.0.

In addition to that, the Ethernet PLCs provide Ethernet connectivity to connect the
PLC to the Internet and can be used to build industrial IoT (Internet of Things) projects.
Figure 3-7 shows one of the Ethernet PLC products mentioned as M-DUINO PLC
Arduino 19R I/OS Relay/Analog/Digital.

Figure 3-6.  PLC Arduino ARDBOX PLC 20 I/Os RELAY 7.0. Image courtesy of Industrial
Shields (http://www.industrialshields.com/)

http://www.industrialshields.com/

Chapter 3 ■ Arduino at Heart

64

Presenting complete technical specifications of the Industrial Shields is out of the
scope of this book. You can learn more about Industrial Shields products by visiting
Industrial Shield's official web site at http://www.industrialshields.com/. Also,
Industrial Shields provides useful accessories such as 12V DC power supplies, 24V DC
power supplies, D-SUB 37 wires, Industrial pull-up I2C connections, and different types of
USB cables that can be used with the range of PLCs. They can be found at http://www.
industrialshields.com/open-source/plc-accessories/.

Controllino
Controllino is Arduino compatible and known as the first software open-source PLC.
There are three types of Controllino PLCs currently available in the market, all with
different specifications.

Controllino MINI
The Controllino MINI (Figure 3-8) is the basic model of the Controllino family and is
based on Atmel ATmega328 and is similar to the Arduino UNO.

Figure 3-7.  M-DUINO PLC Arduino 19R I/OS Relay/Analog/Digital. Image courtesy of
Industrial Shields (http://www.industrialshields.com/)

http://www.industrialshields.com/
http://www.industrialshields.com/open-source/plc-accessories/
http://www.industrialshields.com/open-source/plc-accessories/
http://www.industrialshields.com/

Chapter 3 ■ Arduino at Heart

65

Specifications:

•	 Atmel clock speed: 16MHz

•	 RTC

•	 1x serial interface

•	 1x SPI interface

•	 1x I2C interface

•	 Input current max. 8A

•	 6x relays outputs: – 230V/6A

•	 8x analog/digital inputs

•	 8x digital outputs: 2A @12V or 24V

Controllino MAXI
The Controllino MAXI is an (Figure 3-9) advance model that’s based on Atmel
ATmega2560 and is similar to the Arduino MEGA.

Figure 3-8.  Controllino MINI. Image courtesy of Controllino (http://controllino.biz/)

http://controllino.biz/

Chapter 3 ■ Arduino at Heart

66

Specifications:

•	 Clock speed: 16MHz

•	 RTC

•	 Ethernet connector

•	 2x serial interface

•	 1x RS485 interface

•	 1x I2C interface

•	 1x SPI interface

•	 Input current Max. 20A

•	 10x relays outputs: 230V/6A

•	 12x analog/digital inputs

•	 12x digital outputs: – 2A @12V or 24V

Controllino MEGA
The Controllino MEGA (Figure 3-10) is the most advanced model. It’s based on Atmel
ATmega2560 and is similar to the Arduino MEGA.

Figure 3-9.  Controllino MAXI. Image courtesy of Controllino (http://controllino.biz/)

http://controllino.biz/

Chapter 3 ■ Arduino at Heart

67

Specifications:

•	 Clock speed: 16MHz

•	 RTC

•	 Ethernet connector

•	 2x serial interface

•	 1x RS485 interface

•	 1x I2C interface

•	 1x SPI interface

•	 Input current Max. 30A

•	 16x relays outputs: – 230V/6A

•	 21x analog/digital inputs

•	 12x digital outputs – high side switch – 2A @12V or 24V

•	 12x digital outputs – half-bridge – 2A @12V or 24V

You can learn more about Controllino products, their architecture, and installation
details at http://controllino.biz/.

Figure 3-10.  Controllino MEGA. Image courtesy of Controllino (http://controllino.biz/)

http://controllino.biz/
http://controllino.biz/

Chapter 3 ■ Arduino at Heart

68

Summary
In this chapter, you learned about various industrial PLCs based on the Arduino
development environment. They were carefully developed to use in industrial
environments. In the next chapter, you will learn how to build your first Arduino-based
PLC using an Arduino UNO board and a Grove Base Shield. Finally, you'll learn how
to connect various sensors and actuators to your basic PLC and write simple Arduino
sketches for it.

69© Pradeeka Seneviratne 2017
P. Seneviratne, Building Arduino PLCs, DOI 10.1007/978-1-4842-2632-2_4

CHAPTER 4

Your First Arduino PLC

In the previous chapters, you learned a lot about the fundamentals of PLCs and their
applications in industrial process automations. Further, you learned about some Arduino-
based industrial PLCs available in the market, which exposed core functionalities of the
Arduino with additional hardware layers.

Grove Base Shield Basics
Grove Base Shield is the same size as an Arduino UNO board and can be used to create
another level of hardware interface with Arduino pins. As you can see in Figure 4-1, there
are only three active components soldered on to the board (two resistors and LEDs) and
all other components are passive. It has the same pinout as the Arduino UNO, which can
be accessed through the on-board wire-wrap headers. Also, these wire-wrap headers can
be used to connect the Grove Base Shield to the Arduino board. Figure 4-1 shows the front
view of the Grove Base Shield V2.

Figure 4-1.  Grove Base Shield v2, front. Image courtesy of Seeed Development Limited

Chapter 4 ■ Your First Arduino PLC

70

On the backside of the shield, you can see that the wire-wrap headers are marked
with a similar Arduino UNO pin layout. Figure 4-2 shows the back view of the Grove
Base Shield V2.

Figure 4-2.  Grove Base Shield v2, back. Image courtesy of Seeed Development Limited

If you are planning to use a Grove Base Shield V2 with Seeeduino V3, solder the
pads P1 and P2 (Figure 4-3).

Chapter 4 ■ Your First Arduino PLC

71

Power Switch
A power switch can be used to select the correct power from the Arduino board. The
selectable voltage levels are 3.3V or 5V. When you are using the Grove Base Shield
with Arduino UNO, the power switch should be in the 5V position. However, some
microcontroller boards, like Seeeduino Arch, operate only at 3.3V. Therefore, select
the power depending on the supply voltage of the microcontroller board you are going
to use (Figure 4-4).

Figure 4-3.  P1 and P2 solder pads. Image courtesy of Seeed Development Limited

Chapter 4 ■ Your First Arduino PLC

72

Figure 4-5.  Power indicator LED. Image courtesy of Seeed Development Limited

Figure 4-4.  Power switch. Image courtesy of Seeed Development Limited

Power Indicator
The green LED that reads PWR indicates the presence of power (Figure 4-5). It can be
either 3.3V or 5V, depending on the supply power of the base microcontroller board.

Chapter 4 ■ Your First Arduino PLC

73

Reset Button
This is a small momentary push button, which is connected parallel to the Arduino reset
button (Figure 4-6). You can reset the Arduino by pressing any reset button. Later in this
chapter, we provide instructions for adding your own reset button to a Grove Base Shield.

Figure 4-6.  Reset button. Image courtesy of Seeed Development Limited

Grove Connectors
The Grove Base Shield has 16 Grove connectors soldered on to the PCB and each
connector has four pins. The Grove connector exposes a standard interface for Grove
devices, such as Grove Button, Grove LED, Grove Speaker, Grove Temperature Sensor,
and many more.

All Grove connectors are physically identical (same dimensions with four pins), but
are specialized for different purposes, such as analog, digital, UART, and I2C. Table 4-1
shows the specifications for each Grove connector.

Table 4-1.  Specifications for Grove Ports

Specification Grove Connector(s) Qty

Analog A0,A1,A2,A3 4

Digital D2,D3,D4,D5,D6,D7,D8 7

UART UART 1

I2C I2C 4

Chapter 4 ■ Your First Arduino PLC

74

Digital Ports
A Grove Digital Port consists of four pins —GND, VCC, and two digital pins. Each Grove
digital port is labeled with the pin number of the outer digital pin, which is adjacent to
the plastic wall of the connector. Figure 4-7 represents the Grove digital port number 2,
which is D2.

Figure 4-7.  Grove digital port D2

Table 4-2.  Digital Pin Mapping Between Grove Digital Ports and Arduino Digital Pins

Grove Digital Port Mapped with Arduino Digital Pin

D2 2

D3 3

D4 4

D5 5

D6 6

D7 7

D8 8

Connecting a Grove device to the D2 port would result the same as if it were connected
to the Arduino digital pin 2. Table 4-2 shows you the relationship between the Grove ports
and the Arduino digital pins.

Also, you can connect any digital input or output device to a Grove port by simply
using hookup wires. As an example, you can connect an LED to the Grove port D2 by
using the pins D2 and GND as a simple hack.

Analog Ports
A Grove Analog Port is physically identical to the Grove digital port and consists of
four pins—GND, VCC, and two analog pins. A Grove Analog port is labeled with the pin
number of the outer analog pin, which is adjacent to the plastic wall of the connector.
The analog pin mapping between the Grove Analog ports and the Arduino analog pins is
shown in Table 4-3.

Chapter 4 ■ Your First Arduino PLC

75

UART Port
The UART (Universal Asynchronous Receiver/Transmitter) port consists of four
pins—GND, VCC, DX, and RX. This port can be used with the devices that are capable
of performing serial communications. The DX and TX pins are internally mapped to the
Arduino TX (digital 0) and RX (digital 1), respectively. Grove Serial LCD and Grove UART
WiFi are some of the UART-based devices that can be connected to using the UART port.

I2C Ports
I2C ports allow you to communicate with I2C/TWI devices. There are four I2C ports and
they all share the same pins—GND, VCC, SDA, and SCL. The SDA (data) and SCL (clock)
pins are internally connected to the Arduino SDA (analog A4) and SCL (analog A5)
pins (Figure 4-8). The Grove I2C Touch sensor, I2C LCD, and I2C Motor Driver are some
devices that can be plugged into the Grove I2C ports.

Table 4-3.  Analog Pin Mapping Between Grove Analog Ports and Arduino Analog Pins

Grove Analog Port Mapped with Arduino Analog Pin

A0 0

A1 1

A2 2

A3 3

Figure 4-8.  Arduino UNO SDA and SCL

■■ Note  The I2C protocol is originally invented and introduced by Philips. I2C is a serial
protocol for a two-wire interface to connect low-speed devices. These devices can be
microcontrollers, EEPROMs, analog-to-digital converters, digital-to-analog converters,
and I/O interfaces. However, TWI is used by manufacturers like Atmel to refer to their I2C
interface to avoid trademark conflicts with Philips, since I2C is a registered trademark. Some
manufacturers have implemented proprietary features on top of I2C.

Chapter 4 ■ Your First Arduino PLC

76

Building a Basic Programmable Logic Controller
In this chapter, you learn how to build a basic Arduino-based PLC step-by-step. This
PLC operates on 5V DC power that is supplied by the power supply. The onboard voltage
regulator (Figure 4-9) regulates the supplied voltage between 7-12V DC to 5V DC. The
onboard voltage regulator is rated for a maximum of 1000mA.

Figure 4-9.  Arduino UNO on-board voltage regulator

Therefore, Arduino can power only small loads attached to it, but basically there are
a number of limiting factors.

•	 The absolute maximum power rating for any single IO pin is
40mA.

•	 Total current form of all the IO pins together is 200mA.

•	 The 5V pin can supply current up to 400mA on a USB and 900mA
with an external power supply rated to about 1A.

•	 The 3.3V pin can supply current up to 150mA.

A current limiting resistor would be helpful to limit the amount of current that flows
through the load. A good example is to use a 220 Ohm resistor in series with an LED that
can drive an Arduino IO pin safely.

If you connect a load that can draw high current, the Arduino on-board regulator
will heat up, and when it gets overheated, at some point it will automatically shut down
temporarily.

Chapter 4 ■ Your First Arduino PLC

77

The Requirements and Logic
Assume you need to control a simple process using with a momentary push button
and an actuator. According to the state of the momentary push button, the PLC should
produce a signal on a particular output line to actuate a device (LED).

Generally, the ideal state of a momentary push button is LOW or open circuit. So
this state is suitable for 0V input. When you press the momentary push button, the circuit
becomes closed and it can provide a 5V signal to the input line.

The momentary push button positions related to the LED status are shown in Table 4-4.

Table 4-4.  Momentary Push Button Positions and LED Status

Button Position LED

IDEAL OFF

PRESSED ON

RELEASED OFF

A piece of embedded software (i.e. an Arduino software-based program)
continuously scans the input line and produces either 0V or 5V on the output line
according to the logic provided by the user. The actuator will turn on or off, depending on
the voltage it receives.

Required Hardware
To build this project, you need the following hardware.

•	 Arduino UNO

•	 Grove Base Shield

•	 Grove button

•	 Grove LED

•	 Grove speaker

•	 9V DC power supply

•	 USB type A/B cable

Connecting the Components
The following steps describe how to connect all the hardware components together.

	 1.	 The Grove Base Shield comes with wire-wrap headers that
are soldered to the board, similar to other Arduino shields.
Just connect the Grove Base Shield to the Arduino UNO board
using wire-wrap headers. Make sure to seat it properly on top
of the Arduino board.

Chapter 4 ■ Your First Arduino PLC

78

	 2.	 Slide the power switch VCC to 5V.

	 3.	 Connect the Grove Button to the connector marked with D2
(Grove port number 2) using a Grove cable. The connector D2
internally connects to Arduino digital pin 2.

	 4.	 Connect the Grove LED to the connector marked with D3. The
connector D3 (Grove port number 3) internally connects to
Arduino digital pin 3.

Figure 4-10 shows the completed hardware setup for the PLC.

Figure 4-10.  Hardware setup for the PLC. Image courtesy of Seeed Development Limited

Writing Your First Arduino Sketch for PLCs
Arduino software can be used to write software for PLCs with its core framework without
using a specific PLC-oriented Arduino software library.

Listing 4-1 shows the code for an Arduino sketch that can be used to control the
Grove LED with a Grove button.

Listing 4-1.  PLC with Push Button and LED Example (plc_1.ino)

int GROVE_BUTTON = 2; //Grove Button connected to D2
int GROVE_LED = 3; //Grove LED connected to D3

void setup(){
pinMode(GROVE_BUTTON, INPUT); //set button as an INPUT device
pinMode(GROVE_LED, OUTPUT); //set LED as an OUTPUT device
}

Chapter 4 ■ Your First Arduino PLC

79

void loop(){
int buttonState = digitalRead(GROVE_BUTTON); //read the status of the button
if(buttonState == 1) //if button is pressed
digitalWrite(GROVE_LED,1); //turn on the LED
else
digitalWrite(GROVE_LED,0); //if button is released
}

Uploading Your Arduino Sketch
Now you're ready to upload your first PLC sketch to the Arduino board. Before that,
connect your hardware setup with the computer using a USB type A/B cable. Use the
following steps to upload the Arduino sketch:

	 1.	 Select the board type as Arduino/Genuino.

	 2.	 Select the correct COM port.

	 3.	 Click the Verify button to compile the sketch.

	 4.	 Click the Upload button to upload the sketch to the Arduino board.

Testing Your Sketch
Before testing anything, it’s a best practice to supply power from an external power source
because it can provide more current (amperes) than the USB port.

Table 4-5 shows some test cases that can be used to test your PLC.

Table 4-5.  Test Cases

Grove Button Grove LED

IDEAL OFF

PRESSED ON

RELEASED OFF

The Grove Button is equivalent to a momentary switch or a push button, which only
remain in their ON state as long as they’re being pressed. Note that the ideal state of the
Grove button is OFF.

You can use the following steps to test your first Arduino-based PLC hardware setup
with the embedded software.

	 1.	 In the ideal state of the Grove button, the Grove LED should be OFF.

	 2.	 Press the Grove button and hold.

	 3.	 Release the Grove button to see whether the Grove LED gets
turned off.

Chapter 4 ■ Your First Arduino PLC

80

Troubleshooting
A best practice is to remove any power sources attached to the Arduino before starting to
troubleshoot. Here are some troubleshooting tips that you can use to troubleshoot your
hardware setup.

	 1.	 Check the connections between the Arduino and the Grove
Shield. Is the Grove Shield properly seated on the Arduino?
Try to find any misaligned or bent wire-wrap headers.

	 2.	 Check the connections between the Grove connectors. Are
they properly connected?

	 3.	 Verify the Grove port numbers mentioned in the Arduino
sketch. Correct them according to the physical connections.

	 4.	 Check the VCC power switch. Slide it to the 5V position.

Working with Audio
Let's add another output device that is a small speaker to the PLC. It can work in parallel
to the LED output. A speaker is suitable for hearing an output, or it could be used in
parallel to any output.

Connecting the Components
Connect a Grove speaker to the connector marked D4 (Grove port number 4) using a
Grove cable. The connector D4 internally connects to Arduino digital pin 4 (Figure 4-11).

Figure 4-11.  Grove speaker connected to a Grove port D4. Image courtesy of Seeed
Development Limited

Chapter 4 ■ Your First Arduino PLC

81

Now you can modify the first Arduino sketch listed in Listing 4-1 to interface with the
new output device, which is the Grove speaker. The speaker should produce a short BEEP
for a limited time when you press the push button.

The additional statements you need for this sketch are listed in bold in Listing 4-2.

Listing 4-2.  PLC with Push Button, LED, and Speaker Example (plc_2.ino)

int GROVE_BUTTON = 2; //Grove Button is connected to D2
int GROVE_LED = 3; // Grove LED is connected to D3
int GROVE_SPEAKER = 4; // Grove Speaker is connected to D4

void setup(){
pinMode(GROVE_BUTTON, INPUT); //set button as an INPUT device
pinMode(GROVE_LED, OUTPUT); //set LED as an OUTPUT device
pinMode(GROVE_SPEAKER, OUTPUT); //set Speaker as an OUTPUT device

}

void beep(){
digitalWrite(GROVE_SPEAKER,1);
delay(10);
digitalWrite(GROVE_SPEAKER,0);
}

void loop(){
int buttonState = digitalRead(GROVE_BUTTON); //read the status of the button
if(buttonState == 1){ //if button is pressed
digitalWrite(GROVE_LED,1); //turn on the LED
beep(); //make audible tone, a beep
}
else{
digitalWrite(GROVE_LED,0); //if button is released
}
}

Upload the new sketch to the Arduino board to overwrite the previous sketch. Make
sure to select the correct board type and COM port before uploading. Once it’s uploaded
to the Arduino, connect it to an external power supply and start testing.

Testing Audio
Press the momentary push button and hold. You will hear a short BEEP from the speaker
and the LED will light up until you release the button. The on-board potentiometer can be
used to adjust the loudness of the speaker.

You can improve this sketch by alternating the sound produced by the Arduino
using the library. Visit https://code.google.com/archive/p/rogue-code/wikis/
ToneLibraryDocumentation.wiki to get more information about the Arduino tone library
and to download the latest version.

https://code.google.com/archive/p/rogue-code/wikis/ToneLibraryDocumentation.wiki
https://code.google.com/archive/p/rogue-code/wikis/ToneLibraryDocumentation.wiki

Chapter 4 ■ Your First Arduino PLC

82

Adding a Reset Button
Adding a medium-sized external RESET button to your PLC will help you quickly and
easily restart any automated process (Figure 4-12). If you are planning to implement this
PLC with an enclosure, an external reset button can be used to access the reset function.

To add an extra reset button in parallel with the on-board reset button, you need the
following hardware components.

•	 Momentary push button (https://www.adafruit.com/
products/1477)

•	 Two wires (red and black)

Connecting the Components
Follow these instructions to add the button to the Grove Base Shield:

	 1.	 Solder two wires to the reset button, as marked in Figure 4-12.

Figure 4-12.  Soldering the two wires for the reset button. Image courtesy of Adafruit
Industries

https://www.adafruit.com/products/1477
https://www.adafruit.com/products/1477

Chapter 4 ■ Your First Arduino PLC

83

	 2.	 Then connect the red wire to the Arduino RESET pin.

	 3.	 Finally, connect the black wire to the Arduino GND pin.

Testing the Reset Button
Power up your Arduino PLC with an external power source, then press and release the
newly connected reset button. The orange color LED connected to pin 13 should flash on
and off. This will indicate that the reset button is working correctly.

Summary
In this chapter, you learned and grasped some hands-on experience in basic Arduino-
based PLC by working with digital inputs and outputs. In the next chapter, you will learn
how to build a simple PLC with ArduiBox and work with analog inputs.

85© Pradeeka Seneviratne 2017
P. Seneviratne, Building Arduino PLCs, DOI 10.1007/978-1-4842-2632-2_5

CHAPTER 5

Building with an ArduiBox

In the previous chapter, you learned about how to build a basic Arduino-based PLC with
the help of a Grove Base Shield. If you are planning to install your Arduino-based PLCs
in an industrial environment, you should protect them from physical damages that can
frequently occur in industrial environments. Also, the connections of the PLC should be
easily accessible to quickly connect industrial peripherals, and to connect to external
power supplies with high amperage.

ArduiBox
The ArduiBox provides an industrial grade set of accessories and components to build
a PLC that can be used in industrial environments. The software can be written with
Arduino software or any PLC libraries that support Arduino software. Here is a list of the
parts you get with the ArduiBox package.

•	 Milled cab rail enclosure

•	 Transparent top shell

•	 Prototyping plate (main board)

•	 4x 2-pin terminal blocks

•	 2x 3-pin terminal blocks

•	 Sockets for the Arduino UNO, 101 and zero (male headers)

•	 Sockets for an optional shield (female headers)

•	 2x self-tapping screws

•	 Reset button (optional)

•	 Components for power supply and voltage regulator (optional)

•	 3x DIN rail mounting clips

Figure 5-1 shows the accessories and components you get to construct the
ArduiBox, Basic Version. A DIN rail is not included with the ArduiBox package, so you
should purchase one with mounting accessories. They are available at hardware stores or
you can purchase one online.

Chapter 5 ■ Building with an ArduiBox

86

The ArduiBox, Standard Version does include components (Figure 5-2) for building
the on-board power supply and voltage regulator circuit.

Figure 5-1.  Accessories/components of the ArduiBox. Image courtesy of Hartmut Wendt
(www.hwhardsoft.de)

http://www.hwhardsoft.de/#_blank

Chapter 5 ■ Building with an ArduiBox

87

Now let’s begin to construct an ArduiBox-based PLC step-by-step.

Figure 5-2.  Components for the power supply and voltage regulator. Image courtesy of
Hartmut Wendt (www.hwhardsoft.de)

http://www.hwhardsoft.de/#_blank

Chapter 5 ■ Building with an ArduiBox

88

Soldering the Terminal Blocks
The prototyping plate (main board) is an unassembled PCB that can be used as a
baseboard to construct the ArduiBox and provides mounting capabilities for other
accessories as well. The prototyping plate is identical on the basic and standard versions
of the ArduiBox.

The terminal blocks can be soldered to the prototyping plate and you can connect any
external peripherals to the Arduino UNO through the terminal blocks. You can internally
connect these terminal blocks to the Arduino pins to make them digital, analog, UART,
or I2C ports. You’ll learn how to connect Arduino pins with terminal blocks in the section
entitled, “Mapping Arduino Pins to the Terminal Blocks,” later in this chapter.

You need two 3-pin terminal blocks and four 2 pin terminal blocks (Figure 5-3) to
build the external interface for connecting user-provided sensors and actuators.

Figure 5-4 shows two soldering areas for terminal blocks. Each row requires one
3-pin terminal block and two 2-pin terminal blocks. The mounting area for each
terminal block is marked with a rectangle on the PCB. Now insert the terminal blocks into
the PCB and solder them using a soldering iron. Make sure to place the wire face to the
outside and solder them without creating any cold soldering joints.

Figure 5-3.  3-pin and 2-pin terminal blocks. Image courtesy of Hartmut Wendt
(www.hwhardsoft.de)

http://www.hwhardsoft.de/#_blank

Chapter 5 ■ Building with an ArduiBox

89

Figure 5-5 shows the main board with the terminal blocks soldered.

Figure 5-4.  Soldering areas for the terminal blocks

Chapter 5 ■ Building with an ArduiBox

90

Soldering the Male Headers
To complete this task, you need four male headers (Figure 5-6) with a different number
of pins.

Figure 5-5.  Terminal blocks soldered to the main board. Image courtesy of Hartmut Wendt
(www.hwhardsoft.de)

Figure 5-6.  Male headers with 6, 8, and 10 pins

http://www.hwhardsoft.de/#_blank

Chapter 5 ■ Building with an ArduiBox

91

Here is a list of male headers with a different number of pins required to build the
Arduino UNO mounting area.

•	 1 x 6-pole male header

•	 2 x 8-pole male headers

•	 1 x 10-pole male header

Now solder the male headers to the main board, as shown in Figure 5-7.

These male headers can be used to mount the Arduino UNO board on the ArduiBox
main board. Carefully mount the Arduino UNO board onto the ArduiBox main board and
make sure the Arduino is properly seated on the male headers (Figure 5-8).

Figure 5-7.  Soldering the male headers. Image courtesy of Hartmut Wendt
(www.hwhardsoft.de)

http://www.hwhardsoft.de/#_blank

Chapter 5 ■ Building with an ArduiBox

92

Soldering the Female Headers
If you are planning to use a shield with the Arduino UNO board, you should solder the
female headers to the shield mounting area of the ArduiBox main board. A shield can
be used with Arduino to extend some functionalities, such as enabling Ethernet, driving
relays, and many more.

ArduiBox comes with the following headers with a different number of pins.

•	 1 x 6-pole female header

•	 2 x 8-pole female headers

•	 1 x 10-pole female header

Figure 5-8.  Arduino UNO mounted on the ArduiBox main board. Image courtesy of
Hartmut Wendt (www.hwhardsoft.de)

http://www.hwhardsoft.de/#_blank

Chapter 5 ■ Building with an ArduiBox

93

Solder them to the main board marked with the shield mounting area K1, K2, K3,
and K4 (Figure 5-9).

•	 K1: 8-pole female headers

•	 K2: 10-pole female header

•	 K3: 8-pole female headers

•	 K4: 6-pole female headers

After soldering the female headers, the main board should be similar to the image
shown in Figure 5-10.

Figure 5-9.  Solder pads for Arduino shield mounting (shield mounting area)

Chapter 5 ■ Building with an ArduiBox

94

Now plug the Grove Base Shield (or any Arduino UNO compatible shield, such as
Tinkerkit Shield, Ethernet shield, or Relay shield per your requirements) into the ArduiBox
main board using the soldered female headers.

Soldering the Reset Button
It is difficult to access the Arduino UNO reset button, because it is mounted upside down
on the ArduiBox main board. As a solution, the ArduiBox main board provides a location
to assemble an extra reset button, which is easy to access through the enclosure. Now
solder the provided momentary push button to S1, as shown in Figure 5-11.

Figure 5-10.  Female headers soldered to the main board. Image courtesy of Hartmut
Wendt (www.hwhardsoft.de)

http://www.hwhardsoft.de/#_blank

Chapter 5 ■ Building with an ArduiBox

95

Now place and solder the diode IN5819, as shown in Figure 5-12.

Figure 5-11.  A reset button assembled to the main board. Image courtesy of Hartmut
Wendt (www.hwhardsoft.de)

Figure 5-12.  IN5819 diode soldered to the main board. Image courtesy of Hartmut Wendt
(www.hwhardsoft.de)

http://www.hwhardsoft.de/#_blank
http://www.hwhardsoft.de/#_blank

Chapter 5 ■ Building with an ArduiBox

96

Mapping Arduino Pins to the Terminal Blocks
To connect any input or output device to the terminal blocks, first you should internally
make connections between the Arduino pins and the terminal blocks. Generally, input
and output devices have two or more wires that need to be interfaced with Arduino.

Let’s see how you can configure the terminals to connect a temperature sensor
(analog input) and a fan (digital output).

The temperature sensor has three wires—Power, Ground, and DATA. Also, the
fan has two wires—Power and Ground. Temperature sensors are typically connected to
an Arduino analog input. Fans can be connected to a digital output. The fan should be
turned on if the temperature is equal to or greater than 50 Celsius. Therefore, the Arduino
has two output states for the fan, 0V or 5V.

As you can see in Figure 5-13, there are eight solder pads placed next to each row
of the terminal blocks. Every terminal is internally connected with a soldering pad,
respectively.

Figure 5-13.  PCB track connection between terminal blocks and solder pads

Chapter 5 ■ Building with an ArduiBox

97

Now make few connections between Arduino pins and solder pads using the hook-
up wires, as shown in Figure 5-14 for the suite with our two input and output devices. The
easiest way is to solder two 8-pole female pin headers to each soldering pad row before
connecting them to the hook-up wires. If not, you can solder them permanently to the
solder pads, but the main disadvantage is that you have to de-solder them for use with
different Arduino pins.

The temperature sensor is connected to the Arduino analog pin A0, 5V, and GND.
Also, the fan is connected to the Arduino digital pin 13 and GND.

You’ll need additional circuits to interface the temperature sensor and fan with the
Arduino, depending on their technical characteristics.

Figure 5-14.  Connections for temperature sensor and fan

Chapter 5 ■ Building with an ArduiBox

98

Prototyping Area
The prototyping area of the main board is a very good place to build your own small
circuits. You can use it to permanently solder your own circuits or build prototyping
circuits by sticking a self-adhesive breadbaord (https://www.sparkfun.com/
products/12043) on top of the prototyping area. Here are some technical specifications
for the breadboard.

•	 Dimensions: (L x W x H) 46 x 35 x 9mm

•	 Contacts: 170 contacts in 17 columns and 10 rows

•	 Voltage ratings: <25V AC or < 60V DC circuits only

Building the Circuit
The fan we are going to use with the PLC requires about 180mA of current, but the
Arduino digital pin can provide a maximum of 40mA. A driver circuit can be used to drive
high loads from an Arduino digital pin with an additional power supply.

To build the circuit, you need the following components.

•	 TMP36 temperature sensor

•	 5V DC brushless fan (https://www.jameco.com/z/KDE0503PEB1-
8-SUNON-5-VDC-30mm-Brushless-Tubeaxial-Fan_2208905.html)

•	 TIP120 transistor (for the fan driver circuit)

•	 IN4004 diode

•	 5V power supply of about 200mA or more

Figure 5-15 shows the pin layout of the TMP36 temperature sensor.

Figure 5-15.  TMP36 pin layout

https://www.sparkfun.com/products/12043
https://www.sparkfun.com/products/12043
https://www.jameco.com/z/KDE0503PEB1-8-SUNON-5-VDC-30mm-Brushless-Tubeaxial-Fan_2208905.html
https://www.jameco.com/z/KDE0503PEB1-8-SUNON-5-VDC-30mm-Brushless-Tubeaxial-Fan_2208905.html

Chapter 5 ■ Building with an ArduiBox

99

Figure 5-16 presents the circuit diagram for the TIP120-based fan driver. The
datasheet of TIP120 can be found at https://www.fairchildsemi.com/datasheets/TI/
TIP120.pdf for your reference.

Figure 5-17 shows the pinout of the TIP120 transistor.

5V DC

F
IN4004

TIP 120
1k

GND

Arduino
Digital pin 13

+

(-)

Figure 5-16.  DC motor driver circuit

https://www.fairchildsemi.com/datasheets/TI/TIP120.pdf
https://www.fairchildsemi.com/datasheets/TI/TIP120.pdf

Chapter 5 ■ Building with an ArduiBox

100

Power Supply
There are several ways to supply DC power to the ArduiBox. Let’s look at them one by
one.

USB Power
This is the easiest way to supply power. Remember, USB power is not enough if you are
planning to use external devices that require more power.

Arduino DC Barrel Jack
Supply the power using a 9V-12V DC wall wart by connecting it to the Arduino’s DC
barrel jack.

Using a K9 Terminal
First solder a 2-pin terminal block to a K9 (Figure 5-18). With the K9 terminal block, you
can use a 9-12V DC power supply or a 15-30V DC power supply to make the power. Also
note that there are three jumpers—J1, J2, and J3—placed adjacent to the K9 terminal
block that can be used to make necessary power paths per your requirements.

Figure 5-17.  TIP120 pin layout

Chapter 5 ■ Building with an ArduiBox

101

If you are planning to use a 9-12V DC power supply with your ArduiBox, solder
the jumper J3 to create a bridge. In this case, you do not need to assemble the voltage
regulator circuit on the main board.

However, if you want to use a 15-30V DC power supply, you must first assemble the
voltage regulator circuit on the main board (Figure 5-19). You do not need to solder the
jumpers and can keep them all open, as is.

Figure 5-18.  K9 terminal block and three jumpers—J1, J2, and J3. Images courtesy of
Hartmut Wendt (www.hwhardsoft.de)

http://www.hwhardsoft.de/#_blank

Chapter 5 ■ Building with an ArduiBox

102

Assembling the Enclosure
The ArduiBox enclosure consists of two parts:

•	 Bottom shell

•	 Top shell

You need two self-tapping screws to mount the main board to the bottom shell. Use a
cross-slot (Phillips head) screwdriver to fasten the screws (Figure 5-20).

Figure 5-19.  Voltage regulator assembly. Images courtesy of Hartmut Wendt
(www.hwhardsoft.de)

http://www.hwhardsoft.de/#_blank

Chapter 5 ■ Building with an ArduiBox

103

On the backside of the bottom shell, there are three sockets for DIN rail holders.
Mount them carefully from the inner channel to the outside (Figure 5-21).

Figure 5-21.  DIN rail clips attached to the bottom shell. Image courtesy of Hartmut Wendt
(www.hwhardsoft.de)

Figure 5-20.  Assembling the bottom shell. Image courtesy of Hartmut Wendt
(www.hwhardsoft.de)

http://www.hwhardsoft.de/#_blank
http://www.hwhardsoft.de/#_blank

Chapter 5 ■ Building with an ArduiBox

104

Finally, mount the top shell to complete the enclosure (Figures 5-22 and 5-23).

Figure 5-22.  The completed ArduiBox. Images courtesy of Hartmut Wendt
(www.hwhardsoft.de)

Figure 5-23.  The completed ArduiBox with the top shell assembled. Images courtesy of
Hartmut Wendt (www.hwhardsoft.de)

http://www.hwhardsoft.de/#_blank
http://www.hwhardsoft.de/#_blank

Chapter 5 ■ Building with an ArduiBox

105

If you are planning to use the Grove Base Shield with an ArduiBox, carefully remove
the top lid of the top shell using a small, flat screwdriver. This way, you can connect Grove
devices to the Grove Base Shield by accessing things through the top shell.

DIN Rails
DIN rails are heavily used in PLC-based process automation systems, such as passive
hardware, and allow you to mount PLCs and other related modules.

DIN rail and DIN rail mounting track are two common terms used in the industry
for this same accessory; they can be used interchangeably. A DIN rail typically consists of
the following accessories:

•	 Mounting track

•	 Mounting bracket plate

•	 End plate

•	 Spacers

•	 Hold down clip

Securely connect the ArduiBox to the DIN rail using DIN rail holders.

Connecting the Temperature Sensor and Fan
Now it’s time to connect the temperature sensor and fan to your newly built ArduiBox
PLC. Refer to Figure 5-14 before connecting them.

	 1.	 Connect the TMP36 temperature sensor to the terminal
blocks marked with the text Temperature Sensor.

•	 Connect pin 1 (+Vs) of the temperature sensor to the
ArduiBox terminal marked with +.

•	 Connect pin 2 (Vout) of the temperature sensor to the
ArduiBox terminal marked with D.

•	 Connect pin 3 (GND) of the temperature sensor to the
ArduiBox terminal marked with -.

	 2.	 Connect the TIP120 fan driver to the terminal blocks marked
with the text Fan.

•	 Connect the positive lead (+) of the fan driver to the ArduiBox
terminal marked with +.

•	 Connect the negative lead (+) of the fan driver to the
ArduiBox terminal marked with -/GND.

	 3.	 Connect a separate 5V-regulated power supply to the fan
driver between 5V DC and GND.

Chapter 5 ■ Building with an ArduiBox

106

	 4.	 Connect the ArduiBox to the computer’s USB port using a USB
type A/B cable.

	 5.	 Now verify and upload the Arduino sketch shown in Listing 5-1
to the Arduino board (now the ArduiBox). Select the correct
board type and COM port as usual before uploading.

Listing 5-1.  Temperature Reading Example (Temperature.ino)

int TEMPERATURE_SENSOR = A0;
int FAN = 13;

void setup()
{
 pinMode(TEMPERATURE_SENSOR, INPUT);
 pinMode(FAN, OUTPUT);
}

void loop()
{
 int reading = analogRead(TEMPERATURE_SENSOR);

 float temperature = ((reading * 5.0) - 0.5) * 100 ;

 if (temperature >= 50)
 digitalWrite(FAN,HIGH);
 else
 digitalWrite(FAN,LOW);

 delay(1000);
}

	 6.	 Finally, remove the USB cable from the ArduiBox. Power it
using an external power supply, as discussed in the section
entitled “Power Supply”.

Chapter 5 ■ Building with an ArduiBox

107

Testing Your ArduiBox
You can use the following two test cases to test the Arduino sketch-defined temperature
threshold level with the TMP36 temperature sensor.

Test Case 1
Apply heat to the TMP36 temperature sensor using a hair dryer or similar equipment.
Depending on the threshold temperature level of 50 Celsius or greater than 50 Celsius, the
Arduino digital pin 13 outputs a HIGH signal to the fan driver and the fan should turn on.

Test Case 2
Now apply cold to the TMP36 using ice cubes. When the temperature becomes less than
50 Celsius, the Arduino digital pin 13 outputs a LOW signal and the fan should turn off.

Summary
In this chapter, you learned how to build a PLC by using Arduino UNO, Arduino shields,
and an ArduiBox, which can be used in an industrial environment. In the next chapter,
you will learn how to build and write PLC-style applications with ladder logic diagrams
and plcLib—an Arduino software library.

109© Pradeeka Seneviratne 2017
P. Seneviratne, Building Arduino PLCs, DOI 10.1007/978-1-4842-2632-2_6

CHAPTER 6

Writing PLC-Style
Applications with plcLib

In the previous chapters, you built simple software applications for PLCs using Arduino
software and its built-in libraries. When you're using Arduino built-in libraries to write
applications for PLCs, you may encounter the following difficulties and disadvantages.

•	 A large amount of code is needed to perform a function

•	 Sketches become too complex with nested logic

•	 Debugging and fixing code is difficult

plcLib simplifies these difficulties by providing easy-to-use functions that can be
used to write programs for PLC with a minimum amount of code.

Introduction to the plcLib Library
plcLib is an Arduino software library that can be used to write control-oriented PLC
software applications for Arduino boards. The library provides a host of functions to write
applications for control devices in industrial environments.

Installing plcLib on Arduino
The following steps explain how to download and install the plcLib library on your
Arduino IDE.

	 1.	 Download the latest plcLib library from http://www.
electronics-micros.com/resources/arduino/plclib/
plcLib.zip. By default, a file named plcLib.zip will appear
in your computer's downloads folder. Check your computer's
download settings before downloading any software from web.

http://www.electronics-micros.com/resources/arduino/plclib/plcLib.zip
http://www.electronics-micros.com/resources/arduino/plclib/plcLib.zip
http://www.electronics-micros.com/resources/arduino/plclib/plcLib.zip

Chapter 6 ■ Writing PLC-Style Applications with plcLib

110

	 2.	 Extract the downloaded ZIP file with your favorite
compression software. (If you have WinRAR installed on your
computer, right-click on the file and select Extract Here from
the context menu. A folder named plcLib will be created in
the same directory.

	 3.	 Copy the plcLib folder to the Arduino libraries folder.

	 4.	 Restart the Arduino IDE and verify that the new library is
installed on Arduino successfully. You can do this by choosing
File ➤ Examples. Check whether you can see the menu item
plcLib.

The Default Hardware Configuration
The plcLib library provides software-defined inputs and outputs. At a minimum, there
are four inputs and four outputs for Arduino UNO. If you're using an Arduino MEGA, you
might have more I/O pins to work with plcLib.

Table 6-1 shows the mapping relationship between software-defined inputs and the
Arduino UNO analog pins.

Table 6-1.  plcLib Input Mapping with Arduino

plcLib Input Arduino UNO Input Pin

X0 A0

X1 A1

X2 A2

X3 A3

Table 6-2.  plcLib Output Mapping with Arduino

plcLib Output Arduino UNO Output Pin

Y0 3

Y1 5

Y2 6

Y3 9

The software-defined outputs are also mapped with Arduino digital pins, as shown
in Table 6-2.

Chapter 6 ■ Writing PLC-Style Applications with plcLib

111

Ladder Logic
Ladder Logic is the primary programming language of PLCs. It can be used to document
the circuit logic and flow with a set of symbols, so anyone can easily understand.

Before PLCs were introduced, relay logic control systems were popular and used
relay Ladder Logic diagrams to present and document the systems. Now PLC Ladder
Logic is easier than relay logic and can be drawn with fewer symbols. It’s easy to read and
understand.

A simple switch circuit can be converted to a PLC Ladder Logic diagram through a
series of evaluations. First, the simple switch circuit is converted to a relay circuit, then it’s
converted to the relay Ladder Logic circuit, and finally to a PLC Ladder Logic.

Basic Ladder Logic Symbols
The symbols shown in Figure 6-1 can be used to draw a basic PLC Ladder Logic diagram
to represent the inputs and outputs of a system.

Contact (Normally Open)

Contact Inverted (Normally Closed)

Output

Output Inverted

Figure 6-1.  Basic Ladder Logic symbols

Implementing Simple PLC-Style Applications
You can build PLC-style applications step-by-step by implementing switch circuits, relay
circuits, relay Ladder Logic diagrams, and PLC Ladder Logic diagrams. Finally, the PLC
Ladder Logic diagram can be transformed into an Arduino sketch by using plcLib library
functions and other core Arduino functions. In this chapter, you learn about some basic
and simple implementations. However, you can implement more complex applications
with PLC Ladder Logic diagrams and the plcLib Arduino library.

Chapter 6 ■ Writing PLC-Style Applications with plcLib

112

Single Bit Input
Let's start with a simple switch circuit. The switch labeled S1 is controlling a lamp LS1, as
shown in Figure 6-2.

S1
SSV

LS1

Figure 6-2.  Switch circuit

Table 6-3.  Truth Table

S1 LS1

Off off

On On

Vss
S1

RY1 RY2

LS1

Vss Vss

Figure 6-3.  Equivalent relay circuit

The switch circuit action is described as, “The lamp LS1 is on when switch S1 is on
(closed)”. All possible combinations of the switch S1 and the lamp LS1 action are shown
as a truth table in Table 6-3.

To implement this function using relays (Figure 6-3), the switch S1 is not connected
to the lamp directly, but is connected to a relay coil labeled RY1 that is normally open.
The RY1 relay coil is used to control the relay coil RY2, whose contacts control the lamp.
As you can see, the inputs and outputs are controlled by independent relay coils; in this
case they are all normally open contacts.

Chapter 6 ■ Writing PLC-Style Applications with plcLib

113

The truth table can be rewritten with the actions of the two relay coils, as shown in
Table 6-4.

Table 6-4.  Truth Table

S1 RY1 RY2 LS1

Off Off Off Off

On On On On

The relay circuit can be converted further to a Relay Ladder Logic diagram, as shown
in Figure 6-4.

S1

RY1

RY1

RY2

RY2

LS1

Figure 6-4.  Relay Ladder logic diagram

The relay Ladder Logic diagram can be further converted to PLC Ladder Logic, as
shown in Figure 6-5.

Chapter 6 ■ Writing PLC-Style Applications with plcLib

114

A Ladder Logic diagram represents two vertical power rails (positive and negative)
at each side, with horizontal circuit branches connected between the rails called rungs.
A complex Ladder Logic diagram can have a series of circuit branches (rungs), which
represents a separate circuit.

Further, the PLC Ladder Logic diagram can be transformed into an Arduino sketch
using the plcLib library, as shown in Listing 6-1. This sample Arduino sketch can be
opened with Arduino IDE by choose File ➤ Examples ➤ plcLib ➤ InputOutput ➤
BareMinimum from the menu bar.

Listing 6-1.  Button Test with plcLib Example (BareMinimum.ino)

#include <plcLib.h>

void setup()
{
setupPLC(); // Setup inputs and outputs
}

void loop()
{
in(X0); // Read Input 0 (Read Switch S1)
out(Y0); // Send to Output 0 (Send to Lamp LS1)
}

Let's take a look at some important functions used in this sketch.
The #include <plcLib.h> imports the plcLib library and allows you to use its

functions.
The setupPLC() function can be used to configure the PLC with the default input

and output pin configuration for an Arduino UNO and Arduino MEGA.
The in() function reads the state of input X0 and the out() function sends output to Y0.
You can easily test this Arduino sketch with a Grove Base Shield. You'll need the

following things to set up the hardware.

•	 Arduino UNO

•	 Grove Base Shield

S1 LS1

Figure 6-5.  PLC Ladder Logic

Chapter 6 ■ Writing PLC-Style Applications with plcLib

115

•	 Grove Button

•	 Grove LED

Use the following steps to connect them, and then upload, execute, and test the code.

	 1.	 Connect the Grove Base Shield to the Arduino UNO.

	 2.	 Connect the Grove button to the Grove port A0.

	 3.	 Connect the Grove LED to the Grove port D3.

	 4.	 Now connect the Arduino UNO to the computer using a
USB type A/B cable and upload the Arduino sketch onto the
Arduino board.

	 5.	 After completing the upload, test the PLC by pressing and
releasing the push button switch. Here are the test cases.

•	 Button pressed ➤ LED on

•	 Button released ➤ LED off

The plcLib-based code is very clear and easily maintainable. It’s simpler than the
equivalent code written with built-in Arduino functions, as shown in Listing 6-2.

Listing 6-2.  Button Test Without plcLib Example (ButtonTestWOplcLib.ino)

const int buttonPin = A0; // the number of the push button pin
const int ledPin = 3; // the number of the LED pin

// variables will change:
int buttonState = 0; // variable for reading the push button status

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the push button pin as an input:
 pinMode(buttonPin, INPUT);
}

void loop() {
 // read the state of the push button value:
 buttonState = digitalRead(buttonPin);

 // check if the push button is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 } else {

Chapter 6 ■ Writing PLC-Style Applications with plcLib

116

 // turn LED off:
 digitalWrite(ledPin, LOW);
 }
}

In next section, you learn how to deal with inverted inputs and how to use them with
PLC applications.

Inverted Single Bit Input
The same switch circuit we used in the section entitled “Single Bit Input” can be used
to perform a different action, but the switch used with this circuit must have normally-
closed contacts.

The switch labeled S1 is controlling a lamp LS1, as shown in Figure 6-6.

S1
SSV

LS1

Figure 6-6.  Switch circuit

Table 6-5.  Truth Table

S1 LS1

Off On

On Off

The switch circuit action is described as, “The lamp LS1 is on when switch S1 is off
(open)”. All possible combinations of the switch S1 and the subsequent lamp LS1 action
are shown as a truth table in Table 6-5.

Just as in the previous example, “Single Bit Input,” this function can also be
implemented using relays (Figure 6-7).

Chapter 6 ■ Writing PLC-Style Applications with plcLib

117

The switch S1 is not connected to the lamp directly, but is connected to a relay coil
labeled RY1 that is normally closed. The RY1 relay coil is used to control the relay coil RY2
that is normally open, whose contacts control the lamp. As you can see, every input and
output is controlled by a relay coil; in this case, they are all normally open contacts.

The truth table can be rewritten with the two relay coils, as shown in Table 6-6.

Vss
S1

RY1 RY2

LS1

Vss Vss

Figure 6-7.  Equivalent relay circuit

The relay circuit further can be converted to a relay Ladder Logic diagram, as shown
in Figure 6-8.

Table 6-6.  Truth Table

S1 RY1 RY2 LS1

Off On On On

On Off Off Off

Chapter 6 ■ Writing PLC-Style Applications with plcLib

118

The relay Ladder Logic diagram can be further converted to PLC Ladder Logic, as
shown in Figure 6-9.

S1

RY1

RY1

RY2

RY2

LS1

Figure 6-8.  Relay Ladder Logic diagram

S1 LS1

Figure 6-9.  PLC Ladder Logic

The equivalent Arduino sketch for the Ladder Logic diagram is shown in Listing 6-3.
Note that the inNot() function can be used to invert the user input every time.

Chapter 6 ■ Writing PLC-Style Applications with plcLib

119

Listing 6-3.  Inverted Single Bit Input Example (InvertedSingleBitInput.ino)

#include <plcLib.h>

void setup()
{
setupPLC(); // Setup inputs and outputs
}

void loop()
{
inNot(X0); // Read Input 0 (inverted) - read input Switch S1 (inverted)
out(Y0); // Send to Output 0 (Send to Lamp LS1)
}

Inverted Single Bit Output
Similarly, you can make inverted output with plcLib using the outNot() function.

The truth table for the switch, two relay coils, and the lamp is shown in Table 6-7.

The Arduino sketch shown in Listing 6-4 makes inverted outputs for every input it
receives.

Listing 6-4.  Inverted Single Bit Output Example (InvertedSingleBitOutput.ino)

#include <plcLib.h>

void setup()
{
setupPLC(); // Setup inputs and outputs
}

void loop()
{
in(X0); //read input Switch S1
outNot(Y0); // send to Lamp LS1 (inverted)
}

Table 6-7.  Truth Table

S1 RY1 RY2 LS1

On On Off Off

Off Off On On

Chapter 6 ■ Writing PLC-Style Applications with plcLib

120

Time Delays
The plcLib library provides useful ways to implement time delays with industrial device
control. The functions are as follows:

•	 timerOn()

•	 timerOff()

•	 timerPulse()

Turn On Delay
The timerOn() function delays activating an output until the input has been continuously
active for the specified period of time in milliseconds.

The function accepts two parameters:

•	 Timer—Holds elapsed time

•	 Delay—Delay in milliseconds

The Arduino sketch (Listing 6-5) for this solution can be found at File ➤ Examples ➤
plcLib ➤ TimeDelays ➤ SwitchDebounce in your Arduino IDE.

Listing 6-5.  Switch Debounce Example (SwitchDebounce.ino)

#include <plcLib.h>

unsigned long TIMER0 = 0; // Define variable used to hold timer 0 elapsed time

void setup() {
 setupPLC(); // Setup inputs and outputs
}

void loop() {
 in(X0); // Read Input 0
 timerOn(TIMER0, 10); // 10 ms delay
 out(Y0); // Output to Output 0
}

According to the sketch, the X0 reads the input and provides output to Y0 after 10ms.
When you press the push button, the LED will turn on after a 10ms delay. You can

experiment with this again by increasing the delay.

timerOn(TIMER0, 3000); // 3s delay

Turn Off Delay
Similar to the turn on delay, the timerOff() function delays the turning off of the output,
when you turn off the input.

Chapter 6 ■ Writing PLC-Style Applications with plcLib

121

timerOff(timer, delay)

•	 Timer—Holds the request the elapsed time

•	 Delay—Delay in milliseconds (ms)

The plcLib library provides sample sketches to test the timerOff() function. Open
the Arduino sketch (Listing 6-6) by choosing File ➤ Examples ➤ plcLib ➤ TimeDelays ➤
DelayOff.

Listing 6-6.  Time Delay Example (DelayOff.ino)

#include <plcLib.h>

unsigned long TIMER0 = 0; // Variable to hold elapsed time for Timer 0

void setup() {
 setupPLC(); // Setup inputs and outputs
}

void loop() {
 in(X0); // Read Input 0
 timerOff(TIMER0, 2000); // 2 second turn-off delay
 out(Y0); // Output to Output 0
}

According to the sketch, the X0 reads the input and provides output to Y0. From the
circuit’s point of view, when you press the push button, the LED will turn on after a 10ms
delay. You can experiment with this again by increasing the delay.

timerOn(TIMER0, 3000); // 3s delay

Fixed Duration Pulse Output
The timerPulse() function can be used to create a fixed-duration pulse output for a
small duration input pulse.

Open the sample sketch (Listing 6-7) by choosing File ➤ Examples ➤ plcLib ➤
TimeDelays ➤ FixedPulse on the menu bar. The sample sketch code looks like Listing 6-7.

Listing 6-7.  Fixed Duration Pulse Output Example (FixedPulse.ino)

#include <plcLib.h>

unsigned long TIMER0 = 0; // Variable to hold elapsed time for Timer 0

void setup() {
 setupPLC(); // Setup inputs and outputs
}

Chapter 6 ■ Writing PLC-Style Applications with plcLib

122

void loop() {
 in(X0); // Read Input 0
 timerPulse(TIMER0, 2000); // 2 second pulse
 out(Y0); // Output to Output 0

}

The X0 reads the input and provides a two-second pulse output to the Y0.
To test, press the Grove button and release it immediately. The LED will remain ON

for 2 seconds and then turn OFF. If you can't do it with a two-second delay, just increase
the delay to about five seconds.

Boolean Operations
PLC Ladder Logic can be used to implement Boolean logic functions such as AND, OR, XOR,
NOT, NAND, NOR, and XNOR.

Among these Boolean logic functions, let's try to implement Boolean OR operation
with PLC Ladder Logic and write a sketch using plcLib.

Implementing Boolean OR
Let's assume we have a circuit that consists of two normally open switches wired in
parallel to control a lamp. The lamp is on when switch S1 is on (closed) or when switch S2
is on (closed). The truth table for this implementation is shown in Table 6-8.

Table 6-8.  Truth Table

S1 S2 LS1

Off Off Off

Off On On

On Off On

On On On

Figure 6-10 shows the equivalent relay diagram.

Vss

Vss
Vss

S1

RY1 RY2 RY3
LS1

S2

Figure 6-10.  Equivalent relay diagram

Chapter 6 ■ Writing PLC-Style Applications with plcLib

123

The switch S1 is connected to the normally open relay RY1, the switch S2 is
connected to the normally open relay RY2, and the lamp LS1 is connected to the
normally open relay RY3. The two relays are wired in a parallel series to the lamp.

The truth table for the switch, two relay coils, and the lamp is shown in Table 6-9.

Table 6-9.  Truth Table

S1 S2 RY1 RY2 LS1

Off Off Off Off Off

Off On Off On On

On Off On Off On

On On On On On

RY1

RY1

S1

S2 RY2

RY2

RY3

RY3 LS1

Figure 6-11.  Equivalent relay Ladder Logic diagram

The equivalent relay Ladder Logic diagram is shown in Figure 6-11.

The diagram in Figure 6-11 can be further converted into the PLC Ladder Logic, as
shown in Figure 6-12.

Chapter 6 ■ Writing PLC-Style Applications with plcLib

124

Here is the Arduino sketch (Listing 6-8) for the Boolean OR logic function. First, you
should add another Grove button to Grove port A1.

Listing 6-8.  Boolean OR Logic Example (BooleanOrLogic.ino)

#include <plcLib.h>

void setup() {
 setupPLC(); // Setup inputs and outputs
}

void loop() {

 in(X0); // Read Input 0 (Grove button on port A0)
 orBit(X1); // OR with Input 1 (Grove button on port A1)
 out(Y0); // Send result to Output 1

}

The function orBit(X1) is used to perform a Boolean OR operation with the input X0
and send the result to the output Y0.

Table 6-10 shows the complete list of plcLib functions that can be used to write
Boolean operations with Arduino software.

S1 LS1

S2

Figure 6-12.  PLC Ladder Logic

Chapter 6 ■ Writing PLC-Style Applications with plcLib

125

You can perform AND, OR, XOR, and NOT Boolean operations using a single function,
but the NAND, NOR, and XNOR Boolean operations require two functions to produce the
correct output.

For an example, the NOR operation can be implemented as shown:

in(X0); // Read Input 0
orBit(X1); // OR with Input 1
outNot(Y1); // Send result to Output 1 (inverted)

Summary
In this chapter, you learned about the Basic Ladder Logic symbols, relay Ladder Logic
diagrams, and PLC Ladder Logic diagrams. You learned how to write Ladder Logic
for simple applications with the plcLib Arduino library. In next chapter, you'll learn
how to use the Modbus serial communication protocol with your PLC applications for
transmitting information over serial lines between electronic devices.

Table 6-10.  plcLib Boolean Functions

Boolean Operation plcLib Function

AND andBit()

OR orBit()

XOR xorBit()

NOT outNot()

NAND First andBit() then outNot()

NOR First orBit(X1) then outNot(Y1)

XNOR First xorBit(X1) then outNot()

127© Pradeeka Seneviratne 2017
P. Seneviratne, Building Arduino PLCs, DOI 10.1007/978-1-4842-2632-2_7

CHAPTER 7

Modbus

Modbus is a communication protocol that can be used to send and receive data via a
serial bus line, like RS232 and RS485 bus lines. In this chapter, you'll learn how to use
Modbus communication protocol via an RS485 bus line to connect industrial devices to
your Arduino-based PLC. Modbus uses a master-slave architecture, where one node is
configured as the master (i.e., Arduino PLC) and other devices are configured as slaves
(temperature sensors, humidity sensors, light sensors, etc.). The advantage of using the
RS485 is that it only uses two shared wires to connect all devices (slaves) to the master node.
It also supports the use of devices in long distance and electrically noisy environments.

To connect your Arduino PLC to Modbus communication protocol enabled devices,
first you should add some hardware modules to the Arduino in order to enable it as a
Modbus master node.

The RS485/Modbus module is an ideal component that can be used to enable
the Modbus communication protocol on your Arduino board. Additionally, you need a
shield to connect and interface it with your Arduino. There are plenty of RS485/Modbus
modules for Arduino available in the market.

To build the Arduino PLC enabled with RS485 and Modbus, you'll need the following
things:

•	 Multiprotocol Radio Shield

•	 RS485/Modbus module

Multiprotocol Radio Shield
The Multiprotocol Radio Shield (Figure 7-1) from Cooking Hacks is an Arduino UNO
compatible shield that’s ideal for building Modbus-enabled PLCs. The shield is designed
to connect to two communication modules at the same time.

Chapter 7 ■ Modbus

128

■■ Note  The multiprotocol shield has two sockets (Figure 7-2) that you can use to
connect any hardware module that’s UART-enabled. The two sockets are named SOCKET0
and SOCKET1. A socket consists of 2mm female pin headers, which makes a total of 20
connections. (UART stands for Universal Asynchronous Receiver Transmitter and it’s one of
the most popular serial protocols around.)

All sockets are SPI (Serial Peripheral Interface) enabled so you can connect RS458,
RS232, and CAN Bus modules to them. For SOCKET0, the SPI uses 3.3V levels and for
SOCKET1, the SPI uses 5V levels.

Figure 7-1.  Multiprotocol Radio Shield from Cooking Hacks. Image courtesy of Libelium
(https://www.cooking-hacks.com)

Figure 7-2.  Top view of a Multiprotocol Radio Shield. Image courtesy of Libelium
(https://www.cooking-hacks.com)

https://www.cooking-hacks.com/
https://www.cooking-hacks.com/

Chapter 7 ■ Modbus

129

There are two wire-wrap headers that are soldered on to the shield, so you can
connect it with any Arduino UNO or compatible board. The shield physically connects to
Arduino as follows.

•	 Header 1: Eight connections for Arduino digital pin, 0 to 7.

•	 Header 2: Six connections for Arduino analog pin, A0 to A5.

The shield also includes a digital switch to enable and disable the two sockets. You
can control them using the software-defined library functions found in Arduino IDE.

RS485/Modbus Module for Arduino and
Raspberry Pi
The RS485/Modbus module for Arduino and Raspberry Pi (Figure 7-3) allows you
to connect more than one industrial devices to Arduino with only two wires. You can
connect up to 32 devices to Arduino using two shared wires by addressing each device
with a unique identifier.

Table 7-1 shows some technical specifications of the RS485/Modbus module for
Arduino and Raspberry Pi, published by Cooking Hacks.

Figure 7-3.  RS485/Modbus module for Arduino and Raspberry Pi. Image courtesy of
Libelium (https://www.cooking-hacks.com)

https://www.cooking-hacks.com/

Chapter 7 ■ Modbus

130

Installing the RS485 Library for Arduino
To work with RS485, first you should install the RS485 library for Arduino. Use the
following steps to install it on an Arduino IDE.

	 1.	 Extract the downloaded zip file, RS485_for_Arduino (see
the “Modbus RS485 Library” section in Chapter 1 for
more information about the downloading link). Use any
compression software. You will get a folder called RS485_for_
Arduino.

	 2.	 The folder structure is very similar to the following hierarchy:

RS485_for_Arduino
 -> RS485
 -> ModBusMaster485
 -> ModbusSlave485
 -> RS485

Copy the ModBusMaster485, ModbusSlave485, and RS485
folders to your Arduino installation's libraries folder.

	 3.	 Finally, restart the Arduino IDE and verify whether you can
see the sample sketches by choosing File ➤ Examples ➤
RS485.

If you can see them, you've successfully installed the RS485 library for Arduino.

Table 7-1.  Technical Specifications of the RS485/ Modbus Module for Arduino and
Raspberry Pi

Standard EIA RS485

Physical Media Twisted pair

Network Topology Point-to-point, multi-dropped, multi-point

Maximum Devices 32 drivers or receivers

Voltage Levels -7V to +12V

Mark(1) Positive voltages (B-A > +200mV)

Space(0) Negative voltages (B-A < -200mV)

Available Signals Tx+/Rx+, Tx-/Rx-(Half Duplex)Tx+,Tx-,Rx+,Rx-(Full Duplex)

http://dx.doi.org/10.1007/978-1-4842-2632-2_1

Chapter 7 ■ Modbus

131

Building a PLC with Modbus
Now you'll learn how to interface a temperature sensor with Arduino to use the Modbus
communication protocol via an RS485 bus line. Then you will learn how to read sensor
values from the temperature sensor and display them on an Arduino serial monitor.

Building the Hardware Setup
To build the hardware setup, you need the following things.

•	 Arduino UNO

•	 Multiprotocol Radio Shield

•	 RS485/Modbus module for Arduino

•	 TQS3-I MODBUS RS485 Interior Thermometer

The following steps go through the building process.

	 1.	 Connect the Multiprotocol Radio Shield to the Arduino UNO
using wire-wrap headers (Figure 7-4).

	 2.	 Connect the RS485/Modbus module for Arduino and
Raspberry Pi to SOCKET 1 (Figure 7-4).

Figure 7-4.  An RS485 and Modbus-enabled Arduino setup. Image courtesy of Libelium
(https://www.cooking-hacks.com)

https://www.cooking-hacks.com/

Chapter 7 ■ Modbus

132

	 3.	 The temperature sensor we are going to use is TQS3-I
Modbus RS485 Interior Thermometer (Figure 7-5) from
PAPOUCH (www.papouch.com). It supports Modbus and
Spinel communication protocols via an RS485 bus line.
You can download the documentation for this product from
http://www.papouch.com/en/shop/product/tqs3-i-rs485-
interior-thermometer/tqs3.pdf/_downloadFile.php.

The Wago terminal blocks reside inside the enclosure and are used to connect the
power supply and the RS485. Figure 7-6 shows the Wago terminal blocks labeled with
power and RS485 connections.

•	 To connect the power supply between 7-20V DC, use the + and -
terminals.

•	 To connect to the RS485 bus line, use the TX+ and TX- terminals.

Figure 7-5.  TQS3-I Modbus RS485 interior thermometer. Image courtesy of Papouch
(http://www.papouch.com)

http://www.papouch.com/
http://www.papouch.com/en/shop/product/tqs3-i-rs485-interior-thermometer/tqs3.pdf/_downloadFile.php
http://www.papouch.com/en/shop/product/tqs3-i-rs485-interior-thermometer/tqs3.pdf/_downloadFile.php
http://www.papouch.com/

Chapter 7 ■ Modbus

133

By default, this temperature sensor is configured to communicate with the Spinel
protocol (http://www.papouch.com/en/website/mainmenu/spinel/). A simple jumper
setup can be used to configure it for the Modbus RTU protocol, as shown in Figure 7-7,
by shorting the setup jumper.

Figure 7-6.  Wago terminal blocks. Image courtesy of Papouch (http://www.papouch.com)

http://www.papouch.com/en/website/mainmenu/spinel/
http://www.papouch.com/

Chapter 7 ■ Modbus

134

Now connect the temperature sensor to the RS485/Modbus module for Arduino
and Raspberry Pi with two wires, as shown in Figure 7-8.

	 1.	 Connect the TX+ terminal of the temperature sensor to the
RS485 module's terminal marked with A (non-inverted
signal).

	 2.	 Connect the TX- terminal of the temperature sensor to the
RS485 module's terminal marked with B (inverted signal).

Figure 7-8.  Terminal for signal wires. Image courtesy of Libelium
(https://www.cooking-hacks.com)

Figure 7-7.  Setup jumper is shorted to enable the Modbus RTU. Image courtesy of Papouch
(http://www.papouch.com)

https://www.cooking-hacks.com/
http://www.papouch.com/

Chapter 7 ■ Modbus

135

	 3.	 Connect a DC power supply between 7-20V to the terminals
marked with + and - using a wall wart power supply.

The Arduino Sketch
A ready-to-use Arduino sketch is available in the RS485 library. Use the following steps to
modify the sketch according to your Modbus device.

	 1.	 Open your Arduino IDE and choose File ➤ Examples ➤ RS485
➤ _RS485_04_modbus_read_input_registers to open the file
named _RS485_04_modbus_read_input_registers.ino, as
shown in Listing 7-1. The file will open in a new window.

Listing 7-1.  Temperature Sensor Reading with Modbus Example (_RS485_04_modbus_
read_input_registers.ino)

#include <RS485.h>
#include <ModbusMaster485.h>
#include <SPI.h>

// Instantiate ModbusMaster object as slave ID 1
ModbusMaster485 node(254);

// Define one address for reading
#define address 101

// Define the number of bytes to read
#define bytesQty 2

void setup()
{

 // Power on the USB for viewing data in the serial monitor
 Serial.begin(115200);
 delay(100);
 // Initialize Modbus communication baud rate
 node.begin(19200);

 // Print hello message
 Serial.println("Modbus communication over RS-485");
 delay(100);
}

void loop()
{
 // This variable will store the result of the communication
 // result = 0 : no errors
 // result = 1 : error occurred

Chapter 7 ■ Modbus

136

 int result = node.readHoldingRegisters(address, bytesQty);

 if (result != 0) {
 // If no response from the slave, print an error message
 Serial.println("Communication error");
 delay(1000);
 }
 else {

 // If all OK
 Serial.print("Read value : ");

 // Print the read data from the slave
 Serial.print(node.getResponseBuffer(0));
 delay(1000);
 }

 Serial.print("\n");
 delay(2000);

 // Clear the response buffer
 node.clearResponseBuffer();

}

	 2.	 Now modify the value of the address variable in the Arduino
sketch according to the address of your temperature sensor's
holding register. See the product’s datasheet to find the
correct address for the holding register, as shown in Table 7-2.

In this example, the temperature value is stored in address 102 and can be read with
the function readHoldingRegisters().

// Define one address for reading
#define address 102

	 3.	 Modify the size of the register in bytes. In this example, the
holding register at address 102 can store up to four bytes of
data.

Table 7-2.  Specifications of the Holding Register

Address Access Function Description

102 Read 0x03 RAW value, which is the
value as it was received
from the sensors

Chapter 7 ■ Modbus

137

// Define the number of bytes to read
#define bytesQty 4

	 4.	 The following statement will store the result that’s return
by the readHoldingRegisters() function. The result of 0
indicates no errors and a result of 1 indicates that an error has
been occurred.

int result = node.readHoldingRegisters(address, bytesQty);

	 5.	 To retrieve data from the response buffer, use following
statement inside the loop() function.

getResponseBuffer(0)

	 6.	 You can print the data that is coming from the temperature
sensor on an Arduino serial monitor using this statement:

Serial.print(node.getResponseBuffer(0));

	 7.	 After reading the data, don't forget to clear the response
buffer. You can use the clearResponseBuffer(); function to
clear the response buffer.

	 8.	 Now verify and upload the Arduino sketch to the Arduino
board. After successfully uploading the sketch, open the
Arduino serial monitor by choose Tools ➤ Serial Monitor.
The serial monitor will print the values stored in the response
buffer, as shown in Figure 7-9.

Figure 7-9.  Arduino serial monitor output (readings of the response buffer)

Chapter 7 ■ Modbus

138

The output values can be further converted to Celsius or Fahrenheit by using the
conversion formulas mentioned in the datasheet of the temperature sensor. But some
Modbus-enabled devices can directly output the required values in Celsius or Fahrenheit,
without any further conversions.

Summary
In this chapter, you learned how to use the Modbus communication protocol via an
RS485 bus line to connect industrial devices to your Arduino-based PLC and write
Arduino sketches based on the RS485 library for Arduino. You also learned how to read
values from devices that are enabled with the Modbus communications protocol. In the
next chapter, you will learn how to map your Arduino-based PLCs into the cloud using a
NearBus Cloud Connector.

https://www.google.lk/search?q=conversion&spell=1&sa=X&ved=0ahUKEwir0e3fl7fQAhUMrY8KHSAJDmMQvwUIGCgA

139© Pradeeka Seneviratne 2017
P. Seneviratne, Building Arduino PLCs, DOI 10.1007/978-1-4842-2632-2_8

CHAPTER 8

Mapping PLCs into the
Cloud Using the NearBus
Cloud Connector

In this chapter, you learn how to control your Arduino-based PLCs through the Internet
by connecting them to a cloud. In simple terms, cloud computing is using a network of
remote servers hosted on the Internet to store, manage, and process data, rather than a
local server or a personal computer. A cloud-connected PLC can be controlled through
the Internet with automated or manual inputs. You can also monitor your PLC through
the Internet, such as the input data and output data, in real time, or you can use external
services to control your PLC.

What Is NearBus?
Do you want to synchronize your Arduino board memory with cloud memory? Then this
is the solution for memory mapping between Arduino and the cloud using the NearBus
(www.nearbus.net) cloud connector. The memory mapping is done by mirroring or
replicating a small part of Arduino's memory into the cloud's memory. So, reading or
writing on the cloud's memory will have the same effect as reading or writing directly
into the Arduino's memory. Also, the NearBus provides a set of web services known as
NearAPI to control your Arduino board.

Building Your Cloud PLC
To build this project, you need the following things:

•	 Arduino UNO

•	 Arduino Ethernet shield

•	 Grove Base Shield

•	 Grove LED

http://www.nearbus.net/

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

140

•	 Ethernet cable

•	 USB type A/B cable

•	 9V wall wart power supply

•	 Router with an Internet connection

•	 ArduiBox (optional; you can build this on ArduiBox)

Use the following steps to build the hardware setup:

	 1.	 Connect the Arduino Ethernet shield to the Arduino UNO
board using the Ethernet shield's wire-wrap headers.

	 2.	 Connect the Grove Base Shield to the Arduino Ethernet
Shield using the Grove Base Shield's wire-wrap headers.

	 3.	 Connect the Grove LED to Grove port D3.

	 4.	 Connect an Ethernet cable between the Ethernet shield and
the router.

	 5.	 Connect an Arduino UNO board to the computer using the
USB type A/B cable.

Mapping a PLC Into the Cloud Using NearBus
Cloud Connector
Before connecting your PLC to the NearBus cloud, you should sign up with NearBus
(http://nearbus.net/) and create a new account.

Signing Up with NearBus
Sign up is easy with NearBus; you simply provide a few basic details.

	 1.	 Click Sign Up on the NearBus menu bar.

	 2.	 Enter a valid email address, username, and password.

	 3.	 Click the Sign Up button.

A new user account will be created if you have provided valid information; otherwise
correct the information and start from the beginning. After successfully creating a user
account, NearBus will prompt you to log in with your credentials.

Defining a New Device in NearBus
After successfully logging into your NearBus account, you can define a new device on the
cloud to map with your PLC.

http://nearbus.net/

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

141

	 1.	 Click New Device on the NearBus menu bar. The browser will
load the New Device Setup page, as shown in Figure 8-1.

	 2.	 On the New Device Setup page, provide suitable values to
these parameters.

•	 Device Name: MY CLOUD PLC

•	 Location: (blank)

•	 Function: (blank)

•	 Shared Secret: 12345678

•	 PIN: (blank)

•	 Callback Service: (blank)

•	 Default Refresh Rate: Just keep the default rate of 2000 (1000
should work)

■■ Note T he shared secret is a mandatory field and the length of the field is eight
characters. You can use any alphanumeric characters to build the shared secret string.

	 3.	 Check the CONFIGURED AS VMCU checkbox and click the
Setup button, as shown in Figure 8-2.

Figure 8-1.  The New Device Setup page

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

142

■■ Note T he VMCU mode (Virtual Microcontroller Unit) allows direct control of the basic
MCU (Microcontroller Unit) features, such as GPIO (General Purpose Input Output) and ADC
(Analog to Digital Converter) via a web services API (Application Programming Interface).

	 4.	 Now you can view your device under device list by clicking
Devices List on the menu bar, as shown in Figure 8-3.

Figure 8-2.  The New Device Setup page filled with data

Figure 8-3.  View by device list

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

143

Note that the NearBus assigned a device ID to your new device. Also, it indicates that
the physical device (your Arduino-based PLC) is currently in the DOWN state. This is true
because we still have not configured it and connected it to the Internet.

Downloading the NearBus Library for Arduino
Now we are ready to download and install the NearBus library to your Arduino UNO
board.

	 1.	 Click Downloads on the menu bar. The Downloads page
will appear with various software library options, as shown in
Figure 8-4.

	 2.	 For Arduino Ethernet Shield, you need to choose Arduino
library for Ethernet - Alpha Release.

	 3.	 Click NearBusEther_v16.zip to download the library in
compressed format.

	 4.	 After downloading the file, extract it with your favorite
compression software. You'll get a folder called
NearBusEther_v16. Copy this folder to your Arduino
installation's libraries folder.

	 5.	 Also download the FlexTimer2 library from http://www.
nearbus.net/downloads/FlexiTimer2.zip. Extract it
and copy the extracted folder to the Arduino installation's
libraries folder.

Figure 8-4.  NearBus Downloads page

http://www.nearbus.net/downloads/NearBusEther_v16.zip
http://www.nearbus.net/downloads/NearBusEther_v16.zip
http://www.nearbus.net/downloads/FlexiTimer2.zip
http://www.nearbus.net/downloads/FlexiTimer2.zip

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

144

Uploading the Sketch
	 1.	 Now restart your Arduino IDE and choose File ➤ Examples

➤ NearBusEther_v16 ➤Hello_World_Ether on the menu bar.
The Hello_World_Ether Arduino sketch listed in Listing 8-1
will open in a new window.

Listing 8-1.  LED Controlled with NearBus Cloud Example (Hello_World_Ether.ino)

//
// NEARBUS LIBRARY - www.nearbus.net
// Description: Hello World Example
// Platform: Arduino Ethernet
// Status: Alpha Release
// Author: F. Depalma
// Support: info@nearbus.net
//
// REVISION HISTORY
// v0.20 - 08-02-13 - Initial Release
// v0.21 - 25-04-13 - This release includes support for Arduino Mega 128 and
256 (ADC function) - Contributor: Peter Huff.
// v0.3L - 02-05-13 - This release implements 32bits Registers for TRNSP
mode (Reg_A & Reg_B) and support for Google Connector.
// v0.4L - 10-05-13 - This release includes support to: Ethernet, WiFi and
GPRS Arduino shields.
// v0.5L - 29-06-13 - This release includes support for IP Static Addressing
- Contributor: Craig.
// v0.6 - 02-08-13 - This release implement DNS Address Resolution and
PULSE_OUTPUT NearBIOS function.
// v0.7 - 20-08-13 - This release implements support for user defined
functions (MY_NBIOS_0).
// v0.9 - 17-09-13 - This release implements Enhanced Services (Alpha) -
TriggerInput() - DigitalCounter() - RmsInput() and ResetPort().
// v0.10 - 05-11-13 - This release implements support for Arduino YUN (it
requires IDE 1.5.4) and fixes some minors bugs.
// v0.11 - 12-11-13 - This release fixes a BUG in the MY_NBIOS service.
// v0.12 - 28-11-13 - The RMS_INPUT service is modified to deliver a mV
output value.
// v0.14 - 03-01-14 - This release Include supports for X-CONTROL.
// v0.15 - 11-01-14 - This release Include supports for X-CONTROL V2.
// v0.16 - 16-04-14 - This release fix a register debug bug.
//
//
// AGENT CONFIGURATION PARAMETERS (You only need to define these
parameters)
// IMPORTANT: this agent version is only supported on devices ID from
NB100246 onwards
//

http://www.nearbus.net/downloads/NearBusEther_v16.zip

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

145

char deviceId [] = "agent_id"; // Put here the device_ID generated
by the NearHub (NB1xxxxx)
char sharedSecret[] = "agent_password"; // (IMPORTANT: mandatory
8 characters/numbers) - The same as you configured in the NearHu
byte mac[6] = { 0x90, 0xA2, 0xDA, 0x0D, 0x21, 0xEA };
// Put here the Arduino's Ethernet MAC

// ADDITIONAL CONFIGURATION FOR STATIC IP ADDRESSING
#define STATIC_IP 0 // 1=>Static IP 0=>DHCP
byte ip[] = { 192,168,1,10 }; // Your Arduino IP Address
byte subnet[] = { 255,255,255,0 }; // Your Arduino IP Mask
byte gateway[] = { 192,168,1,1 }; // Your Default Gateway (LAN Router)
byte gdns[] = { 8,8,8,8 }; // Google DNS server

//

//
// Includes
//
#include <Ethernet.h> // Ether Specific Configuration
#include <NearbusEther_v16.h> // [REL]
#include <SPI.h>
#include <Servo.h>
#include <FlexiTimer2.h>

//
// Global Variables
//
Nearbus Agent(0);

ULONG A_register[8]; // Define the Tx Buffer (Reg_A)
ULONG B_register[8]; // Define the Rx Buffer (Reg_B)
int retorno;

void AuxPortServices(void) {
 Agent.PortServices();
}

//
// BROWSER API REST COMMAND LINE (for JavaScript) - (use it for
troubleshooting)
//
// http://nearbus.net/v1/api_vmcu_jsb/NB100***?user=****&pass=****&channel=
0&service=DIG_OUTPUT&value=1&method=POST&reqid=123456
//
// user: Your NearBus Web user
// pass: Your NearBus Web password

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

146

// channel: NearBus channel [0-3]
// value: Service value (if apply)
// method: GET (read) / POST (write)
// reqid: Transaction identifier (to match a request and its
response)
//
// SUPPORTED API SERVICES
// DIG_INPUT: Digital Input - Input Range [0-1] - Method: GET
// DIG_OUTPUT: Digital Output - Output Range [0-1] - Method: POST/GET
// ADC_INPUT: ADC Analog Input - Output Range [0-1023] - Method: GET
// PULSE _OUTPUT: Digital Output - Input Range [0-65535] in steps of 10ms
(max 655 seg) - Method: POST/GET
// PWM_OUTPUT: PWM Output calibrated for Servomotors - Input Range [800-
2200] - Method: POST/GET
// DIG_COUNTER: Pulse Counter / Accumulator
// RMS_INPUT: True RMS Meter
// MY_NBIOS_0: User defined function
//
// For a detailed information please go to: http://goo.gl/Gxrcua
//
//

/*##
##
MY_NBIOS CUSTOM FUNCTION CODE #######
##
##*/

//
// MOISTURE SENSOR - EXAMPLE OF CUSTOM CODE
//
// Product Web: http://www.seeedstudio.com/depot/grove-moisture-
sensor-p-955.html
// Wiki: http://seeedstudio.com/wiki/Grove_-_Moisture_Sensor
// Code Source: n/a
// Technical Spec: Humidity: 5% RH - 99% RH - Temperature -40°C - 80°C -
Accuracy: 2% RH / 0.5°C
// Support Shield: Base Shield V1.3 - Grove compatible - http://
seeedstudio.com/depot/base-shield-v13-p-1378.html
//
//
void Nearbus::MyNbios_0(byte portId, ULONG setValue, ULONG* pRetValue, byte
vmcuMethod, PRT_CNTRL_STRCT* pPortControlStruct)
{

 //************************************
 // Reconfiguring Ports as I/O
 //************************************

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

147

 if(pPortControlStruct->portMode != MYNBIOS_MODE)
 {
 PortModeConfig(portId, MYNBIOS_MODE);
 }

 //************************************
 // Custom Function
 //************************************
 �// DEFAULT: The default analog reference of 5 volts (on 5V Arduino

boards) or 3.3 volts (on 3.3V Arduino boards)
 �// INTERNAL: An built-in reference, equal to 1.1 volts on the

ATmega168 or ATmega328 and 2.56 volts on the ATmega8 (not available on
the Arduino Mega)

 // INTERNAL1V1: A built-in 1.1V reference (Arduino Mega only)
 // INTERNAL2V56: A built-in 2.56V reference (Arduino Mega only)
 �// EXTERNAL: The voltage applied to the AREF pin (0 to 5V only) is

used as the reference.

 analogReference(DEFAULT);

 *pRetValue = (ULONG) analogRead(pPortControlStruct->anaPinId);

}

/*##
##
END OF CUSTOM CODE ####
##
##*/

//
// SETUP ROUTINE
//
void setup(void)
{

 //*********************************
 // SERIAL INTERFACE INITIALIZATION
 //*********************************
 Serial.begin(9600); // Start serial library

 //*********************************
 // NEARBUS INITIALIZATION
 //*********************************
 Agent.NearInit(deviceId, sharedSecret);

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

148

 //*********************************
 // ETHERNET INITIALIZATION
 //*********************************
 if(STATIC_IP){
 Ethernet.begin(mac, ip, gdns, gateway, subnet);
 }
 else {
 Ethernet.begin(mac);
 }

 //*********************************
 // FLEXITIMER INITIALIZATION
 //*********************************
 #if FLEXI_TIMER
 FlexiTimer2::set(INT_PERIOD, AuxPortServices);
// Call the port services routine every 10 ms
 FlexiTimer2::start();
 #endif

 delay(1000);
// Give the Ethernet shield a second to initialize

 pinMode(3, OUTPUT);
}

void loop()
{
int ret;

 Agent.NearChannel(A_register, B_register, &ret);

 if (ret >= 50)
 {
 Serial.println("Rx Error");
 // [50] Frame Authentication Mismatch
 // [51] Frame Out of sequence
 // [52] Remote ACK Error
 // [53] Unsupported Command
 }

/*
 ///////////////////////////////////
 // Example 1 - Analog Input
 // Mode: TRNSP
 ///////////////////////////////////
 A_register[0] = analogRead(0); // PIN A0
*/

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

149

/*
 ///////////////////////////////////
 // Example 2 - Digital Output
 // Mode: TRNSP
 ///////////////////////////////////
 if(B_register[0] == 1){
 digitalWrite(3, HIGH); // PIN D3
 }
 else {
 digitalWrite(3, LOW); // PIN D3
 }
*/

/*
 ///////////////////////////////////
 // Example 3 - PWM Analog Output
 // Mode: TRNSP
 ///////////////////////////////////
 �analogWrite(3, B_register[0]); // PIN D3

- This function DO NOT works with Servo Motors and require an input from
0 to 255.

*/

}

	 2.	 Now modify the Arduino sketch shown in Listing 8-1
according to your PLC configuration with NearBus. Follow
these steps to make the modifications:

a)	 #define STATIC_IP: This value can be 0 or 1. Use 1 for
a static IP and 0 for a dynamic IP configuration. If you
use 0, there is no need to provide the IP address for your
Ethernet shield.

// ADDITIONAL CONFIGURATION FOR STATIC IP ADDRESSING
#define STATIC_IP 0 // 1=>Static IP 0=>DHCP

b)	 byte ip[]: This is your Arduino's static IP address and
should be written as a comma-separated value. Also, it
should be in the valid IP address range of your network.

byte ip[] = { 192,168,1,10 }; // Your Arduino IP Address

c)	 byte gateway[]: Your router's IP address.

byte gateway[] = { 192,168,1,1 }; // Your Default Gateway (LAN Router)

	 3.	 Now verify the Arduino sketch. You will likely get the following
error in the output window.

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

150

In file included from D:\APress\Author Templates\Author Templates\Chapter
8\Source Codes\Hello_World_Ether\Hello_World_Ether.ino:47:0:

C:\Users\Pasindu\Downloads\arduino-1.6.11-windows\arduino-1.6.11\libraries\
NearBusEther_v16/NearbusEther_v16.h:95:22: fatal error: WProgram.h: No such
file or directory

 #include <WProgram.h>

 ^

compilation terminated.

exit status 1

Error compiling for boarerd Arduino/Genuino Uno.

You can solve this issue with a small fix to the NearbusEther_v16.h header file
located in the NearbusEther_v16 folder.

Find the line #include <WProgram.h> and change it to #include <Arduino.h>.
Then save the file. Now try to verify the sketch again. The sketch should now verify
without any errors. You can upload it to the Arduino board by clicking on the Upload
button.

	 4.	 Remove your Arduino PLC from the computer and connect it
to the external power supply.

Controlling the Grove LED from the NearBus Cloud
	 1.	 Click Devices List on the NearBus web page, as shown in

Figure 8-5.

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

151

The state column will show the current status of the Ethernet shield. The UP state
indicates that your shield is successfully connecting and communicating with the
NearBus cloud.

	 2.	 Select Config Device from the drop-down list (this is the
default selection) and click the Setup button. The Device
Configuration page will appear, as shown in Figure 8-6.

Figure 8-5.  The Devices List page

Figure 8-6.  The Device Configuration page

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

152

The Device Configuration page enables you to control your device with up to four
channels, labeled from 0 to 3. There are a set of functions associated with each channel,
so you can select one to execute on your device through the NearBus cloud.

The NearBus has four channels and each channel is associated with an Arduino I/O
pin, as shown in Table 8-1.

Table 8-1.  Arduino Pins Associated with Each NearBus Channel

Channel Digital Pin Analog Pin

0 3 A0

1 5 A1

2 6 A2

3 9 A3

There is also a set of functions you can select form the Function drop-down list
according to your requirements. Here are some of the functions you can use with your
Arduino.

•	 UP: Digital output =1

•	 DOWN: Digital output =0

•	 DIG_INPUT: Digital input 0 or 1

•	 ADC_INPUT: 10 bits analog input (0 to 1023 for 0 to 1.1V)

•	 PWM_OUTPUT: PWM output

	 3.	 Now you're going to control the Grove LED connected to the
Grove port D3. In channel 00, select the MAN checkbox and
select UP from the FUNCTION drop-down list, as shown in
Figure 8-7. The NearBus cloud will send the UP command to
the Arduino and the Grove LED will turn on. This is the same as
executing the function digitalWrite(3, HIGH) on digital pin 3.

■■ Note  By selecting the MAN checkbox, the channel will turn to manual mode.

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

153

	 4.	 Again, change the function to DOWN and see whether you can
turn off the LED through the NearBus.

In this project, you'll learn how to control an Arduino I/O pin through the NearBus
cloud using manual inputs (manual mode) like the UP and DOWN NearBus commands.

But in industrial environments, you should be able to control your Arduino-based
PLC with various external inputs. Let's improve this project by adding an external clock
to control the Grove LED by sending ON and OFF messages to the Arduino through the
NearBus.

You can implement a clock using the IFTTT (www.ifttt.com) DIY light platform.
The message strings for ON and OFF commands can be implemented using IFTTT and
can be sent through a Twitter account to the NearBus cloud. Finally, the NearBus cloud
will execute the commands on your Arduino.

Using the IFTTT DIY Light Platform
First you are going to configure your Arduino PLC with the Twitter Connector. The
following steps explain how to do this:

	 1.	 In the Devices List page, as shown in Figure 8-5, select
Twitter Config from the drop-down list and click the Setup
button. The Twitter Connector page will appear, as shown in
Figure 8-8.

Figure 8-7.  The Device Configuration page

http://www.ifttt.com/

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

154

Figure 8-8.  The Twitter Connector page

	 2.	 Type your Twitter account's name into the Twitter Nickname
text box. Then check the Channel Enabled and Subscribe
checkboxes. Click the Setup button to continue.

	 3.	 Accept the request message sent by the NearBus in your
Twitter account by clicking the Accept button.

Creating a Recipe with IFTTT
To proceed, you first need an IFTTT user account. If you don’t have one, it's time to
create an account by visiting https://ifttt.com.

	 1.	 On the IFTTT web page, shown in Figure 8-9, click My
Recipes on the menu bar.

https://ifttt.com/

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

155

	 2.	 Click the Create a Recipe button, as shown in Figure 8-10.

	 3.	 Click the link shown in Figure 8-11.

Figure 8-10.  Create a recipe

Figure 8-9.  The IFTTT recipes page

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

156

	 4.	 Search for date & time and click the Date & Time icon, as
shown in Figure 8-12.

	 5.	 Click the Every Hour At option, as shown in Figure 8-13.

Figure 8-12.  The Choose Trigger Channel page

Figure 8-11.  Create a recipe: this

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

157

	 6.	 From the Minutes Past the hour drop-down list, select the
number of minutes past the hour to trigger a Twitter message
(a Tweet). Select 00 minutes from the drop-down list to fire
once an hour at 00 minutes past the hour. Then click the
Create Trigger button, as shown in Figure 8-14.

Figure 8-13.  The Choose a Trigger page

Figure 8-14.  The Create Trigger button

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

158

	 7.	 Click the that link, as shown in Figure 8-15.

Figure 8-15.  Create a Recipe: that

Figure 8-16.  Choose an action channel

	 8.	 Search Twitter for an action channel. Then click the Twitter
icon, as shown in Figure 8-16.

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

159

	 9.	 Click the Connect button, as shown in Figure 8-17.

	 10.	 Click the Authorize App button to authorize IFTTT to use
your Twitter account to send tweets, as shown in Figure 8-18.

Figure 8-17.  Connecting to the Twitter channel

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

160

	 11.	 After successfully authorizing the IFTTT, you will get a
successful message. Click Done to proceed.

Figure 8-18.  Authorize IFTTT to use your Twitter account

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

161

	 12.	 Click the Continue to the Next Step button, as shown in
Figure 8-19.

	 13.	 Click the Post a Tweet section, as shown in Figure 8-20.

	 14.	 In the Complete Action Fields page, as shown in Figure 8-21,
type the following command.

Figure 8-19.  A Twitter configuration step

Figure 8-20.  The choose an action section

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

162

?user=****&pass=****&device=NB102xxx&channel=0&value=1&service=DIG_OUTPUT&me
thod=post&{{CheckTime}}

This command will write digital HIGH on channel 0 and turn ON the LED attached
to the Arduino digital pin 3 (also the Grove port D3).

To write digital HIGH on a selected channel, the key-value pair should be written as
value=1. Likewise, to write digital LOW on a selected channel, the key-value pair should
be written as value=0.

Modify the following parameters according to your NearBus account's settings:

•	 user: Username of your NearBus account

•	 pass: Password of your NearBus account

•	 Device: Your NearBus device ID

{CheckTime} is a dummy parameter that appends the date and time to the message.
It can be used to generate a unique message each time, without duplicating the same
message, because Twitter rejects duplicate messages to avoid spam.

Here is a sample message generated by our IFTTT recipe.

?user=****&pass=****&device=NB100xxx&channel=0&value=1&service=DIG_
OUTPUT&method=post&{{October 10, 2016 at 11:30AM}}

	 15.	 Click the Create Action button (Figure 8-21). The Create
and Connect page will appear with the recipe title. Click the
Create a Recipe button to create the recipe.

Figure 8-21.  The Complete Action Fields page

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

163

Now you've successfully created your first trigger to turn on the LED. You can repeat
these steps to create three more triggers to turn off (after 15 minutes), turn on (after 30
minutes), and turn off (after 45 minutes).

The four triggers are summarized in Table 8-2.

	 16.	 After creating the four recipes, you should get a list like the
one shown in Figure 8-22.

Figure 8-22.  List of recipes

Table 8-2.  Trigger Commands

Time (Minutes Past the Hour) Action Message Text (Trigger Command)

00 ON ?user=****&pass=****&device=NB102xxx&chan
nel=0&value=1&service=DIG_OUTPUT&method=p
ost&{{CheckTime}}

15 OFF ?user=****&pass=****&device=NB102xxx&chan
nel=0&value=0&service=DIG_OUTPUT&method=p
ost&{{CheckTime}}

30 ON ?user=****&pass=****&device=NB102xxx&chan
nel=0&value=1&service=DIG_OUTPUT&method=p
ost&{{CheckTime}}

45 OFF ?user=****&pass=****&device=NB102xxx&chan
nel=0&value=0&service=DIG_OUTPUT&method=p
ost&{{CheckTime}}

Chapter 8 ■ Mapping PLCs into the Cloud Using the NearBus Cloud Connector

164

You've successfully set up the set of IFTTT recipes to trigger ON (digital HIGH) and
OFF (digital LOW) NearBus channel 0. The LED will turn on and off every hour at the
following times.

•	 In 0 minutes: Turn ON

•	 In 15 minutes: Turn OFF

•	 In 30 minutes: Turn ON

•	 In 45 minutes: Turn OFF

The triggers will repeat until you turn them off with your IFTTT account or disable
your Twitter account.

You can improve this project by replacing the LED and adding an AC-based device
with an Arduino digital pin (selected NearBus channel) by connecting a relay driver
circuit or PowerSwitch Tail (http://www.powerswitchtail.com/). You can also build
this PLC with industry grade enclosures like ArduiBox and an external power supply unit
like Meanwell 5V/15W. This project can be used in industrial environments to turn on
and off an industrial exhaust fan every 15 minutes to cool a factory building. You can find
many IFTTT receptors to interface with your PLC to control the NearBus cloud connector.

Summary
In this chapter, you learned about the NearBus. Then you built the core hardware setup
for a cloud-connectable PLC, mapped your PLC into the cloud using the NearBus cloud
connector, created IFTTT recipes to trigger a timer, and finally learned how to control
your PLC with Twitter tweets. In the next chapter, you'll learn how to drive heavy loads,
like devices that require high DC voltages (48V DC) and AC voltages (120V AC or 240V
AC) with single relay boards, Arduino Relay Shields, and Seeeduino Relay Shields.

http://www.powerswitchtail.com/

165© Pradeeka Seneviratne 2017
P. Seneviratne, Building Arduino PLCs, DOI 10.1007/978-1-4842-2632-2_9

CHAPTER 9

Building a Better PLC

Throughout this book, you've built Arduino-based PLCs with 5V logic level outputs and
control 5V based devices such as LEDs, speakers, and fans. But in industrial environments,
you may use loads (devices) that are rated with high voltage (12V DC, 24V DC, 120V AC,
or 240V AC) and high current (usually more than 1A).

An Arduino pin can supply 3.3V or 5V voltage levels with about 20-40mA of current.
These voltage and current levels are useful for building prototypes to test the outputs with
Arduino. You can connect various small loads such as LEDs, speakers, vibrators, and so forth.

To actuate any device that requires more than 5V of voltage or 40mA of current from
the Arduino output signal, a separate driver circuit should be connected between the
Arduino and the actuator. Some circuit uses optically-isolated switches to separate the
Arduino output signal from the driver circuit.

Using Relay Boards
A relay-based driver circuit is an ideal solution to drive AC or DC-based loads (devices)
rated with high voltage and high power. There are various types of relay driver circuit
boards that can be found in the market. The signal input from the microcontroller to
the relay board can be non-optically-isolated or optically-isolated. It is better to use relay
boards that capable with optically-isolated signal inputs.

When you work with AC or DC-based devices, it is safer to use optically-isolated
relay boards.

Boards with a Single Relay
A single relay board consists of a relay and a driver circuit. Figure 9-1 shows a relay board
with a single relay, a few electronic components, terminal blocks (J1) to connect to the
high-voltage or high-power circuit, and male headers (J2) to connect to a microcontroller.

Chapter 9 ■ Building a Better PLC

166

Table 9-1 shows the specifications of the J1 terminal block.

Table 9-2 shows the specifications of the J2 male header.

You can power this relay with 5V DC and use it directly with Arduino without using
any other DC power supply to drive the relay. (Arduino has a 5V output pin and it can
provide enough current to power the relay).

Let's build a simple project that can be used to turn on and off an 240V AC electric
light bulb with an Arduino digital pin.

■■ Note  If you have a 120V AC power supply in your home, use a 120V AC light bulb with
this project. Check your power ratings with the electricity supplier before you build this project.

Figure 9-1.  Single relay board

Table 9-1.  Specifications of the J1 Terminal Block

Terminal Specification

IN Signal input from the microcontroller

5V 5V from the microcontroller or separate power supply

GND Ground

Table 9-2.  Specifications of J2 the Male Header

Pin Specification

NO Connects to the Normally Open pin of the relay.

COM Connects to the Common pin of the relay.

NC Connects to the Normally Closed pin of the relay.

Chapter 9 ■ Building a Better PLC

167

You'll need the following things to build this project:

•	 Arduino UNO board

•	 5V 1-channel single relay module for Arduino (www.dx.com)

•	 240V AC (or 120V AC) light bulb

•	 Bulb holder

•	 Two wires (brown for live and blue for neutral), rated for use with
240V AV (or 120V AC)

•	 Grounded AC power plug

Use the following steps to build the circuit.

	 1.	 Using a hook-up wire, connect Arduino digital pin 13 to the
J2 IN header of the relay board.

	 2.	 Connect Arduino 5V pin to the J2 5V header of the relay
board.

	 3.	 Connect Arduino GND pin to the J2 GND header of the relay
board.

	 4.	 Connect the push button to Arduino digital pin 2.

	 5.	 Connect the brown (for live) and blue (for neutral) wires to
the bulb holder and connect the remaining wire ends to a
grounded AC power plug (Figure 9-2). Use only live and
neutral connections. Then connect the bulb to the holder.

	 6.	 Cut the Live wire of the electric light bulb using a wire cutter.
You will get two ends. Now connect one end to the J1 NO
terminal and the remaining end to the J1 COM terminal.

Figure 9-2.  Grounded AC power plug

http://www.dx.com/

Chapter 9 ■ Building a Better PLC

168

Now you're ready to upload the sample Arduino sketch to the Arduino board.
Open your Arduino IDE and open the sample sketch (Button.ino) by choosing File ➤
Examples ➤ Digital ➤ Button, as shown in Listing 9-1.

Listing 9-1.  Electric Light Bulb Test with Button Example (Button.ino)

// constants won't change. They're used here to
// set pin numbers:
const int buttonPin = 2; // the number of the push button pin
const int ledPin = 13; // the number of the LED pin

// variables will change:
int buttonState = 0; // variable for reading the push button status

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the push button pin as an input:
 pinMode(buttonPin, INPUT);
}

void loop() {
 // read the state of the push button value:
 buttonState = digitalRead(buttonPin);

 // check if the push button is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 } else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 }
}

This Arduino sketch can be used with this project because we used the same
Arduino pin connections (digital pin 2 and 13) for relay and button. The following
Arduino statement is used to assign Arduino digital pin 13 to the relay (light bulb).

const int ledPin = 13; // the number of the LED pin

Modify the Arduino sketch if you connected the relay and button to different Arduino
digital pins.

	 1.	 Verify and upload the sketch to the Arduino board.

	 2.	 Remove the Arduino board from the computer and connect it
to an external power supply (wall wart).

Chapter 9 ■ Building a Better PLC

169

	 3.	 Supply electricity (240V AC) to the light bulb by connecting
the AC power plug to an AC wall socket.

■■ Note  You can also use a Grove Relay to build this project. Read Chapter 1 or visit
http://wiki.seeed.cc/Grove-Relay/ for more information about Grove Relay.

Testing
Now you're ready to test the circuit. When you press the push button, the light bulb
should turn ON, and when you release it, the light bulb should turn OFF.

In industrial environments, you may need to control multiple high-voltage and high-
power loads from Arduino-based PLCs. An Arduino Relay Shield is the ideal solution
to control multiple loads from the Arduino board; normally you can connect up to four
loads using a single relay shield.

Boards with Multiple Relays
Like single relay boards, you can use boards with multiple relays to control multiple
devices from the Arduino board. Figure 9-3 shows a relay board with two relays that can
be used to drive high-voltage and high-current loads.

Figure 9-3.  Relay board with two relays. Image From SparkFun Electronics; photo taken
by Juan Peña

http://dx.doi.org/10.1007/978-1-4842-2632-2_1
http://wiki.seeed.cc/Grove-Relay/

Chapter 9 ■ Building a Better PLC

170

Using Relay Shields
Arduino-compatible relay shields can be used to replace the relay boards because they
can be mounted on the Arduino board without using too many wire connections between
them. It also helps create more compact projects and is ideal for building Arduino-based
PLC projects.

Driving High-Power DC Loads with Relay Shields
In industrial environments, you may need to connect and control high-power and high-
voltage DC loads with Arduino-based PLCs. The Arduino 4 Relays Shield, as shown
in Figure 9-4, can be used to connect up to four high-power and high-voltage rated DC
devices with Arduino.

With the Arduino 4 Relays Shield, you can connect devices rated up to 48V DC, but
it is safer to connect devices rated only to 30V DC/2A. The shield consists of the following
components:

•	 4 X 5V relays

•	 2 terminal blocks; each terminal block has connections for two
devices

•	 Reset button

•	 Wire-wrap headers and stackable headers

•	 6 x TinkerKit connectors

Figure 9-4.  Arduino 4 Relays Shield. Image courtesy of arduino.org

Chapter 9 ■ Building a Better PLC

171

The Arduino 4 Relays Shield requires 5V and 3.3V power to operate and consumes
electricity directly from the Arduino board. That means you don't need to provide an
extra power supply to the Arduino 4 Relays shield with a separate external power supply.

Each relay is internally connected to an Arduino digital pin, as shown in Table 9-3.

The current draw of each relay coil is about 35mA, so with the all relays on, it is about
140mA.

You can find more technical information about the Arduino 4 Relays Shield by
visiting http://www.arduino.org/products/shields/arduino-4-relays-shield.

Building with an Arduino 4 Relays Shield
To build the following project with an Arduino 4 Relays Shield, you need a light bulb
rated with 12V DC and a 12V DC power supply (wall wart). Use the following steps to set
up the hardware on the Arduino.

You'll need the following things to build the project.

•	 Arduino UNO board

•	 Arduino 4 Relays Shield

•	 12V DC light bulb

•	 Bulb holder

•	 Two wires (red for positive and black for negative), rated for use
with 12V DC

•	 12V DC power supply (wall wart)

	 1.	 Connect the Arduino 4 Relays Shield to the Arduino UNO
using wire-wrap headers.

	 2.	 Connect the push button to Arduino digital pin 2 with a
10-kilo ohm pull-down resistor.

	 3.	 Now cut the positive lead of the 12V DC light bulb using a
wire cutter to make two connection leads.

	 4.	 Connect one lead of the light bulb to connector C of the
RELAY 1 terminal (Figure 9-5).

Table 9-3.  Relay and Arduino Digital Pin Assignment

Relay Arduino Digital Pin

1 4

2 7

3 8

4 12

http://www.arduino.org/products/shields/arduino-4-relays-shield

Chapter 9 ■ Building a Better PLC

172

	 5.	 Connect the remaining lead of the light bulb to connector NO
of the RELAY 1 terminal.

Now you're ready to write and upload the Arduino sketch to the Arduino board.
Modify the Arduino sketch (Button.ino) shown in Listing 9-1 to work with the

RELAY 1 connection and with the Arduino 4 Relays Shield because the RELAY1 is
internally connected to the Arduino digital pin 4.

The following statement shows the required modification for the Arduino sketch:

const int ledPin = 4; // the number of the relay pin

Listing 9-2 shows the completed Arduino sketch (ArduinoRelayTestDC.ino) that can
be used with the Arduino 4 Relays Shield.

Listing 9-2.  12V DC Electric Light Bulb Test with Push Button Example
(ArduinoRelayTestDC.ino)

// constants won't change. They're used here to
// set pin numbers:
const int buttonPin = 2; // the number of the push button pin
const int ledPin = 4; // the number of the relay pin

// variables will change:
int buttonState = 0; // variable for reading the push button status

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);

Figure 9-5.  Arduino 4 Relays Shield. Image courtesy of arduino.org

Chapter 9 ■ Building a Better PLC

173

 // initialize the push button pin as an input:
 pinMode(buttonPin, INPUT);
}

void loop() {
 // read the state of the push button value:
 buttonState = digitalRead(buttonPin);

 // check if the push button is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 } else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 }
}

	 1.	 Verify and upload the Arduino sketch into your Arduino
board.

	 2.	 Remove the Arduino board from the computer and connect it
to an external power supply (wall wart).

	 3.	 Supply separate 12V DC power to the light bulb using an
external power supply (wall wart).

Testing
Now you're ready to test the hardware setup. When you press the push button, the 12V
DC light bulb should turn ON and when you release it, the light bulb should turn OFF.

Driving High-Power AC Loads with Relay Shields
To drive high-power AC loads rated with the high-voltages like 120V AC and 240V AC,
you can use an Arduino shield that is rated for use with AC loads. The Seeeduino Relay
Shield (Figure 9-6) can be used to drive high-power AC loads, for both 120V AC and
240V AC. You can also use the Seeeduino Relay Shield to drive high-power DC loads with
Arduino.

Chapter 9 ■ Building a Better PLC

174

The Seeeduino Relay Shield can be directly stacked on Arduino UNO and it can
directly draw the power from the Arduino board. Figure 9-7 shows the top view of the
Seeeduino Relay Shield v3.0.

The Seeeduino Relay shield v3.0 consists of the following components.

•	 4 x 5V relays

•	 4 x terminal blocks

•	 4 x LED indicators

•	 Wire-wrap headers and stackable headers

Figure 9-7.  Seeeduino Relay Shield (top view). Image courtesy of Seeed Development
Limited

Figure 9-6.  Seeeduino Relay Shield v3. Image courtesy of Seeed Development Limited

Chapter 9 ■ Building a Better PLC

175

You can connect up to four high-voltage and high-power loads with a Seeeduino
Relay Shield and control them individually from the Arduino board.

Each relay is internally connected to an Arduino digital pin, as shown in Table 9-4.

Now let's build another PLC with the Seeeduino Relay Shield v3 and an Arduino
board. You will need the following components to build the project.

•	 10-kilo Ohm resistor

•	 240V AC (or 120V AC) light bulb

•	 Bulb holder

•	 Two wires (brown for live and blue for neutral), rated for use with
240V AV (or 120V AC)

•	 Grounded AC power plug

	 1.	 Stack the Seeeduino Relay shield on top of the Arduino UNO
board using wire-wrap headers.

	 2.	 Connect the push button to Arduino digital pin 2 with a
10 kilo Ohm pull down resistor.

	 3.	 Connect brown (for live) and blue (for neutral) wires to
the bulb holder and connect the remaining wire ends to
a grounded AC power plug. Use only live and neutral
connections. Then connect the bulb to the holder.

	 4.	 Cut the Live wire of the 120V AC or 240V AC light bulb using a
wire cutter. You'll get two wire ends.

	 5.	 Use the terminal block labeled CHANNEL 1 of the Seeeduino
Relay Shield to connect the light bulb. Connect one end of the
Live wire to the connector marked COM and the remaining
end to the connector marked NO.

Now you're ready to write and upload the Arduino sketch to the Arduino board.
Modify the Arduino sketch (Button.ino) shown in Listing 9-2 to work with the

RELAY 1 connection and with the Seeeduino Relay Shield because the RELAY1 is
internally connected to the Arduino digital pin 7.

Table 9-4.  Relay and Arduino Digital Pin Assignment

Relay Arduino Digital Pin

1 7

2 6

3 5

4 4

Chapter 9 ■ Building a Better PLC

176

The following statement shows the required modification of the Arduino sketch.

const int ledPin = 7; // the number of the relay pin

Listing 9-3 shows the completed Arduino sketch (SeeeduinoRelayTestAC.ino) that
can be used with the Seeeduino Relay Shield.

Listing 9-3.  240V AC Electric Light Bulb Test with Push Button Example
(SeeeduinoRelayTestAC.ino)

// constants won't change. They're used here to
// set pin numbers:
const int buttonPin = 2; // the number of the push button pin
const int ledPin = 7; // the number of the relay pin

// variables will change:
int buttonState = 0; // variable for reading the push button status

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the push button pin as an input:
 pinMode(buttonPin, INPUT);
}

void loop() {
 // read the state of the push button value:
 buttonState = digitalRead(buttonPin);

 // check if the push button is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 } else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 }
}

	 1.	 Verify and upload the Arduino sketch to your Arduino board.

	 2.	 Remove the Arduino board from the computer and connect it
to an external power supply (wall wart).

	 3.	 Supply electricity (240V AC) to the light bulb by connecting
the AC power plug to an AC wall socket.

Chapter 9 ■ Building a Better PLC

177

Testing
Now you're ready to test the circuit. When you press the push button, the light bulb
should turn ON and when you release it, the light bulb should turn OFF.

Adding More Relay Channels
Seeeduino Relay Shield can be extended with four additional relay channels by connecting
another Seeeduino Relay Shield to it. The following steps explain how to connect them.

	 1.	 Except for the 5V and 2 GND pins, cut all the wire-wrap
headers off the second Seeeduino Relay Shield.

	 2.	 Using hook-up wires, connect the Seeeduino Relay Shield 1
to the Seeeduino Relay Shield 2, as shown in Table 9-5.

	 3.	 Stack the Seeeduino Relay Shield 2 on top of the Seeeduino
Relay Shield 1 with the remaining three wire-wrap headers
(5V and 2 GND pins). Use some standoffs to properly connect
two relay shields together.

Now you can control four relays in the Seeeduino Relay Shield 2 (top relay shield)
with the Arduino pins shown in Table 9-6.

Relay Shield 2

As an example, to connect a device to a Seeeduino Relay Shield 2 - Terminal 1, the
modified Arduino statement would be similar to the following statement.

const int ledPin = 8; // the number of the relay pin

Table 9-5.  Wire Connections Between Relay Shield 1 and Relay Shield 2

Relay Shield 1 Relay Shield 2

Digital pin 8 Digital pin 7

Digital pin 9 Digital pin 6

Digital pin 10 Digital pin 5

Digital pin 11 Digital pin 4

Table 9-6.  Pin Assignment with Relays for the Second Relay Shield

Relay Terminal Arduino Digital Pin

1 1 8

2 2 9

3 3 10

4 4 11

Chapter 9 ■ Building a Better PLC

178

Great! You have successfully built a compact relay shield with eight channels by
using two Seeeduino Relay Shields and an Arduino board.

Try to connect a high-voltage device to any terminal block in the Seeeduino Relay
Shield 2 and control it using the sample Arduino sketch (Button.ino). You do this by
modifying the ledPin variable as shown in this statement:

const int ledPin = X // X = Arduino digital pin to connect to the
relay.

Summary
In this chapter, you learned how to modify your PLC to control high-power AC and DC-
based devices by using a single relay board (one output) and relay shields (four outputs).
You also learned how to add more outputs (eight outputs) by connecting two Seeeduino
Relay Shields together.

A complete Arduino-based PLC can be built with the many techniques we discussed
throughout this book. By connecting the following components together, you can build a
feature-rich, cloud-connectable PLC.

•	 ArduiBox enclosure

•	 5V external power supply

•	 12V DC external power supply (optional)

•	 Arduino UNO board

•	 Arduino Ethernet shield

•	 Relay shield (Arduino 4 Relays Shield or Seeeduino Relay Shield)

Throughout this book you gained knowledge and practical experience on the
development of Arduino-based PLC applications with various hardware components,
software libraries, communication protocols, passive components like enclosures, and more.

You can modify and enhance these PLC projects by adding various sensors,
actuators, power supplies, and optically isolated inputs and outputs in high-voltage
environments for AC and DC. As a suggestion, try integrating an LCD (Liquid Crystal
Display) into your PLC. It could be useful for presenting the currently executing operation
or executed operation to the users. Adding interrupts using a keypad could be also
helpful for changing some execution paths manually in some situations.

179© Pradeeka Seneviratne 2017
P. Seneviratne, Building Arduino PLCs, DOI 10.1007/978-1-4842-2632-2

�       � A
Adafruit, 5
Analog ports, 74
Analog to digital converter

(ADC), 142
Application Programming Interface

(API), 142
ArduiBox, 17

accessories/components, 86
ArduiBox enclosure, 102, 104–105
Arduino DC barrel jack, 100
Arduino pins, 96
building circuit, 98
DIN rails, 105
Grove Base Shield, 85
hook-up wires, 97
K9 Terminal, 100
PCB track connection, 96
2-pin terminal blocks, 88
3-pin terminal blocks, 88
power supply, 86–87, 100
prototyping area, 98
prototyping plate, 88
soldering

areas, 89
female headers, 92, 94
male headers, 90–91
pads, 97
reset button, 94–95

temperature sensor and
fan, 96–97, 105–106

terminal blocks, 90
testing, 107
USB power, 100
voltage regulator, 86–87

Arduino at heart, 59
Controllino, 64

MAXI, 65–66
MEGA, 66–67
MINI, 64–65

industrial shields, 62–64
Industruino, 59

Industrial I/O Kit, 61
protoboard, 61
Proto Kit, 60
topboard, 60

Arduino-based PLCs, 165
Arduino DC Barrel Jack, 100
Arduino development environment, 2
Arduino Ethernet shield, 7, 8, 23, 27

connecting together, 29, 31
IP address, 32
MAC address, 31–32

sketches, writing
simple web client, 48–50, 52

Arduino Ethernet shield 2, 7–8, 27–29
Arduino MEGA, 65–66
Arduino Relay shields, 164
Arduino 4 Relays shield, 170–173
Arduino software, 23, 33, 109–110

Arduino Ethernet2 library, 35–36
basic configurations, 37–38
cables, 36–37
download, 33
libraries folder, 35
using Arduino IDE, 34

Arduino UNO, 23, 64, 68
bootloader, 23
cable and power supply, 5
clones and derived boards, 6
Ethernet2 library, 22

Index

■ INDEX

180

and Genuino, 3, 23
analog pins, 25
components, 24
digital pins, 24
powering, 25–27

Multiprotocol Radio Shield, 18
plcLib, 21
4 relays shield, 15
Rev3 board, 3–4
RS485/Modbus Module, 19
sketches, writing, 38

bare minimum code, 38–40
blinking, 40–42
fading, 43–44
Hello World, 40
reading analog inputs, 44–47

software, 20–21
WiFi shield, 9, 22

Arduino WiFi shield, 23, 32–33
sketches, writing, 52–55

ATmega AT90USB1286 microcontroller, 60
ATmega328P microcontroller, 23
Atmel ATmega328, 64
Atmel ATmega2560, 65–66

�       � B
Bare minimum code, 38–40
Barrel jack, 7
BEEP, 81
Bootloader, 2
Bottle filling process, 57
Bottom shell, 102

�       � C
Cloud PLC, 139–140
Connector D4, 80
Controllino, 64

MAXI, 65–66
MEGA, 66–67
MINI, 64–65

�       � D
DC motor driver circuit, 99
Digital computer, 1
Digital ports, 74
DIN rail, 1, 105

�       � E, F
Embedded software, 77
Ethernet PLCs, 63
External power source, 79

�       � G, H
General Purpose Input Output

(GPIO), 142
Genuino, Arduino UNO and, 3–5, 23

analog pins, 25
components, 24
digital pins, 24
power

USB power, 25
9V AC/DC adapter, 25–26
9V battery pack, 26
VIN pin, 27

GitHub, 21
Grove

base shield, 9–10, 68–70, 77,
85, 105

button, 10–11, 78–79
cables, 15, 78, 80
components, 10
connectors, 73
infrared reflective sensor, 14
LED, 11, 78
relay, 12–13
speaker, 13–14
temperature sensor, 13

�       � I
I2C ports, 75
IFTTT (www.ifttt.com) DIY light

platform, 153
creating recipe, 154–164
trigger commands, 163

Industrial Shields, 62–64
Industruino, 59

Industrial I/O Kit, 61
Protoboard, 61
Proto Kit, 60
topboard, 60

Infrared sensor, 58
Integrated Development

Environment (IDE), 33
IP address, 32

Arduino UNO (cont.)

■ INDEX

181

�       � J
Jumper J3, 101

�       � K
K9 terminal block, 100–101

�       � L
LED, 81
Light up, 81

�       � M
Media Access Control (MAC)

address, 31–32
Microcontroller unit (MCU), 142
Modbus

Arduino PLC, 127
communication protocol, 138
master-slave architecture, 127
Multiprotocol RadioShield (see

Multiprotocol Radio Shield)
PLC with, 131

Arduino sketch, 135–138
hardware setup, 131–135

RS485, 127
RS485 library for Arduino, 130
RS485/Modbus module, 127
RS485/Modbus module for Arduino

and Raspberry Pi, 129–130
RTU protocol, 133–134

Momentary push button, 77, 81
Multiple relay boards, 169
Multiprotocol Radio Shield, 18, 129, 131

Cooking Hacks, 127
digital switch, 129
sockets, 128
wire-wrap headers, 129

�       � N
National Electrical Manufacturers

Association (NEMA), 59
NearAPI, 139
NearBus cloud connector, 138–140

controlling Grove
LED, 150–153

defining new device, 140–143

IFTTT DIY light platform, 153
creating recipe, 154–164
trigger commands, 163

library for Arduino, downloading, 143
signing up, 140
uploading sketch, 144–150

�       � O
220 Ohm resistor, 76
On-board potentiometer, 81
Onboard voltage regulator, 76
Open-source PLC, 64

�       � P, Q
2-pin terminal block, 100
plcLib Library, 21

Arduino, 109–110
boolean operations, 122
boolean OR, 122–124
default hardware configuration, 110
fixed-duration pulse output, 121–122
inverted single bit input

equivalent relay circuit, 117
PLC Ladder Logic, 118
relay ladder logic diagram, 118
switch circuit, 116
truth table, 116

inverted single bit output
outNot() function, 119
truth table, 119

ladder logic, 111
single bit input, 112–114, 116
time delays, 120
timerOff() function delays, 120–121
turn on delay, 120

Power indicator, 72
Power supply, 100
Power switch, 71–72
Programmable Logic Controller (PLC)

actuators (output devices), 58
Arduino ARDBOX 20 I/Os

Analog 7.0, 62
Arduino at heart, 59

Controllino, 64–67
Industrial Shields, 62–64
Industruino, 59–61

Arduino UNO board, 2
Arduino WiFi shield, 9

■ INDEX

182

bottle filling process, 57
cloud, 139–140
conveyor, 57
definition, 58
digital computer, 1
DIN rail, 1
Ethernet, 63
filling stroke, 57
Grove

base shield, 9–10
button, 10–11
LED, 11
speaker, 13–14

heart of, 58
infrared sensor, 58
with Modbus

Arduino sketch, 135–138
hardware setup, 131–135

modules, 2
nozzle, 57
open-source, 64
output signals, 58
parts and accessories, 59
relay shield, 15
sensors and actuators, 57

Proximity sensor, 58
Pulse width modulation, 24

�       � R
Raspberry Pi, 19
Relay boards

multiple, 169
single, 166–167

Arduino digital pin 13, 167
Arduino GND pin, 167
Arduino sketch, 168
Arduino 5V pin, 167
male headers, 165–166
terminal blocks, 165–166

testing, 169
Relay shields, 15–16, 170

Arduino 4, 171–173
driving high-power AC loads, 173–176
driving high-power DC

loads, 170–171
relay channels, adding, 177–178
testing, 173, 177

Reset button, 73, 82–83
RS232 and RS485, 127
RS485 library for Arduino, 130
RS485/Modbus module, 19, 22, 127, 131
RS485/Modbus module for Arduino and

Raspberry Pi, 129–130

�       � S
Seeedstudio relay shield, 16
Seeeduino Relay Shield, 164, 173–178
Seeeduino v4.2, 6
Self-adhesive breadbaord, 98
Serial Peripheral Interface (SPI), 128
Single relay board, 164, 166–167

Arduino digital pin 13, 167
Arduino GND pin, 167
Arduino sketch, 168
Arduino 5V pin, 167
male headers, 165–166
terminal blocks, 165–166

Sketches
Arduino Ethernet shield, 48–50, 52
Arduino WiFi shield, 52–55

SparkFun, 5
SparkFun RedBoard, 6–7
Speaker, 81

�       � T
Temperature sensor, 132
Test cases, 79
Testing audio, 81
TIP120

transistor, 99
pin layout, 100

TMP36 temperature sensor, 98
Top shell, 104
TQS3-I Modbus RS485 interior

thermometer, 19–20, 132
Troubleshooting, 80

�       � U
Universal Asynchronous Receiver/

Transmitter (UART), 75, 128
USB

cable, 5
power, 100
type A/B cable, 79

Programmable Logic
Controller (PLC) (cont.)

■ INDEX

183

�       � V
5V based devices, 165
9-12V DC power supply, 101
15-30V DC power supply, 101
Virtual Microcontroller Unit (VMCU), 142
Voltage regulator assembly, 102

�       � W, X, Y, Z
Wago terminal blocks, 132–133
Wall wart, 25–26
WiFi shield, 22
Wiznet W5100, 8

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Getting Ready for the Development Environment
	Buying an Arduino
	Arduino UNO and Genuino UNO
	Arduino UNO
	Genuino UNO

	Cable and Power Supply
	USB Cable
	Power Supply

	Arduino UNO Clones and Derived Boards
	SparkFun RedBoard

	Buying an Arduino Ethernet Shield
	Arduino Ethernet Shield 2

	Buying an Arduino WiFi Shield
	Buying a Grove Base Shield
	Buying Grove Components
	Grove Button
	Grove LED
	Grove Relay
	Grove Temperature Sensor
	Grove Speaker
	Grove Infrared Reflective Sensor
	Grove Cables

	Buying a Relay Shield
	Arduino 4 Relays Shield
	SeeedStudio Relay Shield

	Buying an ArduiBox
	Buying a Modbus Shield, Module, and Sensor
	Multiprotocol Radio Shield for Arduino
	RS485/Modbus Module for Arduino and Raspberry Pi

	Downloading Software
	Arduino Software
	plcLib
	Arduino Ethernet2 Library
	WiFi Shield Firmware
	Modbus RS485 Library

	Summary

	Chapter 2: Arduino, Ethernet, and WiFi
	Arduino and Genuino
	Digital Pins
	Analog Pins
	Powering the Arduino Board
	USB Power
	9V AC/DC Adapter
	9V Battery Pack
	VIN Pin

	Arduino Ethernet
	Arduino Ethernet Shield 2
	Connecting Them Together
	MAC Address
	IP Address

	Arduino WiFi
	Arduino Software
	Downloading Arduino Software
	Using the Arduino IDE
	Where Is the libraries Folder?
	Adding the Ethernet2 Library
	Cables
	Basic Configurations

	Writing Sketches for Arduino UNO
	Bare Minimum Code
	Hello World
	Blinking
	Fading

	Reading Analog Inputs

	Writing Sketches for Arduino Ethernet
	A Simple Web Client

	Writing Sketches for Arduino WiFi
	Summary

	Chapter 3: Arduino at Heart
	What Is PLC?
	Arduino at Heart
	Industruino
	Industruino Proto Kit
	Industruino Industrial I/O Kit

	Industrial Shields
	Controllino
	Controllino MINI
	Controllino MAXI
	Controllino MEGA

	Summary

	Chapter 4: Your First Arduino PLC
	Grove Base Shield Basics
	Power Switch
	Power Indicator
	Reset Button
	Grove Connectors
	Digital Ports
	Analog Ports
	UART Port
	I2C Ports

	Building a Basic Programmable Logic Controller
	The Requirements and Logic
	Required Hardware
	Connecting the Components

	Writing Your First Arduino Sketch for PLCs
	Uploading Your Arduino Sketch
	Testing Your Sketch
	Troubleshooting

	Working with Audio
	Connecting the Components
	Testing Audio

	Adding a Reset Button
	Connecting the Components
	Testing the Reset Button

	Summary

	Chapter 5: Building with an ArduiBox
	ArduiBox
	Soldering the Terminal Blocks
	Soldering the Male Headers
	Soldering the Female Headers
	Soldering the Reset Button
	Mapping Arduino Pins to the Terminal Blocks
	Prototyping Area
	Building the Circuit

	Power Supply
	USB Power
	Arduino DC Barrel Jack
	Using a K9 Terminal

	Assembling the Enclosure
	DIN Rails
	Connecting the Temperature Sensor and Fan
	Testing Your ArduiBox
	Test Case 1
	Test Case 2

	Summary

	Chapter 6: Writing PLC-Style Applications with plcLib
	Introduction to the plcLib Library
	Installing plcLib on Arduino
	The Default Hardware Configuration

	Ladder Logic
	Basic Ladder Logic Symbols

	Implementing Simple PLC-Style Applications
	Single Bit Input
	Inverted Single Bit Input
	Inverted Single Bit Output
	Time Delays
	Turn On Delay
	Turn Off Delay
	Fixed Duration Pulse Output

	Boolean Operations
	Implementing Boolean OR

	Summary

	Chapter 7: Modbus
	Multiprotocol Radio Shield
	RS485/Modbus Module for Arduino and Raspberry Pi
	Installing the RS485 Library for Arduino
	Building a PLC with Modbus
	Building the Hardware Setup
	The Arduino Sketch

	Summary

	Chapter 8: Mapping PLCs into the Cloud Using the NearBus Cloud Connector
	What Is NearBus?
	Building Your Cloud PLC
	Mapping a PLC Into the Cloud Using NearBus Cloud Connector
	Signing Up with NearBus
	Defining a New Device in NearBus
	Downloading the NearBus Library for Arduino
	Uploading the Sketch
	Controlling the Grove LED from the NearBus Cloud

	Using the IFTTT DIY Light Platform
	Creating a Recipe with IFTTT

	Summary

	Chapter 9: Building a Better PLC
	Using Relay Boards
	Boards with a Single Relay
	Testing

	Boards with Multiple Relays

	Using Relay Shields
	Driving High-Power DC Loads with Relay Shields
	Building with an Arduino 4 Relays Shield
	Testing

	Driving High-Power AC Loads with Relay Shields
	Testing

	Adding More Relay Channels

	Summary

	Index

