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Preface

One of the “hot” topics today is the “smart grid.” At the very start, I want
to emphasize that this text is intended to only develop and demonstrate
the computer models of all of the physical components of a distribution
system. As the text develops the component models, it will become clear
that what we called “load” is the weak link in the overall analysis of a dis-
tribution system. At present, the only true information available for every
customer is the energy, in kilowatt hours, consumed during a specified
period. This topic is addressed in Chapter 2. The problem with load is that
it is constantly changing. Computer programs can be and have been devel-
oped that will very accurately model the components; but without real load
data the results of the studies are only as good as the load data used. As
the smart grid is developed, more accurate load data will become available,
which will provide for a much more accurate analysis of the operating con-
ditions of the distribution system. What needs to be emphasized is that the
smart grid must have computer programs that will very accurately model
all of the physical components of the system. The purpose of this text is to
develop the very accurate models of the physical components of a distribu-
tion system.

In the model developments, it is very important to accurately model the
unbalanced nature of the components. Programs used in the modeling of
a transmission system make the assumption that the system is a balanced
three-phase system. This makes it possible to model only one phase. That is
not the case in the modeling of a distribution system. The unbalanced nature
of the distribution system has to be modeled. This requirement is made pos-
sible by modeling all three phases of every component of the distribution
system.

The distribution system computer program for power-flow studies can be
run to simulate present loading conditions and for long-range planning of
new facilities. For example, the tools provide an opportunity for the distri-
bution engineer to optimize capacitor placement to minimize power losses.
Different switching scenarios for normal and emergency conditions can be
simulated. Short-circuit studies provide the necessary data for the develop-
ment of a reliable coordinated protection plan for fuses and recloser and
relay/circuit breakers.

So what is the problem? Garbage in, garbage out is the answer. Armed
with a commercially available computer program, it is possible for the user
to prepare incorrect data, and as a result, the program outputs are not cor-
rect. Without an understanding of the models and a general “feel” for the
operating characteristics of a distribution system, serious design errors and
operational procedures may result. The user must fully understand the

xi
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models and analysis techniques of the program. Without this knowledge,
the garbage in, garbage out problem becomes very real.

The purpose of this text is to present the reader a general overall feeling
for the operating characteristics of a distribution system and the modeling of
each component. Before using the computer program, it is extremely impor-
tant for the student/engineer to have a “feel” for what the answers should
be. When I was still teaching, I would bring up how my generation used a
slide rule as our computational tool. The advantage of using a slide rule was
you were forced to know what the “ballpark” answer should be. We have lost
that ability owing to hand calculators and computers, but understanding the
ballpark answer is still a necessity.

It has been very interesting to receive many questions and comments
about previous editions of the text from undergraduate and graduate stu-
dents in addition to practicing engineers from around the world. That gets
back to the need for the “feel” of the correct answer. New students need to
study the early chapters of the book in order to develop this “feel.” Practicing
engineers will already have the “feel” and perhaps will not need the early
chapters (1, 2, and 3). In developing the fourth edition of the book, I have
retained most of the contents of the first three editions and have added
“advanced” topics in the final four chapters. The advanced topics should be
of interest to the practicing engineers.

This textbook assumes that the reader has a basic understanding of trans-
formers, electric machines, transmission lines, and symmetrical components.
In many universities, all of these topics are crammed into a one-semester
course. For that reason, a quick review of the needed theory is presented as
required.

There are many example problems throughout the text. These examples
are intended to not only demonstrate the application of the models but
also teach the “feel” of what the answers should be. The example prob-
lems should be studied very carefully since they demonstrate the applica-
tion of the theory just presented. Each chapter has a series of homework
problems that will assist the student in applying the models and devel-
oping a better understanding of the operating characteristics of the com-
ponent being modeled. Most of the example and homework problems are
very number-intensive. All of the example problems have used a software
package called “Mathcad” [1]. I have found this software to be a wonderful
number-crunching tool used to apply the models and perform the analysis
of a feeder. Many simple Mathcad routines are displayed in some of the more
intensive example problems. The students are urged to learn how to use this
powerful tool. The students are also encouraged to write their own com-
puter programs for many of the homework problems. These programs can
use Mathcad or the more popular MATLAB® [2].

As more components are developed and the feeder becomes more
complicated, it becomes necessary to use a sophisticated distribution
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analysis program. Milsoft Utility Solutions has made a student version of
“WindMil” [3] available along with a user’s manual. The user’s manual
includes instructions and illustration on how to get started using the pro-
gram. Starting in Chapter 4, there is a WindMil assignment at the end of the
homework problems. A very simple system utilizing all of the major com-
ponents of the system will evolve as each chapter assignment is completed.
In Chapter 10, the data for a small system are given that will allow the stu-
dent/engineer to match operating criteria. The student version of WindMil
and the user’s manual can be downloaded from the Milsoft Utility Solutions
website homepage. The address is:

Milsoft Utility Solutions

P.O. Box 7526

Abilene, TX 79608

E-mail: support@milsoft.com
Homepage: www.milsoft.com

Unfortunately, there is a tendency on the part of the student/engineer to
believe the results of a computer program. Although computer programs are
a wonderful tool, it is still the responsibility of the users to study the results
and confirm whether or not the results make sense. That is a major concern
and one that is addressed throughout the text.

Chapter 1 presents a quick overview of the major components of a dis-
tribution system. This is the only section in the text that will present the
components inside a substation along with two connection schemes. The
importance of the distribution feeder map and the data required is presented.

Chapter 2 addresses the important question—what is the “load” on the
system? This chapter defines the common terms associated with the load. In
the past, there was limited knowledge of the load, and many assumptions
had to be made. With the coming of the smart grid, there will be ample real-
time data to assist in defining the load for a given study. Even with better
load data, there will still be a concern on whether or not the computer results
make sense.

Chapter 3 may seem to be old fashioned and of not much use because it
develops some approximate methods that help in developing a feel for ball-
park answers. It is important that the new students study this chapter in
detail; in the process, they will discover ways of evaluating the correctness
of computer program results.

The major requirement of a distribution system is to supply safe and
reliable energy to every customer at a voltage within the ANSI standard is
addressed in Chapters 4 and 5. The major goal of planning is to simulate
the distribution system under different conditions now and into the future
and ensure that all customer voltages are within the acceptable ANSI range.
Because voltage drop is a major concern, it is extremely important that the


mailto:support@milsoft.com
http://www.milsoft.com
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impedances of the system components be as accurate as possible. In par-
ticular, the impedances of the overhead and underground distribution lines
must be computed as accurately as possible. The importance of a detailed
feeder map that includes the phase positions for both overhead and under-
ground line is emphasized.

Chapter 6 develops the models for overhead and underground lines using
the impedances and admittance computed in earlier chapters. The “exact”
model along with an approximate model is included. The “ladder” (forward/
backward sweep) iterative method used by many commercial programs and
the matrices required for the application of the ladder analysis method are
introduced. Methods of modeling parallel distribution lines are included in
this chapter.

Chapter 7 addresses the important concept of voltage regulation: How is it
possible to maintain every customer’s voltage within ANSI standards when
the load is varying all of the time? The step-voltage regulator is presented as
an answer to the question. A model is developed for the application in the
ladder technique.

Chapter 8 is one of the most important chapters in the text. Models for
most three-phase (closed and open) transformer connections in use today
are developed. Again, the models use matrices that are used in the ladder
iterative technique. The importance of phasing is emphasized once again.

Chapter 9 develops the models for all types of loads on the system. A
new term is introduced that helps define the types of static load models.
The term is “ZIP.” Most static models in a distribution system can be mod-
eled as constant impedance (Z), constant current (I), or constant complex
power (P), or a combination of the three. These models are developed for
wye and delta connections. A very important model developed is that of
an induction machine. The induction motor is the workhorse of the power
system and needs, once again, to be modeled as accurately as possible.
Several new sections have been included in this chapter that develop
models of the induction machine and associated transformer connection
that are useful for power-flow and short-circuit studies. Induction gen-
erators are becoming a major source of distributed generation. Chapter 9
shows that an induction machine can be modeled either as a motor or as
a generator.

Chapter 10 puts everything in the text together for steady-state power-flow
and short-circuit studies. The “ladder” iterative technique is introduced in
Chapter 4. This chapter goes into detail on the development of the ladder
technique starting with the analysis of a linear ladder network that is intro-
duced in most early circuit analysis courses. This moves onto the nonlinear
nature of the three-phase unbalanced distribution feeder. The ladder tech-
nique is used for power-flow studies. A method for the analysis of short-
circuit conditions on a feeder is introduced in this chapter.

Chapter 11 introduces the center-tapped transformer thatis used for provid-
ing the three-wire service to customers. Models for the various connections
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are introduced that are used in the ladder iterative technique and short-
circuit analysis. The WindMil assignments at the end of Chapters 10 and
11 allow the student/engineer to build and to study and fix the operating
characteristics of a small distribution feeder.
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1

Introduction to Distribution Systems

The major components of an electric power system are shown in Figure 1.1.
Of these components, the distribution system has traditionally been char-
acterized as the most unglamorous component. In the latter half of the
20th century, the design and operation of the generation and transmission
components presented many challenges to the practicing engineers and
researchers. Power plants became larger, and transmission lines crisscrossed
the land, forming large interconnected networks. The operation of the large
interconnected networks required the development of new analysis and
operational techniques. Meanwhile, the distribution systems continued to
deliver power to the ultimate user’s meter with little or no analysis. As a
direct result, distribution systems were typically over-designed.

Nowadays, it has become very important and necessary to operate a dis-
tribution system at its maximum capacity. Some of the questions that need to
be answered are as follows:

. What is the maximum capacity?
. How do we determine this capacity?
. What are the operating limits that must be satisfied?

= W N -

. What can be done to operate the distribution system within the
operating limits?

5. What can be done to make the distribution system operate more

efficiently?

All of these questions can be answered only if the distribution system is
modeled very accurately.

The purpose of this text is to develop accurate models for all of the major com-
ponents of a distribution system. Once the models have been developed, analy-
sis techniques for steady-state and short-circuit conditions will be developed.

1.1 The Distribution System

The distribution system typically starts with the distribution substation that
is fed by one or more subtransmission lines. In some cases, the distribution
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FIGURE 1.1
Major power system components.

substation is fed directly from a high-voltage transmission line in which case,
most likely, there is no subtransmission system. This varies from company to
company. Each distribution substation will serve one or more primary feed-
ers. With a rare exception, the feeders are radial, which means that there is
only one path for power to flow from the distribution substation to the user.

1.2 Distribution Substations

A one-line diagram of a very simple distribution substation is shown in
Figure 1.2.

Although Figure 1.2 displays the simplest of distribution substations, it
does illustrate the major components that will be found in all substations.

1. High-side and low-side switching: In Figure 1.2, the high-voltage
switching is done with a simple switch. Substations that are more
extensive may use high-voltage circuit breakers (CBs) in a variety of
high-voltage bus designs. The low-voltage switching in Figure 1.2
is accomplished with relay-controlled CBs. In many cases, reclosers
will be used in place of the relay—CB combination. Some substation
designs include a low-voltage bus CB in addition to the CBs for each
feeder. As is the case with the high-voltage bus, the low-voltage bus
can take on a variety of designs.

2. Voltage transformation: The primary function of a distribution substa-
tion is to reduce the voltage down to the distribution voltage level. In
Figure 1.2, only one transformer is shown. Other substation designs
will call for two or more three-phase transformers. The substation
transformers can be three-phase units or three single-phase units
connected in a standard connection. There are many “standard” dis-
tribution voltage levels. Some of the common ones are 34.5,23.9, 144,
13.2,12.47kV, and, in older systems, 4.16 kV.

3. Voltage regulation: Because the load on the feeders vary, the voltage
drop between the substation and the user will vary. In order to
maintain the user’s voltages within an acceptable range, the voltage



Introduction to Distribution Systems

Subtransmission line

k Disconnect switch

Fuse

Transformer

Voltage regulator

Meters

I:Fl I:Fl I:Fl I:Fl Circuit breakers

Primary feeders

FIGURE 1.2
Simple distribution substation.

at the substation needs to vary as the load varies. In Figure 1.2, the
voltage is regulated by a “step-type” regulator that will vary the
voltage plus or minus 10% on the low-side bus. Sometimes this func-
tion is accomplished with a “load tap changing” (LTC) transformer.
The LTC changes the taps on the low-voltage windings of the trans-
former as the load varies. Many substation transformers will have
“fixed taps” on the high-voltage winding. These are used when the
source voltage is always either above or below the nominal voltage.
The fixed tap settings can vary the voltage plus or minus 5%. Mostly,
instead of a bus regulator, each feeder will have its own regulator.
This can be in the form of a three-phase gang-operated regulator or
individual phase regulators that operate independently.

4. Protection: The substation must be protected against the occurrence
of short circuits. In the simple design in Figure 1.2, the only auto-
matic protection against short circuits inside the substation is by way
of the high-side fuses on the transformer. As the substation designs
become more complex, more extensive protective schemes will be
employed to protect the transformer, the high- and low-voltage
buses, and any other piece of equipment. Individual feeder CBs or
reclosers are used to provide interruption of short circuits that occur
outside the substation.

5. Metering: Every substation has some form of metering. This may be
as simple as an analog ammeter displaying the present value of sub-
station current as well as the minimum and maximum currents that
have occurred over a specific time period. Digital recording meters
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are becoming very common. These meters record the minimum,
average, and maximum values of current, voltage, power, power
factor, etc., over a specified time range. Typical time ranges are
15min, 30min, and 1h. The digital meters may monitor the output
of each substation transformer and/or the output of each feeder.

A more comprehensive substation layout is shown in Figure 1.3.

The substation in Figure 1.3 has two LTC transformers, serves four distri-
bution feeders, and is fed from two substransmission lines. Under normal
conditions, the CBs are in the following positions:

Circuit breakers closed: X, Y, 1, 3,4, 6
Circuit breakers open: Z, 2, 5

With the breakers in their normal positions, each transformer is served from
a different subtransmission line and serves two feeders. If one of the sub-
transmission lines goes out of service, then breaker X or Y is opened and
breaker Z is closed. Now both transformers are served from the same sub-
transmission line. The transformers are sized such that each transformer
can supply all four feeders under an emergency operating condition. For
example, if transformer T-1 is out of service, then breakers X, 1, and 4 are
opened and breakers 2 and 5 are closed. With that breaker arrangement, all

Line 1

Line 2

FD-2 FD-4

FIGURE 1.3
Two-transformer substation with breaker and a half scheme.
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four feeders are served by transformer T-2. The low-voltage bus arrangement
is referred to as a “breaker and a half scheme,” because three breakers are
required to serve two feeders.

There is an unlimited number of substation configurations possible. It is
up to the substation design engineer to create a design that provides the five
basic functions and provides the most reliable service economically possible.

1.3 Radial Feeders

Radial distribution feeders are characterized by the presence of only one
path for power to flow from the source (“distribution substation”) to each
customer. A typical distribution system consists of one or more distribution
substations consisting of one or more “feeders.” Components of the feeder
may consist of the following:

. Three-phase primary “main” feeder
. Three-phase, two-phase (“V” phase), and single-phase laterals
. Step-type voltage regulators

. In-line transformers

U = W N =

. Shunt capacitor banks

6. Distribution transformers

7. Secondaries

8. Three-phase, two-phase, and single-phase loads

The loading of a distribution feeder is inherently unbalanced because of the
large number of unequal single-phase loads that must be served. An addi-
tional unbalance is introduced by the nonequilateral conductor spacings of
the three-phase overhead and underground line segments.

Because of the nature of the distribution system, conventional power-flow
and short-circuit programs used for transmission system studies are not
adequate. Such programs display poor convergence characteristics for radial
systems. The programs also assume a perfectly balanced system so that a
single-phase equivalent system is used.

If a distribution engineer is to be able to perform accurate power-flow and
short-circuit studies, it is imperative that the distribution feeder be modeled
as accurately as possible. This means that three-phase models of the major
components must be utilized. Three-phase models for the major compo-
nents will be developed in the following chapters. The models will be devel-
oped in the “phase frame” rather than applying the method of symmetrical
components.

Figure 1.4 shows a simple “one-line” diagram of a three-phase feeder.
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FIGURE 1.4
Simple distribution feeder.

Figure 14 illustrates the major components of a distribution system. The
connecting points of the components will be referred to as “nodes.” Note in
the figure that the phasing of the line segments is shown. This is important
if the most accurate models are to be developed.

1.4 Distribution Feeder Map

The analysis of a distribution feeder is important to an engineer in order to
determine the existing operating conditions of a feeder and to be able to play
the “what if” scenarios of future changes to the feeder. Before the engineer
can perform the analysis of a feeder, a detailed map of the feeder must be
available. A sample of such a map is shown in Figure 1.5.

The map in Figure 1.5 contains most of the following information:

1. Lines (overhead and underground)
a. Where
b. Distances
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c. Details
i. Conductor sizes (not on this map)
ii. Phasing
2. Distribution transformers
a. Location
b. kVA rating
c. Phase connection
3. In-line transformers
a. Location
b. kVA rating
c. Connection
4. Shunt capacitors
a. Location
b. kvar rating
c. Phase connection
5. Voltage regulators
a. Location
b. Phase connection
c. Type (not shown on this map)
i. Single-phase
ii. Three-phase
6. Switches
a. Location

b. Normal open/close status

1.5 Distribution Feeder Electrical Characteristics

Information from the map will define the physical location of the vari-
ous devices. Electrical characteristics for each device will have to be
determined before the analysis of the feeder can commence. In order
to determine the electrical characteristics, the following data must be
available:

1. Overhead and underground spacings
2. Conductor tables
a. Geometric mean radius (GMR) (ft)
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b. Diameter (in.)
c. Resistance (Q/mile)
3. Voltage regulators
a. Potential transformer ratios
b. Current transformer ratios
c¢. Compensator settings
i. Voltage level
ii. Bandwidth
iii. R and X settings in volts
4. Transformers
a. kVA rating

b. Voltage ratings

c. Impedance (R and X)

d. No-load power loss
—

1.6 Summary

As the smart grid [1] becomes a reality, it becomes increasingly more important
to be able to accurately model and analyze each component of a distribution
system. There are many different substation designs possible; however, for the
most part, the substation serves one or more radial feeders. Each component of
a feeder must be modeled as accurately as possible in order for the analysis to
have meaning. Sometimes the most difficult task for the engineer is to acquire
all of the necessary data. Feeder maps will contain most of the needed data.
Additional data such as standard pole configurations, specific conductors used
on each line segment, phasing, three-phase transformer connections, and volt-
age regulator settings must come from stored records. The remaining bits of
information are the values of the loads. Chapter 2 will address the loads in a
general sense. Again, when the smart grid, along with smart meters, becomes
a reality, the load values will become much more accurate, which in turn will
make the analysis more accurate. Once all of the data have been acquired, the
analysis can commence by utilizing system models of the various devices that
will be developed in later chapters.
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2

The Nature of Loads

The modeling and analysis of a power system depend upon the “load.” What
is load? The answer to that question depends upon the type of the analysis
that is desired. For example, the steady-state analysis (power-flow study) of
an interconnected transmission system will require a different definition
of load than that is used in the secondary analysis in a distribution feeder.
The problem is that the “load” on a power system is constantly changing.
The closer you are to the customer, the more pronounced will be the ever-
changing load. There is no such thing as a “steady-state” load. To come to
grips with a load, it is first necessary to look at the “load” of an individual
customer.

2.1 Definitions

The load that an individual customer or a group of customers presents to
the distribution system is constantly changing. Every time a light bulb or
an electrical appliance is switched on or off, the load seen by the distribu-
tion feeder changes. To describe the changing load, the following terms are
defined:

1. Demand
* Load averaged over a specific period of time
e Load can be kW, kvar, kVA, and A
* Must include the time interval
¢ Example: The 15-min kW demand is 100 kW
2. Maximum demand
* Greatest of all demands that occur during a specific time
* Must include demand interval, period, and units

e Example: The 15-min maximum kW demand for the week was
150kW

11
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3. Average demand

e The average of the demands over a specified period (day, week,
month, etc.)

* Must include demand interval, period, and units

e Example: The 15-min average kW demand for the month was
350kW

4. Diversified demand

* Sum of demands imposed by a group of loads over a particular
period

* Must include demand interval, period, and units

e Example: The 15-min diversified kW demand in the period
between 9:15 and 9:30 was 200 kW

5. Maximum diversified demand

e Maximum of the sum of the demands imposed by a group of
loads over a particular period

* Must include demand interval, period, and units

e Example: The 15-min maximum diversified kW demand for the
week was 500kW

6. Maximum noncoincident demand

e For a group of loads, the sum of the individual maximum
demands without any restriction that they occur at the same time

* Must include demand interval, period, and units

e Example: The maximum noncoincident 15-min kW demand for
the week was 700kW

7. Demand factor

¢ Ratio of maximum demand to connected load
8. Utilization factor

e Ratio of the maximum demand to rated capacity
9. Load factor

e Ratio of the average demand of any individual customer or a
group of customers over a period to the maximum demand over
the same period

10. Diversity factor

e Ratio of the “maximum noncoincident demand” to the “maximum
diversified demand”

11. Load diversity

e Difference between “maximum noncoincident demand” and the
“maximum diversified demand”
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2.2 Individual Customer Load

Figure 2.1 illustrates how the instantaneous kW load of a customer changes
during two 15-min intervals.

2.2.1 Demand

To define the load, the demand curve is broken into equal time intervals. In
Figure 2.1, the selected time interval is 15min. In each interval, the average
value of the demand is determined. In Figure 2.1, the straight lines represent
the average load in a time interval. The shorter the time interval, the more
accurate will be the value of the load. This process is very similar to numeri-
cal integration. The average value of the load in an interval is defined as the
“15-min kW demand.”

The 24-h 15-min kW demand curve for a customer is shown in Figure 2.2.
This curve is developed from a spreadsheet that gives the 15-min kW demand
for a period of 24 h.

2.2.2 Maximum Demand

The demand curve shown in Figure 2.2 represents a typical residential cus-
tomer. Each bar represents the “15-min kW demand.” Note that during the
24-h period, there is a great variation in the demand. This particular cus-
tomer has three periods in which the kW demand exceeds 6.0kW. The great-
est of these is the “15-min maximum kW demand.” For this customer, the
“15-min maximum kW demand” occurs at 13:15 and has a value of 6.18 kW.
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FIGURE 2.1
Customer demand curve.
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FIGURE 2.2
24-h demand curve for Customer #1.

2.2.3 Average Demand

During the 24-h period, energy (kWh) will be consumed. The energy in kWh
used during each 15-min time interval is computed by:

kWh =(15min kW demand)-—-h 1)

N

The total energy consumed during the day is then the summation of all of
the 15-min interval consumptions. From the spreadsheet, the total energy
consumed during the period by Customer #1 is 58.96 kWh. The “15-min aver-
age kW demand” is computed by:

Total energy  58.96

=246 kKW (2.2)
Hours 24

k I/va verage =

2.2.4 Load Factor

“Load factor” is a term that is often referred to when describing a load. It
is defined as the ratio of the average demand to the maximum demand. In
many ways, load factor gives an indication of how well the utility’s facili-
ties are being utilized. From the utility’s standpoint, the optimal load factor
would be 1.00, because the system has to be designed to handle the maximum
demand. Sometimes, utility companies will encourage industrial customers
to improve their load factor. One method of encouragement is to penalize the
customer on the electric bill for having a low load factor.
For Customer #1 in Figure 2.2, the load factor is computed to be:

kI/Vaverage _ 246
kaaximum 6 1 8

Load factor = =0.40 (2.3)
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2.3 Distribution Transformer Loading

A distribution transformer will provide service to one or more customers.
Each customer will have a demand curve similar to that shown in Figure 2.2.
However, the peaks, valleys, and maximum demands will be different for
each customer. Figures 2.3, 2.4, and 2.5 give the demand curves for the three
additional customers connected to the same distribution transformer.

The load curves for the four customers show that each customer has a
unique loading characteristic. The customers’ individual maximum kW
demand occurs at different times of the day. Customer #3 is the only cus-
tomer who will have a high load factor. A summary of individual loads is
given in Table 2.1.

These four customers demonstrate that there is great diversity between
their loads.

15-min kW demand
O R N WA U ®

Time of day

FIGURE 2.3
24-h demand curve for Customer #2.

15-min kW demand
S = N W s Ul ]

Time of day

FIGURE 2.4
24-h demand curve for Customer #3.
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24-h demand curve for Customer #4.
TABLE 2.1
Individual Customer Load Characteristics
Customer #1 Customer #2 Customer #3 Customer #4
Energy usage (kWh) 58.57 36.46 95.64 42.75
Maximum kW demand 6.18 6.82 4.93 7.05
Time of maximum kW 13:15 11:30 6:45 20:30
demand

Average kW demand 2.44 1.52 3.98 1.78
Load factor 0.40 0.22 0.81 0.25

2.3.1 Diversified Demand

It is assumed that the same distribution transformer serves the four cus-
tomers discussed previously. The sum of the four 15kW demands for each
time interval is the “diversified demand” for the group in that time interval,
and in this case, the distribution transformer. The 15-min diversified kW
demand of the transformer for the day is shown in Figure 2.6. Figure 2.6
shows how the demand curve is beginning to smooth out. There are not
as many significant changes as seen by some of the individual customer
curves.

2.3.2 Maximum Diversified Demand

The transformer demand curve of Figure 2.6 demonstrates how the com-
bined customer loads begin to smooth out the extreme changes of the indi-
vidual loads. For the transformer, the 15-min kW demand exceeds 16 kW
twice. The greater of these is the “15-min maximum diversified kW demand”
of the transformer. It occurs at 17:30 and has a value of 16.16 kW. Note that
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FIGURE 2.7
Transformer load duration curve.

this maximum demand does not occur at the same time as any one of the
individual demands nor is this maximum demand the sum of the individual
maximum demands.

2.3.3 Load Duration Curve

A “load duration curve” can be developed for the transformer serving the
four customers. Sorting the kW demand of the transformer in a descending
order develops the load duration curve shown in Figure 2.7.

The load duration curve plots the 15-min kW demand vs. the percent
of time the transformer operates at or above the specific kW demand. For
example, the load duration curve shows that the transformer operates with
a 15-min kW demand of 12kW or greater 22% of the time. This curve can be
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used to determine whether or not a transformer needs to be replaced as a
result of an overloading condition.

2.3.4 Maximum Noncoincident Demand

The “15-min maximum noncoincident kW demand” for the day is the sum
of the individual customer 15-min maximum kW demands. For the trans-
former in question, the sum of the individual maximums is:

KW paximum noncoincident demand = 6.18+6.82+4.93+7.05=2498 kW  (24)

2.3.5 Diversity Factor

By definition, diversity factor is the ratio of the maximum noncoincident
demand of a group of customers to the maximum diversified demand of the
group. With reference to the transformer serving four customers, the diver-
sity factor for the four customers would be:

Diversity factor = KW ongsimum nonconcdent demana_ 2498 _ 1 5 (2.5)

maximum diversified demand 16.15

The idea behind the diversity factor is that when the maximum demands
of the customers are known, then the maximum diversified demand of a
group of customers can be computed. There will be a different value of the
diversity factor for different numbers of customers. The value computed in
Equation 2.5 would apply for four customers. If there were five customers,
then a load survey would have to be set up to determine the diversity factor
for five customers. This process would have to be repeated for all practical
number of customers. Table 2.2 is an example of the diversity factors for the

TABLE 2.2

Diversity Factors

DF N DF N DF N DF N DF N DF N DF

1.0 1 267 21 29 31 305 41 313 51 315 61 318
160 12 270 22 292 32 306 42 313 52 315 62 318
180 13 274 23 294 33 308 43 314 53 316 63 318
210 14 278 24 29 34 309 44 314 54 316 64 319
220 15 280 25 298 3 310 45 314 55 316 65 3.19
230 16 282 26 300 36 310 46 314 56 317 66 319
240 17 284 27 301 37 311 47 315 57 317 67 3.19
255 18 286 28 3.02 38 312 48 315 58 317 68 3.19
260 19 28 29 304 39 312 49 315 59 318 69 3.20
265 20 290 30 305 40 313 50 315 60 318 70 320

H@OO\]O‘\U‘I»PDJMHZ
o
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number of customers ranging from 1 up to 70. The table was developed from
a database that is different from the four customers that have been discussed
previously.

A graph of the diversity factors is shown in Figure 2.8.

Note in Table 2.2 and Figure 2.8 that the value of the diversity factor has
basically leveled out when the number of customers has reached 70. This
is an important observation because it means, at least for the system from
which these diversity factors were determined, that the diversity factor will
remain constant at 3.20 from 70 or more customers. In other words, as viewed
from the substation, the maximum diversified demand of a feeder can be
predicted by computing the total noncoincident maximum demand of all of
the customers served by the feeder and dividing by 3.2.

2.3.6 Demand Factor

The demand factor can be defined for an individual customer. For example,
the 15-min maximum kW demand of Customer #1 was found to be 6.18 kW.
To determine the demand factor, the total connected load of the customer
needs to be known. The total connected load will be the sum of the ratings
of all of the electrical devices at the customer’s location. Assuming that this
total comes to 35kW, the demand factor is computed to be:

Demand factor = KW masimumdemard__ 618 _ 0.1766 (2.6)

k I/Vtota] connected load 35

The demand factor gives an indication of the percentage of electrical devices
that are on when the maximum demand occurs. The demand factor can be
computed for an individual customer but not for a distribution transformer
or the total feeder.
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Diversity factors.
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2.3.7 Utilization Factor

The utilization factor gives an indication of how well the capacity of an elec-
trical device is being utilized. For example, the transformer serving the four
loads is rated 15kVA. Using the 16.16 kW maximum diversified demand and
assuming a power factor of 0.9, the 15-min maximum kVA demand on the
transformer is computed by dividing the 16.16 kW maximum kW demand by
the power factor and would be 1796 kVA. The utilization factor is computed
to be:

kVAmaxim umdemand __ 1 796

=1.197 2.7
k VAtransformer rating 15 ( )

Utilization factor =

2.3.8 Load Diversity

Load diversity is defined as the difference between the noncoincident maxi-
mum demand and the maximum diversified demand. For the transformer in
question, the load diversity is computed to be:

Load diversity =24.97-16.16 = 8.81kW kVA 2.8)

2.4 Feeder Load

The load that a feeder serves will display a smoothed-out demand curve as
shown in Figure 2.9.

14,000.00

12,000.00

10,000.00

15-min kW demand

Time of day

FIGURE 2.9
Feeder demand curve.
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The feeder demand curve does not display any of the abrupt changes
in demand of an individual customer demand curve or the semi-abrupt
changes in the demand curve of a transformer. The simple explanation for
this is that with several hundred customers served by the feeder, the odds
are good that as one customer is turning off a light bulb, another customer
will be turning a light bulb on. The feeder load, therefore, does not experi-
ence a jump as would be seen in the individual customer’s demand curve.

2.4.1 Load Allocation

In the analysis of a distribution feeder, “load” data will have to be speci-
tied. The data provided will depend upon how detailed the feeder is to
be modeled and the availability of customer load data. The most compre-
hensive model of a feeder will represent every distribution transformer.
When this is the case, the load allocated to each transformer needs to be
determined.

2.4.1.1 Application of Diversity Factors

The definition of the diversity factor (DF) is the ratio of the maximum
noncoincident demand to the maximum diversified demand. A table of
diversity factors is shown in Table 2.2. When such a table is available, it is
possible to determine the maximum diversified demand of a group of cus-
tomers such as those served by a distribution transformer. That is, the maxi-
mum diversified demand can be computed by:

kW _ k Wmaximum noncoincident demand 29
maximum diversified demand — ( . )
DF, number of customers

This maximum diversified demand becomes the allocated “load” for the
transformer.

2.4.1.2 Load Survey

Many times, the maximum demand of individual customers will be known
either from metering or from a knowledge of the energy (kWh) consumed by
the customer. Some utility companies will perform a load survey of similar
customers to determine the relationship between the energy consumption in
kWh and the maximum kW demand. Such a load survey requires the instal-
lation of a demand meter at each customer’s location. The meter can be the
same type as is used to develop the demand curves previously discussed, or
it can be a simple meter that only records the maximum demand during the
period. At the end of the survey period, the maximum demand vs. kWh for
each customer can be plotted on a common graph. Linear regression is used
to determine the equation of a straight line that gives the kW demand as a
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FIGURE 2.10
kW demand vs. kWh for residential customers.

function of kWh. The plot of points for 15 customers along with the resulting
equation derived from a linear regression algorithm is shown in Figure 2.10.
The straight-line equation derived is:

KW aximum demana = 0.1058 + 0.005014 - kWh (2.10)

Knowing the maximum demand for each customer is the first step in develop-
ing a table of diversity factors as shown in Table 2.2. The next step is to perform a
load survey where the maximum diversified demand of groups of customers is
metered. This will involve selecting a series of locations where demand meters
can be placed that will record the maximum demand for groups of customers
ranging from at least 2-70. At each meter location, the maximum demand of all
downstream customers must also be known. With that data, the diversity fac-
tor can be computed for the given number of downstream customers.

Example 2.1

A single-phase lateral provides service to three distribution transform-
ers as shown in Figure 2.11.

The energy in kWh consumed by each customer during a month is
known. A load survey has been conducted for customers in this class,
and it has been found that the customer 15-min maximum kW demand
is given by the equation:

kWemana =0.2+0.008- kWh kW
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The kWh consumed by Customer #1 is 1523kWh. The 15-min maximum
kW demand for Customer #1 is then computed as:

kW, =0.2+0.008-1523=12.4 kW

The results of this calculation for the remainder of the customers are
summarized in the following table by transformer.

Transformer T1:

Customer #1 #2 #3 #4 #5
kWh 1523 1645 1984 1590 1456
kW 12.4 13.4 16.1 12.9 11.9

Transformer T2:

Customer #6 #7 #8 #9 #10 #11
kWh 1235 1587 1698 1745 2015 1765
kW 10.1 129 13.8 14.2 16.3 14.3

Transformer T3:

Customer  #12 #13 #14 #15 #16 #17 #18

kWh 2098 1856 2058 2265 2135 1985 2103
kW 170 151 16.7 183 173 161 17.0

1. Determine for each transformer the 15-min noncoincident
maximum kW demand, and using the Table of Diversity Factors
in Table 2.2, determine the 15-min maximum diversified kW
demand.

KW imaximum noncoincident demand = 12.4+13.4+16.1+12.9 +11.9 = 66.6 kW

T1: KW . :
: w. maximum nonconcident demand
k maximum diversified demand = DF. =30.3 kW
5
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KW maximum noncoincident demand = 10.1+12.9+13.8+14.2+16.3+14.3=81.6 kW

T2: kW,
kaaximum iversified demand = ‘maximum nonconcident demand =354 kW
di fied d d D F6
KW aximum noncoincident demand = 17.0+15.1+16.7+18.3+17.3+16.1+17.0=117.4 kW
T3:

k Wmaximu.m nonconcident demand =489 kW
DF,

k Wmaximum diversified demand =

Based upon the 15-min maximum kW diversified demand on each trans-
former and an assumed power factor of 0.9, the 15-min maximum kVA
diversified demand on each transformer would be:

k VATl-maximum diversified demand = ﬂ =33.6 kVA
0.9

k VATZ-maXimum diversified demand = % =394 kVA

k VATS-maXimum diversified demand = % =544 kVA

The kVA ratings selected for the three transformers would be 25, 37.5,
and 50kVA, respectively. With those selections, only transformer T1
would experience a significant maximum kVA demand greater than its
rating (135%).

2. Determine the 15-min noncoincident maximum kW demand
and 15-min maximum diversified kW demand for each of the
line segments.

Segment N1 to N2: The maximum noncoincident kW demand is the
sum of the maximum demands of all 18 customers.

kaaximum noncoincident demand = 66.6+81.6+117.4=265.6 kW

The maximum diversified kW demand is computed by using the
diversity factor for 18 customers.

265.5
k Wmaxjmum liversified demand = 5 o, 92.8 kKW
d ified d d 286

Segment N2 to N3: This line segment “sees” 13 customers. The
noncoincident maximum demand is the sum of customers” number
6 through 18. The diversity factor for 13 (2.74) is used to compute the
maximum diversified kW demand.

kaaximum noncoincident demand = 81.6+117.4=199.0 kW

199.0
kaaXimum liversified demand = 5 5 — 72.6 kW
el ified de d 274
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Segment N3 to N4: This line segment “sees” the same noncoincident
demand and diversified demand as that of transformer T3.

kaaximum noncoincident demand = 117.4=117.4 kW

kaaximum diversified demand = % =489 kW

Example 2.1 demonstrates that Kirchhoff’s Current Law (KCL) is not obeyed
when the maximum diversified demands are used as the “load” flowing
through the line segments and through the transformers. For example, at
node N1, the maximum diversified demand flowing down the line segment
NI1-N2 is 92.8kW and the maximum diversified demand flowing through
transformer T1 is 30.3kW. KCL would then predict that the maximum diver-
sified demand flowing down line segment N2-N3 would be the difference
of these or 62.5kW. However, the calculations for the maximum diversified
demand in that segment was computed to be 72.6kW. The explanation for
this is that the maximum diversified demands for the line segments and
transformers do not necessarily occur at the same time. At the time that the
line segment N2-N3 is experiencing its maximum diversified demand, line
segment N1-N2 and transformer T1 are not at their maximum values. All
that can be said is that at the time segment that N2-N3 is experiencing its
maximum diversified demand, the difference between the actual demand on
the line segment N1-N2 and the demand of transformer T1 will be 72.6 kW.
There will be an infinite amount of combinations of line flow down N1-N2
and through transformer T1, which will produce the maximum diversified
demand of 72.6 kW on line N2-N3.

2.4.1.3 Transformer Load Management

A transformer load management program is used by utilities to determine
the loading on distribution transformers based upon a knowledge of the
kWh supplied by the transformer during a peak loading month. The pro-
gram is primarily used to determine when a distribution transformer needs
to be changed out owing to a projected overloading condition. The results
of the program can also be used to allocate loads to transformers for feeder
analysis purposes.

The transformer load management program relates the maximum diversi-
fied demand of a distribution transformer to the total kWh supplied by the
transformer during a specific month. The usual relationship is the equation
of a straight line. Such an equation is determined from a load survey. This
type of load survey meters the maximum demand on the transformer in
addition to the total energy in kWh of all of the customers connected to the
transformer. With the information available from several sample transform-
ers, a curve similar to that shown in Figure 2.10 can be developed, and the
constants of the straight-line equation can then be computed. This method
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has the advantage because the utility will have the kWh consumed by each
customer every month in the billing database. As long as the utility knows
as to which customers are connected to each transformer, by using the devel-
oped equation the maximum diversified demand (allocated load) on each
transformer on a feeder can be determined for each billing period.

2.4.1.4 Metered Feeder Maximum Demand

The major disadvantage of allocating load using the diversity factors is that
most utilities would not have a table of diversity factors. The process of devel-
oping such a table is generally not cost beneficial. The major disadvantage of
the transformer load management method is that a database is required that
specifies which transformers serve which customers. Again, this database is
not always available.

Allocating load based upon the metered readings in the substation requires
the least amount of data. Most feeders will have metering in the substation
that will, at a minimum, give either the total three-phase maximum diversi-
fied kW or kVA demand and/or the maximum current per phase during a
month. The kVA ratings of all distribution transformers is always known for
a feeder. The metered readings can be allocated to each transformer based
upon the transformer rating. An “allocation factor” (AF) can be determined
based upon the metered three-phase kW or kVA demand and the total con-
nected distribution transformer kVA.

AF = KVAmetered demand 211
k VAtotaI kVA rating

where kVAikvaraing = Sum of the kVA ratings of all distribution trans-
formers.
The allocated load per transformer is then determined by:

k VAtransformer demand = AF -k VAtrans[ormer rating (212)

The transformer demand will be either kW or kVA depending upon the
metered quantity.

When the kW or kVA is metered by phase, the load can be allocated by
phase, where it will be necessary to know the phasing of each distribution
transformer.

When the maximum current per phase is metered, the load allocated to
each distribution transformer can be done by assuming nominal voltage at
the substation and then computing the resulting kVA. The load allocation
will now follow the same procedure as outlined earlier.

If there is no metered information on the reactive power or power factor of
the feeder, a power factor will have to be assumed for each transformer load.
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Modern substations will have microprocessor-based metering that will
provide kW, kvar, kVA, power factor, and current per phase. With this data,
the reactive power can also be allocated. Because the metered data at the
substation will include losses, an iterative process will have to be followed,
so that the allocated load plus losses will equal the metered readings.

Example 2.2

Assume that the metered maximum diversified kW demand for the sys-
tem of Example 2.1 is 92.9kW. Allocate this load according to the kVA
ratings of the three transformers.

kVAi =25+37.5+50 = 1125

Fe 92.9

=0.8258 kW/kVA
1125

The allocated kW for each transformer becomes:
T1: kW; =0.8258-25=20.64 kW
T2: kW, =0.8258-37.5=30.97 kW

T3: kW, =0.8258-50=41.29 kW

2.4.1.5 What Method to Use?

The following four different methods have been presented for allocating
load to distribution transformers:

Application of diversity factors
* Load survey

Transformer load management

Metered feeder maximum demand

The method to be used depends upon the purpose of the analysis. If the
purpose of the analysis is to determine as closely as possible the maximum
demand on a distribution transformer, then either the diversity factor or the
transformer load management method can be used. Neither of these meth-
ods should be employed when the analysis of the total feeder is to be per-
formed. The problem is that using either of those methods will result in a
much larger maximum diversified demand at the substation than that actu-
ally exists. When the total feeder is to be analyzed, the only method that
gives good results is that of allocating load based upon the kVA ratings of
the transformers.
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2.4.2 Voltage Drop Calculations Using Allocated Loads

The voltage drops down line segments and through distribution transform-
ers are of interest to the distribution engineer. Four different methods of
allocating loads have been presented. The various voltage drops can be com-
puted using the loads allocated by the three methods. For these studies, it is
assumed that the allocated loads will be modeled as constant real power and
reactive power.

2.4.2.1 Application of Diversity Factors

The loads allocated to a line segment or a distribution transformer using
diversity factors are a function of the total number of customers “down-
stream” from the line segment or distribution transformer. The application
of the diversity factors was demonstrated in Example 2.1. With a knowl-
edge of the allocated loads flowing in the line segments and through the
transformers and the impedances, the voltage drops can be computed. The
assumption is that the allocated loads will be constant real power and reac-
tive power. To avoid an iterative solution, the voltage at the source end is
assumed and the voltage drops are calculated from that point to the last
transformer. Example 2.3 demonstrates how the method of load allocation
using diversity factors is applied. The same system and allocated loads from
Example 2.1 are used in Example 2.3.

Example 2.3

For the system in Example 2.1, assume the voltage at N1 is 2400V, and
compute the secondary voltages on the three transformers using the
diversity factors.

The system in Example 2.1 including segment distances is shown in
Figure 2.12.

Assume that the power factor of the loads is 0.9 lagging.

The impedance of the lines are: z = 0.3 + j0.6 /mile
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FIGURE 2.12
Single-phase lateral with distances.
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The ratings of the transformers are:
T1: 25kVA, 2400-240V, Z = 1.8/40%
T2: 375kVA, 2400240V, Z = 1.9/45%
T3: 50kVA, 2400-240V, Z =2.0/50%
From Example 2.1, the maximum diversified kW demands were com-
puted. Using the 0.9 lagging power factor, the maximum diversified kW
and kVA demands for the line segments and transformers are:
Segment N1-N2: P, =929kW S;,=929 +j45.0kVA
Segment N2-N3: P,;=72.6kW S,;=72.6 +/35.2kVA
Segment N3-N4: P, =49.0kW 5;,=49.0 +;23.7kVA
Transformer T1: Pp =30.3kW S;;=30.3 +j14.7kVA
Transformer T2: Py, =35.5kW S;,=35.5+j172kVA
Transformer T3: P;=49.0kW S;;=49.0 +23.7kVA

Convert transformer impedances to ohms referred to the high-voltage side.

kV?-1000 _ 2.4%-1000
kVA, 25

=230.4 Q

TI: Zbasel =
Zr = (0‘018@)-230.4 =3.18+j2.67 Q

kV?-1000 _ 2.4%-1000
kVA, 37.5

=153.6 Q

T2: ZbaseZ =

Zry = (0.019@) -153.6=2.06+j2.06 Q

kV?-1000 _ 2.4%-1000
kVA; 50

=1152 Q

T3: Zbaxe3 =

Zrs= (0.02@) -115.2=1.48+;1.77 Q

Compute the line impedances:

N1-N2:Zy, =(0.3+j0.6)-%=0.2841+j0.5682 Q

N2-N3: Zy =(0.3+;0.6)- % =0.0284+ j0.0568 Q

N3-N4:2Z,, =(O.3+j0.6)~%=0.0426+j0.0852 Q

Calculate the current flowing in segment N1-N2:

I, = kW + jkvar _ 92.9+j45.0 —43.0/-25.84 A
KV 24/0
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Calculate the voltage at N2:
VZ = ‘/1 _ZlZ '112

V, =2400/0—(0.2841+ j0.5682)-43.0/—25.84 =2378.4/-0.4 V

Calculate the current flowing into T1:

I, = kW + jkvar _ 30.3+j14.7 —14.16/-26.24 A
1% 2.378/-0.4

Calculate the secondary voltage referred to the high side:

V=V, = Zry I

Vr1 =2378.4/-04- (3.18 + j2.67) -14.16/-26.24 = 2321.5/-0.8 V

Compute the secondary voltage by dividing by the turns ratio of 10:

2321.5/-0.8
Viow == ——=232.15/-08 V

Calculate the current flowing in line section N2-N3:

I = kW + jkvar | _|72.6+/35.2 —33.9/-26.24 A
kv 2.378/-0.4

Calculate the voltage at N3:
Vi=Vo—Zp I3

V; =2378.4/-0.4—(0.0284+ j0.0568)-33.9/-26.24 =2376.7/-0.4 V

Calculate the current flowing into T2:

= kW + jkvar _ 35.5+j17.2 —16.58/-2627 A
kv 2.3767/-0.4

Calculate the secondary voltage referred to the high side:

VTZ = V3 _ZTZ 'ITZ
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Vr, =2376.7/-0.4—(2.06+j2.06)-16.58/-26.27 = 2331.1/-0.8 V

Compute the secondary voltage by dividing by the turns ratio of 10:

2331.1/-0.8

Viowr, = 10

=233.1/-0.8V

Calculate the current flowing in line section N3-N4:

I = kW + jkvar _ 49.0+523.7 —22.9/-2627 A
kv 2.3767/-0.4

Calculate the voltage at N4:

V4 :VS_Z34'IB4

V,=2376.7/-0.4—(0.0426+0.0852)-22.9/-26.27 =2375.0/-0.5 V

The current flowing into T3 is the same as the current from N3 to N4:

Ir3=2291/-26.30 A

Calculate the secondary voltage referred to the high side:

VT3 :V4 _ZTS 'IT3

Vrs =2375.0/-0.5—(1.48+ j1.77)-22.9/ -26.27 =2326.9/ 1.0 V

Compute the secondary voltage by dividing by the turns ratio of 10:

2326.9/-1.0
Viowrs = T— =2327/-10V

Calculate the percent voltage drop to the secondary of transformer T3.

Use the secondary voltage referred to the high side:

Vi, = U —1VT3] 00 2 2400=2326.11 0 5 (17890,
drep A 2400 :

31
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2.4.2.2 load Allocation Based upon Transformer Ratings

When only the ratings of the distribution transformers are known, the feeder
can be allocated based upon the metered demand and the transformer kVA
ratings. This method was discussed in Section 2.3.3. Example 2.4 demon-
strates this method.

Example 2.4

For the system in Example 2.1, assume the voltage at N1 is 2400V, and
compute the secondary voltages on the three transformers allocating the
loads based upon the transformer ratings. Assume that the metered kW
demand at N1 is 92.9kW.

The impedances of the line segments and transformers are the same
as in Example 2.3.

Assume the load power factor is 0.9 lagging, and compute the kVA
demand at N1 from the metered demand:

Sp= % /cos™(0.9)=92.9+ j45.0=103.2/25.84 kVA

Calculate the allocation factor:

_103.2/25.84

=————=009175/25.84
25+37.5+50 —

Allocate the loads to each transformer:

Sr1=AF -kVAr, = (0.9175/25.84) -25=20.6+;10.0 kVA
Sra =AF -kVAr, = (0.9175/25.84) -37.5=31.0+j15.0 kVA

Sr3=AF-kVAr; = (0.9175/25.84)~50 =41.3+;20.0 kVA
Calculate the line flows:

S1 =S5r1 + Sr2 + 573 =929+ j45.0 kVA
523 = 5]"2 +ST3 = 723"1‘ ]35 kVA

534 = ST3 = 413+]200 kVA

Using these values of line flows and flows into transformers, the proce-
dure for computing the transformer secondary voltages is exactly the
same as in Example 2.3. When this procedure is followed, the node and
secondary transformer voltages are:

V, =2378.1/-0.4 V, Viowr, =234.0/-0.6 V
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V3 =2376.4/-0.4 V, Viowr, =233.7-0.8 V

V, =23749/-0.5V, Viowr; =233.5/-09 V

The percent voltage drop for this case is:

_jvﬁyﬁv&ﬁ_100::2400—23348

Vdrop = -100=2.7179%
Vil 2400

2.5 Summary

This chapter has demonstrated the nature of the loads on a distribution
feeder. There is a great diversity between individual customer demands,
but as the demand is monitored on line segments working back toward the
substation, the effect of the diversity between demands becomes very light.
It was shown that the effect of diversity between customer demands must
be taken into account when the demand on a distribution transformer is
computed. The effect of diversity for short laterals can be taken into account
in determining the maximum flow on the lateral. For the diversity factors of
Table 2.2, it was shown that when the number of customers exceeds 70, the
effect of diversity has pretty much disappeared. This is evidenced by the fact
that the diversity factor has become almost constant as the number of cus-
tomers approached 70. It must be understood that the number 70 will apply
only to the diversity factors of Table 2.2. If a utility is going to use diver-
sity factors, then that utility must perform a comprehensive load survey to
develop the table of diversity factors that apply to that particular system.

Examples 2.3 and 2.4 show that the final node and transformer voltages are
approximately the same. There is very little difference between the voltages
when the loads were allocated using the diversity factors and when the loads
were allocated based upon the transformer kVA ratings.

Problems

2.1 Shown below are the 15-min kW demands for four customers between
the hours of 17:00 and 21:00. A 25-kVA single-phase transformer serves the
four customers.

a. For each of the customers, determine:
1. Maximum 15-min kW demand

2. Average 15-min kW demand
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Customer #1 Customer #2 Customer #3 Customer #4

Time kw kw kw kW
17:00 8.81 4.96 11.04 1.44
17:15 2.12 3.16 7.04 1.62
17:30 9.48 7.08 7.68 2.46
17:45 7.16 5.08 6.08 0.84
18:00 6.04 3.12 4.32 1.12
18:15 9.88 6.56 5.12 2.24
18:30 4.68 6.88 6.56 1.12
18:45 5.12 3.84 8.48 2.24
19:00 10.44 4.44 4.12 1.12
19:15 3.72 8.52 3.68 0.96
19:30 8.72 4.52 0.32 2.56
19:45 10.84 2.92 3.04 1.28
20:00 6.96 2.08 2.72 1.92
20:15 6.62 1.48 3.24 1.12
20:30 7.04 2.33 4.16 1.76
20:45 6.69 1.89 4.96 2.72
21:00 1.88 1.64 4.32 241

3. Total kWh usage in the time period

4. Load factor
b. For the 25-kVA transformer, determine:

1. Maximum 15-min diversified demand
Maximum 15-min noncoincident demand
Utilization factor (assume unity power factor)
Diversity factor
Load diversity

ook e

c. Plot the load duration curve for the transformer

2.2 Two transformers each serving four customers are shown in Figure 2.13:

Tap

S 3¢
s 3¢
3¢
G« 3%

FIGURE 2.13
System for Problem 2.2.
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The following table gives the time interval and kVA demand of the four
customer demands during the peak load period of the year. Assume a power
factor of 0.9 lagging.

Time #1 #2 #3 #4 #5 #6 #7 #8

3:00-3:30 10 0 10 5 15 10 50 30
3:30-4:00 20 25 15 20 25 20 30 40
4:00-4:30 5 30 30 15 10 30 10 10
4:30-5:00 0 10 20 10 13 40 25 50
5:00-5:30 15 5 5 25 30 30 15 5
5:30-6:00 15 15 10 10 5 20 30 25
6:00-6:30 5 25 25 15 10 10 30 25
6:30-7:00 10 50 15 30 15 5 10 30

a. For each transformer, determine the following;:
1. 30-min maximum kVA demand
2. Noncoincident maximum kVA demand
3. Load factor
4. Diversity factor
5. Suggested transformer rating (50, 75, 100, 167)
6. Utilization factor
7. Energy (kWh) during the 4h period
D

etermine the maximum diversified 30-min kVA demand at the “Tap”

b.

2.3 Two single-phase transformers serving 12 customers are shown in
Figure 2.14.

The 15-min kW demands for the 12 customers between the hours of 5:00 pm
and 9:00 pm are given in the following tables. Assume a load power factor

N1 5000” N2 2500”
JTWN i

i

SAE A

k

o &—

o <
S <
oo—
N o—
o «—
%
%

H
—
—
—
N

FIGURE 2.14
Circuit for Problem 2.3.
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of 0.95 lagging. The impedance of the lines are z = 0.306 + j0.6272 ©/mile. The
voltage at node N1 is 2500/0 V.

Transformer ratings:

T1: 25kVA 2400-240V  Z,,=0.018/40
T2: 37.5kVA  2400-240V 7, =0.020/50

. Determine the maximum kW demand for each customer

. Determine the average kW demand for each customer

. Determine the kWH consumed by each customer in this time period
. Determine the load factor for each customer

. Determine the maximum diversified demand for each transformer

-~ 0 & n T o

. Determine the maximum noncoincident demand for each
transformer

g. Determine the utilization factor (assume 1.0 power factor) for each
transformer

h. Determine the diversity factor of the load for each transformer
i. Determine the maximum diversified demand at Node N1

j. Compute the secondary voltage for each transformer taking diver-
sity into account

Transformer #1—25kVA

#1 #2 #3 #4 #5
Time kW kW kW kW kW
05:00 213 0.19 411 8.68 0.39
05:15 2.09 0.52 411 9.26 0.36
05:30 2.15 0.24 4.24 8.55 0.43
05:45 2.52 1.80 4.04 9.09 0.33
06:00 3.25 0.69 4.22 9.34 0.46
06:15 3.26 0.24 427 8.22 0.34
06:30 3.22 0.54 4.29 9.57 0.44
06:45 2.27 5.34 493 8.45 0.36
07:00 2.24 5.81 3.72 10.29 0.38
07:15 2.20 522 3.64 11.26 0.39
07:30 2.08 2.12 3.35 9.25 5.66
07:45 213 0.86 2.89 10.21 6.37
08:00 2.12 0.39 2.55 10.41 4.17
08:15 2.08 0.29 3.00 8.31 0.85
08:30 2.10 2.57 2.76 9.09 1.67
08:45 3.81 0.37 2.53 9.58 1.30

09:00 2.04 0.21 2.40 7.88 2.70




The Nature of Loads

Transformer #2—37.5kVA

#6 #7 #8 #9 #10 #11 #12
Time kW kW kW kW kW kW kW
05:00 0.87 2.75 0.63 8.73 0.48 9.62 2.55
05:15 0.91 5.35 1.62 0.19 0.40 7.98 1.72
05:30 1.56 13.39 0.19 5.72 0.70 8.72 2.25
05:45 0.97 13.38 0.05 3.28 0.42 8.82 2.38
06:00 0.76 13.23 1.51 1.26 3.01 7.47 1.73
06:15 1.10 13.48 0.05 7.99 4.92 11.60 242
06:30 0.79 294 0.66 0.22 3.58 11.78 224
06:45 0.60 2.78 0.52 8.97 6.58 8.83 1.74
07:00 0.60 2.89 1.80 0.11 7.96 9.21 2.18
07:15 0.87 2.75 0.07 7.93 6.80 7.65 1.98
07:30 0.47 2.60 0.16 1.07 7.42 7.78 2.19
07:45 0.72 2.71 0.12 1.35 8.99 6.27 2.63
08:00 1.00 3.04 1.39 6.51 8.98 10.92 1.59
08:15 0.47 1.65 0.46 0.18 7.99 5.60 1.81
08:30 0.44 2.16 0.53 2.24 8.01 7.74 2.13
08:45 0.95 0.88 0.56 0.11 7.75 11.72 1.63
09:00 0.79 1.58 1.36 0.95 8.19 12.23 1.68

37

2.4 On a different day, the metered 15-min kW demand at node N1 for the
system of Problem 2.3 is 72.43kW. Assume a power factor of 0.95 lagging.
Allocate the metered demand to each transformer based upon the trans-
former kVA rating. Assume the loads are constant current, and compute the
secondary voltage for each transformer.

2.5 A single-phase lateral serves four transformers as shown in Figure 2.15.
Assume that each customer’s maximum demand is 15.5kW +j7.5kvar. The
impedance of the single-phase lateral is z = 0.4421 + j0.3213 /1000 ft. The

four transformers are rated as:

T1 and T2: 37.5kVA, 2400240V, Z = 0.01 + j0.03 per unit
T3 and T4: 50kVA, 2400-240V, Z = 0.015 + j0.035 per unit

1 380"

FIGURE 2.15

System for Problem 2.5.

4707

T1

750

T2

820"

T3 T4
7 9
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Use the diversity factors found in Table 2.2 and determine:

a.

b.

28

The 15-min maximum diversified kW and kvar demands on each
transformer

The 15-min maximum diversified kW and kvar demands for each
line section

. If the voltage at Node 1 is 2600/0V, determine the voltage at nodes

2,3,4,5 6,7 8 and 9. In calculating the voltages, take into account
diversity using the answers from (1) and (b) above.

. Use the 15-min maximum diversified demands at the lateral tap

(section 1-2) from part (b). Divide these maximum demands by 18
(number of customers), and assign that as the “instantaneous load”
for each customer. Now calculate the voltages at all of the nodes
listed in part (c) using the instantaneous loads.

. Repeat part (d) above except assuming that the loads are “constant

current”. To do this, take the current flowing from node 1 to node
2 from part (d) and divide by 18 (number of customers) and assign
that as the “instantaneous constant current load” for each customer.
Again, calculate all of the voltages.

. Take the maximum diversified demand from node 1 to node 2, and

“allocate” that out to each of the four transformers based upon their
kVA ratings. To do this, take the maximum diversified demand and
divide by 175 (total kVA of the four transformers). Now multiply
each transformer kVA rating by that number to obtain the amount
of the total diversified demand is being served by each transformer.
Again, calculate all of the voltages.

Compute the percent differences in the voltages for parts (d), (e), and
(f) at each of the nodes using part (c) answer as the base.
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Approximate Method of Analysis

A distribution feeder provides service to unbalanced three-phase, two-
phase, and single-phase loads over untransposed three-phase, two-phase,
and single-phase line segments. This combination leads to the three-phase
line currents and the line voltages being unbalanced. To analyze these condi-
tions as precisely as possible, it will be necessary to model all three phases
of the feeder as accurately as possible. However, many times, only a “ball-
park” answer is needed. When this is the case, some approximate methods
of modeling and analysis can be employed. This chapter focuses on develop-
ing some of the approximate methods. Later chapters discuss the develop-
ment of the exact models and analysis. By knowing the “ballpark” answer,
the results of a computer exact analysis must be in the same “ballpark.” It is
necessary that the engineer running a computer analysis will know whether
the computer result is correct.

All of the approximate methods of modeling and analysis will assume per-
fectly balanced three-phase systems. It will be assumed that all loads are bal-
anced three-phase and all line segments will be three-phase and perfectly
transposed. With these assumptions, a single line-to-neutral equivalent cir-
cuit for the feeder will be used.

3.1 Voltage Drop

A line-to-neutral equivalent circuit of a three-phase line segment serving a
balanced three-phase load is shown in Figure 3.1.
Kirchhoff’s Voltage Law applied to the circuit in Figure 3.1 gives:

Ve=Vi+(R+jX)- 1=V, +R-T+jX-I 3.1

The phasor diagram for Equation 3.1 is shown in Figure 3.2.

In Figure 3.2, the phasor for the voltage drop through the line resistance
(RI) is shown in phase with the current phasor, and the phasor for the volt-
age drop through the reactance is shown leading the current phasor by 90°.
The dashed lines in Figure 3.2 represent the real and imaginary parts of the
impedance (ZI) drop. The voltage drop down the line is defined as the differ-
ence between the magnitudes of the source and the load voltages.

39
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Vs Vi

FIGURE 3.1
Line-to-neutral equivalent circuit.

FIGURE 3.2
Phasor diagram.

Vdrop = |VS| - |VL‘ (32)

The angle between the source voltage and the load voltage (§) is very small.
Because of that, the voltage drop between the source and load voltage is
approximately equal to the real part of the impedance drop. That is:

Varop =Re(Z - 1) 3-3)

For the purposes of this chapter, Equation 3.3 will be used as the definition
of voltage drop.

Example 3.1

In Example 2.3, the impedance of the first line segment is:

Z1, =0.2841+ j0.5682 Q
The current flowing through the line segment is:
I, =42.985/—-25.8419 A

The voltage at node N1 is:
V; =2400/0.0 V

The exact voltage at node N2 is computed to be:

V> =2400/0.0—-(0.2841+ j0.5682)-43.0093/ —25.8419 = 2378.4098/ - 0.4015 V



Approximate Method of Analysis 41

The voltage drop between the nodes is then:
Virop = 2400.0000 - 2378.4098 = 21.5902 V

Computing the voltage drop according to Equation 3.3 gives:
Virop = Rel(0.2841+ j0.5682)-43.0093/ - 25.8419J= 21.6486 V

_ 21.5902-21.6486
21.5902

Error -100=-0.27%

This example demonstrates the very small error in computing voltage
drop when using the approximate equation (Equation 3.3).

3.2 Line Impedance

For the approximate modeling of a line segment, it will be assumed that
the line segment is transposed. With this assumption, only the positive
sequence impedance of the line segment needs to be determined. A typical
three-phase line configuration is shown in Figure 3.3.

I D,
L D,y * Dy,

‘1 ‘1 ‘1

e

FIGURE 3.3
Three-phase line configuration.
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The equation for the positive sequence impedance for the configuration
shown in Figure 3.3 is given by Glover and Sarma [1]:

Z positive = T+ j0.12134- m(GDAZQJ Q/mile (34)

where
r = conductor resistance (from tables) Q/mile

D, =3Dy Dy D (i) 65
GMR = conductor geometric mean radius (from tables) (ft)

Example 3.2

A three-phase line segment has the configuration as shown in Figure 3.3.
The spacings between conductors are:

D, =25ft D, =45ft D,=70ft

The conductors of the line are 336,400 26/7 ACSR.
Determine the positive sequence impedance of the line in Q/mile:

Solution: From the table of conductor data in Appendix A:

r=0.306Q/mile
GMR =0.0244 ft

Compute the equivalent spacing:
D., =%25-45-7.0 =4.2863 ft

Using Equation 3.4:

4.2863
0.0244

Z positive = 0.306+j0.12134~]n( J: 0.306 +j0.6276 Q/mile

3.3 “K” Factors

A first approximation for calculating the voltage drop along a line segment
is given by Equation 3.3. Another approximation is made by employing a
“K” factor. There will be two types of K factors: one for voltage drop and the
other for voltage rise calculations.
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3.3.1 K, Factor

The Ky, factor is defined as:

Vdropy,

—_— 3.6)
kVA — mile

drop =

where Vdropg, = Vdropos

LN, nominal

The K,,,, factor is determined by computing the percent voltage drop down a
line that is one mile long and serving a balanced three-phase load of 1kVA.
The percent voltage drop is referenced to the nominal voltage of the line. To
calculate this factor, the power factor of the load must be assumed.

Example 3.3

For the line in Example 3.2, compute the K,,, factor assuming a load
power factor of 0.9 lagging and a nominal voltage of 12.47kV (line-to-line).

Solution: The impedance of 1 mile of line was computed to be:

Z =0.306 +;0.6276 Q

The current taken by 1kVA at 0.9 lagging power factor is given by:

kVA=1.0
kVA 1
I=——"" /—cos}(PF)=—————/—cos(0.9)=0.0463/-25.84 A
3 kv, /—cos” (PF) ﬁ.12.47¥

The voltage drop is computed to be:

Virop =Re[ Z - T] = Re[ (0.306+ j0.6276)- 0.0463/ — 25.84 | = 0.0254 V

The nominal line-to-neutral voltage is:

12,470
Vin =— =7199.5579 V
=T
The Ky, factor is then:
drop = 00254 100 =0.00035304% drop/kVA-mile
7199.5579

The K, factor computed in Example 3.3 is for the 336,400 26/7 ACSR
conductor with the conductor spacings defined in Example 3.2, a nominal
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voltage of 12.47kV, and a load power factor of 0.9 lagging. Unique K,,,,
factors can be determined for all standard conductors, spacings, and
voltages. Fortunately, most utilities will have a set of standard conduc-
tors, standard conductor spacings, and one or two standard distribution
voltages. Because of this, a simple spreadsheet program can be written
that will compute the K, factors for the standard configurations. The
assumed power factor of 0.9 lagging is a good approximation of the
power factor for a feeder serving a predominately residential load.

The K,,, factor can be used to quickly compute the approximate
voltage drop down a line section. For example, assume that a load of
7500kVA is to be served at a point 1.5 miles from the substation. Using
the K, factor computed in Example 3.3, the percent voltage drop down
the line segment is computed to be:

Viarop = Karop - kKVA - mile =0.00035291-7500-1.5=3.9717%

This example demonstrates that a load of 7500kVA can be served 1.5
miles from the substation, with a resulting voltage drop of 3.9717%.
Suppose now that the utility has a maximum allowable voltage drop of
3.0%. How much load can be served 1.5 miles from the substation?

kVAjpq = _30% 5665.14 kVA

0.00035304-1.5

The application of the Ky, factor is not limited to computing the per-
cent voltage drop down just one line segment. When line segments
are in cascade, the total percent voltage drop from the source to the
end of the last line segment is the sum of the percent drops in each
line segment. This seems logical, but it must be understood that in all
cases the percent drop is in reference to the nominal line-to-neutral
voltage. That is, the percent voltage drop in a line segment is not refer-
enced to the source end voltage but rather the nominal line-to-neutral
voltage, as would be the usual case. Example 3.4 will demonstrate this
application.

Example 3.4

A three-segment feeder is shown in Figure 3.4.

NO N1 N2 N3
~ 15 mile u\l/u 0.75 mile v\lN 0.5 mile u\lN
300 kVA 750 kVA 500 KVA
FIGURE 3.4

Three line segment feeder.
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The K,,,, factor for the line segments is:

drop

K rop =0.00035304% drop/kVA-mile

Determine the percent voltage drop from NO to N3.
Solution: The total kVA flowing in segment NO to N1 is:

kVAy =300+750+500 =1550 kVA
The percent voltage drop from NO to N1 is:
Vdropy, =0.00035291-1550-1.5 =0.8208%

The total kVA flowing in segment N1 to N2 is:

kVA;, =750+500 = 1250 kVA
The percent voltage drop from N1 to N2 is:

Vdrop,, =0.00035291-1250-0.75=0.3310%
The kVA flowing in segment N2 to N3 is:

I(VA23 = 500

The percent voltage drop in the last line segment is:
Vdrop,; =0.00035291-500-0.5 = 0.0883%
The total percent voltage drop from NO to N3 is:
Vdrop o =0.8208+0.3310+0.0883=1.2401%

The application of the K, factor provides an easy way of computing
the approximate percent voltage drop from a source to a load. It should
be kept in mind that the assumption has been a perfectly balanced
three-phase load, an assumed load power factor, and transposed line
segments. Even with these assumptions, the results will always provide
a “ballpark” result that can be used to verify the results of more sophis-
ticated methods of computing voltage drop.

3.3.2 K

rise
The K, factor is similar to the K,,, factor except that now the “load” is a
shunt capacitor. When a leading current flows through an inductive reac-
tance, there will be a voltage rise across the reactance rather than a voltage
drop. This is illustrated by the phasor diagram (Figure 3.5).

Factor
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I

“ VS chap 1, cap
]
/anp' lcap RREN . Rcap'lcap

Vi

FIGURE 3.5
Voltage rise phasor diagram.

Referring to Figure 3.5, the voltage rise is defined as:

Viise = ‘Re (anp ' Icap )‘ = |chap : Icap

Vn‘se
VLN nominal

(3.7)

Vriseo, = -100

In Equation 3.7, it is necessary to take the magnitude of the real part of

Zap - Ieap, 80 that the voltage rise is a positive number. The K, factor is
defined exactly the same as the K,,,, factor.
K rise = ﬂ (38)

kvar — mile

Example 3.5

1. Calculate the K,,, factor for the line in Example 3.2.
2. Determine the rating of a three-phase capacitor bank to limit
the voltage drop in Example 3.3 to 2.5%.

Solution:

1. The impedance of 1 mile of line was computed to be:

7 =0.306 +0.6276 Q

The current taken by a 1-kvar three-phase capacitor bank is
given by:

I 1kvar 1 . /90=0.04630/90 A

cap = /90=
"B kv T 3124
The voltage rise per kvar mile is computed to be:

Vi =[Re[ Z - L,y | | =[Re[ (0.306-+ j0.6276) - 0.04630/90 | | = 0.0291 v
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The nominal line-to-neutral voltage is:

12,470
Vin =— =7199.6 V
LN \/g
The K, factor is then:
K = 0.029037 100=0.00040361% rise/kvar mile
7199.6

2. The percent voltage drop in Example 3.3 was computed to be
3.9717%. To limit the total voltage drop to 2.5%, the required
voltage rise due to a shunt capacitor bank is:

Viise =3.9702-2.5=1.4717%

The required rating of the shunt capacitor is:

Vise — _ 1.4702
Kise -mile  0.00040331-1.5

kvar = =2430.9 kvar

In reality, the value of the three-phase capacitor bank would be
800 kvar/phase.

3.4 Uniformly Distributed Loads

Many times, it can be assumed that loads are uniformly distributed along
a line that can be a three-phase, two-phase, or single-phase feeder or
lateral. This is certainly the case in single-phase laterals, where the same
rating transformers are spaced uniformly over the length of the lateral.
When the loads are uniformly distributed, it is not necessary to model
each load to determine the total voltage drop from the source end to the
last load. Figure 3.6 shows a generalized line with n uniformly distributed
loads.

3.4.1 Voltage Drop

Figure 3.6 shows n uniformly spaced loads dx miles apart. All the loads are
equal and will be treated as constant current loads with a value of di. The
total current into the feeder is I. It is desired to determine the total voltage
drop from the source node (S) to the last node n.
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Length
Iy
dx 1 dx 2 dx 3 dx 4 dx 5
>e o o ’ ’ ’ n
S l l l
di di di di di di
FIGURE 3.6

Uniformly distributed loads.

Let: [ = length of the feeder

z =71 + jx = impedance of the line in Q/mile

dx = length of each line section

di =load currents at each node

n = number of nodes and number of line sections
I = total current into the feeder

The load currents are given by:

dgi=1r 3.9)
n

The voltage drop in the first line segment is given by:
Vdrop, =Re{z-dx-(n-di)} (3.10)
The voltage drop in the second line segment is given by:

Vdrop, =Re{z-dx-[(n-1)-di]} (3.11)

The total voltage drop from the source node to the last node is then given by:

Vdrop,,,; = Vdrop, +Vdrop; +---+ Vdrop,

Vdrop,., =Re{z-dx-di-[n+(n-1)+(n-2)+--+(1)]} (312
Equation 3.12 can be reduced by recognizing the series expansion:
1
14243+ 4 n=10FD) (3.13)

2
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Using the expansion, Equation 3.12 becomes:

Vdropiow. = Re{z ~dx - di [11(1214-1):|} (3.14)

The incremental distance is:

dx = 1 (3.15)
n
The incremental current is:
di=1r (316)
n

Substituting Equations 3.15 and 3.16 into Equation 3.14 results in:

Vdropi. = Re {Z . I A |:n(n+1):|}

n n 2
Vdropuw = Re {z g0t (’”1 )} (3.17)
2 n
1 1
Vdropiow = Re{ -Z Iy -(1+)}
2 n

where Z=2z-1.

Equation 3.17 gives the general equation for computing the total voltage
drop from the source to the last node n for a line of length [. In the limiting
case where 7 goes to infinity, the final equation becomes:

Vdropuw = Re{% Z.Ir } (3.18)

In Equation 3.18, Z represents the total impedance from the source to the end
of the line. The voltage drop is the total from the source to the end of the line.
The equation can be interpreted in two ways. The first is to recognize that
the total line-distributed load can be lumped at the midpoint of the lateral
(Figure 3.7).

A second interpretation of Equation 3.18 is to lump one-half of the total
line load at the end of the line (node #; Figure 3.8).
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Length |
1
r %LengthQ;'
> ® o/
S
Ir
FIGURE 3.7
Load lumped at the midpoint.
I Length |
I
o L Y
S
1.2
FIGURE 3.8

One-half load lumped at the end.

Figures 3.7 and 3.8 give two different models that can be used to calculate
the total voltage drop from the source to the end of a line with uniformly
distributed loads.

3.4.2 Power Loss

Of equal importance in the analysis of a distribution feeder is the power loss.
If the model of Figure 3.7 is used to compute the total three-phase power loss
down the line, the result is:

> R 3

Pioss =3-|I| ~E=E-\IT\2-R (319)

When the model in Figure 3.8 is used to compute the total three-phase power
loss, the result is:

Ir

2
Poe =3- 'R=§'|IT‘2'R (3.20)
2 4

It is obvious that the two models give different results for the power loss. The
question arises as to which one is correct. The answer is neither one.
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To derive the correct model for power loss, reference is made to Figure 3.6
and the definitions for the parameters in that figure. The total three-phase
power loss down the line will be the sum of the power losses in each short
segment of the line. For example, the three-phase power loss in the first
segment is:

Ploss; =3 (r-dx)- ‘(n . d1')‘2 (3.21)
The power loss in the second segment is given by:
Ploss, =3-(r-dx)-[|(n-1)-di|]® (3.22)

The total power loss of over the length of the line is then given by:

PlosSy = 3-(r-dx)-|di]® [nz +(n=-17+(n=-2Y+---+ 12] (3.23)

The series inside the bracket of Equation 3.23 is the sum of the squares of n
numbers and is equal to:

n-(n+1)-(2n+1)

6 (3.24)

1P+2°+3%+.+n° =

Substituting Equations 3.15, 3.16, and 3.24 into Equation 3.23 gives:

Plossp =3+ (r . 1)(
n

Simplifying Equation 3.25:

Ir
n

JZ_[n-(n+1)6.(2n+1)} 525)

+1)-(2n+1
Ploss;pe; =3-R-\IT\2 . WJ

Plossim =3 R-|Ir|* -

i 2
2-n°"+3 n+1:| (3.26)

6-n?

where R=r-1 the total resistance per phase of the line segment.
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Equation 3.26 gives the total three-phase power loss for a discrete number of
nodes and line segments. For a truly uniformly distributed load, the number
of nodes goes to infinity. When that limiting case is taken in Equation 3.26,
the final equation for computing the total three-phase power loss down the
line is given by:

PloSS o =3 [; ‘R|Iy 2] (3.27)

A circuit model for Equation 3.27 is given in Figure 3.9.

Comparing Figures 3.7 and 3.8, used for voltage drop calculations, with
Figure 3.9, used for power loss calculations, it is obvious that the same model
cannot be used for both voltage drop and power loss calculations.

3.4.3 The Exact Lumped Load Model

In the previous sections, lumped load models were developed. The first
models developed in Section 3.4.1 can be used for the computation of the
total voltage drop down the line. It was shown that the same models can-
not be used for the computation of the total power loss down the line.
Section 3.4.2 developed a model that will give the correct power loss of the
line. A model that will work for both voltage drop and power loss calcula-
tions is needed.

Figure 3.10 shows the general configuration of the “exact” model that will
give correct results for voltage drop and power loss.

In Figure 3.10, a portion (I,) of the total line current (I;) will be modeled k!
miles from the source end, and the remaining current (cI;) will be modeled
at the end of the line. The values of k and ¢ need to be derived.

In Figure 3.10, the total voltage drop down the line is given by:

Vdrops =Re[ k- Z - Iy +(1-k)- Z -c-Ir ] (3.28)

where
Z = Total line impedance in Q
k = factor of the total line length where the first part of the load current is
modeled
¢ =factor of the total current to place at the end of the line such that
I T = 1 xtc- I T

In Section 3.4.1, it was shown that the total voltage drop down the line is
given by:

Vdropiow = Re[; -Z- IT] (3.29)
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Length
Iy %Length/S%i
> ® o
S
Iy
FIGURE 3.9
Power loss model.
l
I T 1k
~. - B
s
I, c'lT

FIGURE 3.10
General exact lumped load model.

Set Equation 3.18 equal to Equation 3.28:

Vdrop = Re[; .z IT]: Re[k-Z Iy +(1-k)-Z-c-I;]  (330)

Equation 3.30 shows that the terms inside the brackets on both sides of the
equal side need to be set equal, that is:

[;-Z-IT]:[k-Z-IT+(1—I<)-Z-C-IT] (3.31)

Simplify Equation 3.31 by dividing both sides of the equation by ZI:

B]z[k+(1_k).c] 632
Solve Equation 3.32 for k:

_05-c
1-¢

k (3.33)
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The same procedure can be followed for the power loss model. The total
three-phase power loss in Figure 3.10 is given by:

Ploss = 3.[1<-R.\1T|2 +(1—1<)-R-(c-\1T|)2] (3.34)

The model for the power loss in Figure 3.9 gives the total three-phase power
loss as:

PloSSiom =3 [; ‘R- ITZ] (3.35)

Equate the terms inside the brackets of Equations 3.34 and 3.35 and simplify:

:;R-ITZ}:[]«R-ITF +(1—1<)-R-(c.\IT\)2]
ke 7] 336

[ERESET

Substitute Equation 3.33 into Equation 3.36:

B]:[Of__cc (1-ef)+ Cz] (3.37)

Solving Equation 3.37 for ¢ results in:

1
c== 3.38
3 (3.38)
Substitute Equation 3.38 into Equation 3.33 and solve for k:
k=1 (3.39)
4

The interpretation of Equations 3.38 and 3.39 is that one-third of the load
should be placed at the end of the line and two-thirds of the load placed
one-fourth of the way from the source end. Figure 3.11 gives the final exact
lumped load model.
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Iy 1 | 3
7! 1 7!
> Py r i
S l l
2 1
31ir 5T

FIGURE 3.11
Exact lumped load model.

3.5 Lumping Loads in Geometric Configurations

Many times, feeder areas can be represented by geometric configurations
such as rectangles, triangles, and trapezoids. By assuming a constant
load density in the configurations, approximate calculations can be made
for computing the voltage drop and total power losses. The approximate
calculations can aid in the determination of the maximum load that can
be served in a specified area at a given voltage level and conductor size.
For all of the geographical areas to be evaluated, the following definitions
will apply:

kVA

mile?

D =load density in

PF = assumed lagging power factor

z = line impedance in Q/mile

[ =length of the area

w = width of the area

kV:; = nominal line-to-line voltage in kV

It will also be assumed that the loads are modeled as constant current loads.

3.5.1 The Rectangle

A rectangular area of length / and width w is to be served by a primary
main feeder. The feeder area is assumed to have a constant load density with
three-phase laterals uniformly tapped off of the primary main. Figure 3.12 is
a model for the rectangular area.

Figure 3.12 represents a rectangular area of constant load density being
served by a three-phase main running from node n to node m. It is desired to
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' 0.5di
i

Iy |

n i m
— > F w
x ! \L

1
1
1
' 0.5di

FIGURE 3.12
Constant load density rectangular area.

determine the total voltage drop and the total three-phase power loss down
the primary main from node 7 to node m.
The total current entering the area is given by:

I D-I.w cos™ (PF) (3.40)

An incremental segment is located x miles from node n. The incremental
current serving the load in the incremental segment is given by:

di= ITT A/mile (341)

The current in the incremental segment is given by:

i:IT—x-di:IT—x-IIT:IT-(I—)I(J (3.42)
The voltage drop in the incremental segment is:
dV =Re(z-i-dx)= Re|:z Ir -(1 - ’]‘) dx} (3.43)

The total voltage drop down the primary main feeder is:

1 1
Varop = JdV :Re[z.IT . J(l_’l‘) dle
0

0
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Evaluating the integral and simplifying:
1 1
Vdrop:Re ZITEI =Re EZIT (344)

where Z=z-1.

Equation 3.44 gives the same result as that of Equation 3.18, which was
derived for loads uniformly distributed along a feeder. The only difference
here is the manner in which the total current (I,) is determined. The bottom
line is that the total load of a rectangular area can be modeled at the centroid
of the rectangle (Figure 3.13).

It must be understood that in Figure 3.13 with the load modeled at the
centroid, the voltage drop computed to the load point will represent the total
voltage drop from node 7 to node m.

A similar derivation can be done to determine the total three-phase power
loss down the feeder main. The power loss in the incremental length is:

2
dp=3-|i] -r-dx=3-|:112 -(1—’1‘)Z -r~dx]=3~r-IT2 {1—2-X+X}dx

1 P
(3.45)
The total three-phase power loss down the primary main is:
1 ) 2
Bosszjdp:3'r'IT|2'J‘(l_z')]('i‘)](ZJ'dX (34:6)
0 0
Evaluating the integral and simplifying:
1 2 1 2
Boss:3'|:3'1"1'IT :|=3|:3RIT :I (347)

where R=r-1.

FIGURE 3.13
Rectangle voltage drop model.
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Equation 3.47 gives the same result as that of Equation 3.27. The only
difference, again, is the manner in which the total current I is determined.
The model for computing the total three-phase power loss of the primary
main feeder is shown in Figure 3.14. Once again, it must be understood that
the power loss computed using the model of Figure 3.14 represents the total
power loss from node 7 to node .

Example 3.6

It is proposed to serve a rectangular area of length 10,000 ft and width
of 6000ft. The load density of the area is 2500 kVA /mile? with a power
factor of 0.9 lagging. The primary main feeder uses 336,400 26/7 ACSR
on a pole configured as shown in Example 3.2 (Figure 3.3). The question
is what minimum standard nominal voltage level can be used to serve
this area without exceeding a voltage drop of 3% down the primary
main? The choices of nominal voltages are 4.16 and 12.47kV. Compute
also the total three-phase power loss.

The area to be served is shown in Figure 3.15:

From Example 3.2, the impedance of the line was computed to be:

z=0.306 +j0.6276 ©/mile

1T 17 1T 1T 1T 17T T T T°1 N
N e I A T O
[ e I R
I,T "1 T T O O 0
| % 1 N
[ [ R N R R
[ O R e e R
| | | | | | | | | | | V.
| |
[ ! 1
FIGURE 3.14
Rectangle power loss model.
Iy T S
— 6000
| 10,000 |

FIGURE 3.15
Example 3.6 rectangular area.
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The length and width of the area in miles are:

1= 10,000 =1.8939 miles and w = 6000 =1.1364 miles
5280 5280

The total area of the rectangular area is:
A=1-w=21522 miles’
The total load of the area is:
kVA=D-A=2500-2.1522 =5380.6 kVA
The total impedance of the line segment is:

Z =z-1=(0.306+0.6272)-1.8939 = 0.5795+ j1.1887 Q

For a nominal voltage of 4.16kV, the total area current is:

kVA 5380.6 4
Iy = = /—cos™ (0.9)=746.7/-25.84 A
Tk Batel ()

The total voltage drop down the primary main is:

Virop = Re(; -Z- I): (; -(0.5795+ j1.1887)- 746.7/—25.85)= 388.1V

The nominal line-to-neutral voltage is:

4160

Vin =—==24018V
=T
The percent voltage drop is:
V 10 .
Vi =~ 0..100% = 2901 100% =16.16%
Vin 2401.8

It is clear that the nominal voltage of 4.16 kV will not meet the criteria of
a voltage drop less than 3.0%.
For a nominal voltage of 12.47kV, the total area current is:

_ kVA _ 53806
"7 kv, 3-1247

/—cos™(0.9)=249.1/-25.84 A

The total voltage drop down the primary main is:

Virop = Re(; A ) =(; -(0.5795+ j1.1887)- 249.1/—25.84): 129.5V
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The nominal line-to-neutral voltage is:

12,470

V3

Vin = =7199.6 V

The percent voltage drop is:

Vro :
Vi, =290 100% = 1292 100% =1.80%
7 7199.6

LN

The nominal voltage of 12.47kV is more than adequate to serve this load.
It would be possible at this point to determine how much larger the area
could be and still satisfy the 3.0% voltage drop constraint.

For the 12.47KkV, the total three-phase power loss down the primary
main is:

LRILP -0.5795-249.12

1
P =32 =33 —35.965 kW
1000 1000

3.5.2 The Triangle

Atriangular area with a constantload density is being served by a three-phase
primary main feeder (Figure 3.16).

Figure 3.16 represents a triangular area of constant load density being
served by a three-phase main running from node 7 to node m. It is desired to
determine the total voltage drop and the total three-phase power loss down
the primary main from node 7 to node m.

The area of the triangle is:

] /
0.5di
It n w, $ m .
0.5di
T~
x
l —=>{ dx lé\l -
|

FIGURE 3.16
Constant load density triangular area.
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Area= % I-w (3:48)
The total current entering the area is given by:
D - Area 4
It =—=———/-cos (PF) A 3.49
= (PF) (349)
Letdi= [T = I 2201 5 e (3:50)
Area 1 ;.. I'w
The current entering the incremental line segment is:
i=Ir—A -di (3.51)
where A, = area of triangle up to the incremental line segment.
By similar triangles:
wi=X- ? (3.52)

The area of the small triangle up to the incremental line segment is

A=t vw =t x WL W e (3.53)
2 2 I

Substitute Equations 3.50 and 3.53 into Equation 3.51:

. 1w 2 x?
= -|=. 2. . I = 1-22 3.54
; T(ZIX)[I.W ]( 12) (359
The voltage drop in the incremental line segment is given by:
XZ
dv=Re[i-z-dx]|=Re|z-Ir - 1—]—2 -dx (3.55)

The total voltage drop from node 7 to node m is:

1 1 >
thop = J. dv =R3[Z'IT . J'[l—;(zJ dX] (356)
0

0
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Evaluating the integral and simplifying:
2 2
Vdrop:ReI:Z'IT'g'I:l:Re[E'ZT IT] (357)

where Zr =z 1.

Equation 3.58 shows that the total voltage drop from the vertex to the base
of the triangular area can be computed by modeling the total triangle load
two-thirds of the distance between the vertex and the base of the triangle.
The model for the voltage drop calculation is shown in Figure 3.17.

A similar derivation can be made for the power loss model. The power loss
in the incremental line segment is:

dp=3-r[i*-dx] (3.58)

Substitute Equation 3.54 into Equation 3.58:

2 2 4
cip=3[r-|1T2 -[1—’]‘2} dx:|=3-|:_r-IT2 .(1—2-’]‘2+’1‘3)- dx:| (3.59)

The total three-phase power loss from node n to node m becomes:

)

I 2 )(2 X4
-Ploss='|‘dp=3'r"IT‘ J. 1_2]72*']73 - dx (360)
0 0

Evaluating the integral and simplifying:

8

2RI 2} 3.61
5 Ir| (3.61)

IJIoss 23[

FIGURE 3.17
Triangle voltage drop model.
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Equation 3.61 gives the total three-phase power loss down the primary
main from node n to node m. The model for the power loss is given in
Figure 3.18.

Example 3.7

The triangular area shown in Figure 3.19 is to be served by a feeder of
nominal voltage 12.47kV.

The load density of the area is 3500 kVA /mile? at a power factor of 0.9
lagging. The conductor on the primary main is 336,400 26/7 ACSR, and
the configuration of the pole is that of Example 3.2 in Figure 3.3.

Use the K, factor from the line of Example 3.2 and determine the
percent voltage drop from node # to node m.

FIGURE 3.18
Triangle power loss model.

6000

15,000”

FIGURE 3.19
Example 3.7 triangular area.
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From Example 3.3, the K, factor was computed to be:

Krop =0.00035304% drop/kVA-mile
The length and width of the triangle in miles is:

_ 15,000 _ 2.8409 miles and w = 6000 _ 1.1364 miles
5280 5280

The area of the triang]le is:

Area= % -2.8509-1.1364 = 1.6142 miles®

The total load of the triangular area is:

kVA =3500-1.6142 = 5649.5 kVA

The total complex power of the triangular area is:

S=kVA/—-cos™(PF)=5649.5/—25.84 =5084.6+ j2462.6 kW + jkvar

Using the K,,,, factor and lumping the total load at the two-thirds point,
the percent drop to node m is:

Viarop = % - Kirop - kKVA -miles = 3.7775%

Suppose now that a shunt capacitor bank is to be installed somewhere
along the primary main to limit the percent voltage drop to node m to
3.0%. Two decisions must be made.

1. Three-phase rating of the capacitor bank
2. Location of the capacitor bank

The total reactive power of the area was computed to be 2462.6 kvar.
That means that a capacitor bank rated up to 2462.6 can be used without
causing the feeder to go into a leading power factor condition. Because
this is assumed to be the peak load, a capacitor bank rated at 2400 kvar
(three-phase) will be used to prevent a leading power factor condition
for a smaller load. Depending upon the load curve during the day, this
bank may or may not have to be switched.

Use the K, factor from Example 3.5 and determine how far from node
n the capacitor bank should be installed to limit the voltage drop to 3.0%.
From Example 3.5:

K i =0.00040361% rise/kvar-mile
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The needed voltage rise due to the capacitor is:

Viise = Virop —3.0=3.7775-3.0=0.7775

The distance from node # is determined by:

Ve 07775

= =0.8026 miles
Kise - kvar  0.00040361-2400

dist =

The total three-phase power loss down the primary main before the
shunt capacitor is added is computed by lumping the total triangular
load at:

Troad = % -1=1.5152 miles from node n

The total load current is:

kVA 5649.5 .
I = - - PF)=261.6/—25.84 A
T 3-kv,  3-1247 /= cos” (PF) /=2584

The total resistance of the primary main is:
R=r-1=0.306-2.8409 = 0.8693 Q

The total three-phase power loss down the primary main is:

Ploss=i-[ilﬂlﬂz]:L-[£-0.8693~261.62:|=95.16 kW
1000 | 15 1000 | 15

3.5.3 The Trapezoid

The final geometric configuration to consider is the trapezoid. It is assumed
that the load density is constant throughout the trapezoid. The general model
of the trapezoid is shown in Figure 3.20.

Figure 3.20 represents a trapezoidal area of constant load density being
served by a three-phase primary running from node n to node m. It is
desired to determine the total voltage drop and the total three-phase power
loss down the primary main from node 7 to node m.

It is necessary to determine the value of the current entering the incremen-
tal line segment as a function of the total current and the known dimensions
of the trapezoid. The known dimensions will be the length (/) and the widths
w, and w,.
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FIGURE 3.20
General trapezoid.

The total current entering the trapezoid is:

I _D- Arear
! \/E'kVLL

where Area; = total area of the trapezoid

'(W2 +W1)’]

N | =

Arear =

The current that is delivered to the trapezoid a-b—e—fis:

D - Area,
I, =——"">
V3-kvy,

where Area, = area of the trapezoid a—b—e—f.

Area, = % “(Wy+wr)-x
Solve Equation 3.62 for D:
b3 KV Iy
Arear

Substitute Equation 3.66 into Equation 3.64:

7= 3 kVy, Iy | Area, |_ Area, I
* Arear J3-kV;, Arear !

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)
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The current entering the incremental line segment is:

(3.68)

il —1. =1y .(1_AreaxJ

Arear

The only problem at this point is that the area of the small trapezoid cannot be

determined since the width w, is not known. Figure 3.21 will be used to estab-

lish the relationship between the unknown width and the known dimensions.
Referring to Figure 3.21:

Wy =Wi1+2-yy (3.69)
From similar triangles:
yi= ? ¥ (3.70)
But:
1
Ya2= 5 (w2 —wn) 3.71)

Substitute Equation 3.71 into Equation 3.70:

. (W2 - W]) (372)

N | =

=x.
Yx=7

Substitute Equation 3.72 into Equation 3.68:

Wy =W +2'§~%'(W7_—W1)=W1 +§-(W2—W1)=W1 '(1—)1<)+X~W2 (3.73)

I

FIGURE 3.21
Trapezoid dimensions.
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Substitute Equation 3.68 into Equation 3.60:

Areax=;[(wl-(1—)]()+)I(-Wz)+wl]-x (3.74)

Substitute Equations 3.63 and 3.74 into Equation 3.68:

e )]

%'(Wz'ﬁ'wl)'l

(3.75)

. Ir x? X ]
= + A=2- Wi x+wy =Wy
i (wr4wa) 1 |:(W1 w») Wi X+W, ] Wy ]

2 2
1':7]T {1-2-x+% - w1+ -* - W,
(W1+W2)'1 1 1

The current entering the incremental line segment of Figure 3.20 is given in
Equation 3.70 and will be used to compute the voltage drop and power loss
in the incremental line segment. The voltage drop in the incremental line
segment is given by:

dv=Re[z-i dx] (3.76)

Substitute Equation 3.70 into Equation 3.71:

dV=Re{Z~IT-|II—2-X+X2]- wi +(]—X2]- Wz]-dx} (3.77)
(W] +W2)‘] 1 1

The total voltage drop down the primary from node 7 to node m is given by:

1 . 1 ) )
Vdmpzj.dVZRe 2l o X own | 1= X s |- dx
) (W1+W2)'1 ) 1 1

Evaluating the integral and simplifying results in:

Viaeop = Relz Iy (WlJrZWZ]:I (3.78)

3'(W1+W2)
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Equation 3.78 is very general and can be used to determine the models for
the rectangular and triangular areas.

The Rectangle

For a rectangular area, the two widths w, and w, will be equal.
Let:

Wi=W;y =W 3.79)

Substitute Equation 3.79 into Equation 3.78:

w+2-w 3w
Vior =Re| Z Iy -| ———— ||=Re| Z - I7 -
drop e|: ’ (3.(w+w)]:| e[ r 6.w]

(3.80)

Vdrop = Re[;ZIT:I

Equation 3.80 is the same as that which was initially derived for the
rectangular area.

The Triangle

For a triangular area, the width w, will be zero.
Let:

w1 =0 (3.81)

Substitute Equation 3.81 into Equation 3.78:

01+2'W2 2
Vaop =Re| Z Iy -| ———— ||=Re| =-Z -1 3.82
drop el T (3'(0+W2)J] e|:3 T] ( )

Equation 3.82 is the same as that which was derived for the triangular
area.

The total three-phase power loss down the line segment can be devel-
oped by starting with the derived current in the incremental segment as
given by Equation 3.75. The three-phase power loss in the incremental
segment is:

dp=3-r-i’dx (3.83)
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The total three-phase power loss down the line segment is then:

I
Pos=3-1- J.jzdx

0

Substitute Equation 3.75 into Equation 3.84 and simplify:

) A 2 2y T
PIOSS=3'7T2~J. ]—2~x+X— Wi+ I—X— “wy | dx
(W1+W2)’I 0 1 1

Evaluating the integral and simplifying results in:

2 2
B()sszs'{R'|IT2'l8 wr+9-wy-wy+3-wi }}

15- (W1 "'Wz)2

where R=r-1.

(3.84)

(3.85)

(3.86)

The rectangular and triangular areas are special cases of Equation 3.81.

Rectangle

For the rectangle, the two widths w, and w, are equal.
Let:

W =W =Wj

Substitute into Equation 3.86:

. 2 . . . 2
1’1055=3{R-\IT2{8 w24+9-w W+23 w }}=3-{R-Irz~l8+9+§]}
15-(w +w) 15-(2) (3.87)

1
P :3|:3RIT|2]

Equation 3.87 is the same as Equation 3.47 that was previously derived for

the rectangular area.

Triangle

For the triangular area, the width w; is zero.
Let:

W1=0

Substitute into Equation 3.81:
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8 wr+9-0-wy,+3-0? 8
onss=3{R-!1r2'l 215 (0+W2)2 ]}=3-[15-R'|Ir|2] (3.88)
: 2

Equation 3.88 is the same as Equation 3.65 that was previously derived for
the total power loss in a triangular area.

3.6 Summary

This chapter has been devoted to the development of some useful techniques
for computing the voltage drop and power loss of line segments with uniformly
distributed loads and for geometric areas with constant load densities. These
techniques are very useful for making quick calculations that will be “ball-
park” values. Many times, only a ballpark value is needed. More times than
not, once inside the ballpark, more precise values of voltage drop and power
loss are needed. This will be especially true when the unbalanced nature of
a distribution feeder is taken into account. The remainder of this text will be
devoted to the more precise methods for analyzing a distribution feeder under
balanced and unbalanced steady-state and short-circuit conditions.

Problems

3.1 Shown in Figure 3.22 is the pole configuration of conductors for a three-
phase primary feeder. The conductors are 250,000cm, CON Lay, and AA.
The nominal line-to-line voltage of the feeder is 14.4kV.

’*4"1

—® 7

a 2’

o —x

b 2’

—o -

c 2

._ —
n

25’

FIGURE 3.22
Problem 3.1 configuration.
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a. Determine the series impedance per mile of this line.
b. Determine the K,,,, factor assuming a power factor of 0.88 lag.

c. Determine the K., factor.

rise

3.2 A 416 three-phase primary feeder is shown in Figure 3.23.
The K, = 0.00298639% drop/kVA mile
The K, = 0.00334353% rise/kvar mile

a. Determine the percent voltage drop to node E4.

rise

b. Determine the rating of a three-phase shunt capacitor bank to be
placed at E3 to limit the voltage drop to E4 to be 5.0%.

3.3 A 4160V three-phase feeder is shown in Figure 3.24.
The phase conductors are 4/0 ACSR and are configured on an 8 ft crossarm
with phase spacings of: D, =2.5, D,.=4.5,and D, =7.0".

a. Determine the series impedance of the line segment in Q/mile.
b. Determine the K, and K, factors assuming a load power factor of

09 lagging.

rise

c. Determine the total percent voltage drop to node 6.

d. Determine the three-phase kvar rating of a shunt capacitor to be
placed at node 4 to limit the total percent voltage drop to node 6 to

be 3.0(70.
E1 E2 E3 E4
0.50 miles l 0.65 miles l 0.9 miles l
500 kVA 1200 kKVA 750 kVA
FIGURE 3.23
System for Problem 3.2.
0 1 2 3 4 5 6
"~ 0.15 mile l 0.175 mile l 0.2 mile 10.125 milel 0.225 mile l0.125 milel
200 kVA 150 KVA 100kVA 300 kVA 425KkVA 500 KVA

FIGURE 3.24

System for Problem 3.3.
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3.4 Flash Thunder Bolt, junior engineer for Tortugas Power and Light, has
been given an assignment to design a new 4.16kV, three-phase feeder that
will have the following characteristics:

Total length of feeder = 5000 ft.

Load: 10-500kVA (three-phase), 0.9 lagging power spaced every 500 ft with
the first load 500 ft from the substation

Voltage Drop: Not to exceed 5% from the sub to the last load

Figure 3.25 illustrates the new feeder.

Flash has decided that he will use 336,400 26/7 ACSR (Linnet) conductors
constructed on 45 ft poles with 8 ft crossarms. The spacings of the conductors
on the crossarms are 2.5, 4.5, and 7.0 ft.

a. Determine the percent voltage drop to the last load point and the
total three-phase power loss for the feeder as shown in Figure 3.25.

b. Lump the total feeder load at the midpoint of the feeder and compute
the percent voltage drop to the end of the feeder.

c. Use the “exact lumped load model” in Figure 3.11 and compute the
percent voltage drop to the end of the line and the total three-phase
power loss down the line.

3.5 The rectangular area in Figure 3.26 has a uniform load density of
2000kVA/mile? at 09 lagging power factor. The nominal voltage of the

500" 500" 500" 500" 500" 500° 500” 500" 500" 500
FIGURE 3.25
System for Problem 3.4.
SRR RRERABRRERG
[ [ [ [ [ [ [ [ [ [
I I I I I I I I I I
[ [ [ [ [ [ [ [ [ [
I I I I I I I I I I 2500”
[ [ [ [ [ [ [ [ [ [
I I I I I I I I I I
L] ]
Source I I I I I I I I I I
I I I I I I I I I I
[ [ [ [ [ [ [ [ [ [
I I I I I I I I I I
[ [ [ [ [ [ [ [ [ [
I I I I I I I I I I
[ [ [ [ I I I I \ I | 2500”
I I I I I I I I I I
[ [ [ [ [ [ [ [ [ [
% O O
12,000/ ————>
FIGURE 3.26

Rectangular area for Problem 3.5.
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area being served is 4.16kV. The three-phase primary main conductors are
556,500 26/7 ACSR, whereas the three-phase lateral conductors are 266,800
26/7 ACSR. The primary main and the laterals are constructed so that the
equivalent spacing (D,,) is 3.5ft.

Determine:

a. The percent voltage drop to the last customer in the first lateral
(point A).

b. The percent voltage drop to the last customer in the last lateral
(point B).

c. The total three-phase power loss for the total area.

3.6 Shown in Figure 3.27 is a rectangle-triangle area that is being fed from a
source at point X. Both areas have a load density of 6000 kVA /mile? with loads
being uniformly distributed as denoted by the dashed laterals. In addition
to the uniformly distributed loads, there is a “spot load” at point Z that is
2000kVA. The K,,, factor for the primary main conductors is 0.00022626%
drop/kVA-mile, and the K, factor for the primary main conductors is
0.00028436% rise/kvar-mile.

a. Determine the percent drop to point Z.

b. Determine the kvar rating (to the nearest 300kvar/phase) for a
capacitor bank to be placed at point Y to limit the voltage drop to
Z to 3%.

c. With the capacitor in place, what is the percent drop now to point Z?

3.7 A square area of 20,000ft on a side has a load density of 2000kVA /mile?;
09 lagging power factor is to be served from a 12.47kV substation that is
located at the center of the square. Two different plans are being considered
for serving the area. The two plans are shown in Figure 3.28.

Plan A proposes to break the area into four square areas and serve it as
shown. The big black line will be the three-phase primary main consisting of

H 1.5 mile I 1.5 mile

1 Z

2000 kVA

>

FIGURE 3.27
Rectangular-triangular area of Problem 3.6.
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Plan A Plan B

FIGURE 3.28
Two plans for Problem 3.7.

336/400 26/7 ACSR conductors, and the dotted lines will be the three-phase
laterals consisting of 4/0 ACSR conductors. Both the main and laterals are
constructed such that D,, = 4.3795". The three-phase laterals will be spaced
every 500 ft.

Plan B proposes to serve the area with four triangularly shaped feeders.
Again, the primary main is shown in the dark black line, and the laterals are
spaced every 500t and shown as the dotted lines. The same conductors and
D,, will be used in this plan.

Determine the percent voltage drop to the “last customer” (points A
and B) for the two plans.

3.8 Shown in Figure 3.29 are the areas normally served by two feeders.

e 0.75 mile %
a e
0.5 mile
1.5 mile I

FIGURE 3.29
Areas for Problem 3.8.
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Under an emergency condition, the switch at b is closed so that the feeder
normally serving the triangle area must now serve both areas. Assume both
areas have a uniform load density of 2.5 MVA /square mile and 0.9 lagging
power factor. The primary feeder voltage is 13.8kV. Laterals are uniformly
tapped off of the primary main from S to a. No loads are tapped off of the
feed from a to b to ¢, and laterals are tapped off from c to d and from c to S".
The primary main conductors are 2/0 ACSR and are placed on a pole such
that D,, = 4.3795 ft.

a. Determine the K, and K, factors.

rise

b. Determine the voltage drop to point d.

c. Determine the three-phase kvar rating of a shunt capacitor bank
placed at ¢ to limit the voltage drop to point d to be 3.0%.

d. Determine the voltage drop to e with the capacitor bank at c.

e. Determine the voltage drop to e with the source at S” and the
capacitor at c.

Reference

1. Glover, J. D. and Sarma, M., Power System Analysis and Design, 2nd Edition, PWS
Publishing Co., Boston, MA, 1994.
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Series Impedance of Overhead and
Underground Lines

The determination of the series impedance for overhead and underground
lines is a critical step before the analysis of a distribution feeder can begin.
The series impedance of a single-phase, two-phase (V-phase), or three-phase
distribution line consists of the resistance of the conductors and the self and
mutual inductive reactances resulting from the magnetic fields surrounding
the conductors. The resistance component for the conductors will typically
come from a table of conductor data such as that found in Appendix A.

4.1 Series Impedance of Overhead Lines

The inductive reactance (self and mutual) component of the impedance is
a function of the total magnetic fields surrounding a conductor. Figure 4.1
shows conductors 1 to n with the magnetic flux lines created by currents
flowing in each of the conductors.

The currents in all conductors are assumed to be flowing out of the page.
It is further assumed that the sum of the currents will add to zero. That is:

L+L++1;i++1,=0 (4.1)
The total flux linking conductor i is given by:

Ai=2107 [ LIt ottt I It bk I, - | W-T/m
Dj D, GMR; D,

4.2
where

D;, = Distance between conductor i and conductor # (ft)
GMR; = geometric mean radius of conductor i (ft)

77
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M-
N

- \

FIGURE 4.1
Magnetic fields.

The inductance of conductor i consists of the “self-inductance” of conductor
i and the “mutual inductance” between conductor i and all of the other n — 1
conductors. By definition:

Self-inductance: L; = hi 2.107 -In— H/m @.3)
1; GMR;
. Ain 7 1
Mutual inductance: L;, = T =2-10" -In Do H/m 4.4

4.1.1 Transposed Three-Phase Lines

High-voltage transmission lines are usually assumed to be transposed (each
phase occupies the same physical position on the structure for one-third of
the length of the line). In addition to the assumption of transposition, it is
assumed that the phases are equally loaded (balanced loading). With these
two assumptions, it is possible to combine the “self” and “mutual” terms into
one “phase” inductance [1].

D,
Phase inductance: L; =2-107 - In—2— H/m @.5)
GMR;

where

Deq =3/Dap - Dy - D, ft 4.6)

D,, Dy, and D,, are the distances between phases.
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Assuming a frequency of 60 Hz, the phase inductive reactance is given by:

Phase reactance: x; =®-L; =0.12134 - In Dy Q/mile “.7)
GMR,; :

The series impedance per phase of a transposed three-phase line consisting
of one conductor per phase is given by:

Series impedance: z; =r; +j-0.12134-In GDeq

Q/mile 4.8)

1

4.1.2 Untransposed Distribution Lines

Because distribution systems consist of single-phase, two-phase, and untrans-
posed three-phase lines serving unbalanced loads, it is necessary to retain the
identity of the self- and mutual impedance terms of the conductors in addition
to taking into account the ground return path for the unbalanced currents.
The resistance of the conductors is taken directly from a table of conductor
data. Equations 4.3 and 4.4 are used to compute the self- and mutual inductive
reactances of the conductors. The inductive reactance will be assumed to be at
a frequency of 60 Hz, and the length of the conductor will be assumed to be 1
mile. With those assumptions, the self- and mutual impedances are given by:

Zi =1+ j0.12134- lnﬁ&)/mﬂe “9)

1

1

Z; = j0.12134-In——Q/mile (4.10)

j
In 1926, John Carson published a paper in which he developed a set of equa-
tions for computing the self- and mutual impedances of lines, taking into
account the return path of the current through the ground [2]. Carson’s
approach was to represent a line with the conductors connected to a source
at one end and grounded at the remote end. Figure 4.2 illustrates a line

Ground

FIGURE 4.2
Two conductors with dirt return path.
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consisting of two conductors (i and j) carrying currents ([; and I) with the

remote ends of the conductors tied to the ground. A fictitious “dirt” conduc-

tor carrying current I, is used to represent the return path for the currents.
In Figure 4.2, Kirchhoff’s voltage law (KVL) is used to write the equation

for the voltage between conductor i and the ground.
Vie=Zi Li+Zj 1j+Zig 1q—(Zaa la+Zai - Li+ 2 - 1)
Collect terms in Equation 4.11:
Vig =(Zi — Zai) i + (25 — 24 ) I +(Zia — Zaa)-

From Kirchhoff’s Current Law:

Ij+Ij+Id =0

Substitute Equation 4.13 into Equation 4.12 and collect terms:
Vig =(Zii + Zaa — Zai — Zia) - 1i +(Zjj + Zaa — Zaj — Zia) - 1
Equation 4.14 is of the general form:
Vie=2; - Ii+z;-I;
where
Zii = Zij + Zaqd — Zai — Zid

Zij :21} +de _Edj _Eid

@.11)

4.12)

@.13)

(4.14)

4.15)

4.16)
4.17)

In Equations 4.16 and 4.17, the “hat” impedances are given by Equations 4.9
and 4.10. Note that in these two equations, the effect of the ground return
path is being “folded” into what will now be referred to as the “primitive”
self- and mutual impedances of the line. The “equivalent primitive circuit”

is shown in Figure 4.3.

A
Zii e _
+ e Ii A A +
Zjj “
Vig 4+ + V;g
—> v/

Ground

FIGURE 4.3
Equivalent primitive circuit.



Series Impedance of Overhead and Underground Lines 81

Substituting Equations 4.9 and 4.10 of the “hat” impedances into Equations
4.16 and 4.17, the primitive self-impedance is given by:

Zi =1; + jX;i + Iq + JXdd = JXdn = JXnd

Zi=13+1;+j0.12134-| In 1 +In 1 _mi_mi @18)
GMR; GMR, D, Dy

. Dy -Dy

Zi=15+1;+j0.12134-| In 1 Y P
GMR; GMR;

In a similar manner, the primitive mutual impedance can be expanded:

Zij =jX1'j + 15 +ded —de]' _ind

2y=r+j012134{In * 4l L ;1o L @19)
D, "GMR, Dy " Da

2y =1;+ 7012134/ In -+ +1n
D, " GMR,

Dy - Dig ]
5
The obvious problem in using Equations 4.18 and 4.19 is the fact that we do
not know the values of the resistance of dirt (r;), the geometric mean radius
of dirt (GMR,), and the distances from the conductors to dirt (D,,;, Dy, D4
D,,). This is where John Carson’s work bails us out.

4.1.3 Carson’s Equations

Because a distribution feeder is inherently unbalanced, the most accurate
analysis should not make any assumptions regarding the spacing between
conductors, conductor sizes, and transposition. In Carson’s 1926 paper, he
developed a technique whereby the self- and mutual impedances for ncond
overhead conductors can be determined. The equations can also be applied to
underground cables. In 1926, this technique was not met with a lot of enthu-
siasm because of the tedious calculations that would have to be done on the
slide rule and by hand. With the advent of the digital computer, Carson’s
equations have now become widely used.

In his paper, Carson assumes the earth as an infinite, uniform solid, with
a flat uniform upper surface and a constant resistivity. Any “end effects”
introduced at the neutral grounding points are not large at power frequen-
cies, and therefore are neglected.

Carson made use of conductor images—that is, every conductor at a given
distance above ground has an image conductor at the same distance below
ground. This is illustrated in Figure 4.4.
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FIGURE 4.4
Conductors and images.

Referring to Figure 4.4, the original Carson equations are given in
Equations 4.20 and 4.21.

Self-impedance:

2i =1, +40PG + j(X,» 120G mlf—g+ 4mQﬁc) Q/mile  (420)

1

Mutual impedance:

S +4ijjG] Q/mile @.21)

)

where

z;; = self-impedance of conductor i in Q/mile

z;=mutual impedance between conductors i and j in Q/mile

1; = resistance of conductor i in Q/mile

o = 2xnf = system angular frequency in radians per second

G =0.1609347 x 10-3 /mile

RD, = radius of conductor i in ft

GMR, = geometric mean radius of conductor 7 in ft

f=system frequency in Hertz

p = resistivity of earth in Q-meters

D, = distance between conductors i and j in ft (see Figure 4.4)

S;;= distance between conductor i and image j in ft (see Figure 4.4)

0, = angle between a pair of lines drawn from conductor i to its own image
and to the image of conductor j (see Figure 4.4)
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X; =20G - n-XP o /mile (4.22)
GMR,;
T 1 kj 2
P; :g_ﬁkij cos(9,—,—)+1écos(29,—,—)-[0.6728+h1 ij] @.23)
1,2,
Q;=-0.0386+_+In - ki cos(6;) (4.24)
4 2 ky 3«/_ ’
k; =8.565-10"*-S; - \F (4.25)
p

4.1.4 Modified Carson’s Equations

Only two approximations are made in deriving the “Modified Carson
Equations.” These approximations involve the terms associated with P; and
Qj- The approximations use only the first term of the variable P; and the first
two terms of Q.

T
P, == 4.26
=g (4.26)

2

Q; =—0.03860+%1n 4.27)

i

Substitute X; (Equation 4.22) into Equation 4.20:

Zi =1 +40PG + j| 20G -1 K2 420G In i+ 40Q,;G | 4.29)
GMR; RD;

Combine terms and simplify:

Si 4 RDi 2Q; (4.29)
GMR,; RD;

i =1 +4mPHG+]2mG(

Simplify Equation 4.21:

2; =40P,G + j20G [m 15;” +20Q; ] (4.30)

i
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Substitute expressions for P (Equation 4.27) and o (2- 1t- f):

A S..
i =0+ TG+ jAnfG| In——— +2Q; 4.31
Zi=Ii+T jam ( GMR, Q ) (4.31)
2y =G + j4nfG[ln g“" +2Q,-,] 4.32)
i

Substitute expression for k; (Equation 4.25) into the approximate expression
for Q;; (Equation 4.27):

2
1
Q;=-003860+_In| ¢ soc 14 5, f (4.33)
p
Expand:
1 2 1.1 .1, [p
i =—0.03860+—In| ——=— |+ ~In—+_In [E 4.34
< 2 (8.565.104) 2°S; 2 \f @39
Equation 4.34 can be reduced to:
0, =3.8393— L1n S, + L1 P (4.35)
o 2 774 f '
or:
2Q, =2Q; =7.6786—InS; + % n® (4.36)

Substitute Equation 4.36 into Equation 4.31 and simplify:

21»1»=1‘j+1t2fG+j4Tl:fG In Sii
GMR

+7.6786-1nS, + “n P
4 2 f

1

4.37)

21'1'=I'1'+Tcsz+4T|:fG In 1
GMR

+7.6786+ L1 P
- 2 f

1
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Substitute Equation 4.36 into Equation 4.32 and simplify:

By =G + jAnfG| In 21 +7.6786-In Sy + L1n P
’ D; 2 f

4.38)
2= nsz+j4nfG[ln L +7.6786+;1n?J
ij
Substitute in the values of = and G:
z; =1; +0.00158836 - f + 70.00202237 - f| In L +7.6786 + 1 In P (4.39)
GMR; 2 f

1

L)

2; =0.00158836 - £ + j0.00202237 - f(ln +7.6786+ % In %J (4.40)

It is now assumed:

f=frequency = 60 Hertz
p = earth resistivity = 100 Q-m

Using these approximations and assumptions, the “Modified Carson’s
Equations” are:

z;i =1, +0.09530 + j0.12134| In L
GMR,;

1

+ 7.93402) Q/mile (441

z; =0.09530+ j0.12134(]n L 7.93402] Q/mile 442
i

It will be recalled that Equations 4.18 and 4.19 could not be used because the

resistance of dirt, the GMR,;, and the various distances from conductors to dirt

were not known. A comparison of Equations 4.18 and 4.19 to Equations 4.41

and 4.42 demonstrates that the Modified Carson’s Equations have defined the

missing parameters. A comparison of the two sets of equations shows that:

1y =0.09530 Q/mile (4.43)
Dy D, - D,

i DidDai _y D Did _ 7 9347 (4.44)
GMR, GMR,

The “Modified Carson’s Equations” will be used to compute the primitive
self- and mutual impedances of overhead and underground lines.
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4.1.5 Primitive Impedance Matrix for Overhead Lines

Equations 4.41 and 4.42 are used to compute the elements of an ncond x ncond
“primitive impedance matrix.” An overhead four-wire grounded wye dis-
tribution line segment will result in a 4 X 4 matrix. For an underground-
grounded wye line segment consisting of three concentric neutral cables, the
resulting matrix will be 6 x 6. The primitive impedance matrix for a three-
phase line consisting of m neutrals will be of the form:

Z nj Z nn

%aa %ab %ac %anl %an2 %anm

Zpa  Zpp  Zpc Zpn1 Zpn2  Zbnm

~ Zca Zep Zec Zenl Zm2 Zeonm
I:Zprimitive]: - G- - ——— T T—— —— (445)

%nla %nlb {nlc {nlnl %nan {nlnm

%nZa {an {HZC %nan {nZnZ %nan

| Znma Znmb Znmc Z nmn1 Z nmn2 annm_
In partitioned form, Equation 4.45 becomes:
. (2] [2w]

I:an'mitive :| = I:A . ] (44:6)

4.1.6 Phase Impedance Matrix for Overhead Lines

For most applications, the primitive impedance matrix needs to be reduced
to a 3 x 3 “phase frame” matrix consisting of the self- and mutual equivalent
impedances for the three phases. A four-wire grounded neutral line segment
is shown in Figure 4.5.

A A A Zaa NN =
V:g e 2 } a } ac Vtag
N IR
o————"NN—"Y Y L J
VJcrg ok Zun } Zan \ Vtcg
0‘;—’\/\/\/—$}T g

ng

FIGURE 4.5
Four-wire grounded wye line segment.
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One standard method of reduction is the “Kron” reduction [3]. Itis assumed
that the line has a multigrounded neutral (Figure 4.5). The Kron reduction
method applies KVL to the circuit.

’ ~ ~ A~ ~
Vag Vag Zaa Zab Zac Zan Ia
Vb VI A A A A I
8 bg Zpa Zpb Zp Zp, b
= = a A e L (4.47)
ch ch Zca Zp Zec Zen I.
, ~ ~ ~ ~
Vng Vng Zna Znb Znc Znn I"

In partitioned form, Equation 4.47 becomes:

[‘/abc] _ [ a’bc‘] . [211] [2111] ) [Iabc] (4.48)

[V ] Viel || (2] [2w] || [La]

Because the neutral is grounded, the voltages V,, and V', are equal to zero.
Substituting those values into Equation 4.48 and expanding results in:

[Vase ] = [Vine 1 +[ 25 ] (L 1+ 20 ]- 1] 449)
[0]=[01+[ 2 ] (L T+ 200 ) [1.] @.50)

Solve Equation 4.50 for [L,]:
nl=— 2] [20] [Laec] (4.51)
Note in Equation 4.51 that once the line currents have been computed, it is
possible to determine the current flowing in the neutral conductor. Because

this will be a useful concept later on, the “neutral transformation matrix” is
defined as:

[ta]= {2 ] [21] @.52)
Such that:
[In]=[tn]" [Lasc] (4.53)
Substitute Equation 4.51 into Equation 4.49:

[Vase ] = [Vibe ] ([Zy] [Zm] [Znn]—l [ZH]]) Lo ]

[Vabc] [abc] [Zabc]'[labc]

(4.54)
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where
[Zae ) =[25 - [20 ) [ 20 ] [ 247] (4.55)

Equation 4.55 is the final form of the “Kron” reduction technique. The final
phase impedance matrix becomes:

Zaa Zab Zac
[Zave | =| Zba  Zop  Zpe |€2/mile (4.56)

Zca Zeb Zec

For a distribution line that is not transposed, the diagonal terms of
Equation 4.56 will not be equal to each other and the off-diagonal terms will
not be equal to each other. However, the matrix will be symmetrical.

For two-phase (V-phase) and single-phase lines in grounded wye systems,
the Modified Carson’s Equations can be applied, which will lead to initial
3 x 3 and 2 X 2 primitive impedance matrices. Kron reduction will reduce the
matrices to 2 x 2 and a single element. These matrices can be expanded to
3 x 3 “phase frame” matrices by the addition of rows and columns consist-
ing of zero elements for the missing phases. For example, for a V-phase line
consisting of phases a and ¢, the phase impedance matrix would be:

Zaa 0 Zu
[Zac]=| O 0 0 [Q/mile @.57)

an 0 ZCC

The phase impedance matrix for a phase b single-phase line would be:

0 0 0
[Zac]=| 0 zm O |Q/mile (4.58)
0 0 0

The phase impedance matrix for a three-wire delta line is determined by the
application of Carson’s equations without the Kron reduction step.

The phase impedance matrix can be used to accurately determine the volt-
age drops on the feeder line segments once the currents have been deter-
mined. Because no approximations (transposition, for example) have been
made regarding the spacing between conductors, the effect of the mutual
coupling between phases is accurately taken into account. The applica-
tion of the Modified Carson’s Equations and the phase frame matrix leads
to the most accurate model of a line segment. Figure 4.6 shows the general
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Node n —> I, Zaa Node m
° ANAN— YN °
+ +
Vagn —> 1, Zhb Zuh an Vﬂgm
——— \NANAN—"YY"M °
+ +
Vbg, —> Z, Zpe Vbg,
- AMA— TN .
+ +
Van chm
FIGURE 4.6

Three-phase line segment model.

three-phase model of a line segment. Keep in mind that for V-phase and
single-phase lines, some of the impedance values will be zero.
The voltage equation in matrix form for the line segment is:

‘/ag ‘/;g Z aa Z ab Z ac I a
Vig =| Vi | Zea Zw L || Ip 4.59)
ch ch Z ca Z cb Z cc I c

where Z; = z; - length.
Equation 4.59 can be written in “condensed” form as:

[VLGabC ]n = [VLGabC ]m + [Zabc] : [Iabc] (460)

4.1.7 Sequence Impedances

Mostly, the analysis of a feeder will use only the positive and zero sequence
impedances for the line segments. There are two methods for obtaining these
impedances. The first method incorporates the application of the Modified
Carson’s Equations and the Kron reduction to obtain the phase impedance
matrix.

The definition for line-to-ground phase voltages as a function of the
line-to-ground sequence voltages is given by Carson [2]:

‘/ag 1 1 1 VOg
Ve |=| 1 & a || Vi @.61)
Vg 1 a ag Vag

where a, =1.0/120.
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In condensed form, Equation 4.61 becomes:

[VLGabC] = [As] N [VLGle] (462)
where
1 1 1
[A]=| 1 a a (4.63)
1 a a2

The phase line currents are defined in the same manner:
[Iabc] = [As] ' [1012] (464)

Equation 4.62 can be used to solve for the sequence line-to-ground voltages
as a function of the phase line-to-ground voltages.

[VLGoi] =[As] - [VLGape ] (4.65)
where
1 1 1
[As]’1=%- 1 a & (4.66)

1 a® a,

Equation 4.60 can be transformed to the sequence domain by multiplying
both sides by [A ™ and also substituting in the definition of the phase cur-
rents as given by Equation 4.62.

[VLGoiz ], =[As]" - [VLGape ],
[VLGoiz], =[A]" [VLGan ], +[A] " [Zase ] [AS] [To]  (467)
[VLGo12], = [VLGoi2 ], +[Zora ] [Ton2]

where

ZOO ZOl Zoz
[Zoa ] =[A] " [ Zase] [A]=| Z0e Zu Zn 4.68)
ZZO ZZl ZZZ
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Equation 4.67 in expanded form is given by:

VOg VOg Zyo Zo Zy Iy
‘/1g = ‘/lg + Z][) le ZOZ . Il (469)
Vag Vag Zy Zn Zp I,

Equation 4.68 is the defining equation for converting phase impedances to
sequence impedances. In Equation 4.68, the diagonal terms of the matrix are
the “sequence impedances” of the line such that:

Zy, = zero sequence impedance
Z,, = positive sequence impedance

Z,, = negative sequence impedance

The off-diagonal terms of Equation 4.68 represent the mutual coupling
between sequences. In the idealized state, these off-diagonal terms would be
zero. In order for this to happen, it must be assumed that the line has been
transposed. For high-voltage transmission lines, this will generally be the
case. When the lines are transposed, the mutual coupling between phases
(off-diagonal terms) are equal, and consequently the off-diagonal terms of
the sequence impedance matrix become zero. Because distribution lines are
rarely if ever transposed, the mutual coupling between phases is not equal,
and as a result, the off-diagonal terms of the sequence impedance matrix will
not be zero. This is the primary reason that distribution system analysis uses
the phase domain rather than symmetrical components.

If a line is assumed to be transposed, the phase impedance matrix is modi-
fied so that the three diagonal terms are equal and all of the off-diagonal
terms are equal. A different method to compute the sequence impedances is
to set the three diagonal terms of the phase impedance matrix equal to the
average of the diagonal terms of Equation 4.56 and the off-diagonal terms
equal to the average of the off-diagonal terms of Equation 4.56. When this is
done, the self- and mutual impedances are defined as:

zZ,=

(Zaa+ Zpp + 2o ) Q/mile @.70)

W | =

Zm = %(zab + Zpe + Zea) Q/mile 4.71)

The phase impedance matrix is now defined as:

Zg Zm Zm
[Zabe]=| Zm 2o zm |Q/mile @.72)

Zm  Zm Zs
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When Equation 4.68 is used with this phase impedance matrix, the result-
ing sequence matrix is diagonal (off-diagonal terms are zero). The sequence
impedances can be determined directly as:

Zoo=Zs+2-Z, Q/mile 4.73)
Z11 =2y =2Z5—Zn Q/mﬂe (474)
A second method that is commonly used to determine the sequence imped-

ances directly is to employ the concept of geometric mean distances (GMDs).
The GMD between phases is defined as:

Dj =GMDj =3Dyy - Dy - D, ft (4.75)
The GMD between phases and neutral is defined as:
D;, =GMD;, =3/D.,, - Dy, - Do, ft 4.76)

The GMDs as defined previously are used in Equations 4.41 and 4.42 to
determine the various self- and mutual impedances of the line resulting in:

Zii =1, +0.0953 + j0.12134-| In L
GMR,;

1

j + 7.93402:| Q/mile (4.77)

Zpn = I, +0.0953 + j0.12134 | In 1
GMR

n

) + 7.93402} Q/mile  (4.78)

1

g

z;=0.0953+;0.12134 {m[ j + 7.93402} Q/mile 4.79)

1

2, =0.0953+j0.12134 |:ln( )+ 7.93402:| Q/mile (4.80)

in

Equations 4.77 through 4.80 will define a matrix of order ncond x ncond where
ncond is the number of conductors (phases plus neutrals) in the line segment.
Application of the Kron reduction (Equation 4.55) and the sequence imped-
ance transformation (Equation 4.68) leads to the following expressions for
the zero, positive, and negative sequence impedances:

22
Zin

nn
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Z11 = 2Zpn = Zjj — Zj

) D; .
Zu=Zp =1+ ]O.12134-111(GA/[’Ri) Q/mile 4.82)

Equations 4.81 and 4.82 are recognized as the standard equations for the
calculation of the line impedances when a balanced three-phase system and
transposition are assumed.

Example 4.1

An overhead three-phase distribution line is constructed as shown in
Figure 4.7. Determine the phase impedance matrix and the positive and
zero sequence impedance matrices of the line. The phase conductors are
336,400 26/7 ACSR (Linnet), and the neutral conductor is 4/0 6/1 ACSR.

Solution: From the table of standard conductor data (Appendix A), it is
found that:
336,400 26/7 ACSR:  GMR = 0.0244 ft
Resistance = 0.306 Q/mile
4/06/1 ACSR: GMR =0.00814 ft
Resistance = 0.5920 /mile

An effective way of computing the distance between all conductors
is to specify each position on the pole in Cartesian coordinates using
complex number notation. The ordinate will be selected as a point
on the ground directly below the leftmost position. For the line in
Figure 4.7, the positions are:

di=0+j29 dy=25+j29 dy=7.0+j29 d,=40+j25

ke— 2.5 —>) 4.5’
“? be

N

X
LS

FIGURE 4.7
Three-phase distribution line spacings.
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The distances between the positions can be computed as:

Dy, =‘d1 —dz‘ Dy =|d2 —d3| Dy, =‘d3 —d1‘

Dy =‘d1 —d4‘ Dsy =‘dz —d4‘ D3y =|d3 —d4‘

For this example, phase a is in position 1, phase b is in position 2, phase c
is in position 3, and the neutral is in position 4.

D,, =25 Dp.=45 D, =70
D,, =5.656Y

Dy, =4.272" D, =5.0

The diagonal terms of the distance matrix are the GMRs of the phase
and neutral conductors.

D,, = Dy, =D, =0.0244, D,, =0.00814

Applying the Modified Carson’s Equation for
(Equation 4.41), the self-impedance for phase a is:

self-impedance

520 =0.0953+0.306+ j0.12134-| In—
0.0244

+ 7.93402)

=0.4013 + j1.4133 Q/mile
Applying Equation 4.42 for the mutual impedance between phases a and b:

Zap =0.0953 + jO.12134v(]n 2—15 + 7.93402)= 0.0953 + j0.8515 Q/mile

Applying the equations for the other self- and mutual impedance terms
results in the primitive impedance matrix.

0.4013+j1.4133  0.0953+;j0.8515  0.0953+;0.7266  0.0953 + j0.7524
0.0953+;0.8515 0.4013+;1.4133  0.0953+;0.7802  0.0953 + j0.7865
0.0953+;0.7266  0.0953+ j0.7802  0.4013+ j1.4133  0.0953 + j0.7674
0.0953+;0.7524  0.0953+ j0.7865  0.0953+ j0.7674  0.6873 + j1.5465

The primitive impedance matrix in partitioned form is:

0.4013+;1.4133  0.0953 + j0.8515  0.0953 + j0.7266
[21,]: 0.0953+j0.8515 0.4013+ j1.4133  0.0943+;0.7865 | Q/mile
0.0953+;0.7266  0.0953+ ;0.7802  0.4013 + j1.4133
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0.0953 + j0.7524
[2n]=| 0.0953+/0.7865 |Q/mile
0.0953+ j0.7674

[20n ]=[0.6873+ j1.5465] Q/mile
(2, |=[0.0953+j0.7524 0.0953+ j0.7865 0.0953+ j0.7674] Q/mile

The “Kron” reduction of Equation 4.55 results in the “phase impedance
matrix.”

[zanc)=[2y 20 H 20 ] 2]

0.4576+j1.0780  0.1560+7.5017  0.1535+ j0.3849
[Zac]=| 0.1560+j0.5017 0.4666+71.0482 0.1580+70.4236 |Q/mile
0.1535+70.3849  0.1580+j0.4236  0.4615+ j1.0651

The neutral transformation matrix given by Equation 4.52 is:

[ta]=~([2m]" {24])

[t.]=[-0.4292-0.1291 -0.4476-;0.1373 —-0.4373—;0.1327]

The phase impedance matrix can be transformed into the “sequence
impedance matrix” with the application of Equation 4.66.

-1

[zo2] =[As] - [Zawe ] - [As]

0.7735+;1.9373  0.0256+;0.0115 -0.0321+ ;0.0159
[zo12]=| -0.0321+0.0159  0.3061+j0.6270  —0.0723-;0.0060 [ €/mile
0.0256+;0.0115  0.0723-;0.0059  0.3061+ j0.6270

In the sequence impedance matrix, the 1,1 term is the zero sequence
impedance, the 2,2 term is the positive sequence impedance, and the
3,3 term is the negative sequence impedance. The 2,2 and 3,3 terms are
equal, which demonstrates that for line segments, the positive and nega-
tive sequence impedances are equal. Note that the off-diagonal terms are
not zero. This implies that there is mutual coupling between sequences.
This is a result of the nonsymmetrical spacing between phases. With the
off-diagonal terms being nonzero, the three sequence networks repre-
senting the line will not be independent. However, it is noted that the
off-diagonal terms are small relative to the diagonal terms.
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In high-voltage transmission lines, it is usually assumed that the
lines are transposed and that the phase currents represent a balanced
three-phase set. The transposition can be simulated in Example 4.1
by replacing the diagonal terms of the phase impedance matrix with
the average value of the diagonal terms (0.4619+;1.0638) and replac-
ing each off-diagonal term with the average of the off-diagonal terms
(0.1558+;0.4368). This modified phase impedance matrix becomes:

0.4619+71.0638  0.1558 +j0.4368  0.1558+ j0.4368
[z1,,. ]=| 0.1558+;0.4368 0.4619+ j1.0638 0.1558+ j0.4368 |Q/mile
0.1558+ j0.4368  0.1558 +j0.4368  0.4619+ j1.0638

Using this modified phase impedance matrix in the symmetrical compo-
nent transformation equation results in the modified sequence imped-
ance matrix.

0.7735+;1.9373 0 0
(210, ] = 0 0.3061+ j0.6270 0 Q/mile
0 0 0.3061+ j0.6270

Note now that the off-diagonal terms are all equal to zero, which means
that there is no mutual coupling between sequence networks. It should
also be noted that the modified zero, positive, and negative sequence
impedances are exactly equal to the exact sequence impedances that
were first computed.

The results of this example should not be interpreted to mean that a
three-phase distribution line could be assumed to have been transposed.
The original phase impedance matrix should be used if the correct effect
of the mutual coupling between phases is to be modeled.

4.1.8 Parallel Overhead Distribution Lines

It is fairly common in a distribution system to find instances where two
distribution lines are “physically” parallel. The parallel combination may
have both distribution lines constructed on the same pole, or the two
lines may run in parallel on separate poles but on the same right-of-way.
For example, two different feeders leaving a substation may share a com-
mon pole or right-of-way before they branch out to their own service area.
It is also possible that two feeders may converge and run in parallel until
again they branch out into their own service areas. The lines could also
be underground circuits sharing a common trench. In all of the cases,
the question arises as to how the parallel lines should be modeled and
analyzed.

Two parallel overhead lines on one pole are shown in Figure 4.8.

Note in Figure 4.8 the phasing of the two lines.
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K— Dy —>4 Djx |
l-a 1-b l-co —x
Line 1 T ? ? T
Dy

Line 2 _\k TZ-C 2—6lT Z-bT b

¢
)

ng

FIGURE 4.8
Parallel overhead lines.

The phase impedance matrix for the parallel distribution lines is computed
by the application of Carson’s equations and the Kron reduction method. The
first step is to number the phase positions as follows:

Position 1 2 3 4 5 6 7
Line-Phase l-a 1-b 1-¢ 2-a 2-b 2-¢ Neutral

With the phases numbered, the 7 X 7 primitive impedance matrix for 1 mile
can be computed using the Modified Carson’s Equations. It should be
pointed out that if the two parallel lines are on different poles, most likely
each pole will have a grounded neutral conductor. In this case, there will be
8 positions, and position 8 will correspond to the neutral on line 2. An 8 x 8
primitive impedance matrix will be developed for this case. The Kron reduc-
tion will reduce the matrix to a 6 x 6 phase impedance matrix. With reference
to Figure 4.8, the voltage drops in the two lines are given by:

vl, z11,, =z11, =z11,. =z12,, z12, =z12,. 11,
vl z11,, z11,, 211, 2124, 2124,  z12, 11,
vile | | 211la 211y 211, 212, 2124 212, . 11, (4.83)
v2, z21,, z21,, 221, z22,, z22., 222, 12,
v2, z21p, 221, 221 2224, 2224, 222 12,
| v2, | z21, 2214 2z21. 222, 2224 z22. 11 12, |
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Partition Equation 4.83 between the third and fourth rows and columns, so
that series voltage drops for 1 mile of line are given by:

(v [tz a2g] [im

[v]=[z] \% (4.84)

A2l L2y (2221] |12

Example 4.2

Two parallel distribution lines are on a single pole (Figure 4.9).
The phase conductors are:

Line 1: 336,400 26/7 ACSR: GMR, =0.0244’ 7, =0.306 Q/mile d,=0.721"
Line 2: 250,000 AA: GMR, =0.0171" r,=041 Q/mile d,=0.567"
Neutral: 4/06/1 ACSR:  GMR, =0.00814" r,=0.592 Q/mile d,=0.563"

Determine the 6 x 6 phase impedance matrix.
Define the conductor positions according to the phasing;:

d=0+j35 dy=25+j35 dy=7+j35

dy=25+j33 ds=7+j33 dy=0+;33
d; = 4+ j29

Using Dj; =|d; —d;|, the distances between all conductors can be com-
puted. Using this equation, the diagonal terms of the resulting spacing
matrix will be zero. It is convenient to define the diagonal terms of the
spacing matrix as the GMR of the conductors occupying the position.
Using this approach, the final spacing matrix is:

<—25’ | 4.5’ |
1-a 1-b lco —&
Line 1 T,? T T
E %B.O'ﬁb
Line 2 2-c 2-a 2-
ine T T t 60’
_.
n
T 29’

FIGURE 4.9
Example parallel OH lines.
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0.0244
25
7
3.2016
7.2801
2
7.2111

25
0.0244
4.5
2
4.9244
3.2016
6.1847

7
4.5
0.0244
4.9244
2
7.2801
6.7082

3.2016
2
4.9244
0.0171
4.5
25
4.2720

7.2801 2
49244 3.2016
2 7.2801
4.5 2.5
0.0171 7
7 0.0171
5 5.6569

7.2111
6.1847
6.7082
4.2720
5
5.6869
0.0081

The terms for the primitive impedance matrix can be computed using
the Modified Carson’s Equations. For this example, the subscripts i and j
will run from 1 to 7. The 7 X 7 primitive impedance matrix is partitioned
between rows and columns 6 and 7. The Kron reduction will now give
the final phase impedance matrix. In partitioned form, the phase imped-
ance matrices are:

[le ]abc =

[z12]

(2]

[22]

abc

abc =

abc

0.4502 + j1.1028
0.1464 + j0.5334

0.1452 + j0.4126

0.1519+;0.4848
0.1545+ j0.5336

0.1531+ j0.4287

0.1519+ j0.4848
0.1496 + j0.3931
0.1477 + j0.5560

0.5706 + j1.0913
0.1580+ j0.4236
0.1559 + j0.5017

0.1464 + j0.5334
0.4548 + j1.0873
0.1475+ j0.4584

0.1496 + j0.3931
0.1520+ j0.4323
0.1507 + j0.5460

0.1545+ j0.5336
0.1520 + j0.4323
0.1502 + j0.4909

0.1580+ j0.4236
0.5655 + j1.1082
0.1535+ j0.3849

0.1452 + j0.4126
0.1475+ j0.4584
0.4523 + j1.0956

0.1477 + j0.5560
0.1502+ j0.4909
0.1489+ j0.3955

0.1531+ j0.4287
0.1507 + j0.5460
0.1489 + j0.3955

0.1559 + j0.5017
0.1535 + j0.3849
0.5616+ j1.1212

Q/mile

Q/mile

Q/mile

Q/mile
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4.2 Series Impedance of Underground Lines

Figure 4.10 shows the general configuration of three underground cables
(concentric neutral or tape-shielded) with an additional neutral conductor.
The Modified Carson’s Equations can be applied to underground cables
in much the same manner as for overhead lines. The circuit in Figure 4.10
will result in a 7 X 7 primitive impedance matrix. For underground circuits
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D14-

D13

Dy, * Dy D3,
FIGURE 4.10

Three-phase underground with additional neutral.

that do not have the additional neutral conductor, the primitive impedance
matrix will be 6 x 6.

Two popular types of underground cables are the “concentric neutral
cable” and the “tape shield cable.” To apply the Modified Carson’s Equations,
the resistance and GMR of the phase conductor and the equivalent neutral
must be known.

4.2.1 Concentric Neutral Cable

Figure 4.11 shows a simple detail of a concentric neutral cable. The cable con-
sists of a central “phase conductor” covered by a thin layer of nonmetal-
lic semiconducting screen to which is bonded the insulating material. The
insulation is then covered by a semiconducting insulation screen. The solid
strands of concentric neutral are spiraled around the semiconducting screen
with a uniform spacing between strands. Some cables will also have an insu-
lating “jacket” encircling the neutral strands.

In order to apply Carson’s equations to this cable, the following data needs
to be extracted from a table of underground cables (Appendices A and B).

d.=phase conductor diameter (in.)

d,; = nominal diameter over the concentric neutrals of the cable (in.)

d, = diameter of a concentric neutral strand (in.)

Phase conductor

Insulation
Jacket
T
doq d, Concentric neutral strand
Insulation screen
dS
FIGURE 4.11

Concentric neutral cable.
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GMR, = geometric mean radius of the phase conductor (ft)

GMR, = geometric mean radius of a neutral strand (ft)

1, = resistance of the phase conductor (Q/mile)

1, = resistance of a solid neutral strand (Q/mile)

k = number of concentric neutral strands

The GMRs of the phase conductor and a neutral strand are obtained from
a standard table of conductor data (Appendix A). The equivalent GMR of the
concentric neutral is computed using the equation for the GMR of bundled
conductors used in high-voltage transmission lines [2].

GMR., =X GMR, - k- R*! ft (4.85)

where
R = radius of a circle passing through the center of the concentric neutral
strands

doq —d

R==0—f (4.86)

The equivalent resistance of the concentric neutral is:
I .
I, =— Q/mile
2 (4.87)

The various spacings between a concentric neutral and the phase conductors
and other concentric neutrals are as follows:

Concentric Neutral to Its Own Phase Conductor
D;; =R (Equation 4.86)
Concentric Neutral to an Adjacent Concentric Neutral
D,; = center-to-center distance of the phase conductors
Concentric Neutral to an Adjacent Phase Conductor
Figure 4.12 shows the relationship between the distance between centers

of concentric neutral cables and the radius of a circle passing through the
centers of the neutral strands.

FIGURE 4.12
Distances between concentric neutral cables.
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nm

——
2

FIGURE 4.13
Equivalent neutral cables.

The GMD between a concentric neutral and an adjacent phase conductor
is given by:

D; =4D%,—R* ft (4.88)

where D,,, = center-to-center distance between phase conductors.

The distance between cables will be much greater than the radius R; so a
good approximation of modeling the concentric neutral cables is shown in
Figure 4.13. In this figure, the concentric neutrals are modeled as one equiva-
lent conductor (shown in black) directly above the phase conductor.

In applying the Modified Carson’s Equations, the numbering of conduc-
tors and neutrals is important. For example, a three-phase underground cir-
cuit with an additional neutral conductor must be numbered as:

1 = phase a Conductor #1

2 = phase b Conductor #2

3 = phase ¢ Conductor #3

4 =neutral of Conductor #1

5 =neutral of Conductor #2

6 = neutral of Conductor #3

7 = additional neutral conductor (if present)

Example 4.3

Three concentric neutral cables are buried in a trench with spacings as
shown in Figure 4.14.

The concentric neutral cables of Figure 4.14 can be modeled as shown
in Figure 4.15. Notice the numbering of the phase conductors and the
equivalent neutrals.

The cables are 15kV, 250,000 CM stranded all aluminum with k = 13
strands of #14 annealed coated copper wires (1/3 neutral). The outside
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FIGURE 4.14
Three-phase concentric neutral cable spacing.

CACKO

FIGURE 4.15
Three-phase equivalent concentric neutral cable spacing.

diameter of the cable over the neutral strands is 1.29in. (Appendix B).
Determine the phase impedance matrix and the sequence impedance
matrix.

Solution: The data for the phase conductor and neutral strands from a
conductor data table (Appendix A) are:

250,000 AA phase conductor:

GMR, =0.0171ft
Diameter = 0.567 in.
Resistance = 0.4100 /mile

# 14 copper neutral strands:
GMR, =0.00208 ft

Resistance = 14.87 Q/mile
Diameter (d,) = 0.0641in.

The radius of the circle passing through the center of the strands
(Equation 4.82) is:
dod - ds

R= =0.0511ft
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The equivalent GMR of the concentric neutral is computed by:

GMR,, =¥GMR, - k- R*" =/0.00208-13-0.0511">" = 0.0486 ft
The equivalent resistance of the concentric neutral is:

r, _14.8722

k =1.1438 Q/mile

Ien =

The phase conductors are numbered 1, 2, and 3. The concentric neutrals
are numbered 4, 5, and 6.

A convenient method of computing the various spacings is to define
each conductor using Cartesian coordinates. Using this approach, the
conductor coordinates are:

d;=0+j0 dy=05+j0 dy=1+1j0
dy=0+jR ds=05+jR ds=1+R

The spacings of off-diagonal terms of the spacing matrix are computed by:

For: n=1to6andm=1to6

Dn,m = | dn _dm |

The diagonal terms of the spacing matrix are the GMRs of the phase
conductors and the equivalent neutral conductors:

Fori=1to3andj=4to6
D;;=GMR,
D]r] :GMRS

The resulting spacing matrix is:
0.0171 0.5 1 0.0511 0.5026 1.0013
05 00171 05 05026 0.0511 0.5026
1 0.5 0.0171 1.0013 0.5026 0.0511
0.0511 0.5026 1.0013 0.0486 0.5 1
0.5026 0.0511 0.5026 0.5 0.0486 0.5
| 1.0013 0.5026 0.0511 1 0.5 0.0486

ft.

The self-impedance for the cable in position 1 is:

zn =0.0953+0.41+j0.12134-| In 1
0.0171

+7.93402 ) =0.5053+ j1.4564 Q/mile

The self-impedance for the concentric neutral for Cable #1 is:
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245 =0.0953+1.144+ j0.12134 | In !
0.04

%6 +7.93402J: 1.2391+ j1.3296 Q/mile
The mutual impedance between Cable #1 and Cable #2 is:

z12=0.0953+ 70.12134- (ln 0%54_ 7.93402J: 0.0953+ j1.0468 Q/mile
The mutual impedance between Cable #1 and its concentric neutral is:

714 =0.0953+ j0.12134-| In !
0.05

1 +7.93402 ) =0.0953+ j1.3236 Q/mile

The mutual impedance between the concentric neutral of Cable #1 and
the concentric neutral of Cable #2 is:

745 =0.0953 + j0.12134-(]n 015+7.93402]: 0.0953+ j1.0468 Q/mile

Continuing the application of the Modified Carson’s Equations results
in a 6 x 6 primitive impedance matrix. This matrix in partitioned
(Equation 4.33) form is:

0.5053+;1.4564 0.0953+;1.0468 0.0953+ j.9627
[2,-,]: 0.0953+;1.0468 0.5053+j1.4564 0.0953+ j1.0468 |Q/mile
0.0953+;.9627 0.0953+1.0468 0.5053+ j1.4564

0.0953+j1.3236 0.0953+ j1.0468 0.0953+ j.9627
[24]=| 0.0953+1.0462 0.0953+j1.3236 0.0953+ j1.0462 |Q/mile
0.0953+j.9626  0.0953+ j1.0462 0.0953+ j1.3236

2 ]=[ 20 ]

1.2393+ j1.3296 0.0953+ j1.0468 0.0953+ j.9627
[Zm]=| 00953+ j1.0468 1.2393+/1.3296 0.0953+ j1.0468 |Q/mile
0.0953+/.9627 0.0953+ j1.0468 1.2393+ j1.3296

Using the Kron reduction results in the phase impedance matrix:
(2o )= 2 H 20 (20 ] { 2]

0.7981+ j0.4467 0.3188+ j0.0334 0.2848 — j0.0138
[Zac] =| 0.3188+;0.0334 0.7890+ j0.4048 0.3188+ j0.0334 |€2/mile
0.2848 - j0.0138 0.3188+;0.0334 0.7981+ j0.4467
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The sequence impedance matrix for the concentric neutral three-phase
line is determined using Equation 4.68.

-1

[2012] = [As] . [Zabc] . [Ab]

1.4140+ j0.4681 —0.0026— j0.0081 —0.0057 + j0.0063
[zon] =| —0.0057+j0.0063 0.4876+ j0.4151 —0.0265+ j0.0450 |Q/mile
~0.0026— j0.0081 0.0523+ j0.0004  0.4876+ j0.4151

4.2.2 Tape-Shielded Cables

Figure 4.16 shows a simple detail of a tape-shielded cable. The cable consists
of a central “phase conductor” covered by a thin layer of nonmetallic semi-
conducting screen to which is bonded the insulating material. The insulation
is covered by a semiconducting insulation screen. The shield is bare copper
tape helically applied around the insulation screen. An insulating “jacket”
encircles the tape shield.

Parameters of the tape-shielded cable are:

d. = diameter of phase conductor (in.): Appendix A

d, = outside diameter of the tape shield (in.): Appendix B
d,; = outside diameter over jacket (in.): Appendix B

T = thickness of copper tape shield in mils: Appendix B

Once again, the Modified Carson’s Equations will be applied to calcu-
late the self-impedances of the phase conductor and the tape shield as
well as the mutual impedance between the phase conductor and the tape
shield. The resistance and GMR of the phase conductor are found in a stan-
dard table of conductor data (Appendix A).

The resistance of the tape shield is given by:

L = 1.0636-10° -2’“7272 Q/mile (4.89)

s

AL or CU
phase conductor

Insulation

CU tape shield

Jacket

FIGURE 4.16
Tape-shielded cable.
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The resistance of the tape shield given in Equation 4.89 assumes a resistiv-
ity (pmy) of 1.7721-10"° Q-m and a temperature of 20°C. The outside diam-
eter of the tape shield d, is given in inches, and the thickness of the tape
shield T is in mils.

The GMR of the tape shield is the radius of a circle passing through the
middle of the shield and is given by:

d, T

GMR i = % fit (4.90)

The various spacings between a tape shield and the conductors and other
tape shields are as follows:

Tape Shield to its Own Phase Conductor

Dj = GMRieiq = radius to midpoint of the shield (ft) 4.91)

Tape Shield to an Adjacent Tape Shield

D;; = Center-to-center distance of the phase conductors (ft) 4.92)

Tape Shield to an Adjacent Phase or Neutral Conductor

Dj = Do ft 4.93)

where D,,, = center-to-center distance between phase conductors.

nm

Example 4.4

A single-phase circuit consists of a 1/0 AA, 220 mil insulation tape-shielded
cable and a 1/0 CU neutral conductor (Figure 4.17). The single-phase line is
connected to phase b. Determine the phase impedance matrix.

Cable data: 1/0 AA

Outside diameter of the tape shield = d, = 0.88in.
Resistance = 0.97 Q/mile

GMR, = 0.0111 ft

Tape shield thickness = T =5 mils

Resistivity = pmyy =1.7721-10° Q-m

Neutral data: 1/0 Copper, 7 strand

Resistance = 0.607 Q/mile

GMR,, =0.01113ft

Distance between cable and neutral = D,,, = 3in.
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FIGURE 4.17
Single-phase tape shield with neutral conductor.

The resistance of the tape shield is computed according to Equation 4.89:

~ 1.0636-10° -pmy, _ 18.8481

shield — == = 42836 Q 1
Fshield d.-T 0.88-5 /mile

The GMR of the tape shield is computed according to Equation 4.90:

d, T 0.88 5

GMR g = 22000 22000 _ 0 0365 ¢
12 12

The conductors are numbered such that:
#1 =1/0 AA conductor
#2 = tape shield
#3 =1/0 copper ground

The spacings used in the Modified Carson’s Equations are:

D1y = GMRpiers = 0.0365

3
D;; =—=025
8=

The self-impedance of Conductor #1 is:

213 =0.0953+0.97 + j0.12134-| In 1
0.0111

+ 7.93402) =1.0653+ j1.5088 Q/mile

The mutual impedance between Conductor #1 and the tape shield
(Conductor #2) is:

21 =0.0953+ 7012134 In - +7.93402 | = 0.0953+ 11.3645 ©/mile
J 0.0365 J
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The self-impedance of the tape shield (Conductor #2) is:

22 =0.0953+4.2786+ j0.12134 - (ln 0 0;65 +7.93402) =4.3739+ j1.3645 Q/mile

Continuing on the final primitive impedance matrix is:

1.0653 + j1.5088 0.0953 + j1.3645 0.0953 +1.1309
[2]=| 0.0953+1.3645 4.3739+j1.3645 0.0953+j1.1309 |Q/mile
0.0953+ j1.1309 0.0953+ j1.1309 0.7023+ j1.5085

In partitioned form, the primitive impedance matrix is:
(2, ]=1.0653+ j1.5088

[2: ]=[0.0953+j1.3645 0.0953+ j1.1309]
7

[A |:4.3739+j1.3645 0.0953+;1.1309
7 1=

0.0953+ j1.3645
0.0953+;1.1309

Q/mile
0.0953+;1.1309 0.7023+ j1.5085

Applying Kron’s reduction method will result in a single impedance,
which represents the equivalent single-phase impedance of the tape
shield cable and the neutral conductor.

21, =25 H 20 Hzm [ { 24]

2z, =1.3218+ j0.6744 Q/mile

Because the single-phase line is on phase b, the phase impedance matrix
for the line is:

0 0 0
[Zae]=| O 1.3218+;0.6744 0 |Q/mile
0 0 0

4.2.3 Parallel Underground Distribution Lines

The procedure for computing the phase impedance matrix for two over-
head parallel lines has been presented in Section 4.1.8. Figure 4.18 shows
two concentric neutral parallel lines each with a separate grounded neutral
conductor.
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D1-13
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<—— D5-14
FIGURE 4.18

Parallel concentric neutral underground lines.

The process for computing the 6 x 6 phase impedance matrix follows
exactly the same procedure as for the overhead lines. In this case, there are
a total of 14 conductors (6 phase conductors, 6 equivalent concentric neu-
tral conductors, and 2 grounded neutral conductors). Applying Carson’s
equations will result in a 14 X 14 primitive impedance matrix. This matrix
is partitioned between the sixth and seventh rows and columns. The Kron
reduction is applied to form the final 6 x 6 phase impedance matrix.

Example 4.5

Two concentric neutral three-phase underground parallel lines are
shown in Figure 4.19.

Cables (both lines): 250 kemil, 1/3 neutral

Extra neutral: 4/0 Copper

Determine the 6 x 6 phase impedance matrix.

Solution: From Appendix B for the cables:
Outside diameter: d,q =1.29"
Neutral strands: k =13 #14 copper strands
From Appendix A for the conductors:

250 kemil Al: GMR, =0.0171", r. =0.41 Q/mile, d. =0.567"

#14 Copper: GMR, =0.00208’, r; =14.8722 Q/mile, d, = 0.0641"
4/0 Copper: GMR, =0.1579', r,, =0.303 Q/mile, d, = 0.522”
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FIGURE 4.19
Parallel concentric neutral three-phase lines.

The radius of the circle to the center of the strands is:

doy—d, _1.29-0.0641
24 24

R, = =0.0511

The equivalent GMR of the concentric neutral strands is computed as:

GMR,, = /GMR, - k- RE" =/0.00208-13-0.05111' = 0.0486’

The positions of the six cables and extra neutral using Cartesian coordi-
nates with the phase a cable in line 1 (top line) as the ordinate are shown
below. Note the phasing in both lines.

Phase a, line 1: d; =0+;0 Phaseb, line1: d, =%+j0
8

Phasec, line1: dy =—+0
12
Phase a, line 2: d4=i—jE Phase b, line 2: dS:O—jE
12 712 12
Phase ¢, line 2: d(’:ﬁ_]'&
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Equivalent neutrals:
Phase a, line1: d; =d; +jR, Phaseb, linel: ds=d,+jR,
Phase c, line 1:dy =ds + jR,
Phase a, line 2: dyjp=ds+jR, Phaseb, line2: djy =ds+jRs
Phase c, line 2:dy, =ds + jR»

Extra neutral:

_10 .5
ERETIRAT

The spacing matrix defining the distances between conductors can be
computed by:

i=1to0o13 j=1to13

Di,jz

d;~d,|

The diagonal terms of the spacing matrix are defined as the appropriate
GMR:

D1,1 = DZ,Z = D3/3 = D4,4 = D5,5 = Dﬁ,ﬁ = GMRC = 00171/
D7,7 = DS,S = D9,9 = DlO,lO = Dll,ll = D12,12 = GMReq =0.0486’

D13,13 = GMRn = 001579’

The resistance matrix is defined as:

n=n=n=r=r1 =1 =041 Q/mile
r, 14.8722

I =R=Lh=Iy=I=Iy=——=

k
n3 =1, =0.303 Q/mile

=1.144 Q/mile

The primitive impedance matrix (13 x 13) is computed using Carson’s
equations:

i=1to13 j=1to 13

i,i

Zpi, =0.0953+j0.12134-(]n( ! J+7.93402)
D

i,j

Zpii =L +0.0953+j0.12134~[ln[D1 J+7.93402)
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Once the primitive impedance matrix is developed, it is partitioned
between the sixth and seventh rows and columns, and the Kron reduc-
tion method is applied to develop the 6 x 6 phase impedance matrix. The
phase impedance matrix in partitioned form is:

113

0.6450+j0.4327  0.1805+j0.0658  0.1384+ j0.0034

[zu],. =| 0.1805+/0.0658 0.6275+;0.3974 0.1636+;0.0552 |Q/mile
0.1384+70.0034  0.1636+0.0552  0.6131+ j0.4081
0.1261-j0.0086  0.1389+;0.071  0.0782— j0.0274

[212],,. =| 0.1185-j0.0165 0.1237-j0.0145 0.0720-0.0325 |Q/mile
0.1083-j0.0194  0.1074—j0.0246  0.0725— j0.0257
0.1261-70.0086  0.1185-j0.0165  0.1083—j0.0195

[z1],. =| 0.1389+;0.0071 0.1237-;0.0145 0.1074-0.0246 |Q/mile
0.0782-j0.0274  0.072-j0.0325  0.0725- j0.0257
0.6324+j0.4329  0.1873+;0.0915  0.0776— j0.0233

(2], =| 0.1873+;0.0915 0.6509+/0.4508 0.0818-0.0221 |Q/mile
0.0776-j0.0233  0.0818—j0.0221  0.8331+ j0.6476

4.3 Summary

This chapter has been devoted to presenting methods for computing the
phase impedances and sequence impedances of overhead lines and under-
ground cables. Carson’s equations have been modified to simplify the
computation of the phase impedances. When using the Modified Carson’s
Equations, there is no need to make any assumptions, such as transposi-
tion of the lines. By assuming an untransposed line and including the actual
phasing of the line, the most accurate values of the phase impedances, self
and mutual, are determined. It is highly recommended that no assumptions
be made in the computation of the impedances. Because voltage drop is a
primary concern on a distribution line, the impedances used for the line
must be as accurate as possible. This chapter also included the process of
applying Carson’s equations to two distribution lines that are physically par-
allel. This same approach would be taken when there are more than two
lines physically parallel.
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Problems

4.1 The configuration and conductors of a three-phase overhead line is
shown in Figure 4.20.

Phase conductors: 556,500 26/7 ACSR
Neutral conductor:  4/0 ACSR

1. Determine the phase impedance matrix [z, ]in Q/mile.
2. Determine the sequence impedance matrix [2o12] in Q/mile.

3. Determine the neutral transformation matrix [t, ]

4.2 Determine the phase impedance [z.,.]| matrix in Q/mile for the
two-phase configuration in Figure 4.21.

Phase conductors: 336,400 26/7 ACSR
Neutral conductor: 4/0 6/1 ACSR

4.3 Determine the phase impedance [z.,.]| matrix in Q/mile for the
single-phase configuration shown in Figure 4.22.

Phase and Neutral Conductors: 1/0 6/1 ACSR

4.4 Create the spacings and configurations of Problems 4.1, 4.2, and 4.3 in
the distribution analysis program WindMil. Compare the phase impedance
matrices to those computed in the previous problems.

4.5 Determine the phase impedance matrix [z, | and sequence impedance
matrix [z, ] in Q/mile for the three-phase pole configuration in Figure 4.23.
The phase and neutral conductors are 250,000 all aluminum.

<— 25— 4.5’ |
? ¢ ' 7

X
S

25.0"

FIGURE 4.20
Three-phase configuration for Problem 4.1.
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S 7.0’ {
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3.00—>)
4.0
@ /
n
T 25,0/
FIGURE 4.21
Two-phase configuration for Problem 4.2.
b
®

X
LS

25.0

FIGURE 4.22
Single-phase pole configuration for Problem 4.3.

4.6 Compute the positive, negative, and zero sequence impedances in Q/1000 ft
using the GMD method for the pole configuration shown in Figure 4.23.

4.7 Determine the [z | and [ 2o | matrices in Q/mile for the three-phase
configuration shown in Figure 4.24. The phase conductors are 350,000 all
aluminum, and the neutral conductor is 250,000 all aluminum.

4.8 Compute the positive, negative, and zero sequence impedances in
Q/1000ft for the line of Figure 4.24 using the average self- and mutual imped-
ances defined in Equations 4.70 and 4.71.

4.9 A 4/0 aluminum concentric neutral cable is to be used for a single-
phase lateral. The cable has a full neutral (see Appendix B). Determine the
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FIGURE 4.23
Three-phase pole configuration for Problem 4.5.
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25’

FIGURE 4.24
Three-phase pole configuration for Problem 4.7.

impedance of the cable and the resulting phase impedance matrix in Q/mile,
assuming the cable is connected to phase b.

4.10 Three 250,000CM aluminum concentric cables with one-third neutrals
are buried in a trench in a horizontal configuration (see Figure 4.14). Determine
the [ z.p | and [ Zo1, | matrices in /1000 ft assuming phasing of c-a—b.

4.11 Create the spacings and configurations of Problems 4.9 and 4.10 in
Windmil. Compare the values of the phase impedance matrices to those
computed in the previous problems. In order to check the phase impedance
matrix, it will be necessary for you to connect the line to a balanced three-
phase source. A source of 12.47kV works fine.

4.12 A single-phase underground line is composed of a 350,000 CM aluminum
tape-shielded cable. A 4/0 copper conductor is used as the neutral. The cable
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and neutral are separated by 4in. Determine the phase impedance matrix in
Q/mile for this single-phase cable line assuming phase c.

4.13 Three one-third neutral 2/0 aluminum jacketed concentric neutral
cables are installed in a 6-in. conduit. Assume the cable jacket has a thickness
of 0.2in. and the cables lie in a triangular configuration inside the conduit.
Compute the phase impedance matrix in Q/mile for this cabled line.

4.14 Create the spacing and configuration of Problem 4.13 in WindMil
Connect a 12.47kV source to the line, and compare results to those of 4.13.

4.15 Two three-phase distribution lines are physically parallel as shown in
Figure 4.25.

Line # 1 (left side): Phase conductors = 266,800 26/7 ACSR
Neutral conductor = 3/0 6/1 ACSR
Line # 2 (right side): Phase conductors = 300,000 CON LAY Aluminum
Neutral conductor =4/0 CLASS A Aluminum

a. Determine the 6 x 6 phase impedance matrix.

b. Determine the neutral transform matrix.

4.16 Two concentric neutral underground three-phase lines are physically
parallel as shown in Figure 4.26.

Line # 1 (top): Cable = 250 kcmil, 1/3 neutral
Additional neutral: 4/0 6/1 ACSR
Line #2 (bottom): Cable = 2/0 kemil, 1/3 neutral
Additional neutral: 2/0 ACSR

a. Determine the 6 x 6 phase impedance matrix.

b. Determine the neutral transform matrix.

I 2.5">) 45 | I 257 > 45 |
a9 b c'N be c? 29N
3.0'—>| 3.0'—>|
4.0’ 4.0
n
T 25.0 T » 25.0°
| , |
| 18 |
FIGURE 4.25

Parallel OH lines.
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ke
Tie (o} ©

I 6” !4”%‘

FIGURE 4.26
Parallel concentric neutral three-phase lines for Problem 4.16.

WindMil Assignment

Follow the method outlined in the User’s Manual to build a system called
“System 1” in WindMil that will have the following components:

e 12.47KkV line-to-line source. The “Bus Voltage” should be set to 120V
e Connect to the node and call it Node 1

A 10,000ft long overhead three-distribution line as defined in
Problem 4.1. Call this line OH-1.

e Connect a node to the end of the line and call it Node 2.

* A wye-connected unbalanced three-phase load is connected to
Node 2 and is modeled as constant PQ load with values of:

* Phase a—g: 1000kVA, Power factor = 90% lagging
* Phase b—g: 800kVA, Power factor = 85% lagging
* Phase c—g: 1200kVA, Power factor = 95% lagging

Determine the voltages on a 120V base at Node 2 and the current flowing on
the OH-1 line.
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5

Shunt Admittance of Overhead
and Underground Lines

The shunt admittance of a line consists of the conductance and the capaci-
tive susceptance. The conductance is usually ignored because it is very small
compared to the capacitive susceptance. The capacitance of a line is the result
of the potential difference between conductors. A charged conductor cre-
ates an electric field that emanates outward from the center of the conductor.
Lines of equipotential are created that are concentric to the charged conduc-
tor. This is illustrated in Figure 5.1.

In Figure 5.1, a difference in potential between two points (P1 and P2) is a
result of the electric field of the charged conductor. When the potential dif-
ference between the two points is known, the capacitance between the two
points can be computed. If there are other charged conductors nearby, the
potential difference between the two points will be a function of the distance
to the other conductors and the charge on each conductor. The principle of
superposition is used to compute the total voltage drop between two points
and then the resulting capacitance between the points. Understand that the
points can be points in space or the surface of two conductors or the surface
of a conductor and the ground.

5.1 General Voltage Drop Equation

Figure 5.2 shows an array of N positively charged solid round conductors.
Each conductor has a unique uniform charge density of g cb/m.

The voltage drop between conductor i and conductor j as a result of all of
the charged conductors is given by:

1 D D; RD, Dni
Vi=—|gIh—L+ - +qIn—2+ - +g;In—L+--+gyIn—" 5.1
' e (ql D, UM Rp, I gy AN DMJ G

121
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FIGURE 5.1
Electric field of a charged round conductor.

1(®)
YD) o

()i

+
Vij

'@
FIGURE 5.2
Array of round conductors.

Equation 5.1 can be written in general form as:

1% D
aIn =Y

Vij =<
2me

n

where € = ¢, = permittivity of the medium
€, = permittivity of free space = 8.85:1012 pF/m
g, = relative permittivity of the medium
g, = charge density on conductor n cb/m

D,,; = distance between conductor n and conductor i (ft)
D,; = distance between conductor n and conductor j (ft)

D, =radius (RD,) of conductor # (ft)

(.2)
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5.2 Overhead Lines

The method of conductors and their images is employed in the calculation
of the shunt capacitance of overhead lines. This is the same concept that was
used in Chapter 4 in the general application of Carson’s equations. Figure 5.3
illustrates the conductors and their images, and it will be used to develop a
general voltage drop equation for overhead lines.

In Figure 5.3, it is assumed that:

9 =4 (5.3)

qj=-9;

Appling Equation 5.2 to Figure 5.3:

2me RD; Sii D; S

Because of the assumptions of Equation 5.3, Equation 5.4 can be simplified to:

; ) . D;
Ve g St g RP g 5 g1 ]

2me RDI Sij Djj / 51]

‘/ji:i 1111 Su +q1h15—“+q]1ns]] +q]h'151]

2me RD; RD; D; D;
1 s, s
Vi=—|2-¢iln—"—+2-q;In 5.5
ame| " RD, U D, J 69

where S;; = distance from conductor i to its image i” (ft)

S;;= distance from conductor i to the image of conductor j (ft)

D, = distance from conductor i to conductor j (ft)

RD; = radius of conductor i in ft.

Equation 5.5 gives the total voltage drop between conductor i and its image.
The voltage drop between conductor i and the ground will be one-half of
that given in Equation 5.5.

" one RD; D,

J

Ve=s, (qfh‘ > +q}‘]nSijJ ©o
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FIGURE 5.3
Conductors and images.

Equation 5.6 can be written in a general form as:
Vig=Pi-qi+PF-q; (6.7)

where P; and P are the self- and mutual “potential coefficients.”
For overhead lines, the relative permittivity of air is assumed to be 1.0 so
that:

€ =1.0%8.85x 102 F/m
(5.8)
€. =1.4240 X 102 mF/mile

Using the value of permittivity in pF/mile, the self- and mutual potential
coefficients are defined as:

P;=11.17689In RSD mile/uF (9)
P;=11.17689-In 1 mile/uF (5.10)

L)

Note In applying Equations 5.9 and 5.10, the values of RD,, S;;, S;, and D;; must
be in the same units. For overhead lines, the distances between conductors
are typically specified in feet, whereas the value of the conductor diameter
from a table will typically be in inches. Care must be taken to ensure that the
radius in feet is used in applying the two equations.

For an overhead line of n-cond conductors, the “primitive potential coeffi-

cient matrix” [Ispdm,«ﬁve} can be constructed. The primitive potential coefficient
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matrix will be an n-cond x n-cond matrix. For a four-wire grounded wye line,
the primitive coefficient matrix will be of the form:

B ba 13 bb B be ® 13 bn
[f)pmm} p. Py DP. e P, (5.11)
° ° . . °
L P na ﬁnb ﬁn(‘ e« P nn |

The dots (e) in Equation 5.11 are partitioning the matrix between the third
and fourth rows and columns. In partitioned form, Equation 5.11 becomes:

) 12
P 121 15

(5.12)

Because the neutral conductor is grounded, the matrix can be reduced using
the “Kron reduction” method to an n-phase x n-phase phase potential coef-
ficient matrix [P,,].

(Pacl = By |- 2 [ B |- [ 2] (5.13)

The inverse of the potential coefficient matrix will give the n-phase x n-phase
capacitance matrix [C,,].

[Cabc] = [Ijabc ]71 l.lF (514)

For a two-phase line, the capacitance matrix of Equation 5.14 will be 2 x 2.
A row and column of zeros must be inserted for the missing phase. For a
single-phase line, Equation 5.14 will result in a single element. Again, rows
and columns of zero must be inserted for the missing phase. In the case of
the single-phase line, the only nonzero term will be that of the phase in use.

Neglecting the shunt conductance, the phase shunt admittance matrix is
given by:

[Yabc] = 0+] HOR [Cabc]uS/mile (515)

where w=2-1t- f =376.9911.
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Example 5.1

Determine the shunt admittance matrix for the overhead line in
Example 4.1. Assume that the neutral conductor is 25 ft above the ground.

The diameters of the phase and neutral conductors from the conductor
table (Appendix A) are:

Conductor : 336,400 26/7 ACSR d.=0.721in.,, RD.=0.03004ft
4/0 6/1 ACSR:d; =0.563 in., RD, =0.02346ft

Using the Cartesian coordinates in Example 4.1, the image distance
matrix is given by:

5, =1d;~d]|

where d; = the conjugate of d;.

For the configuration, the distances between conductors and images
in matrix form are:

58 58.0539  58.4209  54.1479
58.0539 58 58.1743  54.0208
58.4209  58.1743 58 54.0833
54.1479  54.0208  54.0833 50

[5]=

The self-primitive potential coefficient for phase a and the mutual primi-
tive potential coefficient between phases 2 and b are:

P =1117689In 20
0.03004

= 84.5600 mile/uF

A 58.0539
2

P, =11.176891n =35.1522 mile/uF

Using Equations 59 and 5.10, the total primitive potential coefficient
matrix is computed to be:

845600 35.1522 23.7147  25.2469
[f, o ]z 35.1522  84.5600 28.6058  28.3590
primitive 23.7147 28.6058 84.5600 26.6131
252469 283590 26.6131  85.6659

mile/uF

Because the fourth conductor (neutral) is grounded, the Kron reduc-
tion method is used to compute the “phase potential coefficient matrix.”

Because only one row and column need to be eliminated, the I:P““] term
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is a single element, so that the Kron reduction equation for this
case can be modified to:

- 131'11'13'11
R’]':Pij_ 13 !
44

wherei=1,2,3andj=1,2,3.
For example, the value of P, is computed to be:

P, =Py _M =28.6058 — 26.6131-28.359 _ 19.7957

Py 85.6659

Following the Kron reduction, the phase potential coefficient matrix is:

771194 26.7944 15.8714
[Pc]=| 267944 75.1720 19.7957 |mile/uF
15.8714 19.7957  76.2923

Invert [P,

»c] to determine the shunt capacitance matrix:

) 0.015  -0.0049 —0.0019
[Cac]=[P] =| -0.0049 0.0159 -0.0031 |uF/mile
-0.0019 —0.0031  0.0143

Multiply [C,] by the radian frequency to determine the final three-
phase shunt admittance matrix.

j5.6711  —j1.8362 —j0.7033
[Vase]= j-376.9911-[Canc]=| —-j1.8362  j5.9774  —j1.169 |uS/mile
-j0.7033  —j1.169  j5.3911

5.2.1 The Shunt Admittance of Overhead Parallel Lines

The development of the shunt admittance matrix for parallel overhead lines is
similar to the steps taken to create the phase impedance matrix. The number-
ing of the conductors must be the same as that which was used in develop-
ing the phase impedance matrix. To develop the shunt admittance matrix for
overhead lines, it is necessary to know the distance from each conductor to the
ground, and it will be necessary to know the radius in feet for each conductor.

The first step is to create the primitive potential coefficient matrix. This
will be an n-cond x n-cond matrix, where n-cond is the total number of phase
and ground conductors. For the lines in Figure 4.8, n-cond will be 7; for two
lines each with its own grounded neutral, n-cond will be 8.
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The elements of the primitive potential coefficient matrix are given by:

P, =11.17689-In Si
RD

) 5“’ mile/uF (5.16)
P;j=11.17689-In -

i

where S;; = distance in ft from a conductor to its image below ground

S;;= distance in ft from a conductor to the image of an adjacent conductor

D, = distance in ft between two overhead conductors

RD; = radius in ft of conductor i

The last one or two rows and columns of the primitive potential coefficient
matrix are eliminated by using Kron reduction. The resulting voltage equa-
tion is:

Vi P11,, Pll, Pll, P12, P12, P12, ql,
Vg P11,, P11, P11, P12, P12, P12, qly
Vi ri, pri1, P11, P12, P124 P12, ql. v
V2, | | P2la P21, P21, P22, P22, P22, ' q2.
V2bg P21ba P21bb P21bc P22ba P22bb P22bc qzb
V2 P21, P21y P21. P22, P22, P22. q2.
(5.17)
In short hand form Equation 5.17 is:
[Vic]=[F]-[q] G.18)
The shunt capacitance matrix is determined by:
[q]=[P]" [Vic]=[C] [Vic] (519)

The resulting capacitance matrix is partitioned between the third and fourth
rows and columns.

N [C11] [C12] “o0
(CI=1P1"= [C21] [C22] (5.20)
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The shunt admittance matrix is given by:

[v]=jo-[C]-10°= i 2] S (5.21)

[y21] [y22]

where =2 -7 - frequency.

Example 5.2

Determine the shunt admittance matrix for the parallel overhead lines
in Example 4.2.

The position coordinates for the seven conductors and the distance
matrix are defined in Example 4.2. The diagonal terms of the distance
matrix (Example 4.2) must be the radius in feet of the individual conduc-
tors. For this example:

d, 0721
Di1=D,,=D;;=—=—"""=0.0300"
1,1 2,2 3,3 24 24
d, 0.567

Dyys=Ds5=Ds=—=—=0.0236
44 =5 =Des =0 =04

D7,7 = ﬁ = 00235/
24

The resulting distance matrix is:

0.0300 2.5000 7.0000 32016 7.2801 2.0000 7.2111
25000 0.0300 4.5000 2.0000 49244 32016 6.1847
7.0000 45000 0.0300 4.9244 2.0000 7.2801 6.7082
[D]=| 3.2016 2.0000 4.9244 0.0236 4.5000 2.5000 4.2720 |ft.
72801 49244 2.0000 4.5000 0.0236 7.0000 5.0000
2.0000 32016 7.2801 25000 7.0000 0.0236 5.6569
72111 6.1847 6.7082 4.272  5.0000 5.6569 0.0235

The distances between conductors and conductor images (image matrix)
can be determined by:

5,',/' = d,' —d;

For this example, the image matrix is:

70.000 70.045 70349 68.046 68359 68.000 64.125
70.045 70.000 70.145 68.000 68149 68.046 64.018
70.349 70.145 70.000 68.149 68.000 68.359 64.070
[S]=| 68.046 68.000 68.149 66.000 66.153 66.047 62.018 |ft.
68.359 68149 68.000 66.153 66.000 66370 62.073
68.000 68.046 68.359 66.047 66370 66.000 62.129
64.125 64.018 64.070 62.018 62.073 62.129 60.000




The distance and image matrices are used to compute the 7 x 7 potential

The primitive potential coefficient matrix is partitioned between the
sixth and seventh rows and columns, and the Kron reduction method
produces the 6 x 6 potential matrix. This matrix is then inverted and

multiplied by w=2376.9911 to give the shunt admittance matrix. The

Pp;; =11.17689-]n(5i’j)
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ij

final shunt admittance matrix in partitioned form is:

130
coefficient matrix by:
j6.2992
[y11]=| -j1.3413
-j0.4135
—~j0.7889
[y12]=| —j1.4440
—j0.5553
—j0.7889
[y21]=| -j0.2992
-j1.6438
j6.3278
[y22]=| -j0.6197
~j1.1276
I

~j1.3413
j6.5009
-j0.8038

~j0.2992
~j0.5698
~j1.8629

~j1.4440
~j0.5698
—j0.7988

-j0.6197
j5.9016
—~j0.2950

-j0.4135
~j0.8038
j6.0257

~j1.6438
—~j0.7988
~j0.2985

—~j0.5553
~1.8629
—~0.2985

-j1.1276
—~j0.2950
j6.1051

uS/mile

uS/mile

uS/mile

uS/mile

5.3 Concentric Neutral Cable Underground Lines

Most underground distribution lines consist of one or more concentric neu-
tral cables. Figure 5.4 illustrates a basic concentric neutral cable with the cen-
ter conductor being the phase conductor, and the concentric neutral strands

displaced equally around a circle of radius R,
Referring to Figure 5.4, the following definitions apply:

R, = Radius of a circle passing through the centers of the neutral strands

d. = Diameter of the phase conductor
d, = Diameter of a neutral strand
k = Total number of neutral strands
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FIGURE 5.4
Basic concentric neutral cable.

The concentric neutral strands are grounded so that they are all at the same
potential. Because of the stranding, it is assumed that the electric field created
by the charge on the phase conductor will be confined to the boundary of the
concentric neutral strands. In order to compute the capacitance between the
phase conductor and ground, the general voltage drop of Equation 5.2 will
be applied. Because all of the neutral strands are at the same potential, it is
only necessary to determine the potential difference between the phase con-
ductor p and strand 1.

1 R, RD, Dy, Dy; Dy
Va=— g, In——+g In—+g,In—=+--+g;In +ot g In——
o 2n£[qp RD, TR, TPTR, IR, T Rb]
(5.22)
where RDﬂ:i
2
RD, =%
2

It is assumed that each of the neutral strands carries the same charge such
that:

G =q=qi=q= —qf (5.23)

Equation 5.22 can be simplified:

Vp1=1|: »1n Ry _4dp ]nRDSerDL’-jL...ijD“JF...erDM}
2me RD. k R, b b b
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(5.24)

Vpl_qp|:].n Rb _1(]11RDS’D12’D11'1--~/D1]< ):|

“2mel” RD. k Rk

The numerator of the second In term in Equation 5.24 needs to be expanded.
The numerator represents the product of the radius and the distances
between strand i and all of the other strands. Referring to Figure 54, the
following relations apply:

2.
0=

4-
913=2'912=7

In general, the angle between strand #1 and any other strand #i is given by:

(i-1)-2n

91j=(i—l)-912= k

(5.25)

The distances between the various strands are given by:

. (© .
Dy, =2-R, ~s1n(212J= 2-Rp- sm(;:)

913 2r

(5.26)
D13 :Z'Rb . sm(?JZZRb sm(?)

The distance between strand 1 and any other strand i is given by:

Dy;=2-R, -sin(ez“ ):2 ‘R, sm{(l_i)n] (5.27)

Equation 5.27 can be used to expand the numerator of the second log term
of Equation 5.24.

RD; - Dy, ..., Dy, ..., D1y = RD; -lel[Zsin(Z)- 251'11(2]?}...,25&1

ferpenll] o
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The term inside the bracket in Equation 5.28 is a trigonometric identity that
is merely equal to the number of strands k [1]. Using that identity, Equation
5.18 becomes:

. . k_l
Ve e (i Ro 1(]nk RD, - R} ﬂ

“2me| RD. k RE
V= de | R 1y, k-RD, (5.29)
ame| " RD. K\ R,

Equation 5.29 gives the voltage drop from the phase conductor to neutral
strand #1. Care must be taken such that the units for the various radii are the
same. Typically, underground spacings are given in inches; so the radii of the
phase conductor (RD,) and the strand conductor (RD,) should be specified in
inches.

Because the neutral strands are all grounded, Equation 5.29 gives the volt-
age drop between the phase conductor and ground. Therefore, the capaci-
tance from the phase to ground for a concentric neutral cable is given by:

dp 2me .
Cpe == uF/mile (5.30)
g Voi  In R, _llnkRDs
RD. k R,

where € = g¢, = permittivity of the medium

€, = permittivity of free space = 0.01420 uF/mile

g, = relative permittivity of the medium

The electric field of a cable is confined to the insulation material. Various
types of insulation material are used, and each will have a range of values for
the relative permittivity. Table 5.1 gives the range of values of relative permit-
tivity for four common insulation materials [2].

TABLE 5.1

Typical Values of Relative Permittivity (e,)

Material Range of Values of Relative Permittivity
Polyvinyl chloride (PVC) 3.4-8.0
Ethylene-propylene rubber (EPR) 2.5-3.5

Polyethylene (PE) 2.5-2.6

Cross-linked polyethlyene (XLPE) 2.3-6.0
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Cross-linked polyethlyene is a very popular insulation material. If the
minimum value of relative permittivity is assumed (2.3), the equation for the
shunt admittance of the concentric neutral cable is given by:

. 77.3619 .
Vag =0+] : US/mile (5.31)
In R, —lln k-RD,
RD, k R,

Example 5.3

Determine the three-phase shunt admittance matrix for the concentric
neutral line in Example 4.3 in Chapter 4.
From Example 4.3:

R,=R=0.0511ft=0.631in.
Diameter of the 250,000 AA phase conductor = 0.567in.

RD, = g =0.2835 in.

Diameter of the #14 CU concentric neutral strand = 0.0641in.

0.0641
2

RD, = =0.03205 in.

Substitute into Equation 5.24:
. 77.3619
el R Y1 (k-RD
In| =5 |- —.In| ===5
RD. ) k R,

. 77.3619
Yao=] 06132 ) 1 13-0.03205
o (ot

= j96.6098 puS/mile

02835) 13 0.6132

The phase admittance for this three-phase underground line is:

7966098 0 0
[Vane ] = 0 j96.6098 0 uS/mile
0 0 j96.6098

5.4 Tape-Shielded Cable Underground Lines

A tape-shielded cable is shown in Figure 5.5.

Referring to Figure 5.5, R, is the radius of a circle passing through the center
of the tape shield. As with the concentric neutral cable, the electric field is con-
fined to the insulation so that the relative permittivity of Table 5.1 will apply.
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AL or CU phase
conductor

Insulation
CU tape shield

Jacket

FIGURE 5.5
Tape-shielded conductor.

The tape-shielded conductor can be visualized as a concentric neutral cable
where the number of strands k has become infinite. When k in Equation 5.24
approaches infinity, the second term in the denominator approaches zero.
Therefore, the equation for the shunt admittance of a tape-shielded conduc-
tor becomes:

Vag=0+]j &219 uS/mile (5.32)
ln b

RD.

Example 5.4

Determine the shunt admittance of the single-phase tape-shielded cable
in Example 4.4 in Chapter 4. From Example 4.4, the outside diameter of
the tape shield is 0.88in. The thickness of the tape shield (T) is 5 mils. The
radius of a circle passing through the center of the tape shield is:

T = o 0.005
1000
_d,—T _0.88-0.005

=0.4375in.

R, 7

The diameter of the 1/0 AA phase conductor = 0.368in.

d
RD. = 7” _ 0368 _ 0.18401in.
Substitute into Equation 5.25:
. 773619 _ . 77.3619

= j89.3179

V=) R Y ) (04375
In In
RD, 0.184
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The line is on phase b so that the phase admittance matrix becomes:

0 0 0
[Vac]=| 0 893179 0 |uS/mile
0 0 0

5.5 Sequence Admittance

The sequence admittances of a three-phase line can be determined in
much the same manner as the sequence impedances were determined in
Chapter 4. Assume that the 3 x 3 admittance matrix is given in S/mile. Then
the three-phase capacitance currents as a function of the line-to-ground volt-
ages are given by:

Icapﬂ Yaa Yab Yac ‘/ag
Icapy |=| ¥ba Yoo Ve || Vi (5.33)
Ica 1D Yea Yo Ve ch

[Icapabc] = [Yabc] ' [VLGabc] (534.)

Applying the symmetrical component transformations:
[eapoa]=[A] " [Teapae | =[A] " [yare] [ A [VLGone] (5.35)

From Equation 5.35, the sequence admittance matrix is given by:

) L ) Yoo Yo Yoz
[You] = [As] : [Yabc] : [As] = Y Yu Yz (5.36)
Y20 Yo V2

For a three-phase overhead line with unsymmetrical spacing, the sequence
admittance matrix will be full. That is, the off-diagonal terms will be non-
zero. However, a three-phase underground line with three identical cables
will only have the diagonal terms since there is no “mutual capacitance”
between phases. In fact, the sequence admittances will be exactly the same
as the phase admittances.
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5.6 The Shunt Admittance of Parallel
Underground Lines

For underground cable lines using either concentric neutral cables or
tape-shielded cables, the computation of the shunt admittance matrix is
quite simple. The electric field created by the charged phase conductor does
not link to adjacent conductors because of the presence of the concentric neu-
trals or the tape shield. As a result, the shunt admittance matrix for parallel
underground lines will consist of diagonal terms only.

The diagonal terms for concentric neutral cables are given by:

77.3619
In R, 1 ]nk~RDS

yi=0+j -107° S/mile (5.37)

RD; k Ry

where R, =radius in ft of circle going through the center of the neutral strands
RD; = radius in ft of the center phase conductor
RD, = radius in ft of the neutral strands
k =number of neutral strands
The diagonal terms for tape-shielded cables are given by:

.77.3619
Vi=0+j—F%
]Il b

RD,

-10°S/mile (5.38)

where R, = radius in ft of circle passing through the center of the tape shield
RD; =radius in ft of the center phase conductor

Example 5.5

Compute the shunt admittance matrix (6 x 6) for the concentric neutral
underground configuration in Example 4.5.

From Example 4.5:

Diameter of the central conductor: d. =0.567”

Diameter of the strands: d, =0.641”

Outside diameters of concentric neutral strands: d,q =1.29”

. . . dog —ds ,
Radius of circle passing through the strands: R, = 0’274 =0.0511

Radius of central conductor: RD, = Z—; = % =0.236'

. . 0.0641 ,
Radius of the strands: RD, = Z—4 = % =0.0027
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Because all cables are identical, the shunt admittance of a cable is:

77.3619 . 77.3619
YC = O+] : = O+] .
Ry 1 k-RD 00511} 1 13-0.0027
In . n s In || 2202057
RD, | k R, 0.0236 ) 13 0.0511

Yo =0+ j-96.6098 uS/mile

The phase admittance matrix is:

7966098 0 0 0 0 0
0 1966098 0 0 0 0
0 0 966098 0 0 0 .
DLl 0 0 796.6098 0 0 nS/mile
0 0 0 0 966098 0
0 0 0 0 0 796.6098
|

5.7 Summary

Methods for computing the shunt capacitive admittance for overhead and
underground lines have been presented in this chapter. The development
of computing the shunt admittance matrix for parallel overhead and under-
ground lines is included.

Distribution lines are typically so short that the shunt admittance can
be ignored. However, there are cases of long, lightly loaded overhead lines
where the shunt admittance should be included. Underground cables have
a much higher shunt admittance per mile than overhead lines. Again, there
will be cases where the shunt admittance of an underground cable should
be included in the analysis process. When the analysis is being done using
a computer, the approach to take is to model the shunt admittance for both
overhead and underground lines, rather than making a simplifying assump-
tion when it is not necessary.

Problems

5.1 Determine the phase admittance matrix [ Vabe | and sequence admittance
matrix [ yor2 | in pS/mile for the three-phase overhead line of Problem 4.1.

5.2 Determine the phase admittance matrix in pS/mile for the two-phase line
of Problem 4.2.
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5.3 Determine the phase admittance matrix in pS/mile for the single-phase
line of Problem 4.3.

5.4 Verify the results of Problems 5.1, 5.2, and 5.3 using WindMil

5.5 Determine the phase admittance matrix and sequence admittance matrix
in pS/mile for the three-phase line of Problem 4.5.

5.6 Determine the phase admittance matrix in uS/mile for the single-phase
concentric neutral cable of Problem 4.9.

5.7 Determine the phase admittance matrix and sequence admittance matrix
for the three-phase concentric neutral line of Problem 4.10.

5.8 Verity the results of Problems 5.6 and 5.7 using WindMil.

5.9 Determine the phase admittance matrix in pS/mile for the single-phase
tape-shielded cable line of Problem 4.12.

5.10 Determine the phase admittance for the three-phase tape-shielded cable
line of Problem 4.13.

5.11 Verify the results of Problem 5.9 and 5.10 using WindMil.

5.12 Determine the shunt admittance matrix for the parallel overhead lines
of Problem 4.15.

5.13 Determine the shunt admittance matrix for the underground concentric
neutral parallel lines of Problem 4.16.

WindMil Assignment

Add to the WindMil System 1 a single-phase line connected to Node 2. Call
this “System 2.” The single-phase line is on phase b and is defined in Problem
4.3. Call this line OH-2. At the end of the line, connect a node and call it
Node 3. The load at Node 3 is 200 kVA at a 90% lagging power factor. The load
is modeled as a constant impedance load.

Determine the voltages at the nodes on a 120-V base and the currents flow-
ing on the two lines.
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6

Distribution System Line Models

The modeling of distribution overhead and underground line segments is
a critical step in the analysis of a distribution feeder. It is important in the
line modeling to include the actual phasing of the line and the correct spac-
ing between conductors. Chapters 4 and 5 developed the method for the
computation of the phase impedance and phase admittance matrices with
no simplifying assumptions. Those matrices will be used in the models for
overhead and underground line segments.

6.1 Exact Line Segment Model

The model of a three-phase, two-phase, or single-phase overhead or under-
ground line is shown in Figure 6.1.

When a line segment is two-phase (V-phase) or single-phase, some of the
impedance and admittance values will be zero. Recall that in Chapters 4
and 5, in all cases the phase impedance and phase admittance matrices were
3 x 3. Rows and columns of zeros for the missing phases represent two-phase
and single-phase lines. Therefore, one set of equations can be developed
to model all overhead and underground line segments. The values of the
impedances and admittances in Figure 6.1 represent the total impedances
and admittances for the line. That is, the phase impedance matrix, derived in
Chapter 4, has been multiplied by the length of the line segment. The phase
admittance matrix, derived in Chapter 5, has also been multiplied by the
length of the line segment.

For the line segment in Figure 6.1, the equations relating the input (node n)
voltages and currents to the output (node m) voltages and currents are devel-
oped as follows.

Kirchhoff’s Current Law applied at node m:

Iline, 1, L] Yo Yo Y Vag
I]jneb = Ib + E . Yba Ybb ch . ng (61)
1 Iinec I. Ye Yo Yee ch

141
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FIGURE 6.1
Three-phase line segment model.

In condensed form, Equation 6.1 becomes:

. 1
[Ilmeabc ]m = [Iabc ]m + E [Yabc] : [VLGabC ]m

Kirchhoff’s Voltage Law applied to the model gives:

Vag ‘/ag Z aa
ng = ng + Z ba
V. V. Zeaa

B4 g

m

Zab
be
Zcb

In condensed form, Equation 6.3 becomes:

Zac
Zbc
ZCC

Iline,
1 11'neb

1line.

[VLGabc]n = [VLGabC]m + [Zabc] ' [I]ineabc] m

Substituting Equation 6.2 into Equation 6.4:

6.2)

6.3)

6.4)

[VLGabc] n = [VLGabc] m + [Zabc] : {[Iabc] m + % [Yabc] . [VLGabc] m} (65)

Collecting terms:

VLG, = {[U] ¥ % (Zue ] [Yabc]} VLGue] +[Zuc] L],  (66)
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where
1 0 0
[Ul=| 0 1 o0 6.7)
0 0 1
Equation 6.6 is of the general form:
[VLG.sc], =[a]- [VLGas] , +[P]-[Lapc],, 6.8)
where
1
[a]=[UT+ [ Zave ] [Yare] ©.9)
[b] =[Zabe ] (6.10)
The input current to the line segment at node # is:
1 a I-Imea 1 Yaa Yab Yac Vag
I b = I 11116’ b + E . Yba Ybb ch : ng (611)
I c n Ilin e. N Yca ch ch ch .
In condensed form, Equation 6.11 becomes:
. 1
[Labe ], = [Ilin€ape ] + 5 [Yore ] [VLGapc ], 6.12)

Substitute Equation 6.2 into Equation 6.12:

—_

1
[Iabc ]n = [Iabc ]m + E [Yabc] . [VLGabc ]m + E : [Yabc] : [VLGabc ]n (613)
Substitute Equation 6.6 into Equation 6.13:
1
[Iabc ]n = [Iabc ]m + E [Yabc ] : [VLGabC ]m

+% : [Yabc] ({[U] + % : [Zabc] . [Yabc]}' [VLGabc]m + [Zabc] : [Iabc]m) (614)
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Collecting terms in Equation 6.14:
1
(ol ={Yone ot ] [Z ] Dot 1} [VEGite],,
U1+ W] 1 Zunc L], 615)

Equation 6.15 is of the form:

[Iabc]‘n = [C] : [VLGabc]m + [d] : [Iabc]m (616)

where
[C] = [Yabc] +% ’ [Yabc] : [Zabc] : [Yabc] (617)
[d] = [U] + % : [Yabc] : [Zabc] (618)

Equations 6.8 and 6.16 can be set in partitioned matrix form:

VLGucl, | _| [al [b] || [VLGuxl, 6.19)

[Laec], [e]  [d] [Lae ],

Equation 6.19 is very similar to the equation used in transmission line analy-
sis when the ABCD parameters have been defined [1]. In this case, the abcd
parameters are 3 x 3 matrices rather than single variables and will be referred
to as the “generalized line matrices.”

Equation 6.19 can be turned around to solve for the voltages and currents
at node m in terms of the voltages and currents at node 7.

viGal, | | 1a 1 | | G, 620)

[Labe ], [e] [d] [Labe ],
The inverse of the abcd matrix is simple because the determinant is:

[a]-[d]=[P]-[c]=[U] (6.21)
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Using the relationship in Equation 6.21, Equation 6.20 becomes:

6.22)

[VLGal, |_| [d]l  =[b] | | [VLGuxl,
[Labe ], =[e]  [a] [Lac],

Because the matrix [a] is equal to the matrix [d], Equation 6.22 in expanded
form becomes:

[VLGabc]m = [a] ’ [VLGabc]n - [b] ’ [Iabc]n (623)

(L], ==[c]- [VLGae ], +[d] [Tave ], (6.24)

Sometimes it is necessary to compute the voltages at node m as a function of
the voltages at node n and the currents entering node m. This is true in the
iterative technique that is developed in Chapter 10.

Solving Equation 6.8 for the bus m voltages gives:

VLG ], =[a]" - {[VLGusc ], ~[b] [Luec], }

(6.25)
[VLGuscl,, =lal [VLGic], ~[a] " -[b]- (L ],,
Equation 6.25 is of the form:
[VLGase ] =[A]-[VLGuse], = [B]- L], (6.26)
where
[A]=[a]” 6.27)
[B]=[a]" -[b] (6.28)
The line-to-line voltages are computed by:
Vao 1 -1 0 Vag
Ve =l 0 1 -1 || Vi =[Dv]-[VLGa],, (6.29)

Ve -1 0 1 %

g
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where
1 -1 0
[Dv]=| o0 1 -1 (6.30)
-1 0 1

Because the mutual coupling between phases for the line segments is not
equal, there will be different values of voltage drop on each of the three
phases. As a result, the voltages on a distribution feeder become unbal-
anced even when the loads are balanced. A common method of describ-
ing the degree of unbalance is to use the National Electrical Manufactures
Association (NEMA) definition of voltage unbalance as given in Equation
6.31 [2].

|Maximum deviation of voltages from average| 100%

Vun alance =
o ‘/average

6.31
av (6.31)

-100%

Vunbalance =
average

Example 6.1

A balanced three-phase load of 6000kVA, 12.47kV, and 0.9 lagging
power factor is being served at node m of a 10,000-ft three-phase
line segment. The load voltages are rated and balanced at 12.47kV.
The configuration and conductors of the line segment are those of
Example 4.1. Determine the generalized line constant matrices [a], []],
[c], [4], [A], and [B]. Using the generalized matrices, determine the line-
to-ground voltages and line currents at the source end (node n) of the
line segment.

Solution: The phase impedance matrix and the shunt admittance matrix
for the line segment as computed in Examples 4.1 and 5.1 are:

0.4576+ j1.0780  0.1560+ j0.5017  0.1535+ j0.3849
[zae] =| 0.1560+ j0.5017  0.4666+ j1.0482  0.1580+ j0.4236 |Q/mile
0.1535+;0.3849  0.1580+;j0.4236  0.4615+ j1.0651

j5.6711  —j1.8362 —j0.7033
[Vabe] = j-376.9911-[Copc] =| —j1.8362  j5.9774  —j1.169 |uS/mile
-j0.7033  —j1.169  j5.3911

For the 10,000-ft line segment, the total phase impedance matrix and the
shunt admittance matrix are:



Distribution System Line Models 147

0.8667 +j2.0417  0.2955+ j0.9502  0.2907 + j0.7290
[Zac] =| 0.2955+0.9502  0.8837+;1.9852  0.2992+ j0.8023 |Q
0.2907 +j0.7290  0.2992+ ;0.8023  0.8741+ j2.0172

j10.7409 —j3.4777 —j1.3322
Yac] =| —j34777  j11.3208 —j2.2140 |uS
~j1.3322 —j2.2140  j10.2104

It should be noted that the elements of the phase admittance matrix are

very small.
The generalized matrices computed according to Equations 6.9, 6.10,
6.17, and 6.18 are:
1 1.0 0 0
[a] = [U] + - [Zawc] Vo] =| O 1.0 0
0 0 10

0.8667 + j2.0417  0.2955+;0.9502  0.2907 + j0.7290
[b] = [Za] =| 0.2955+0.9502 0.8837+;1.9852  0.2992+ j0.8023
0.2907 + j0.7290  0.2992+;0.8023  0.8741+ j2.0172

0 0 0
[c]=] 0 0 O
0 0 0
1 10 0 0
[d] =[U] + E'[Yabc]‘[zabc] 0 1.0 0
0 0 10
1.0 0 0
[Al=] 0 10 0
0 0 10

0.8667 + j2.0417  0.2955+ j0.9502  0.2907 + j0.7290
[B] = [a] " -[b] =| 0.2955+;0.9502 0.8837+;1.9852  0.2992+ j0.8023
02907+ j0.7290  0.2992+ j0.8023  0.8741+ j2.0172

Because the elements of the phase admittance matrix are so small, the
[a], [A], and [d] matrices appear to be the unity matrix. If more significant
figures are displayed, the 1,1 element of these matrices is:

ay =A;,1 =0.99999117 + j0.00000395



148

Distribution System Modeling and Analysis

In addition, the elements of the [c] matrix appear to be zero. Again, if
more significant figures are displayed, the 1,1 term is:

c1,1 =—0.0000044134 + j0.0000127144

The point here is that for all practical purposes, the phase admittance
matrix can be neglected.
The magnitude of the line-to-ground voltages at the load is:

12,470

Vig= NE =7199.56

Selecting the phase a to ground voltage as reference, the line-to-ground
voltage matrix at the load is:

Vi 7199.56/0
Ve | =| 719956/-120 |v
Ve 7199.56/120

The magnitude of the load currents is:

__ 6000 _ 277.79

= V31247
For a 0.9 lagging power factor, the load current matrix is:

277.79/ —25.84
(L] =| 277.79/-14584 |A
277.79/94.16

The line-to-ground voltages at node n are computed to be:

7538.70/1.57
[VLGas], = [a]- [VLGus ], + [P]-[Iasc] , =| 7451.25/~118.30 |V
7485.11/121.93

It is important to note that the voltages at node 7 are unbalanced even
though the voltages and currents at the load (node m) are perfectly bal-
anced. This is a result of the unequal mutual coupling between phases.
The degree of voltage unbalance is of concern because, for example,
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the operating characteristics of a three-phase induction motor are very
sensitive to voltage unbalance. Using the NEMA definition for voltage
unbalance (Equation 6.29), the voltage unbalance is:

3
1
Vaverage = g . Z‘VLG,-,L( =7491.69
k=1
for: i=1,2,3
47.01
d‘/, = ‘/‘average _‘VLGn‘i = 40.44
6.57
Vinbalance = AV imax = 47.01 -100% =0.6275 %

Vaverage  7491.70

Although this may not seem like a large unbalance, it does give an indi-
cation of how the unequal mutual coupling can generate an unbalance.
It is important to know that NEMA standards require that induction
motors be de-rated when the voltage unbalance exceeds 1.0%.

Selecting rated line-to-ground voltage as base (7199.56), the per-unit
voltages at node n are:

Vi 7538.70/1.577 1.0471/1.57
Vie | = 71919 sg| 745125/-11830 |=| 10350/-11830 |per-unit
Vg | 7485.11/121.93 1.0397/121.93

n

By converting the voltages to per-unit, it is easy to see that the voltage
drop by phase is 4.71% for phase a, 3.50% for phase b, and 3.97% for
phase c.

The line currents at node 1 are computed to be:

277.71/-25.83
[Laec], = [c] [VLGasc ], +[d] - [Larc],, =| 277.73/-148.82 | A
277.73/94.17

Comparing the computed line currents at node n to the balanced load
currents at node m, a very slight difference is noted, which is another
result of the unbalanced voltages at node n and the shunt admittance of
the line segment.
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6.2 The Modified Line Model

It was demonstrated in Example 6.1 that the shunt admittance of an overhead
line is so small that it can be neglected. Figure 6.2 shows the modified line
segment model with the shunt admittance neglected.

When the shunt admittance is neglected, the generalized matrices become:

[a]=[U] 6.32)
[6]=[Zape] (6.33)
[c]=1[0] (6.39)
[d]=[U] (6.35)
[Al=[U] (6.36)
[B]=[Zabe ] 6.37)

6.2.1 The Three-Wire Delta Line

If the line is a three-wire delta, then the voltage drops down the line must be
in terms of the line-to-line voltages and line currents. However, it is possible
to use “equivalent” line-to-neutral voltages, so that the equations derived to
this point will still apply. Writing the voltage drops in terms of line-to-line
voltages for the line in Figure 6.2 results in:

Node-n la, lline, Zsa fay, S Node-m
[ AVAVAVAVE O A °
+ +

Vag, Ib, Iline,, Zp Z, Z. b, Vag,,
° ANN—YYN °
+ +
Vbg, I, lline, Z, Ic,, Vbg,,
—> —> ‘ —>
—— N \NN\WAN—""M °
+ +
Van VCgm
FIGURE 6.2

Modified line segment model.
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Vo Vo vdrop, vdropy,
Vie = Vi +| vdrop, |-| vdrop. (6.38)
Vea Vea vdrop. vdrop,
where
vdrop, Zi Zw Iline,
VdI'Opb = Zpa YA Zbc . IIineb
. (6.39)
vdr OpPc Z ca Z cb Z cc 1 Imec
[Vdropabc ] = [Zabc] ' [Ilmeabc ]
Expanding Equation 6.38 for the phase a—b:
Vab, =Vab,, +vdrop, — vdrop, (6.40)
But:
Vab,, =Van, —Vbn,
(6.41)
Vab,, =Van,, —Vbn,,
Substitute Equation 6.41 into Equation 6.40:
Van,, —Vbn, =Van,, —Vbn,, + vdrop,— vdrop,
or: Van, =Van,, +vdrop, (6.42)

Vbn, = Vbn,, + vdrop,,

In general, Equation 6.42 can be broken into terms of “equivalent” line-to-
neutral voltages.

[VLN] =[VLN] _+[vdropa.|
(6.43)
[VLN] =[VLN] +[Zac]-[Iline.s.]

The conclusion is that it is possible to work with “equivalent” line-to-neutral
voltages in a three-wire delta line. This is very important because it makes
the development of general analyses techniques the same for four-wire wye
and three-wire delta systems.
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6.2.2 The Computation of Neutral and Ground Currents

In Chapter 4, the Kron reduction method was used to reduce the primitive
impedance matrix to the 3 x 3 phase impedance matrix. Figure 6.3 shows a
three-phase line with grounded neutral that is used in the Kron reduction.
Note in Figure 6.3 that the direction of the current flowing in the ground is
shown.

In the development of the Kron reduction method, Equation 4.52
defined the “neutral transform matrix” [t,]. That equation is shown as
Equation 6.44.

[ta]=—2m]) " [24] (6.44)

The matrices [2m] and [énj] are the partitioned matrices in the primitive
impedance matrix.

When the currents flowing in the lines have been determined, Equation 6.45
is used to compute the current flowing in the grounded neutral wire(s).

[In]=[tn][Lanc]- (6.45)

In Equation 6.45, the matrix [I,] for an overhead line with one neutral wire
will be a single element. However, in the case of an underground line con-
sisting of concentric neutral cables or taped-shielded cables with or without
a separate neutral wire, [, ] will be the currents flowing in each of the cable
neutrals and the separate neutral wire if present. Once the neutral currents
have been determined, Kirchhoff’s Current Law is used to compute the cur-
rent flowing in the ground.

I, =—(I,+1p+1.+In+ Iy +-- -+ Iny ) (6.46)
A
Zﬂﬂ
=+ ; I A A -E
Vag a th })Zab }) Zac ‘Vug
=+ > A N A ‘:
Vig Iy 2. }>Zbc }>an ]‘)Zun Vi
—— "\ °
+ —>7 A +
ch ¢ grm })ch ’ ’ V,Cg
AN -
Vng n Vng
>1,

FIGURE 6.3
Three-phase line with neutral and ground currents.
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Example 6.2

The line of Example 6.1 will be used to supply an unbalanced load at
node m. Assume that the voltages at the source end (node ) are bal-
anced three-phase at 12.47kV line-to-line. The balanced line-to-ground
voltages are:

7199.56/0
[VLG] =| 7199.56/-120 |V

7199.56/120

The unbalanced currents measured at the source end are given by:

I, 249.97/-24.5
1 =| 277.56/-1458 |A
I. R 305.54/95.2

Determine the following;:

* The line-to-ground and line-to-line voltages at the load end
(node m) using the modified line model

¢ The voltage unbalance

e The complex powers of the load

* The currents flowing in the neutral wire and ground

Solution: The [A] and [B] matrices for the modified line model are:

1 0 0
[Al=[U]=| 0 1 o0
0 0 1

0.8666+;72.0417  0.2955+ j0.9502  0.2907 + j0.7290
[B] = [Zae] =| 0.2955+;0.9502 0.8837+ ;1.9852  0.2992+ ;0.8023 |Q
0.2907 +j0.7290  0.2992+;0.8023  0.8741+ j2.0172

Because this is the approximate model, [Ix], is equal to [Lu]
Therefore:

n'

I, 249.97/-24.5
I, | =| 27756/-1458 |A
L | 305.54/95.2
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The line-to-ground voltages at the load end are:

6942.53/-1.47
[VLG] =[A]-[VLG], - [B][Ls], =| 6918.35/-121.55 |V
6887.71/117.31

The line-to-line voltages at the load end are:

12,008/28 4
[VLL] =[Dv]-[VLG]_ =| 12,025/-92.2
11,903/148.1

For this condition, the average load voltage is:

1

a‘ erage —

W |

3
Y IVLG,|, =6916.20
k=1

The maximum deviation from the average is on phase c so that:

éfl\JécFl,(l?sa?r?ere for: i=1,2,3
ﬁgklet.e)d missing
26.33
Vi = Vaversge =|VLGl | =| 215
28.49
Vunbalance = AV _ 2899100 _0.4119%

Viverage  6916.20

The complex powers of the load are:

S, Vg L 1597.2+ j678.8
Sp =ﬁ~ VigIn |=| 1750.8+788.7 kW + jkvar
S. VT 1949.7 + 792.0

The “neutral transformation matrix” from Example 4.1 is:

[tn]=[-0.4292-;0.1291 —0.4476-;0.1373 —0.4373—;0.1327]



Distribution System Line Models 155

The neutral current is:

[Ln]=[tn][Lasc],, =26.2/-29.5

The ground current is:

Iy =—(L+ I +1.+1,)=32.5/-77.6

6.3 The Approximate Line Segment Model

Many times, the only data available for a line segment will be the positive
and zero sequence impedances. The approximate line model can be devel-
oped by applying the “reverse impedance transformation” from symmetri-
cal component theory.

Using the known positive and zero sequence impedances, the “sequence
impedance matrix” is given by:

Zo 0 0
[Zel=| 0 2z o0 6.47)
0o 0 Zz

The “reverse impedance transformation” results in the following approxi-
mate phase impedance matrix.

[Zoppror )= [A] [ Zoea ) AT (6.48)

2-Z.+2Z)) (Zo-Z.) (Zo-Z.))
(Zo-2Z)) (2-Z.+2Zy) (Zo-Z.) | (649)
(Zo-2Z.)  (Zo-Z.) (2-Z.+Z)

[ZHPPI'OX ] =

W | =

Notice that the approximate impedance matrix is characterized by the three
diagonal terms being equal and all mutual terms being equal. This is the
same result that is achieved if the line is assumed to be transposed. Applying
the approximate impedance matrix, the voltage at node # is computed to be:

Vag | |Vag 2-Z.+2Z))  (Zo-2Z.)  (Zo-2) ||l

1
ng = ng +§' (ZO—Z+) (2'Z++Zo) (ZO_Z+) . Ib
Vol Vi) (Z0=2.)  (Zo=2) (2Z:4Z0) |[I.]

(6.50)
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In condensed form, Equation 6.50 becomes:

[VLG], =[VLG], +[ Zuppror J [Luec],, 6.51)

Note that Equation 6.51 is of the form:

[VLG], =[a][VLG] ,+[b]-[Ixc],, (6.52)

where:

[a] = unity matrix
[b]= [Z approx ]

Equation 6.50 can be expanded and an equivalent circuit for the approximate
line segment model can be developed. Solving Equation 6.50 for the phase a
voltage at node n results in:

Vagn=Vagm+%{(ZZ++ZO)IE+(ZO—Z+)I,,+(ZO+Z+)IC} 6.53)

Modify Equation 6.53 by adding and subtracting the term (Z, - Z,)I, and
then combining terms and simplifying:

1|@Z+20) L +(Z0-2.) 1, +(2y- Z.) L.
Vag,=Vag,+—-
3\+(Z20-2) L, -(Zo-Z,)1,

1 (6.54)
Vag,=Vagn +§~{(?>Z+)Ia +(Zo=Z) L+ 1p+1.)}

(Zo-2.)

Vag,=Vagn+Z, I,+ L+, +1.)

The same process can be followed in expanding Equation 6.50 for phases b
and c. The final results are:

(Zo=2)

Vbg, =Vbgm+Z, I + (I +1,+1.) (6.55)

(2-2,)

Vegn=Vegm+Z, - 1.+ (I +1,+1.) (6.56)

Figure 6.4 illustrates the approximate line segment model.
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Node n Z,—>1, Node m
® /\/\/\/\/_/‘V‘Y‘V‘\ PY
+ +
Vag, ” 5, Vag,,
+ >
——— "\NANAN—"Y"M 1)
+ +
Vbg, z, L Vbg,,
— ANAN—YY M PS
+ +
Veg, Veg,,
_ _ B (Zo-Z)B<—- (I, + 1, +1) - - B
Ps ANAAA—Y YN °
FIGURE 6.4

Approximate line segment model.

Figure 6.4 is a simple equivalent circuit for the line segment because no
mutual coupling has to be modeled. It must be understood, however, that the
equivalent circuit can only be used when transposition of the line segment
has been assumed.

Example 6.3

The line segment of Example 4.1 is to be analyzed assuming that the
line has been transposed. In Example 4.1, the positive and zero sequence
impedances were computed to be:

2z, =0.3061+ j0.6270

. Q/mile
2y=0.7735+j1.9373

Assume that the load at node m is the same as in Example 6.1. That is:

kVA = 6000, kVLL = 12.47, Power factor=0.8 lagging

Determine the voltages and currents at the source end (node n) for this
loading condition.

Solution: The sequence impedance matrix is:

0.7735+ j1.9373 0 0
[Zeeg | = 0 0.3061+ j0.6270 0 Q/mile
0 0 0.3061+ j0.6270

Performing the reverse impedance transformation results in the approx-
imate phase impedance matrix.

[Zupprox J=[A [ 2eg J (AT
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0.4619+;1.0638  0.1558 + j0.4368  0.1558 + j0.4368
[zapp,(,x] =| 0.1558+;0.4368 0.4619+ j1.0638 0.1558+ j0.4368 |Q/mile
0.1558+j0.4368  0.1558 +j0.4368  0.4619+ j1.0638

For the 10,000-ft line, the phase impedance matrix and the [b] matrix are:

10,000
b =Za rox | = | Zapprox —
(] [ PP ] [Z PP ] 5280
0.8748+j2.0147  0.2951+ j0.8272  0.2951+ j0.8272
[b] =| 0.2951+0.8272 0.8748+ j2.0147 0.2951+;0.8272 |Q
0.2951+;0.8272  0.2951+;0.8272  0.8748 + j2.0147

Note in the approximate phase impedance matrix that the three diago-
nal terms are equal and all of the mutual terms are equal. Again, this is
an indication of the transposition assumption.
From Example 6.1, the voltages and currents at node m are:
7199.56/_0
[VLG], =| 7199.56/-120 [V

7199.56/120

277.79/ —25.84
[Lec] =| 277.79/-14584 |A
277.79/94.16

Using Equation 6.52:

7491.72/-1.73
[VLG] =[a]-[VLG] +[b]-[Li], =| 7491.72/-11827 |V
7491.72/121.73

Note that the computed voltages are balanced. In Example 6.1, it was
shown that when the line is modeled accurately, there is a voltage unbal-
ance of 0.6275%. It should also be noted that the average value of the
voltages at node n in Example 6.1 was 7491.69 V.

The V,, at node 1 can also be computed using Equation 6.48.

(Zo

-Z
Vag,,=Vagm+Z+-Ia+#+)~(Ia+Ib+Ic)
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Because the currents are balanced, this equation reduces to:

Vag,=Vagn+Z,-1,

Vag, =7199.56/0+(0.5797 + j1.1875)-277.79/ —25.84 =7491.72/1.73V

It can be noted that when the loads are balanced and transposition has
been assumed, the three-phase line can be analyzed as a simple single-
phase equivalent as was done in the foregoing calculation.

Example 6.4

Use the balanced voltages and unbalanced currents at node n in
Example 6.2 and the approximate line model to compute the voltages
and currents at node m.

Solution: From Example 6.2, the voltages and currents at node n are

given as:
7199.56/0
[VLG], =| 7199.56/-120 |V
7199.56/120
I, 249.97/-24.5
I, =| 277.56/-145.8 |A
I, i 305.54/95.2

The [A] and [B] matrices for the approximate line model are:
where

[A] = unity matrix
[B]= [ZﬂPPTOX]

The voltages at node m are determined by:

6993.10/-1.63
[VLG] = [A]-[VLG], ~[B]-[Ls], =| 6881.15/-121.61 |V
6880.23/117.50

The voltage unbalance for this case is computed by:

3
Vavcragc = % : Z‘VLGmL( = 691816

k=1
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for: i=1,2,3
74.94
d‘/1 = Vaverage _‘VLGmH = 37.01
37.93
Vinbalance = 4V imax = 74.94 -100=1.0833%

Viernge  6918.16

Note that the approximate model has led to a higher voltage unbalance
than the “exact” model.

6.4 The Modified “Ladder” Iterative Technique

The previous example problems have assumed a linear system. Unfortunately,
that will not be the usual case for distribution feeders. When the source volt-
ages are specified and the loads are specified as constant kW and kvar (con-
stant PQ), the system becomes nonlinear and an iterative method will have
to be used to compute the load voltages and currents. Chapter 10 develops
in detail the modified “ladder” iterative technique. However, a simple form
of that technique will be developed here in order to demonstrate how the
nonlinear system can be evaluated.
The ladder technique is composed of two parts:

1. Forward sweep
2. Backward sweep

The forward sweep computes the downstream voltages from the source by
applying Equation 6.57.

[VLGabc]m = [A] . [VLGabc]n - [B] : [Iabc] (657)

To start the process, the load currents [ I, | are assumed to be equal to zero

and the load voltages are computed. In the first iteration, the load voltages

will be the same as the source voltages and the load currents are computed.

The backward sweep computes the currents from the load back to the

source using the most recently computed voltages from the forward sweep.
Equation 6.58 is applied for this sweep.

[Iabc]n = [C] : [VLGabc]m + [d] ' [Iabc]m
since: [c]=][0] (6.58)
[Iabc]n = [d] ' [Iabc]m
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After the first forward and backward sweeps, the new load voltages are com-
puted using the most recent currents. The forward and backward sweeps
continue until the error between the new and previous load voltages are
within a specified tolerance. Using the matrices computed in Example 6.1, a
very simple Mathcad program that applies the ladder iterative technique is
demonstrated in Example 6.5.

Example 6.5

The line of Example 6.1 serves an unbalanced three-phase load of:
Phase a: 2500kVA and PF =09 lagging
Phase b: 2000kVA and PF = 0.85 lagging
Phase c: 1500kVA and PF = 0.95 lagging
The source voltages are balanced at 12.47kV.

7200
0 Tol :=.00001 _120-deg
Start == | 0 Eupe =] 7200
’ kViy =72 .
0 7900 120-deg

Y = [[ . < Start

V,q < Start

for n €1..200

VLG, < A-Eppe — By
for iel.3

SLi- 1000

Iabc <«
i VLG

abc,
1

for j €1..3

VLG = Vour.

Error. < ! !
KV, n-1000

Err,

m:

« < max(Error)

break if Err,, < Tol

max

Vold <~ VLGabc

Out1 <« VLG,
Out2 — L

Out3<—n

Out

FIGURE 6.5
Mathcad program for Example 6.5.
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12,470

V3

ELN = =7199.6

A simple Mathcad program (shown in Figure 6.5) is used to compute the
load voltages and currents. The matrices [A] and [B] from Example 6.1
are used.

After seven iterations, the load voltages and currents are computed
to be:

6678.2/-2.3 374.4/-28.2
[VLGue | =| 6972.8/-122.1 [Ls]=| 286.8/-153.9
7055.5/118.7 212.6/100.5

Example 6.5 demonstrates the application of the ladder iterative
technique. This technique will be used as models of other distribu-
tion feeder elements that are developed. A simple flowchart of the
program and one that will be used in other chapters is shown in
Figure 6.6.

Initialize

A 4

Forward sweep

A 4

Compute
error
A
Yes Output
results
No

A

Backward sweep @

FIGURE 6.6
Simple modified ladder flow chart.
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6.5 The General Matrices for Parallel Lines

The equivalent Pi circuits for two parallel three-phase lines are shown in
Figure 6.7.

The 6 x 6 phase impedance and shunt admittance matrices for parallel
three-phase lines were developed in Chapters 4 and 5. These matrices are
used in the development of the general matrices used in modeling parallel
three-phase lines.

The first step in computing the abcd matrices is to multiply the 6 x 6 phase
impedance matrix from Chapter 4 and the 6 x 6 shunt admittance matrix
from Chapter 5 by the distance that the lines are parallel.

(v1] _ [zu]  [zi] length- [11] _ [Zu]  [Zr] . [11] v
[v2] [zn]  [22] [12] [Zn]  [Z2] [12]

[vl=[Z]-11] (6.59)
[yul [yl Yul  [Ye]
-length = S 6.60
pal bl [0 | D] () 00
Referring to Figure 6.7, the line currents in the two circuits are given by:
(L] || ORI | 1] D]l [Ye] | VR
[12] [Ro] | 2| [Ya] [Ya] [VR:]

[1]=[IR] +% [Y]-[VR] (6.61)

—» 5] —» R}
[ | S (7] —I—O
+ +
Y, —» (1] Y,
v | [ Y|
R I [1SC,] [IRC,] I -
—» [IS)] —p Ry
. + [ - o
+ +
O I N TN T
[ISC,) [IRC,)]

FIGURE 6.7
Equivalent Pi parallel lines.
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The sending end voltages are given by:

[VSi] _ [VR/] . [Zu]  [Ze] . (1] v
[VS:] [VR, ] [Zn]  [Z2] (1]

6.62)
[VS] =[VR] + [Z]-[1]
Substitute Equation 6.61 into Equation 6.62:
Vel _| VR || [2a] 0 [Ze]
[V5:] [VR: ] [Za]  [Z2]
TR 1 el el | (VR
[IR, ] 2| Ya] [Yz] [VR. ]
[VS] = [VR] + [Z] - ([IR] + % Y] [VR]) 6.63)
Combine terms in Equation 6.63:
st | w1 |1 |z iz || mel
[VS:] | U] 2 | [Za] [Z2] || D¥al [Ya]
v || iz iz || om
| [VR:] [Za]  [Z2] || [IR]
) 6.64)
[VS] = ([U] +5 121 [Y])' [VR] + [Z] - [IR]
Equation 6.64 is of the form:
[VS] = [a]-[VR]+[b]-[IR] (6.65)
where
[al=[U]+ [Z][Y]
6.66)
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The sending end currents are given by:

[151] _ [1:] L1 Yu] Y] | | [VS]
[15:] [12] 2 [Ya] [Ya] [VS:]

[IS] =[I]+

(6.67)
-[Y]-[vs]

N | —

Substitute Equations 6.61 and 6.65 into Equation 6.67 using the shorthand
form.

[IS]:[IR]+%'[Y]'[VR]+%~[Y]-([a]-[VR]+[b]-[IR])A (6.68)
Combine terms in Equation 6.68.

[I5]= ’([Y]+[Y]'[a])'[VR]+([U]+;'[Y]'[b])'[IR] (6.69)

N | =

Equation 6.69 is of the form:

[IS]=[c] [VR]+[d] [IR] (6.70)
where
1 1 1
[c1=2~(m+[¥1-[a])=(2-[[YJ+[Y]~([U1+2-[Z]~[Y]D]
[el=[Y]+ - [Y]-[Z]-[Y) 671
[d]=[U1+ - Y] [b] = [U]+ ) - [Y]-12]

The derived matrices [a],[b],[c],[d] will be 6 x 6 matrices. These four matri-
ces can all be partitioned between the third and fourth rows and columns.
The final voltage equation in partitioned form is given by:

_ [an]  [a] . [VR:] N [bu]  [bri2] . [IR]
[an] [axn] [VR:] [ba]  [b2] [IR,]

6.72)

[V5i]
[VS:]
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The final current equation in partitioned form is given by:

[151] _ [en]  [ee] || [VR] . [du]  [de] || [R]
[15:] [ca]  [c2] [VR:] [da] [d2] [IR, ]

6.73)

Equations 6.72 and 6.73 are used to compute the sending end voltages and
currents of two parallel lines. The matrices [ A] and [B] are used to compute
the receiving end voltages when the sending end voltages and receiving end
currents are known. Solving Equation 6.65 for [Vz]:

[VR]=[a] "+ ([VS]~[b]-[IR])
[VR]=[a]"-[VS]-[a]" - [b] - [IR] 6.74)
[VR]=[A]-[VS]-[B]-[IR]

where

[B]=[a] " -[b]

In expanded form, Equation 6.74 becomes:

VR, | _ [An]  [Ar] . VS5, 3 [Bu] [Bi2] . IR,
VR, || [Aa] [Ax] VS, [Ba]  [Bz] IR,

6.75)

6.5.1 Physically Parallel Lines

Two distribution lines can be physically parallel in two different ways in a
radial system. Figure 6.8 illustrates two lines connected to the same sending
end node, but the receiving ends of the lines do not share a common node.
The physically parallel lines of Figure 6.8 represent the common practice of
two feeders leaving a substation on the same poles or right of ways and then
branching in different directions downstream. Equations 6.72 and 6.73 are
used to compute the sending end node voltages using the known line cur-
rent flows and node voltages at the receiving end. For this special case, the
sending end node voltages must be the same at the end of the two lines so
that Equation 6.72 is modified to reflect that [VS;]=[V5;]. A modified ladder
iterative technique is used to force the two sending end voltages to be equal.
In Chapter 10, the “ladder” iterative technique will be developed that will be
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[VS] [VR,.

—> [IS]] UR )] —>
5]

—> [IS,] URy)]—»

FIGURE 6.8
Physically parallel lines with a common sending end node.

used to adjust the receiving end voltages in such a manner that the sending
end voltages will be the same for both lines.

Example 6.6

The parallel lines of Examples 4.2 and 5.2 are connected as shown in
Figure 6.8 and are parallel to each other for 10 miles.

1. Determine the abcd and AB matrices for the parallel lines.

From Examples 4.2 and 5.2, the per-mile values of the phase impedance
and shunt admittance matrices in partitioned form are shown. The first
step is to multiply these matrices by the length of the line. Note that the
units for the shunt admittance matrix in Example 5.2 are in pS/mile.

dist =10
Z =z-dist
Y =y-10° dist
The unit matrix [U] must be defined as 6 x 6, and then the abcd matrices

are computed using the equations developed in this chapter. The final
results in partitioned form are:

0.9998+ j0.0001 0 0
[an] = [a2] = 0 0.9998+ j0.0001 0
0 0 0.9998+ j0.0001
0 0 0
[az]=[an]=| O 0 O
0 0 0

45015+ 711.0285  1.4643+;75.3341 1.4522 + j4.1255
[bu] = 14643+ ;53341 45478+ j10.8726  1.4754+ j4.5837
1.4522 + j4.1255 1.4754+ j4.5837  4.5231+ j10.9556
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1.5191+ j4.8484 1.4958+j3.9305 1.4775+ j5.5601
[blz] =| 15446+ ;53359 1.5205+ j4.3234 1.5015+ j4.9093
1.5311+ j4.2867 1.5074+ j5.4599  1.4888 + j3.9548
1.5191+ j4.8484 1.5446+ j5.3359 1.5311+ j4.2867
[bn]=| 14958+ ;3.9305 1.5205+4.3234 1.5074+ j5.4599
14775+ j5.5601  1.5015+ j4.9093  1.4888+ j3.9548
5.7063 + j10.9130 1.5801 + j4.2365 1.5595 + j5.0167
[bzz] = 1.5801+ j4.2365 5.6547 + j11.0819 1.5348 + j3.8493
1.5595 + j5.0167 1.5348 + j3.8493 5.6155+j11.2117
70.0001 0 0
[Cll] = [C12] = 0 100001 0
0 0 70.0001
0 0 O
[ca]=[c2]=| O 0 O
0o 0 O
[du]=[an] [de]=[ac] [da]=[ax] [dz]=[ax]
1.0002 - ;70.0001 0 0
[An] = [An]=[au]" = 0 1.0002 - j0.0001 0
0 0 1.0002 - j0.0001
0 0 O
[An]=[Ax]=| 0 0 O
0o 0 O

4.5039+;711.031  1.4653+ j5.3357 1.4533 + j4.1268

[Bu]=[an]" - [bu] =| 14653+ 53357 45502+ /10.8751  1.4764+ j4.5852
14533+ j4.1268 14764+ j4.5852  4.5255+ j10.9580
15202+ j4.8499  1.4969 + j3.9318  1.4786+ j5.5618
[Bu]=[an]" [bn] =| 14969+ /39318 15216+ /43248 1.5026+ j4.9108
14786+ j5.5618 15026+ j4.9108  1.4899 + j3.9560
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15202+ j4.8499 15457+ j5.3375 1.5322+ j4.2881
[Bul=[an]" -[bu]=| 15457+ 53375 15216+ 43248 15058+ j5.4615
15322+ j4.2881 15058+ j5.4615  1.4899 + j3.9560

57092+ /109152 15812+ j4.2378  1.5606+ j5.0183
[Bn]=[an] " -[bn]=| 15812+;42378 5.6577+j11.0842 15360+ j3.8506
15606+ j5.0183 15360+ j3.8506  5.6184+ j11.2140

The loads at the ends of the two lines are treated as constant current
loads with values of:

102.6/-20.4
Line 1: [IR1] =| 82.1/-145.2
127.8/85.2

94.4/-27.4
Line 2: [IR2]=| 127.4/-1525

100.2/99.8

The voltages at the sending end of the lines are:

14,400/0
[VS] =| 14,400/-120
14,400/120

2. Determine the receiving end voltages for the two lines.

Because the common sending end voltages are known and the receiv-
ing end line currents are known, Equation 6.75 is used to compute the

receiving end voltages:

[VR] = ([An]+[A1])-[VS] = [Bu]-[IR ] - [Bi]-[IR.]

Line 1: 14,119/-2.3
[VR.]=| 14,022/-1204
13,686/117.4
[VR.]= ([A21]+[A22]) [Vi]=[Bx ] [IRi]=[B2 ] [IR;]
Line 2: 13,971/-1.6

[VR,]=| 13,352/-120.8
13,566/118.1
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A [VRy]
l —p [I5] [IR]]—» |
| |
| |
Iy sy (IR, — |
[VS,] [VR,]
FIGURE 6.9

Physically parallel lines without common nodes.

The second way in which two lines can be physically parallel in a radial
feeder is to have neither the sending nor the receiving ends common to
both lines. This is shown in Figure 6.9.

Equations 6.72 and 6.73 are again used for the analysis of this special
case. Because neither the sending end nor the receiving end nodes are
common, no adjustments need to be made to Equation 6.72. Typically,
these lines will be part of a large distribution feeder in which case an
iterative process will be used to arrive at the final values of the sending
and receiving end voltages and currents.

Example 6.7

The parallel lines of Examples 4.2 and 5.2 are connected as shown in
Figure 6.9. The lines are parallel to each other for 10 miles.
The complex power flowing out of each line is:

51,=1450 kVA, PF,=0.95
Line 1: §1,=1150 kVA, PF,=0.90
51.=1750 kVA, PF.=0.85
52,=1320 kVA, PF,=0.90
Line 2: §2,,=1700 kVA, PF,=0.85
52, =1360 kVA, PF.=0.95

The line-to-neutral voltages at the receiving end nodes are:
VR1,,=13,430/-33.1
Line 1: VR1,,=13,956/-151.3

VR1., =14,071/86.0

VR2,,=14,501/-29.1

Line 2: VR2;,=13,932/-154.8

VR2.,=12,988/90.3
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Determine the sending end voltages of the two lines.
The currents leaving the two lines are:

Fori=a,b,c

Line 1 . | 1080/-513
IR1, = (5’11“/}000) -| 824/-1771
: 124.4/54.2
For i=a,b,c
L . [ 910/-549
i : . -
IR2, :(M) =| 1220/1735
V2, .
104.7/72.1

The sending end voltages of the two lines are computed using
Equation 6.72.

13,673/-30.5
Line 1: [VS1]=| 14,361/-151.0
14,809/88.7

14,845/-27.5
Line 2: [VS2]=| 14,973/-154.3
13,898/92.5

The sending end currents are:

107.7/-50.8
[IS1]=| 82.0/-1762

124.0/54.7

90.5/-54.3
[IS2]=| 121.4/173.8
104.2/72.6

Note in this example the very slight difference between the sending and
receiving end currents. The very small difference is because of the shunt
admittance. It is seen that very little error will be made if the shunt admit-
tance of the two lines is ignored. This will be the usual case. Exceptions
will be for very long distribution lines (50 miles or more) and for under-
ground concentric neutral lines that are in parallel for 10 miles or more.

171
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A third option for physically parallel lines in a radial feeder might be con-
sidered with the receiving end nodes common to both lines and the sending
end nodes not common. However, this would violate the “radial” nature of
the feeder, since the common receiving end nodes would constitute the cre-
ation of a loop.

6.5.2 Electrically Parallel Lines

Figure 6.10 shows two distribution lines that are electrically parallel.

The analysis of the electrically parallel lines requires an extra step from
that of the physically parallel lines, since the individual line currents are not
known. In this case, only the total current leaving the parallel lines is known.

In the typical analysis, the receiving end voltages will either have been
assumed or computed, and the total phase currents [ IR] will be known. With
[VS] and [VR] common to both lines, the first step must be to determine
how much of the total current [IR] flows on each line. Because the lines are
electrically parallel, Equation 6.72 can be modified to reflect this condition:

[VS] _ [an] [ac] || [VRI] . [bu]  [be] || [IR1]
[VS] [an] [ax2] [VR] [bn]  [b2] [IR2]
6.76)

The current in line 2 is a function of the total current, and the current in line
1is given by:

[IR2]=[IR]~[IR1] 6.77)

Substitute Equation 6.77 into Equation 6.76:

{[Vsll_ ] [a] [[VRJ}+ (bu] [ba] | [ [RI]
wvsl] | lanl [ax] | |[VR] [ba]  [b2] [IR]-[IR1]
6.78)
[VS] [VR]
—» [15] [IR{]—»
s) —» IR
—» [1S,] [IR)]——»
FIGURE 6.10

Electrically parallel lines.
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Because the sending end voltages are equal, Equation 6.78 is modified to
reflect this:

([au]+[ar2])- [VR]+([br] = [br2]) - [IR1]+ b1z ] - [IR]

=([au]+[ax])- [VR]+([ba] - [bzz]) [IR1]+ by ]-[IR] (6.79)
Collect terms in Equation 6.79:

([au]+[az] - [an] - [az]) [VR]+([bi2] - [b2])- [IR]

= ([b21] — b |- [bu1 ]+ [bu]) -[IR1] (6.80)

Equation 6.80 is in the form of:
[Aa]-[VR]+[Bb]-[IR]=[Cb]-[IR1] (6.81)

where
[Aa] =[an]+[ai2]—[an]-[ax]
[Bb]=[b12]-[bx] (6.82)
[Ce]=[ba]-[bn]-[bu]+[br]
Equation 6.81 can be solved for the receiving end current in line 1:
[IR1]=[Cc]" - ([Aa]-[VR]+[Bb]-[IR]) (6.83)

Equation 6.77 can be used to compute the receiving end current in line 2.

With the two receiving end line currents known, Equations 6.72 and 6.73
are used to compute the sending end voltages. As with the physically paral-
lel lines, an iterative process (Chapter 10) will have to be used to ensure that
the sending end voltages for each line are equal.

Example 6.8

The two lines in Example 6.5 are electrically parallel as shown in
Figure 6.10. The receiving end voltages are given by:

13,280/ -33.1
[VR]=| 14,040/151.7
14,147/86.5
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The complex power-out of the parallel lines is the sum of the complex
power of the two lines in Example 6.6:

S5,=2,763.8 kVA at 0.928 PF
S,=2,846.3 kVA at 0.872 PF
S.=3,088.5 kVA at 0.90 PF

The first step in the solution is to determine the total current leaving the
two lines:

. | 208.1/-549
IR :(51‘ '1000) ~| 2027/179.0
VR: L2
218.8/50.2

Equation 6.83 is used to compute the current in line 1. Before that is done,
the matrices of Equation 6.82 must be computed.

0 0 O
[Aa]=[an]+[an]-[an]-[a2]=] O 0 0
0 0 O

~4.1872- j6.0646  —0.0843—-j0.3060  —0.0820+ j0.5434
[Bb]=[b]-[bn]=| -0.0354+;1.0995 —4.1342-j6.7585 —0.0333+ 1.0599
~0.0284—j0.7300  —0.0274+j1.6105 —4.1267 — j7.2569

[Ce]=[ba]=[b2]~[bu]+[br]

-7.1697—-j12.2446 ~ —0.0039-;0.3041 -0.0032+ j0.7046
=[ -0.0039-;0.3041 -7.1616-;13.3077  -0.0013+;1.9361
-0.0032+ j0.7046 -0.0013+;1.9361  -7.1610-;14.2577

The current in line 1 is now computed by:

110.4/-59.7
[IR1]= [Cc]f1 ~([Aa] -[VR]+[Bb] [IR]) =| 119.3/172.6
121.7/50.2
The current in line 2 is:
98.5/-49.6

[IR2]=[IR]-[IR1]=| 85.2/-172.2
101.1/73.3
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The sending end voltages are:

13,738/-30.9
14,912/88.3

13,738/-30.9
[VSZ] = ([321 ] + [322 ]) . [VR] + [b21] . [IRl] + [bzz ] . [IR2] = 14, 630/ —-151.0

14,912/88.3

It is satisfying that the two equations give us the same results for the
sending end voltages.
The sending end currents are:

110.0/-59.2
[151] = ([eu]+[cw])- [VR]+[du]- [IR1]+[dy,]-[IR2] =| 118.7/173.1
121.2/50.6

98.2/-49.0
[152] = ([ca]+[c2]) [VR]+[dn ] [IR1]+[dx] - [IR2] =| 847/-1717
100.7/73.9

When the shunt admittance of the parallel lines is ignored, a parallel
equivalent 3 x 3 phase impedance matrix can be determined. Because
very little error is made ignoring the shunt admittance on most distribu-
tion lines, the equivalent parallel phase impedance matrix can be very
useful in distribution power flow programs that are not designed to
model electrically parallel lines.

Because the lines are electrically parallel, the voltage drops in the two
lines must be equal. The voltage drop in the two parallel lines is given by:

[Vabc] _ [le] [212] ) |: IR1 :| (6.84)
[Vabc] [221] [Z22] IR2
Substitute Equation 6.77 into Equation 6.84:
Vare] | | [Zn] [Ze] | [IR1] (6.85)

[Vabe ] B [Z2a]  [Z2] [IR]-[IR1]
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Expand Equation 6.85 to solve for the voltage drops:
[Vare ] =[Z0]- IRY]+[Zia]-([IR] - [IR1)) = [ Zs ] [IR1]+ [ Z22] - ([IR] - [IRl])(6.86)
Vase 1 =(1Zu]=[Zua]) [ IRV +[ Zio]-[IR] =({Z2] - [ Z2]) [IR1] +[ Z22] [ IR]
Collect terms in Equation 6.86:

(1Zu]-[Z0]~[Za] +[Z2])- [IR1] = (| Z2] - [Z0]) - [IR] (6.87)

Let:

[ZX]:([Zn]—[le]—[Zﬂ]"'[Zzz]) (6.88)

Substitute Equation 6.88 into Equation 6.87, and solve for the current in
line 1:

[IR1]=[2ZXT" - ([Z2]-[Zx])  [IR] (6.89)
Substitute Equation 6.89 into the top line of Equation 6.85.
(Vabe ] = (([z11 ~Zu)) [2X] - ([Z2] —[zu])+[zu]) [IR] (6.90)
[Vare ] =[ Zeq | [IR] (691)
where
[z ]=((120-Za) 12X (1221~ Z2])+[22])

The equivalent impedance of Equation 6.91 is the 3 x 3 equivalent for
the two lines that are electrically parallel. This is the phase impedance
matrix that can be used in conventional distribution power flow pro-
grams that cannot model electrically parallel lines.

Example 6.9

The same two lines are electrically parallel, but the shunt admittance
is neglected. Compute the equivalent 3 x 3 impedance matrix using the
impedance-partitioned matrices of Example 6.6.

[ZX]=[Zu]-[Zu]-[Za]+[Z2]

7.1697 + j12.2446  0.0039 + j0.3041 0.0032 - j0.7046
=[ 0.0039+;0.3041 7.1616+;13.3077  0.0013-;1.9361
0.0032 - j0.7046 0.0013-;1.9361  7.1610+ j14.2577
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[Ze )= ([2u]-122)) [2XT ([Z2]~[Z02])+ [ Z22]

3.3677+j7.79 15330+ j47717 14867+ j4.7304
=| 15330+j47717 33095+ ;7.6459 1.5204+ j4.7216
14867+ j4.7304  1.5204_j4.7216  3.2662+ j7.5316

The sending end voltages are:

13,740/ -31.0
[VS]=[VR]+| Z, | [IR]=| 14,634/-151.0
14,916/88.3

6.6 Summary

7oA

This chapter has developed the “exact,” “modified,” and “approximate” line
segment models. The exact model uses no approximations. That is, the phase
impedance matrix, assuming no transposition, and the shunt admittance
matrix are used. The modified model ignores the shunt admittance. The
approximate line model ignores the shunt admittance and assumes that the
positive and zero sequence impedances of the line are the known parame-
ters. This is paramount to assuming the line is transposed. For the three line
models, generalized matrix equations have been developed. The equations
utilize the generalized matrices [a], [b], [c],[d], [A] and [B]. The example
problems demonstrate that because the shunt admittance is very small, the
generalized matrices can be computed by neglecting the shunt admittance
with very little, if any, error. In most cases, the shunt admittance can be
neglected; however, there are situations where the shunt admittances should
not be neglected. This is particularly true for long, rural, lightly loaded lines
and for many underground lines.

A method for computing the current flowing in the neutral and ground
was developed. The only assumption used that can make a difference on
the computing currents is that the resistivity of earth was assumed to be
100 Q2-m.

A simple version of the ladder iterative technique was introduced and
applied in Example 6.5. The ladder method will be used in future chapters
and is fully developed in Chapter 10.

The generalized matrices for two lines in parallel have been derived. The
analysis of physically parallel and electrically parallel lines was developed
with examples to demonstrate the analysis process.
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Problems

6.1 A 2-mile long three-phase line uses the configuration of Problem 4.1.
The phase impedance matrix and shunt admittance matrix for the configu-
ration are:

0.3375+j1.0478  0.1535+j0.3849  0.1559+ j0.5017
[Zwe]=| 0.1535+;0.3849  0.3414+j1.0348  0.1580+70.4236 |Q/mile
0.1559+j0.5017  0.1580+j0.4236  0.3465+ j1.0179

j5.9540  —j0.7471 —j2.0030
[Vac]=| —jO.7471  j5.6322 —j1.2641 |uS/mile
~j2.0030 —j1.2641  j6.3962

The line is serving a balanced three-phase load of 10,000 kVA, with balanced
voltages of 13.2kV line-to-line, and a power factor of 0.85 lagging.

a. Determine the generalized matrices.

b. For the given load, compute the line-to-line and line-to-neutral volt-
ages at the source end of the line.

c. Compute the voltage unbalance at the source end.
d. Compute the source end complex power per phase.

e. Compute the power loss by phase over the line. (Hint: Power loss is
defined as power-in minus power-out)

6.2 Use the line of Problem 6.1. For this problem, the source voltages are spec-
ified as:

7620/0
[VSiv]=| 7620/-120
7620/120

The three-phase load is unbalanced connected in wye and given by:
2500 0.90

[kVA]=| 3500 [PF]=| 0.85
1500 0.95
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Use the ladder iterative technique and determine:

a. The load line-to-neutral voltages
b. Power at the source
c. The voltage unbalance at the load

6.3 Use Windmil for Problem 6.2.

6.4 The positive and zero sequence impedances for the line in Problem 6.1 are:

z, =0.186+ j0.5968 €/mile, z, = 0.6534+ j1.907 Q/mile

Repeat Problem 6.1 using the “approximate” line model.

6.5 The line of Problem 6.1 serves an unbalanced grounded wye connected
constant impedance load of:

Z,,=15/30Q, Z,, =17/36.87Q, Z., =20/25.84Q
The line is connected to a balanced three-phase 13.2kV source.

a. Determine the load currents.

b. Determine the load line-to-ground voltages.

c. Determine the complex power of the load by phase.
d. Determine the source complex power by phase.

e. Determine the power loss by phase and the total three-phase
power loss.

f. Determine the current flowing in the neutral and ground.

6.6 Repeat Problem 6.3; only the load on phase b is changed to 50/36.87 Q.

6.7 The two-phase line of Problem 4.2 has the following phase impedance
matrix:

0.4576+;71.0780 0 0.1535+;0.3849
[Zabc] = 0 0 0 /mile
0.1535+;0.3849 0 0.4615+ ;1.0651

The line is 2 miles long and serves a two-phase load such that:
S.; =2000kVA at 0.9 lagging power factor and voltage of 7620/0V
S, = 1500kVA at 0.95 lagging power factor and voltage of 7620/120 V
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Neglect the shunt admittance and determine the following:

a. The source line-to-ground voltages using the generalized matrices.
(Hint: Even though phase b is physically not present, assume that it
is with a value of 7620/-120V and is serving a 0kVA load.)

b. The complex power by phase at the source.
c. The power loss by phase on the line.
d. The current flowing in the neutral and ground.

6.8 The single-phase line of Problem 4.3 has the following phase impedance
matrix:

0 0 0
[Zwc]=| 0 1.3292+1.3475 0 |Q/mile
0 0 0

The line is 1 mile long and serves a single-phase load of 2000kVA, 0.95 lag-
ging power factor at a voltage of 7500/-120 V. Determine the source voltage
and power loss on the line. (Hint: As in the previous problem, even though
phases a and c are not physically present, assume they are and along with
phase b make up a balanced three-phase set of voltages.)

6.9 The three-phase concentric neutral cable configuration of Problem 4.10 is
two miles long and serves a balanced three-phase load of 10,000kVA, 13.2kV,
0.85 lagging power factor. The phase impedance and shunt admittance
matrices for the cable line are:

0.7891+ j0.4041  0.3192+;0.0328  0.3192+ j0.0328
[Zac]=| 0.3192+0.0328  0.7982+ j0.4463  0.2849— j0.0143 |Q/mile
0.3192+;0.0328  0.2849—j0.0143  0.8040+ j0.4381

j96.61 0 0
[Vabe | = 0 j96.61 0 uS/mile
0 0 j96.61

a. Determine the generalized matrices.

b. For the given load, compute the line-to-line and line-to-neutral volt-
ages at the source end of the line.

c. Compute the voltage unbalance at the source end.

d. Compute the source end complex power per phase.
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e. Compute the power loss by phase over the line. (Hint: Power loss is
defined as power-in minus power-out.)

6.10 The line of Problem 6.9 serves an unbalanced grounded wye connected
constant impedance load of:

Z,=15/30Q, Z,,=50/36.87 Q, Z ., = 20/25.84 Q
The line is connected to a balanced three-phase 13.2kV source.

a. Determine the load currents.

b. Determine the load line-to-ground voltages.

c. Determine the complex power of the load by phase.

d. Determine the source complex power by phase.

e. Determine the power loss by phase and the total three-phase power
loss.

f. Determine the current flowing in each neutral and ground.

6.11 The tape-shielded cable single-phase line of Problem 4.12 is 2 miles
long and serves a single-phase load of 3000kVA, at 8.0kV and 0.9 lagging
power factor. The phase impedance and shunt admittances for the line
are:

0 O 0
[Zac]=| O O 0 Q/mile
0 0 0.5291+0.5685
0 O 0
[Varc]=| O O 0 US/mile
0 0 ;14039

Determine the source voltage and the power loss for the loading condition.
6.12 Two distribution lines constructed on one pole are shown in Figure 6.11.
Line #1 Data:

Conductors: 336,400 26/7 ACSR
GMR = 0.0244 ft, Resistance = 0.306 Q/mile, Diameter = 0.721 in.

Line # 2 Data:
Conductors: 250,000 AA
GMR = 0.0171 ft, Resistance = 0.41 Q/mile, Diameter = 0.574 in.
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ke— 2.5 —>) 4.5 |
a b c —
Line 1 T,T T ?
2& <—3.0"—>
Line 2 ? a b T ¢ ? 6.0’
o -
n
T 30.0’
FIGURE 6.11
Two parallel lines on one pole.
Neutral Conductor Data:

Conductor: 4/0 6/1 ACSR
GMR =0.00814 ft, Resistance = 0.592 Q/mile, Diameter = 0.563 in.
Length of lines is 10 miles
Balanced load voltages of 24.9kV line-to-line
Unbalanced loading:
Load #1: Phase a: 1440kVA at 0.95 lagging power factor
Phase b: 1150kVA at 0.9 lagging power factor
Phase c: 1720kVA at 0.85 lagging power factor
Load #2: Phase a: 1300kVA at 0.9 lagging power factor
Phase b: 1720kVA at 0.85 lagging power factor
Phase c: 1370kVA at 0.95 lagging power factor

The two lines have a common sending end node (Figure 6.6)
Determine:

a. The total phase impedance matrix (6 X 6) and total phase admittance
matrix (6 X 6)

b. The abcd and AB matrices

c. The sending end node voltages and currents for each line for the
specified loads

d. The sending end complex power for each line
e. The real power loss of each line

f. The current flowing in the neutral conductor and ground
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6.13 The lines of Problem 6.12 do not share a common sending or receiving
end node (Figure 6.7). Determine:

a. The sending end node voltages and currents for each line for the
specified loads

b. The sending end complex power for each line
c. The real power loss of each line

6.14 The lines of Problem 6.12 are electrically parallel (Figure 6.8).
Compute the equivalent 3 x 3 impedance matrix and determine:

a. The sending end node voltages and currents for each line for the
specified loads

b. The sending end complex power for each line
c. The real power loss of each line

WindMil Assignment

Use System 2 and add a two-phase concentric neutral cable line connected
to Node 2. Call this “System 3.” The line uses phases a and c and is 300ft
long and consists of two 1/0 AA 1/3 neutral concentric neutral cables. The
cables are 40 in. below ground and 6 in. apart. There is no additional neutral
conductor. Call this line UG-1. At the end of UG-1, connect a node and call
it Node 4. The load at Node 4 is delta-connected load modeled as constant
current. The load is 250kVA at 95% lagging power factor.

Determine the voltages at all nodes on a 120-volt base and all line currents.
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Voltage Regulation

The regulation of voltages is an important function on a distribution feeder.
As the loads on the feeders vary, there must be some means of regulating
the voltage so that every customer’s voltage remains within an acceptable
level. Common methods of regulating the voltage are the application of step-
type voltage regulators, load tap changing (LTC) transformers, and shunt
capacitors.

7.1 Standard Voltage Ratings

The American National Standards Institute (ANSI) standard ANSI C84.1-
1995 for “Electric Power Systems and Equipment Voltage Ratings (60 Hertz)”
provides the following definitions for system voltage terms [1]:

e System voltage: The root mean square (rms) phasor voltage of a por-
tion of an alternating-current electric system. Each system voltage
pertains to a portion of the system that is bounded by transformers
or utilization equipment.

* Nominal system voltage: The voltage by which a portion of the system
is designated, and to which certain operating characteristics of the
system are related. Each nominal system voltage pertains to a portion
of the system bounded by transformers or utilization equipment.

® Maximum system voltage: The highest system voltage that occurs
under normal operating conditions, and the highest system voltage
for which equipment and other components are designed for satis-
factory continuous operation without derating of any kind.

® Service voltage: The voltage at the point where the electrical system
of the supplier and the electrical system of the user are connected.

e Utilization voltage: The voltage at the line terminals of utilization
equipment.

® Nominal utilization voltage: The voltage rating of certain utilization
equipment used on the system.

185
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The ANSI standard specifies two voltage ranges. An over-simplification of
the voltage ranges is as follows:

e Range A: Electric supply systems shall be so designated and oper-
ated that most service voltages will be within the limits specified for
Range A. The occurrence of voltages outside of these limits should
be infrequent.

® Range B: Voltages above and below Range A. When these voltages
occur, corrective measures shall be undertaken within a reasonable
time to improve voltages to meet Range A.

For a normal three-wire 120/240-V service to a user, the Range A and Range
B voltages are as follows:

e Range A:
¢ Nominal utilization voltage =115V
* Maximum utilization and service voltage = 126 V
¢ Minimum service voltage =114V
* Minimum utilization voltage = 110V
* Range B:
e Nominal utilization voltage = 115V
¢ Maximum utilization and service voltage = 127V
* Minimum service voltage = 110V
* Minimum utilization voltage = 107V

These ANSI standards give the distribution engineer a range of “normal
steady-state” voltages (Range A) and a range of “emergency steady-state”
voltages (Range B) that must be supplied to all users.

In addition to the acceptable voltage magnitude ranges, the ANSI standard
recommends that the “electric supply systems should be designed and oper-
ated to limit the maximum voltage unbalance to 3% when measured at the
electric-utility revenue meter under a no-load condition.” Voltage unbalance
is defined as:

Maximum deviation from average voltage

Voltagenpaiance = -100%  (7.1)

Average voltage

The task for the distribution engineer is to design and operate the distribu-
tion system, so that under normal steady-state conditions, the voltages at the
meters of all users will lie within Range A and that the voltage unbalance
will not exceed 3%.
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A common device used to maintain system voltages is the step-voltage
regulator. Step-voltage regulators can be single-phase or three-phase. Single-
phase regulators can be connected in wye, delta, or open delta, in addition
to being operated as a single-phase device. The regulators and their controls
allow the voltage output to vary as the load varies.

A step-voltage regulator is basically an autotransformer with an LTC mech-
anism on the “series” winding. The voltage change is obtained by changing
the number of turns (tap changes) of the series winding of the autotransformer.

An autotransformer can be visualized as a two-winding transformer with
a solid connection between a terminal on the primary side of the transformer
and a terminal on the secondary side. Before proceeding to the autotrans-
former, a review of two-transformer theory and the development of general-
ized constants will be presented.

7.2 Two-Winding Transformer Theory

The exact equivalent circuit for a two-winding transformer is shown in
Figure 7.1.

In Figure 71, the high-voltage transformer terminals are denoted by H, and
H, and the low-voltage terminals are denoted by X, and X,. The standards
for these markings are such that at no load, the voltage between H, and H,
will be in phase with the voltage between X, and X,. Under a steady-state
load condition, the currents I; and I, will be in phase.

Without introducing a significant error, the exact equivalent circuit in
Figure 71 is modified by referring the primary impedance (Z,) to the second-
ary side as shown in Figure 7.2.

Referring to Figure 7.2, the total “leakage” impedance of the transformer
is given by:

Zi=n}-Z1+7Z, (7.2)
where
N,
n=—2= 7.3
‘SN (7.3)

To better understand the model for the step-regulator, a model for the two-
winding transformer will first be developed. Referring to Figure 7.2, the
equations for the ideal transformer become:

N
EZZFZ'El:nt'El (7.4)

1
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A NpiN, A
H, &—— AN\ AN e X
Ly 4 Ly %1 + + %1 !
1 2
Vs E, 12 Vi
Hy® o X,
FIGURE 7.1

Two-winding transformer exact equivalent circuit.

Ny, Z
H, ® W\_.Xl
+ S I,y %1 + + %I +
I 1 2
Vs E, E, Vi
H,® o X,
FIGURE 7.2

Two-winding transformer approximate equivalent circuit.

N
Il=ﬁ2'12=nt'lz (7.5)

1

Applying Kirchhoff’s Voltage Law (KVL) in the secondary circuit:

EZZVL'FZt'Iz
(7.6)
Veck - Lp Ly 2
Ht I‘lt I’lt

In general form, Equation 7.6 can be written as:

Ve=a-V,+b I, 77)
where
a=L1 (78)
n;
b=%t 79)
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The input current to the two-winding transformer is given by:
Is =Yy -Vs+1, (7.10)

Substitute Equations 7.6 and 7.5 into Equation 7.10:

IS :Ym 'i'VL'FYm -é-12+nt 'Iz
n; n;
(711)
,Szym,vﬁ(xn-ztmt}b
In general form, Equation 7.11 can be written as:
ISZC'VL+d'I2 (712)
where
c=Ym (713)
n;
d=Ym'Ze (714)
I

Equations 7.7 and 7.12 are used to compute the input voltage and cur-
rent to a two-winding transformer when the load voltage and current are
known. These two equations are of the same form as Equations 6.8 and
6.16 that were derived in Chapter 6 for the three-phase line models. The
only difference at this point is that only a single-phase, two-winding trans-
former is being modeled. Later, in this chapter, the terms 4, b, ¢, and d
will be expanded to 3x3 matrices for all possible three-phase regulator
connections.

Sometimes, particularly in the ladder iterative process, the output voltage
needs to be computed by knowing the input voltage and the load current.
Solving Equation 7.7 for the load voltage yields:

v,=ly._b.z (715)
a a

Substituting Equations 7.8 and 7.9 into Equation 7.15 results in:

Vi=A-Vs—B-I, (7.16)
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where

A=n, (717)

B=2, (718)

Again, Equation 7.16 is of the same form as Equation 6.26. Later, in this chap-
ter, the expressions for A and B will be expanded to 3x3 matrices for all pos-
sible three-phase transformer connections.

Example 7.1

A single-phase transformer is rated 75kVA, 2400-240V. The transformer
has the following impedances and shunt admittance:

Z,=0.612 +j1.2 Q (high-voltage winding impedance)
Z,=10.0061 +j0.0115 Q. (low-voltage winding impedance)
Y, =1.9210-*-j8.5210~* S (referred to the high-voltage winding)

Determine the generalized a, b, ¢, and d constants and the A and B
constants.
The transformer “turns ratio” is:

N2 Viwao 240 _

= = = =0.1
N1 Viweda 1 2400

1

The equivalent transformer impedance referred to the low-voltage
side is:

Z,=Z,+n}-Z,=0.0122+j0.0235

The generalized constants are:

a= i = i = 10
n A1
b=%t 201222+ j0.235
0.1
Yo .
c="1m 20,0019~ j0.0085
n;
d=YmZt | 5 201002 j0.0001
I

A=n,=0.1
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B=Z2,=0.0122+;0.0235

Assume that the transformer is operated at rated load (75kVA) and rated
voltage (240V) with a power factor of 0.9 lagging. Determine the source
voltage and current using the generalized constants.

V. =240/0

_75-1000

I
27 040

/—cos™(0.9)=312.5/-25.84

Applying the values of the g, b, ¢, and d parameters computed earlier:
Vs=a-V +b-1,=2466.9/1.15V

Is=c-V +d-1,=32.67/-28.75A

Using the computed source voltage and the load current determine the
load voltage.

Vi=A-Vs—B-Is=(0.1)-(2466.9/1.15)-(0.0122+ j0.0235) (312.5/ — 25.84)

V, =240.0/0V

For future reference, the per-unit impedance of the transformer is com-

puted by:
2 2
Zy = kV; -1000 _ 0.240°-1000 _ 0768 O
kVA 75
.0122 +j0.011
Zpy= 2o 0024 JOOUS 4 034560 5 per-unit
Z pase 0.768 S
The per-unit shunt admittance is computed by:
Ybase = kva 75 0.013S

KV;i2-1000  2.4%-1000

v o Ym _ 1.92:10™ - j8.52-10™*
P Yie 0.013

=0.0147 — j0.0654 per-unit

Example 7.1 demonstrates that the generalized constants provide a quick
method for analyzing the operating characteristics of a two-winding
transformer.
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7.3 Two-Winding Autotransformer

A two-winding transformer can be connected as an autotransformer.
Connecting the high-voltage terminal H, to the low-voltage terminal X, as
shown in Figure 7.3 can create a “step-up” autotransformer. The source is
connected to terminals H, and H,, whereas the load is connected between
the X, terminal and the extension of H,.

In Figure 7.3, V; is the “source” voltage and V; is the “load” voltage. The
low-voltage winding of the two-winding transformer will be referred to as
the “series” winding of the autotransformer, and the high-voltage winding
of the two-winding transformer will be referred to as the “shunt” winding
of the autotransformer.

Generalized constants similar to those of the two-winding transformer can
be developed for the autotransformer. The total equivalent transformer
impedance is referred to as the “series” winding. The “ideal” transformer
Equations 7.4 and 7.5 still apply.

Apply KVL in the secondary circuit:

E1+E2 :VL+Zt'Iz (719)
Using the “ideal” transformer relationship in Equation 7.5:

E1+nt~E1=(1+nt)'E1=VL+Zt~I2 (720)

o X,

Vi

N
H, ® -

. I —
Vs E;

H, @ _ o

FIGURE 7.3

Step-up autotransformer.
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Because the source voltage V is equal to E; and I, is equal to I;, Equation 7.20

can be modified to:

= 1 'VL+ Zt
1+n, 1+n,

VS 'IL

V5=a-VL+b-IL

where

Applying KCL at input node H;:

Is :Il+Iz +Iex

Is :(1+nt)'I2+Ym 'VS

Substituting Equation 7.21 into Equation 7.25:

IS=(1+nt)'12+Ym L'VL*' Zt '12
1+ n, 1+n,

Is= Yon VL+(Y’”'Z*+1+ntJ-I2

_1+nt. 1+n,
ISZC'VL+d'Iz
where
— Ym
1+n,
d Ym'Zf+1+nt
1+n,

(721)

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

Equations 7.23, 7.24, 727, and 7.28 define the generalized constants for the

“step-up” autotransformer.
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N, Z,
°X,
+ e +
I
EZ
X1 o Vi
H ® M
SN I P—
Vs E
H, e - o

FIGURE 7.4
Step-down autotransformer.

The two-winding transformer can also be connected in the “step-down”
connection by reversing the connection between the shunt and series wind-
ing as shown in Figure 74.

Generalized constants can be developed for the “step-down” connection
following the same procedure as that for the step-up connection.

Apply KVL in the secondary circuit:

El—Ez =VL+Zt‘12 (729)
Using the “ideal” transformer relationship in Equation 7.5:
El—nt-Elz(l—nt)-E1=VL+Zt-I2 (730)

Because the source voltage V is equal to E; and I, is equal to I;, Equation 7.30
can be modified to:

VS = 1 . VL + Zt . IL (731)
1-n; 1-n,
V5=a~VL+b'IL (732)
where
e (733)
1-n;
b=t (7.34)
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It is observed at this point that the only difference between the a and
b constants in Equations 723 and 7.24 for the step-up connection and
Equations 7.33 and 7.44 for the step-down connection is the sign in front of the
turns ratio (1,). This will also be the case for the ¢ and d constants. Therefore,
for the step-down connection, the c and d constants are defined by:

C:Y_m (7.35)
1-n,
deYm Ze g o (7.36)

1-n,

The only difference between the definitions of the generalized constants is
the sign of the turns ratio n,. In general, then, the generalized constants can
be defined by:

1
a= 737
1£n, 737)
_ (738)

1£n,
c= Ym (7.39)

1+ n,
d=YmZt qin, (740)

1+n,

In Equations 7.37 through 7.40, the sign of n, will be positive for the step-up
connection and negative for the step-down connection.

As with the two-winding transformer, it is sometimes necessary to relate
the output voltage as a function of the source voltage and the output current.
Solving Equation 7.32 for the output voltage:

VLzl'Vg—é'Zt'IL (741)
a a
Vi=A-Vs—B-I; (742)
where

1
A==-=1xn, (7.43)

a

b

B=—=2, (744)
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The generalized equations for the step-up and step-down autotransform-
ers have been developed. They are of exactly the same form as was derived
for the two-winding transformer and for the line segment in Chapter 6.
For the single-phase autotransformer, the generalized constants are sin-
gle values but will be expanded later to 3x3 matrices for three-phase
autotransformers.

7.3.1 Autotransformer Ratings

The kVA rating of the autotransformer is the product of the rated input volt-
age V; times the rated input current I or the rated load voltage V; times the
rated load current I;. Define the rated kVA and rated voltages of the two-
winding transformer and the autotransformer as:

kVA,, = KVA rating of the two-winding transformer

kVA,,;, = KVA rating of the autotransformer

Vatea = E1 = rated source voltage of the two-winding transformer
Vipratea = E, = rated load voltage of the two-winding transformer
Vis.source = Fated source voltage of the autotransformer

V1 _ratea = rated load voltage of the autotransformer

For the following derivation, neglect the voltage drop through the series
winding impedance.

VL-auto = El iE'Z = (1 * nt)'El (745)

The rated output kVA is then:

-kVAauto =VL-auto '12 =(1int)'E1 'Iz (746)
but: I, =11
I
Therefore:
1+
KVA,, <15 pop (747)
n;
but: E1 . Il = kVAxﬁn
Therefore:
+
KVA, = P51 ya, (748)
n;

Equation 748 gives the kVA rating of a two-winding transformer when con-
nected as an autotransformer. For the step-up connection, the sign of n, will
be positive, whereas the step-down will use the negative sign. In general,
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the turns ratio n, will be a relatively small value so that the kVA rating of the
autotransformer will be considerably greater than the kVA rating of the two-
winding transformer.

Example 7.2

The two-winding transformer of Example 7.1 is connected as a “step-up”
autotransformer. Determine the kVA and voltage ratings of the
autotransformer.

From Example 7.1, the turn’s ratio was determined to be: n, =0.1

The rated kVA of the autotransformer using Equation 7.35:

kVAu0 = 1+0.1 J(; 2’1 .75=825 kVA

The voltage ratings are:

VS-auto = Vl-rated =2400 V

VL-autu = ‘/l-rated + VZ-rated = 2400 + 240 = 2640 V

Therefore, the autotransformer would be rated as 825kVA, 2400-2640V.

Suppose now that the autotransformer is supplying rated kVA at rated
voltage with a power factor of 0.9 lagging, determine the source voltage
and current.

VL = Vi auo =2640/0 V

_ kVA,, -1000 _ 825,000

I =
? VL—auto 2640

/—cos™(0.9)=312.5/-25.84

Determine the generalized constants:

a= 1 0.9091
1+0.1

b 0:0122+0.0235

=0.0111+;0.0214
1+0.1

B {(1.92— j8.52)-10°*

= 1ro1 ]:(1.7364— j7.7455)-10™"
+0.

J _[(1.92 ~ j8.52)-10-(0.0122+ j0.0235)

+0.1+1=1.1002 - j0.000005
1+0.1
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Applying the generalized constants:

Vs =a-2640/0+b-312.5/-25.84 = 2406.0/0.1 V

Is=c-2640/0+d-312.5/-25.84=345.06/-26.11 A

When the load-side voltage is determined by knowing the source voltage
and load current, the A and B parameters are needed:

Azlzl.l
I

B=Z2,=0.0111+;0.0235
The load voltage is then:
Vi, =A-2406.04/0.107 - B -312.5/-25.84 = 2640.00/2 v

Rework this example by setting the transformer impedances and shunt
admittance to zero.
When this is done, the generalized matrices are:

1
1+n,

b= 1 -Z;=0
1+n,
Yin
C=——=
1+n,

a= =0.9091

Y- Z

d= Lyn+1=1.1
1+n,

Using these matrices, the source voltages and currents are:

VS :a~VL+b~IL :2400/0
Is=c-Vp+d- I, =343.75/-25.8

The “errors” for the source voltages and currents by ignoring the imped-
ances and shunt admittance are:

Errory = ( 2406.0 - 2400

) -100 =0.25%
2406

Error; = (%) -100=0.38%

By ignoring the transformer impedances and shunt admittance, very lit-
tle error has been made. This example demonstrates why, for all practical
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purposes, the impedance and shunt admittance of an autotransformer
can be ignored. This idea will be carried forward for the modeling of
voltage regulators.

7.3.2 Per-Unit Impedance

The per-unit impedance of the autotransformer based upon the autotrans-
former kVA and kV ratings can be developed as a function of the per-unit
impedance of the two-winding transformer based upon the two-winding
transformer ratings.

Let: Zpu,s, = the per-unit impedance of the two-winding transformer
based upon the two-winding kVA and kV ratings.

Vi -ratea = rated secondary voltage of the two-winding transformer

The base impedance of the two-winding transformer referred to the low-
voltage winding (series winding of the autotransformer) is:

2
Vra ted -2

Zbase,, = —Laed2
A5exim = VA, 1000

(749)

The actual impedance of the transformer referred to the low-voltage (series)
winding is:

Vited-2

Lt actual = ZPUyin - Zbasem = ZpUypy - ———

wal = ZPUissm m =PI VA g 1000 (7.50)

The rated load voltage of the autotransformer as a function of the rated low-
side voltage of the transformer is:

1tn
VZ-auto :( n : ) ' VZ-ratea' (751)
t

The base impedance for the autotransformer referenced to load side is:

2
‘/auto-Z

Zbase,yo =~ —— 7.52
A%t = VAo - 1000 (7:52)
Substitute Equations 7.48 and 7.51 into Equation 7.52:
1+ ’
+n
|:( ‘ ) . VZ-rated:|
I
Zbase,, =
1+n,
“= ) kVA ., 1000 (7.53)
n;
+
Zbase, ., = 1+ n, - Zbase,

n;
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The per-unit impedance of the autotransformer based upon the rating of the
autotransformer is:

Z tactua]

—— (7.54)
Zbase, .

Zautop, =

Substitute Equations 7.50 and 7.53 into Equation 7.54:

Zbase, n
Zauto,, = Zpuyy, - =
P Ptixim (1int

+
(Lnt) - Zbase, 4,

n;

) “Zpuym  (7.55)

Equation 7.55 gives the relationship between the per-unit impedance of the
autotransformer and the per-unit impedance of the two-winding trans-
former. The point is that the per-unit impedance of the autotransformer
is very small compared to that of the two-winding transformer. When the
autotransformer is connected to boost the voltage by 10%, the value of 7, is
0.1, and Equation 7.57 becomes:

0.1
ZPUuio = ————— ZPUysm = 0.0909 - Zpu, 7.56
PUaut 1401 PUxtm PUxfm (7.56)

The per-unit shunt admittance of the autotransformer can be developed as a
function of the per-unit shunt admittance of the two-winding transformer.
Recall that the shunt admittance is represented on the source side of the two-
winding transformer.

Let:

Ypu,s, = per-unit admittance of the two-winding transformer based
upon the transformer ratings

Ypu, = per-unit admittance of the autotransformer based upon the
autotransformer ratings

The base admittance of the two-winding transformer referenced to the
source side is given by:

kVA,:, -1000

2
‘/1 -rated

Ybase,s, = (7.57)

The actual shunt admittance referred to the source side of the two-winding
transformer is:

kVA,s -1000

Ytactual = YPUssin - Ybase i = Yplm - 5
‘/1—rated

(7.58)
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The base admittance reference to the source side of the autotransformer is
given by:

( 1+n
kVA,4 -1000 _\ 1y

2 2
\4 1-rated \4 1-rated

) - kVA,4, -1000
Ybase, ., =

= ( 1tn, ) - Ybasey:, (7.59)

I
The per-unit admittance of the autotransformer is:

_ Ypu,s, - Ybasemn Ypu,sm - Ybasem

Ypu,ue = -
PUau Ybase o 140 )y pase
nt xfm
Ypuauto = L : Ypuxfm (760)
(1 * Ht)

Equation 7.60 shows that the per-unit admittance based upon the autotrans-
former ratings is much smaller than the per-unit impedance of the two-
winding transformer. For an autotransformer in the raise connection with
n,= 0.1, Equation 7.62 becomes:

Ypuauo = (1231) Ypu,sm = 0.0909 - Ypu,sm,

It has been shown that the per-unit impedance and admittance values based
upon the autotransformer kVA rating and nominal voltage are approximately
one-tenth of that of the values for the two-winding transformer.

Example 7.3

The shunt admittance referred to the source side of the two-winding
transformer in Example 7.2 is:

Ytoorsas =Y =1.92-107 - j852-107* S

a. Determine the per-unit shunt admittance based upon the two-
winding transformer ratings.

Ybase,s, = 2775 =0.013
2.4*-1000

1.92-10* - j8.52-10™
0.013

Ypu,m = =0.014746 - j0.065434
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b. In Example 7.2, the kVA rating of the two-winding transformer
connected as an autotransformer was computed to be 825kVA
and the voltage ratings were 24002640 V. Determine the per-
unit admittance based upon the autotransformer kVA rating
and a nominal voltage of 2400V and the ratio of the per-unit
admittance of the autotransformer to the per-unit admittance
of the two-winding transformer.

_825-1000

Ybase,,, = >—=0.1432
2400
19210 - j8.52-10™*
Ypuipy = 22102852107 _ 6 301341 0,005949
0.1432
Ratio - 0001341 j0.005049 _

©0.014746 - j0.065434

In this section, the equivalent circuit of an autotransformer has been
developed for the “raise” and “lower” connections. These equivalent cir-
cuits included the series impedance and shunt admittance. If a detailed
analysis of the autotransformer is desired, the series impedance and shunt
admittance should be included. However, it has been shown in Example 7.2
that these values are very small and when the autotransformer is to be a
component of a system, very little error will be made by neglecting both
the series impedance and shunt admittance of the equivalent circuit.

7.4 Step-Voltage Regulators

A step-voltage regulator consists of an autotransformer and an LTC mech-
anism. The voltage change is obtained by changing the taps of the series
winding of the autotransformer. The position of the tap is determined by
a control circuit (line drop compensator). Standard step-regulators contain
a reversing switch enabling a regulator range of +10%, usually in 32 steps.
This amounts to a 5/8% change per step or 0.75-V change per step on a 120V
base. Step-regulators can be connected in a “Type A” or “Type B” connec-
tion according to the ANSI/IEEE C57.15-1986 standard [2]. The more common
Type B connection is shown in Figure 7.5.

The step-voltage regulator control circuit is shown in block form in
Figure 7.6.

The step-voltage regulator control circuit requires the following settings:

1. Voltage level—The desired voltage (on 120-V base) to be held at the
“load center.” The load center may be the output terminal of the reg-
ulator or a remote node on the feeder.
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FIGURE 7.5
Type “B” step-voltage regulator.
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FIGURE 7.6
Step-voltage regulator control circuit.

2. Bandwidth—The allowed variance of the load-center voltage from
the set voltage level. The voltage held at the load center will be + one-
half the bandwidth. For example, if the voltage level is set to 122V
and the bandwidth set to 2V, the regulator will change taps until the
load-center voltage lies between 121 and 123 V.

3. Time delay—Length of time that a raise or lower operation is called
for before the actual execution of the command. This prevents taps
changing during a transient or short time change in current.
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4. Line drop compensator

a. Analog compensator: Analog circuit set to compensate for the volt-
age drop (line drop) between the regulator and the load center.
The settings consist of R and X settings in volts corresponding to
the equivalent impedance between the regulator and the “load
center.” This setting may be zero if the regulator output termi-
nals are the “load center.”

b. Digital compensator: The same as the analog compensator; only
the output voltage of the compensator is computed similar to a
computer program. Based upon the computed output, compen-
sator voltage taps will change in order to hold the “load-center”
voltage within specified limits.

c. Smart meters: With the advent of the “smart grid,” it is possible
for the actual voltage at the “load center” to be transmitted back
to the regulator. Taps are then changed to hold the “load-center”
voltage within the prescribed limits.

The required rating of a step-regulator is based upon the kVA transformed, not
the kVA rating of the line. In general, this will be 10% of the line rating, because
rated current flows through the series winding, which represents the £10%
voltage change. The kVA rating of the step-voltage regulator is determined in
the same manner as that of the previously discussed autotransformer.

7.4.1 Single-Phase Step-Voltage Regulators

Because the series impedance and shunt admittance values of step-voltage
regulators are so small, they will be neglected in the following equivalent
circuits. It should be pointed out, however, that if it is desired to include
the impedance and admittance, they can be incorporated into the follow-
ing equivalent circuits in the same way they were originally modeled in the
autotransformer equivalent circuit.

7.4.1.1 Type A Step-Voltage Regulator

The detailed equivalent circuit and abbreviated equivalent circuit of a Type
A step-voltage regulator in the “raise” position is shown in Figure 7.7.

As shown in Figure 77, the primary circuit of the system is connected
directly to the shunt winding of the Type A regulator. The series winding is
connected to the shunt winding and, in turn, via taps, to the regulated cir-
cuit. In this connection, the core excitation varies because the shunt winding
is connected directly across the primary circuit.

When the Type A connection is in the “lower” position, the reversing switch is
connected to the “L” terminal. The effect of this reversal is to reverse the direction
of the currents in the series and shunt windings. Figure 7.8 shows the equivalent
circuit and abbreviated circuit of the Type A regulator in the lower position.
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FIGURE 7.7
Type A step-voltage regulator in the raise position.
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FIGURE 7.8
Type A step-voltage regulator in the lower position.
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7.4.1.2 Type B Step-Voltage Regulator

The more common connection for step-voltage regulators is the Type B.
Because this is the more common connection, the defining voltage and cur-
rent equations for the voltage regulator will be developed only for the Type
B connection.

The detailed and abbreviated equivalent circuits of a Type B step-voltage
regulator in the “raise” position is shown in Figure 79.

The primary circuit of the system is connected, via taps, to the series wind-
ing of the regulator in the Type B connection. The series winding is connected
to the shunt winding, which is connected directly to the regulated circuit. In
a Type B regulator, the core excitation is constant because the shunt winding
is connected across the regulated circuit.

The defining voltage and current equations for the regulator in the raise
position are as follows:

Voltage Equations Current Equations
E, E
— =" N;-I1=N,-1 761
Nl N2 1741 242 ( )
V5=E1—E2 IL =15—I] (762)
VL=E1 IZ=IS (763)
Nz Nz N2 N2
E,=—7E=—>V, L="—">+1L="—"-1 7.64
2 Nl 1 Nl L 1 Nl 2 Nl S ( )
N
Vs=( ——ZJ-VL IL:[ —&)-15 (7.65)
N, 1
VSZaR'VL IL=aR'IS (766)
N,
ag=1-—+ 7.67
R=1-00 (7.67)

Equations 7.66 and 7.67 are the necessary defining equations for modeling a
Type B regulator in the raise position.

The Type B step-voltage connection in the “lower” position is shown in
Figure 7.10. As in the Type A connection, note that the direction of the cur-
rents through the series and shunt windings change, but the voltage polarity
of the two windings remain the same.
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The defining voltage and current equations for the Type B step-voltage
regulator in the lower position are as follows:

Voltage Equations Current Equations
7.68
E_E NoT—Nu L 769
N; N,
V5=E]+E2 IL=IS—Il (769)
VL = El Iz =_I5 (770)
Nz Nz NZ N2
2 Nl 1 Nl L 1 Nl 2 Nl( S) ( )
N, N
Ve=|1+"2 |-V, I =|1+22 |1 (7.72)
° ( N1J ’ t ( NlJ °
V5=3R'VL ILzaR-IS (773)
N,
ap=1+—7+= 7.74
R N, (774)

Equations 7.67 and 7.74 give the value of the effective regulator ratio as a
function of the ratio of the number of turns on the series winding (N,) to the
number of turns on the shunt winding ().

In the final analysis, the only difference between the voltage and current
equations for the Type B regulator in the raise and lower positions is the sign
of the turn’s ratio (N »/N- 1). The actual turn’s ratio of the windings is not
known. However, the particular tap position will be known. Equations 7.67
and 7.74 can be modified to give the effective regulator ratio as a function of
the tap position. Each tap changes the voltage by 5/8% volts or 0.00625 per
unit. Therefore, the effective regulator ratio can be given by:

ag =150.00625- Tap (7.75)

In Equation 7.75, the minus sign applies for the “raise” position and the posi-
tive sign for the “lower” position.

7.4.1.3 Generalized Constants

In previous chapters and sections of this text, generalized abcd constants
have been developed for various devices. It can now be shown that the gen-
eralized abcd constants can also be applied to the step-voltage regulator. For



Voltage Regulation 209

both the Type A and Type B regulators, the relationship between the source
voltage and current to the load voltage and current are of the form:

TypeA: Vszi'VL IszaR-IL (776)
ar
1
TypeB: V5=aR~VL Iszi'IL (777)
agR

Therefore, the generalized constants for a single-phase step-voltage regula-
tor become:

a=i b=0 ¢c=0 d=a
Type A: ag (7.78)

A=aR B=0

a=agp b=0 ¢c=0 d=l
ar

Type B: (7.79)

where ag is given by Equation 7.75, and the sign convention is given in
Table 71.

7.4.1.4 The Line Drop Compensator

The changing of taps on a regulator is controlled by the “line drop compen-
sator.” Figure 711 shows an analog circuit of the compensator circuit and as
to how it is connected to the distribution line through a potential transformer
and a current transformer. Older regulators are controlled by an analog com-
pensator circuit. Modern regulators are controlled by a digital compensator.
The digital compensators require the same settings as the analog. Because it
is easy to visualize, the analog circuit will be used in this section. However,
understand that the modern digital compensators perform the same function

TABLE 7.1

Sign Convention Table for ag

Type A Type B

Raise + -
Lower - +
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Line drop compensator circuit.

for changing the taps on the regulators. Moreover, as the smart grid becomes
popular, it will be possible to transmit the load-center voltage directly to the
regulator; so there will not be a need for the compensator circuit.

The purpose of the line drop compensator is to model the voltage drop of
the distribution line from the regulator to the “load center.” The compensa-
tor is an analog circuit that is a scale model of the line circuit. The compensa-
tor input voltage is typically 120V, which requires the potential transformer
in Figure 711 to reduce the rated voltage down to 120 V. For a regulator that
is connected line-to-ground, the rated voltage is the nominal line-to-neutral
voltage, whereas for a regulator that is connected line-to-line, the rated volt-
age is the line-to-line voltage. The current transformer turns ratio is speci-
fied as CT(:CTs where the primary rating (CT}) will typically be the rated
current of the feeder. The setting that is most critical is that of R” and X’
calibrated in volts. These values must represent the equivalent impedance
from the regulator to the load center. The basic requirement is to force the
per-unit line impedance to be equal to the per-unit compensator impedance.
To cause this to happen, it is essential that a consistent set of base values be
developed wherein the per-unit voltage and currents in the line and in the
compensator are equal. The consistent set of base values is determined by
selecting a base voltage and current for the line circuit and then comput-
ing the base voltage and current in the compensator by dividing the system
base values by the potential transformer ratio and current transformer ratio,
respectively. For regulators connected line-to-ground, the base system volt-
age is selected as the rated line-to-neutral voltage (V,y), and the base system
current is selected as the rating of the primary winding of the current trans-
former (CT,). Table 7.2 gives “Table of Base Values,” which employs these
rules for a regulator connected line-to-ground.
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TABLE 7.2
Table of Base Values
Base Line Circuit Compensator Circuit
Voltage Vin Vin
Npr
Current CTp CTs
Vin Vin

Impedance Zbasejne = CT, Zbaseomp = Ny CT.

With the Table of Base Values developed, the compensator R and X settings
in ohms can be computed by first computing the per-unit line impedance.

. R]Iheg + ]leeg
Rpy + jX pu =

Zbasejine
(7.80)
Rpu + jX pu = (Rlineq + jXlineq )- Ir
VLN

The per-unit impedance in Equation 7.80 must be the same in the line and
in the compensator. The compensator impedance in ohms is computed by
multiplying the per-unit impedance by the compensator base impedance.

Rcompg, + jXcomp,, = (Rpu + jX Pu)-Zbasemmp

, . s CTp Vin

Rcompgq + jXcompg, = (Rllneg + ]X]meg)-m~m Q (7.81)
Rcompgq + jXcompg, = (Rlineg + jXlineq ) e
Npr -CTs

Equation 7.81 gives the value of the compensator R and X settings in ohms.
The compensator R and X settings in volts are determined by multiplying the
compensator R and X in ohms times the rated secondary current (CT;) of the
current transformer.

R’+ jX’=(Rcomp,, + chome)-CTs

i-CTS \Y4
Npr -CTs (7.82)

R’+ jX’ = (Rlineq + jXlineq - %

PT

R’+ jX’ =(Rline, + jXlineq )-
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Knowing the equivalent impedance in ohms from the regulator to the load
center, the required value for the compensator settings in volts is determined
by using Equation 7.82. This is demonstrated in Example 74.

Example 7.4

Refer to Figure 7.11.

The substation transformer is rated 5000 kVA, 115 delta—4.16 grounded
wye and the equivalent line impedance from the three single-phase reg-
ulators connected in wye to the load center is 0.3 +j0.9 Q. The settings for
each phase regulator will be the same.

1. Determine the potential transformer and current transformer
ratings for the compensator circuit.
The rated line-to-ground voltage of each regulator is:

Vs =2400

In order to provide 120V to the compensator, the potential
transformer ratio is:

_ 2400 _

= 20
120

PT

The rated current of the substation transformer is:

5000
Lo = 2 26939
" 3416

The primary rating of the CT is selected as 700 amps, and if the
compensator current is reduced to 5 amps, the CT ratio is:

Ct, _700
CTs 5

CT = =140

2. Determine the R and X settings of the compensator in ohms
and volts.
Applying Equation 7.78 to determine the settings in volts:

R'+jX’=(0.3+0.9)- % =10.5+;315V
The R and X settings in ohms are determined by dividing the
settings in volts by the rated secondary current of the current
transformer.

Rb+ng=19§%¥§L§=21+j63£2

Understand that the R and X settings on the compensator
control board are calibrated in volts.
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Example 7.5

The substation transformer in Example 74 is supplying a three-phase
load of 2500kVA at 4.16kV and 0.9 power factor lag. The regulator has
been set so that:

R'+jX’=105+j31.5V

Voltage level = 120V (desired voltage to be held at the load center)

Bandwidth =2V

Determine the tap position of the regulator that will hold the load-
center voltage at the desired voltage level and within the bandwidth.
This means that the tap on the regulator needs to be set so that the volt-
age at the load center lies between 119 and 121 V.

The first step is to calculate the actual line current.

2500 /—acos(0.9)=346.97/-25.84 A

e = J3.416——
The current in the compensator is then:

e  346.97/-25.84

= =24783/-25.84 A
CcT 140

I comp =

The input voltage to the compensator is:

4160
2401.78/0
Vmg _ VLNtated — \/§ — L — 12009/0 V
NPT 20 20 —

The voltage drop in the compensator circuit is equal to the compensator
current times the compensator R and X values in ohms:

Viarop =(2.1+ j6.3)-2.4783/ - 25.84 = 16.458/45.7 V

The voltage across the voltage relay is:
Vi = Vieg = Viarop =120.09/0-16.458/45.7 =109.24/ - 6.19 V

The voltage across the voltage relay represents the voltage at the load
center. Because this is well below the minimum voltage level of 119, the
voltage regulator will have to change taps in the raise position to bring
the load-center voltage up to the required level. Recall that on a 120-V
base, a single step change on the regulator changes the voltage by 0.75V.
The number of required tap changes can then be approximated by:

Tap = 119-109.24 ; ;(;9'24 =13.02
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This shows that the final tap position of the regulator will be “raise 13.”

With the tap set at +13, the effective regulator ratio assuming a Type B
regulator is:

agr =1-0.00625-13=0.9188

The generalized constants for modeling the regulator for this operating
condition are:

a=ar=0.9188
b=0
c=0

d=—1
0.9188

=1.0884

Example 7.6

Using the results of Example 7.6, calculate the actual voltage at the load
center with the tap set at +13 assuming the 2500kVA at 416 kV measured
at the substation transformer low-voltage terminals.

The actual line-to-ground voltage and line current at the load-side ter-
minals of the regulator are:

_ Vs _ 2401.78/0

v, =V 0 _26142/0 v
a 0.9188 7
[ =Ts _34697/-2584 10, ooesa
d 1.0884

The actual line-to-ground voltage at the load center is:

Vie =Vi = Zjne - I, =2614.2/0—(0.3+ j0.9)-318.77/ - 25.84 =2412.8/ - 515 V

On a 120-V base, the load-center voltage is:

Ve 2412.8/-515

VLCy = =120.6/-5.15V
PT 2
In the compensator circuit:
2614.2/0
Vieg = /. 26142/0 =130.7/0
NPT 20 7
318.8/-25.8
Lo = 222 (2258, 77/258

emrT cr T 140
Vie = Vieg = (R"+ jX") Leomp = 120.6/ —5.15
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TABLE 7.3

Tap Changing

Tap Voltage
0 109.2

1 110.1

2 110.9

3 111.7
10 117.8
11 118.8
12 119.7

Note that the voltage relay matches the voltage at the load center. The +13
tap was an approximation and has resulted in a load-center voltage
within the bandwidth. However, since the regulator started in the neu-
tral position, the taps will be changed one at a time until the load-center
voltage is inside the 119 lower bandwidth. Remember that each step
changes the voltage by 0.75V. Because the load-center voltage has been
computed to be 120.6V, it would appear that the regulator went one step
more than necessary. Table 7.3 shows what the compensator relay voltage
will be as the taps change one at a time from 0 to the final value.

Table 7.3 shows that when the regulator is modeled to change one tap at a
time starting from the neutral position that when it reaches tap 12, the relay
voltage is inside the bandwidth. For the same load condition, it may be that
the taps will change to lower the voltage owing to a previous larger load. In
this case, the taps will reduce one at a time until the relay voltage is inside
the 121 upper bandwidth voltage. The point is that there can be different taps
for the same load depending upon whether the voltage needs to be raised or
lowered from an existing tap position.

It is important to understand that the value of equivalent line impedance
is not the actual impedance of the line between the regulator and the load
center. Typically, the load center is located down the primary main feeder
after several laterals have been tapped. As a result, the current measured
by the CT of the regulator is not the current that flows all the way from
the regulator to the load center. The only way to determine the equivalent
line impedance value is to run a power-flow program of the feeder without
the regulator operating. From the output of the program, the voltages at the
regulator output and the load center are known. Now the “equivalent” line
impedance can be computed as:

Vre ator—output — Voa —center
gulat t;} t load—cent Q (7.83)
line

In Equation 7.83, the voltages must be specified in system volts and the cur-
rent in system amperes.

Rlineq + jXline, =



216 Distribution System Modeling and Analysis

This section has developed the model and generalized constants for Type
A and Type B single-phase step-voltage regulators. The compensator control
circuit has been developed, and it has been demonstrated as to how this
circuit controls the tap changing of the regulator. The following section will
discuss the various three-phase step-type voltage regulators.

7.4.2 Three-Phase Step-Voltage Regulators

Three single-phase step-voltage regulators can be connected externally to
form a three-phase regulator. When three single-phase regulators are con-
nected together, each regulator has its own compensator circuit, and there-
fore the taps on each regulator are changed separately. Typical connections
for single-phase step-regulators are:

1. Single-phase

2. Two regulators connected in “open wye” (sometimes referred to as
“V” phase)

3. Three regulators connected in grounded wye
4. Two regulators connected in open delta

5. Three regulators connected in closed delta

A three-phase regulator has the connections between the single-phase wind-
ings internal to the regulator housing. The three-phase regulator is “gang”
operated so that the taps on all windings change the same, and as a result,
only one compensator circuit is required. For this case, it is up to the engi-
neer to determine as to which phase current and voltage will be sampled by
the compensator circuit. Three-phase regulators will only be connected in a
three-phase wye or closed delta.

Mostly, the substation transformer will have LTC windings on the second-
ary. The LTC will be controlled in the same way as a gang-operated three-
phase regulator.

In the regulator models to be developed in the following sections, the phas-
ing on the source side of the regulator will use capital letters A, B, and C. The
load-side phasing will use lower case letters a, b, and c.

7.4.2.1 Wye-Connected Regulators

Three Type B single-phase regulators connected in wye are shown in
Figure 7.12.

In Figure 7.12, the polarities of the windings are shown in the “raise” posi-
tion. When the regulator is in the “lower” position, a reversing switch will
have reconnected the series winding so that the polarity on the series wind-
ing is now at the output terminal. Regardless of whether the regulator is
raising or lowering the voltage, the following equations apply:
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—— !

FIGURE 7.12
Wye-connected Type B regulators.

Voltage equations

VAn ar _a 0 0 ‘/an
VBn = 0 Aar_b 0 ! Vbn (7 8 4)
v?h 0 0 aR_c ‘(m

where ag_,, ar_», and ag_. represent the effective turns ratios for the three
single-phase regulators.
Equation 7.84 is of the form:

[VLN apc|=[a | [VLN e ]+ [P] [ Love ] (7.85)
In Equation 7.85, the matrix [b] will be zero when the regulator impedance

is neglected.
Current equations

1 0 0
AR _a
1, - ) I,
Ip = 0 0 | I (7.86)
ar_»p

IC 1 Ic

0 0

aR,c
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[Lasc ]=[c] [VLGabe | +[d][ Lave ] (7.87)

In Equation 7.87, the matrix [c] will be zero since the regulator shunt admit-
tance is neglected.

Equations 7.85 and 7.87 are of the same form as the generalized equa-
tions that were developed for the three-phase line segment of Chapter 6.
For a three-phase wye-connected step-voltage regulator neglecting the series
impedance and shunt admittance, the forward and backward sweep matri-
ces are therefore defined as:

[a]= 0 axp, 0 (7.88)

0 0 0
[bl=| 0 0 o0
L 0 0 0 ] (7.89)
0 0 0
[cl=l 0 0 o0
. 0 0 0 | (790)
1 0 0
aR?a
1
dl=| © 0
[d] 2
0 0 1
! ar_c ] (791)
1 0 0
aR?a
1
Al=| 0 0
[A] 2
0 0 !
i ar_c | (792)

0 0 (793)
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In Equations 7.88, 791, and 793, the effective turn’s ratio for each regulator
must satisfy:

0.9 <ag_,p <1.1in 32 steps of 0.625 %/step (0.75V/step on 120V base)

The effective turn ratios (aR_a,aR_b,and aR_C) can take on different values
when three single-phase regulators are connected in wye. It is also possible
to have a three-phase regulator connected in wye, where the voltage and cur-
rent are sampled on only one phase, and then all three phases are changed
by the same number of taps.

Example 7.7

An unbalanced three-phase load is served at the end of a 10,000-ft,
12.47kV distribution line segment. The phase-generalized matrices for
the line segment were computed in Example 6.1 and used in Example 6.5.
The computed matrices are:

1 0 0
[aline ] = 0 1 0
0 0 1

0.8667 +j2.0417  0.2955+ j0.9502  0.2907 + j0.7290
[bﬁne ] =| 0.2955+;0.9502 0.8837+;1.9852  0.2992+ ;0.8023
0.2907 +j0.7290  0.2992+;0.8023  0.8741+ ;2.0172

For this line, the A and B matrices are defined as:

1

[Aline ] = [aline ]7
[Bline] = [aline ]71 . [bline] = [Zabc]
In Example 6.5, the substation line-to-line voltages are balanced three-

phase. The line-to-neutral voltages at the substation are balanced
three-phase:

7199.6/0
[VLN s ]=| 7199.6/-120 |V
7199.6/120

In Example 6.5, the unbalanced three-phase loads were:

2500 0.9
[kVA]=| 2000 [PF]=| 0.85 |kVA
1500 0.95
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In Example 6.5, the ladder iterative technique was used and the load cur-
rents and the currents leaving the substation were:

374.4/-282
[Lasc]=| 286.8-153.9
212.6/100.5

The load voltages were calculated to be:

6678.2/-2.3
[Vioad.s |=| 6972.8/-122.1
7055.5/118.7

The load voltages on a 120-V base were computed to be:

111.3/-2.3
[Vin]=| 116.2/-122.1
117.6/118.7

It is obvious that the load voltages are not within the ANSI standard. To
correct this problem, three single-phase Type B step-voltage regulators
will be connected in wye and installed in the substation. The regulators
are to be set such that each line-to-neutral load voltage on a 120-V base
will lie between 119 and 121 V.

The potential and current transformers of the regulators are rated as:

7200
120

_ 600 _CT,
5 CTs

60

PT

CcT =120

The voltage level and bandwidth are:

Voltage level = 120V
Bandwidth =2V

The equivalent line impedance for each phase can be determined by
applying Equation 7.83:

Zline, = 7199.6/0-6678.2/-2.3
374.4/-28.2

=0.8989+ j1.3024

Zline. - 7199:6/~120-6972.8/ ~122.1
b= 286.8/—153.9

=0.1655+ ;j1.2007 Q

_7199.6/120-7055.5/118.7

Zline,
212.6/100.5

=0.4044+ j0.9141
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Even though the three regulators change taps independently, it is the
usual practice to set the R and X settings of the three regulators the
same. The average value of the foregoing three line impedances can be
used for this purpose.

Z1ine,yerage = 0.4896 + j1.1391 Q

The compensator R and X settings are computed according to
Equation 7.82:

R’+ jX’ =(Rline,, + jXline,, )- ET” =(0.4896+ j1.1391)- %

PT

R+ jX’'=4.8964+j11.3908 V

The compensator controls are not calibrated to that many significant
figures; so the values set are:

R'+jX’'=5+j11V

For the same unbalanced loading and with the three-phase wye-
connected regulators in service, the approximate tap settings are:

119-|Vlioad, _
Tap, = [r19- _M9-1113 5615
0.75 0.75
119 —|\Vlioad, _
Taps = 119-Vioad,| _[119-1162 37154
0.75 0.75
119 - |Vlioad. _
Tap. = 119-| _[19-1176 _ oo
0.75 0.75

Because the taps must be integers, the actual tap settings will be:

Tap, =+10
Tap, =+4
Tap. =+2

The effective turns ratio for the three regulators and the resulting gen-
eralized matrices are determined by applying Equations 7.88, 791, and

792 for each phase:
[ 1-0.00625-10 0 0
[anes | = 0 1-0.00625- 4 0
| 0 0 1-0.00625-2
[ 09375 0 0
= 0 0.975 0
0 0 09875
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L[ roeez 0 0
[des]=[aws] =| 0 10256 0
0 0 10127 |
L roeez 0 0 |
[Areg ] = [areg ] = 0 1.0256 0
o 0 10127 |
0 0 0
[Bes]=| 0 0 0
0 0 0

With the voltage regulators connected to the source, the one-line dia-
gram of the simple system is shown in Figure 7.13.

A Mathcad program is written following the flowchart in Figure 6.7.
The program is used to compute the load voltages and currents after the
regulator taps and resulting matrices have been computed. The program
is shown in Figure 7.14.

After six iterations, the results of the analysis are:

7205.6/-1.9

[Vioad s |=| 7145.9/-122.0
7147.2/118.7

1201/-19 |
[Vizo]=| 119.1/-122.0
119.1/118.7

347.0/-27.8
[Lsc]=| 279.9/-153.8
209.9/100.5

370.1-27.8
[Lasc]=| 287.1/-153.8

212.5/100.5

Source 10,000 ft line Unbalanced

Vieg load

FIGURE 7.13
Simple system with a regulator and line.
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0 7199.5579
Start:=] 0 Tol:=.00001  E,,. = |7199.5579.¢ ) 1204
° 7199.5579.¢) 120-d¢8

Solve == [ , = « Start
abc

Vo < Start

for n €1..200
Vreg,. < Ay ‘Eapc ~Breg L
Vload, Ay Vreg, =By Ly
for iel.3

SLi~ 1000

Ia\bc
i Vload
abci

for j €1.3
Vloadabcj 7V01d)

Error <«
) VLN

Err < max(Error)
max
break if Err < Tol

Vi < Vloadabc

Vload
-

V
120 N
pt

Lic < dreg' Libe

Out1 “«— Vloadabc

Out2 <~ Vig9
Out;3 “«— Iabc
Out4 “— Lige
Out5 «n
Out
FIGURE 7.14
Mathcad program.

In this example, the tap positions have been determined by the analysis
of the actual load voltages. Note that now all of the load voltages on the
120-V base are within ANSI standards assuming that the taps were actu-
ally set at +10, +4, and +2. This procedure will only work when the regu-
lator is being fed the actual load voltages. Unfortunately, it works in such
a way that the compensator circuit will adjust the taps based upon the
compensator relay voltage. Recall that the compensator input voltage V..,
is a measure of the output voltage of the regulator and the compensator
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current I,y is a measure of the line current out of the regulator. For this
example, the compensator R and X in ohms are:
z _R+jX _5+j11

. =1+22
CT, 5

Initially, the taps are set to zero with the voltages, and currents at the
output terminals of the regulator are:

7199.6/0
[Vou | =[ Areg | [Eanc]=| 7199.6/-120
7199.6/120

374.4/-28.2
Iout = [dreg ]_1 b [IABC] = 2868/ - 1539
212.6/100.5

The voltages and currents into the compensator circuits are:

120.0/0
[Vie ]= Yol _| 120.0/-120
g NPT L=
120.0/120
1] 3.12/-28.2
Iout
[Leomp | = o =| 239/=1539
1.77/100.6

The compensator impedance matrix is:

Z. 0 0 1+22 0 0
[Zamp]=| 0 2z. 0 |= 0 1+j22 0
0o 0 Z 0 0 1+22

The compensator relay voltages are:

114.1/-2.3

[Viewy |=[Vieg |~ [ Zeomp |- [ Treg | = | 115.1/-1215
117.1/118.5

Because the relay voltages are not within the bandwidth, the taps will
change one step at a time until the voltages are within the bandwidth.
It should be pointed out that as each regulator gets the voltage within
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the bandwidth, it will stop while the others continue to change taps until
their voltages are within the bandwidth. With the regulators changing
one tap at a time, the final taps based upon the compensator relay volt-
ages are:

+7
[Taps] =| +5
+3

With these taps, the regulator stops changing taps, and the relay voltages are:

119.9
[View |=| 119.1
119.4

Note that these are not the same taps as originally given for this exam-
ple. When these taps are applied to the analysis of the system, the result-
ing load voltages on a 120-V base are:

117.3
[Vima]|=| 120.1
119.9

The phase a voltage is not within the bandwidth. The problem is that
when the example was first analyzed with the original taps, the taps had
been determined by using the actual line voltage drops with the regula-
tors in the neutral position. However, when the compensator R and X
values were computed, the average of the equivalent line impedances
was used for each regulator. Because the three line currents are all dif-
ferent, it means the heavily loaded phase (1) voltage will not represent
what is actually happening on the system. Once again, this is a problem
that occurs because of the unbalanced loading.

One way to raise the load voltages is to specify a higher voltage level
by increasing the voltage level to 122 V. With the regulator changing taps
one at a time until all voltage relays have a voltage just greater than 121V
(lower bandwidth voltage), the results are:

9
[Taps]=| 8
5
119.1
[Vioadin | =| 1226
1215
121.6

[View | =| 1217
121.0
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Example 7.7 is a long example intended to demonstrate how the engi-
neer can determine the correct compensator R and X settings knowing
the substation and load voltages and the currents leaving the substa-
tion. Generally, it will be necessary to run a power-flow study in order
to determine these values. A simple Mathcad routine demonstrates that
with the regulator tap settings, the load voltages are within the desired
limits. The regulator has automatically set the taps for this load condi-
tion, and as the load changes, the taps will continue to change in order
to hold the load voltages within the desired limits.

7.4.2.2 Closed Delta-Connected Regulators

Three single-phase Type B regulators can be connected in a closed delta as
shown in Figure 7.15. In this figure, the regulators are shown in the “raise”
position.

The closed delta connection is typically used in three-wire delta feeders.
Note that the potential transformers for this connection are monitoring the
load-side line-to-line voltages, and the current transformers are not monitor-
ing the load-side line currents.

The relationships between the source side and currents and the voltages
are needed. Equations 7.64 through 7.67 define the relationships between the
series and shunt winding voltages and currents for a step-voltage regulator
that must be satisfied regardless of how the regulators are connected.

+A.

Vas

+
- B @

@ b
@ C

FIGURE 7.15
Closed delta-connected regulators with voltages.
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Kirchhoft’s Voltage Law is first applied around a closed loop starting with
the line-to-line voltage between phases A and B on the source side. Refer to
Figure 714, which defines the various voltages.

Vap =Vaa+Vap —Vpp (794)
But:
N,
Vb :_7Nj Ve (7.95)
N,
Vi=——2-V, 7.96
A N, Ve (7.96)

Substitute Equations 7.95 and 7.96 into Equation 7.94 and simplify:

N, N,
Vap=|1--—"= | Vp+—Viec=ar » Var+t(1—ag bc) Vic 797
AB( NJ b N b R_ab b( R,b) b (797)

1 1

The same procedure can be followed to determine the relationships between
the other line-to-line voltages. The final three-phase equation is:

Vas aR_ab 1-ag_pe 0 Vb
Vie = 0 AR _bc 1-ag _ca . Ve (798)
VCA 1- AR_ab 0 AR _ca Vca

Equation 798 is of the generalized form:
[VLLagc |=[a]-[VLLuse | +[b] [ Lec | (799)

Figure 716 shows the closed delta—delta connection with the defining
currents.

The relationship between source and load line currents starts with apply-
ing KCL at the load-side terminal a.

L=I+1,=1,—-1,+I, (7.100)
But:
N,
Iy="—"+-1 7101
b N, A ( )

L= g, (7102)
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FIGURE 7.16
Closed delta-connected regulators with currents.

Substitute Equations 7.100 and 7101 into Equation 7.100 and simplify:

N, N,
L=(1-—= |- Iy+——Ic=ag » - Ia+(1—-ar &) I
( NJ A N c=ag_ap-Ia+( k) e

1 1

(7103)

The same procedure can be followed at the other two load-side terminals.

The resulting three-phase equation is:

Ia AR _ab 0 1- AR _ca IA
I, |=| 1-ag_a AR _be 0 | Ip
IC 0 1_aR_bc AR _ca IC

Equation 7104 is of the general form:

[Lave | =[D] [Lasc]

aR_ab 0 1 - aR_ca
where [D]=| 1-ar_ 4R _bc 0

0 1- AR _pc AR _ca

(7104)

(7.105)
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The general form needed for the standard model is:
[Lasc |=[c]-[VLLagc |+[d] [ Lase | (7.106)
where
[d]=[D]"

As with the wye-connected regulators, the matrices [b] and [c] are equal to
zero as long as the series impedance and shunt admittance of each regulator
is neglected.

The closed delta connection can be difficult to apply. Note in both the volt-
age and current equations that a change of the tap position in one regulator
will affect voltages and currents in two phases. As a result, increasing the
tap in one regulator will affect the tap position of the second regulator. In
most cases, the bandwidth setting for the closed delta connection will have
to be wider than that for wye-connected regulators.

7.4.2.3 Open Delta-Connected Regulators

Two Type B single-phase regulators can be connected in the “open” delta
connection. Shown in Figure 717 is an open delta connection where two
single-phase regulators have been connected between phases AB and CB.

A
®
+

Vag

FIGURE 7.17
Open delta connection.
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Two additional open connections can be made by connecting the single-
phase regulators between phases BC and AC and also between phases CA
and BA.

The open delta connection is typically applied to three-wire delta feeders.
Note that the potential transformers monitor the line-to-line voltages and the
current transformers monitor the line currents. Once again, the basic voltage
and current relations of the individual regulators are used to determine the
relationships between the source-side and load-side voltages and currents.
The connection shown in Figure 7.17 will be used to derive the relationships,
and then the relationships of the other two possible connections can follow
the same procedure.

The voltage V,; across the first regulator consists of the voltage across the
series winding plus the voltage across the shunt winding.

Vg =Vaa+Vap (7107)

Paying attention to the polarity marks on the series and shunt windings, the
voltage across the series winding is:

N,
Vaa=——"7""V, 7108
4 N, b ( )

Substituting Equation 7108 into Equation 7.107 yields:

Vas Z( —%) Vb =ag_ap Vo (7109)

1

Following the same procedure for the regulator connected across Vi, the
voltage equation is:

Ve Z( —%J “Vie =ag_a * Vipe (7110)

1
Kirchhoff’s Voltage Law must be satisfied so that:
Vea==(Vap+Vsc)==ag_ab - Vab —ar_cv - Vi (7111)
Equations 7.107, 7108, and 7.109 can be put into matrix form:
Vas aR_ab 0 0 Vab

Vee | = 0 ar. . 0 || Vi (7112)

Vea —daR_ab —dRr_cb 0 Vea
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Equation 7112 in generalized form is:

[VLLABC] = [aLL] . [VLLabc] + [bLL] : [Iabc] (7113)
where
aR?ab O O
law]= 0 ag o O (7114)
—dR_ab —dR_cb 0

The effective turn’s ratio of each regulator is given by Equation 7.75. Again,
as long as the series impedance and shunt admittance of the regulators are
neglected, [b. ] is zero. Equation 7114 gives the line-to-line voltages on the
source side as a function of the line-to-line voltages on the load side of the
open delta using the generalized matrices. Up to this point, the relation-
ships between the voltages have been in terms of line-to-neutral voltages. In
Chapter 8, the [W] matrix is derived. This matrix is used to convert line-to-
line voltages to equivalent line-to-neutral voltages.

[VLN apc | =[W]-[VLLasc ] (7115)
where
1 2 1 0
(W] =§ 1 0 2 1
1 0 2

The line-to-neutral voltages are converted to line-to-line voltages by:

[VLLasc |=[Dv]-[VLN apc] (7.116)
where
1 -1 0
[Dv] = 0 1 -1
-1 0 1

Convert Equation 7113 to line-to-neutral form:
[VLLABC ] = [3LL] : [VLLabC]
[VLN apc |=[W]-[VLLagc | =[W]-[are]-[Dv]- [VLN e | (7117)

[VLN asc ] = areg | -[VLN ]
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where

[afeg ] =[W]-[a,.]-[Dv]

When the load-side line-to-line voltages are needed as a function of the
source-side line-to-line voltages, the necessary equation is:

L 0 0
aR_a
Vb foab 1 Vs
Ve = 0 0 || Vi (7.118)
aR_cb
Vca 1 1 VCA
- — 0
aR_ab aR_ch ]
[VLLabC] = [ALL] . [VLLAgc] (7119)
where
1 0 0
aR?ab
1
[ALL] = 0 0 (7120)
aR_c)b
_ 1 _ 1 0
aR_ab aR_cb ]

Equation 7119 is converted to line-to-neutral voltages by:
[VLN e |=[W]-[VLLse |=[W]-[ArL]-[VLLasc ]
[VLN . |

[W]-[As]-[Dv]-[VLN asc] (7121)
[VLN e ] =[ Aveg |- [VEN asc |

where

[Areg] =[W]-[Aw]-[Dv]

There is no general equation for each of the elements of [A,eg ] The matrix
[Areg] must be computed according to Equation 7.121.

Referring to Figure 7.17, the current equations are derived by applying KCL
at the L node of each regulator.

Iy=1,+1, (7122)
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But:

N
Iab:ﬁz'IA

1

Therefore, Equation 7.122 becomes:

N,
1-—=|I,=1, 7123
( Nl) 4 (7123)
Therefore:
1
I,= -1, (7.124)
aR_ab

Similarly, the current equation for the second regulator is given by:

Ic= 1. (7125)

Aar_cb

Because this is a three-wire delta line, then:

Ig=—(Is+Ic)=- ! A, - ! . (7126)
aR?ab aR?Cb
In matrix form, the current equations become:
! 0 0
aR_a
I, o . I,
Iy |=| - 0 - I, (7127)
aRfelb aR?cb
IC 1 Ic
0 0
L aR?Cb

In generalized form, Equation 7127 becomes:

[Lisc]=[Creg |- [VENusc ] + [ dreg | -[Tave] (7128)
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where
1 0 0
dagr _ab
1 1
— - O -
[dreg ] AR _ab aR_cb (7129)
0 0 1
aR_Cb

When the series impedances and shunt admittances are neglected, the con-
stant matrix [c,,.] will be zero.

The load-side line currents as a function of the source line currents are
given by:

Ia AR _ab 0 0 IA
I, = —ar_ap 0 -ar o : I (7130)
IC 0 0 AR b IC

[Iabc] = [Dreg ] : [IABC] (7131)

where

aRiab 0 0

[Dreg ] = _aRfab O _aRfcb (7132)
0 0 aR_d,

The determination of the R and X compensator settings for the open delta fol-
lows the same procedure as that of the wye-connected regulators. However,
care must be taken to recognize that in the open delta connection, the voltages
applied to the compensator are line-to-line and the currents are line currents.
The open delta-connected regulators will maintain only two of the line-to-
line voltages at the load center within defined limits. The third line-to-line
voltage will be dictated by the other two (Kirchhoff’s Voltage Law). Therefore,
it is possible that the third voltage may not be within the defined limits.

With reference to Figure 718, an equivalent impedance between the reg-
ulators and the load center must be computed. Because each regulator is
sampling line-to-line voltages and a line current, the equivalent impedance
is computed by taking the appropriate line-to-line voltage drop and divid-
ing it by the sampled line current. For the open delta connection shown in
Figure 718, the equivalent impedances are computed as:

VR, —VLy

Leg, = 7

(7133)
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A
[
.
Iy
L
—>L
\) V{l
Vea
+ +
\‘ER/ VR, VL,
Loy
Vap -
* E -b - Load
C SI) L center
_ — —
Ie \l/ Loy - -
VR, VL,
Ve
I + +
B ®
FIGURE 7.18
Open delta-connected to a load center.
VR — VL
Zog. = 17” (7134)
c

The units of these impedances will be in system ohms. They must be con-
verted to compensator volts by applying Equation 7.78. For the open delta
connection, the potential transformer will transform the system line-to-line
rated voltage down to 120 V. Example 7.8 demonstrates how the compensa-
tor R and X settings are determined knowing the line-to-line voltages at the

regulator and at the load center.

Example 7.8
A three-wire delta system is shown in Figure 719. The voltages at
node S are:
12,470/0
[VLLapc]=| 12,470/-120
12,470/120
7199.6/ - 30
[VLN apc]=[W]-[VLLasc]=| 7199.6/-150

7199.6/90
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[VLNpcl  [VR gl [VL ]

‘ U] |

S

ST N
&~

FIGURE 7.19
Circuit for Example 7.8.

4.5’ |

¢
)

FIGURE 7.20
Three-wire delta line spacings.

The three-wire delta line conductor is 336,400 26/7 ACSR with spacings
as shown in Figure 7.20.
The load is delta-connected with values of:

2500 0.90
[kVA]=| 2000 [PF]=| 0.85
1500 0.95

The line is 10,000t long, and the total phase impedance matrix is:

0.7600+ j2.6766  0.1805+ j1.1627  0.1805+ j1.3761
[Zae] =| 0.1805+j1.1627  0.7600+ j2.6766  0.1805+ j1.4777
0.1805+ j1.3761  0.1805+ ;1.4777  0.7600+ j2.6766

For this connection, the potential transformer ratio and current trans-
former ratios are selected to be:

12,470
=227 _103.92

T 120

CT:@:lOO

5
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The Mathcad program of Example 7.7 (Figure 7.14) is modified so that the
line-to-line voltages at the load are computed and used to compute the
load currents flowing in the line. In the program, the regulator taps are
initially set in the neutral position. With the regulators set in neutral on
a 120-V base, the load-center voltages are computed to be:

[VLL.pe ] =[Dv]-[VLas]

V120, 11,883.0/-2.0 114.4/-2.0
[VLLy] 1 - -
V120, |=lmed o 1) 11,0437/-1214 |=| 1149/-1214 |V
Ny 103.92
V120, 12022.1/118.0 115.7/118.0

The line currents are:

303.2/-46.9

(L] =| 336.2/176.1
236.2/57.1

Two single-phase Type B regulators are to be installed in an open delta
connection. The regulators are to be connected between phases A-B and
B-C as shown in Figure 718. The voltage level will be set at 120V with a
bandwidth of 2V. As computed earlier, the load-center voltages are not
within the desired limits of 120 £ 1V.

The compensator R and X settings for each regulator must first be
determined using the results of the power-flow study. The first regula-
tor monitors the voltage V,, and the line current I,. The equivalent line
impedance for this regulator is:

_ VRab - VLab

a

Zeq =0.3224+j2.3844 Q

a

The second regulator monitors the voltage V,, and the line current I..
In the computation of the equivalent line impedance, it is necessary to
use the c-b voltages, which are the negative of the given b—c voltages.

_ VRcb - Vch — _VRbC +VLbC =21776+ ]1 3772 Q

Zeq.
q I I

Unlike the wye-connected regulators, the compensator settings for the
two regulators will be different. The settings calibrated in volts are:

Ry, +jXon =Z,. CTr = (0.3224+j2.3844)~ 500 =1.5511+;11.4726 V
Npr 103.92

R+ jXb=2Z.- CTr = (2.1776+j1.3772)~ 500 =10.4776+ j6.6263 V
Npr 103.92
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The compensator settings will be set to:

R+ X =1.6+ 115
Rl +jXl =10.5+j6.6

With regulators installed and in the neutral position and with the same
loading, the currents and voltages in the compensator circuits are:

VR,, 12,470/0

Veomp,, = =120/0 V
O =N T 10392 /0
- 12,470/60
Vcomp,, = VR _ /60 _ 120/60 V
NPT 103.92 -

Icomp, = CI;" =3.0321/-46.9 A

Icomp. = CI’CT =2.3621/57.1 A

The compensator impedances in ohms are determined by dividing the
settings in volts by the secondary rating of the current transformer.

R+ X 16+j115

Rab + anb =
CTsecondary

=032+)23Q

R+ jX 105+ 6.6

Ry + Xy =
b CTsecondary 5

=21+j132Q

The voltages across the voltage relays in the two compensator circuits are:
Vrelay ., = Vcomp,, — (Rap + jXab)- Icomp, =114.3/-2.0 V
Vrelay o, = Vecompy, — (R + jX &) - Icomp. =114.9/58.6 V

Because the voltages are below the lower limit of 119, the control cir-
cuit will send “raise” commands to change the taps one at a time on
both regulators. For analysis purposes, the approximate number of tap
changes necessary to bring the load-center voltage into the lower limit of
the bandwidth for each regulator will be:

Tap., = M =6.2422 =6
0.75
\119— 114.9\
Tapy, =———————=543=5
Pe=""075

With the taps set at 6 and 5, a check can be made to determine whether
the voltages at the load center are now within the limits.
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With the taps adjusted, the regulator ratios are:

ag_a» =1.0-0.00625-Tap,, = 0.9625
ag_» =1.0=0.00625-Tap., = 0.9688

In order to determine the load-side regulator voltages and currents, the

matrix [A;;] (Equation 7120) is then converted to the equivalent [Aveg]
matrix where the system line-to-neutral voltages are used.

091625 0
' . 1039 0 0
Ayl = 0 0 |= :
[Av] 09688 0 10323 0
. ) -1.039  -1.0323 0
| 09625 09688 |

0.6926 —0.3486 —0.3441
[Aws | = [W][Au][D]=| -03463  0.6904 —0.3441
—0.3463 03419  0.6882

Using Equation 7.129, the current matrix [d ]1s computed to be:
1.039 0 0
[des]=| -1.039 0 -1.0323
0 0 1.0323

With the taps set at +6 and +5, the output line-to-neutral voltages from
the regulators are:

7480.1/-29.8
[VRe | = [Areg]'[VLNABC] =| 74559/-150.1 |V
7431.9/90.2
The line-to-line voltages are:
12,955.8/0
[VRLL,y|=[D]-[VRwe|=| 12,872.3/-120 |V
12,914.3/120
The source output currents are:
302.9/-46.7

[Tac] =| 335.4/176.1 |A
234.757.3

239
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The output currents from the regulators are:

291.6/-46.7
(L] = [Dug |- [Iasc] =| 3235/1763 |A
227.4/57.3

There are two ways to test whether the voltages at the load center are
within the limits. The first method is to compute the relay voltages in the
compensator circuits. The procedure is the same as was done initially to
determine the load-center voltages. First, the voltages and currents in the
compensator circuits are computed:

VR, 12,955.8/0

Veomp,y = VRib _ —1247/0V
OmPa =N T 10392 L
VR, 12,872.3/60
Veomp, = — ke = L9 1231760 V
OmPe = 103.92 /60

I 291.6/—467
Tcomp, = L2 2 2102307 5 510, 550 A
ompa =t 100 /=580
227.4/573
fcomp, = e 224573 o 50573 A
CT 100 12202

The voltages across the voltage relays are computed to be:
Vrelay ., = Vcomp,, — (Rap + jXap) - Icomp, =119.2/-19 V
Vrelay o, = Vcompa, — (R + jX o) - Icomp. =119.0/58.7 V

Because both voltages are within the bandwidth, no further tap chang-
ing will be necessary.

The actual voltages at the load center can be computed using the out-
put voltages and currents from the regulator and then by computing the
voltage drop to the load center.

With reference to Figure 719, the equivalent line-to-neutral and actual
line-to-line voltages at the load are:

7180.1/-29.8
[VLupe | = [VRue |~ [ Zase | [T | =|  7455.9/-150.1
7431.9/90.2

12,392.4/-1.9
[VLLye]=[Dv |-[VLae|=| 12,366.5/-121.3
12,481.8/118.5

Dividing the load-center line-to-line voltages by the potential trans-
former ratio gives the load line-to-line voltages on the 120-V base as:
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V120,,=119.35/-1.9
V120, =119.0/-121.3 V

V120, =120.1/118.5

Note how the actual load voltages on the 120-V base match very closely
with the values computed across the compensator relays. It is also noted
that, in this case, the third line-to-line voltage is also within the band-
width. That will not always be the case.

This example is very long but has been included to demonstrate how
the compensator circuit is set and then how it will adjust taps so that the
voltages at a remote load-center node will be held within the set limits.
In actual practice, the only responsibilities of the engineer will be to cor-
rectly determine the R and X settings of the compensator circuit and to
determine the desired voltage level and bandwidth.

The open delta regulator connection using phases A-B and C-B has
been presented. There are two other possible open delta connections
using phase B-C and A-C and then C-A and B-A. Generalized matrices
for these additional two connections can be developed using the proce-
dures presented in this section.

7.5 Summary

It has been shown that all possible connections for Type B step-voltage regulators
can be modeled using the generalized matrices. The derivations in this chap-
ter were limited to three-phase connections. If a single-phase regulator is con-
nected line-to-neutral or two regulators connected in open wye, then the [a]and
[d] matrices will be of the same form as that of the wye-connected regulators,
and only the terms in the rows and columns associated with the missing phases
would be zero. The same can be said for a single-phase regulator connected line-
to-line. Again, the rows and columns associated with the missing phases would
be set to zero in the matrices developed for the open delta connection.

The generalized matrices developed in this chapter are of exactly the same
form as those developed for the three-phase line segments. In the next chapter,
the generalized matrices for all three-phase transformers will be developed.

Problems

7.1 A single-phase transformer is rated 100kVA, 2400240 V. The impedances
and shunt admittance of the transformer are:

Z,=0.65 +j0.95 Q (high-voltage winding impedance)
Z,=0.0052 +j0.0078 Q (low-voltage winding impedance)
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Y, =2.5610-* - j11.3710-* S (referred to the high-voltage winding)

7.2 The single-phase transformer of Problem 7.1 is to be connected as a step-

a. Determine the g, b, ¢, d constants and the A and B constants.

b. The transformer is serving an 80kW, 0.85 lagging power factor
load at 230 V. Determine the primary voltage, current, and com-
plex power.

c. Determine the per-unit transformer impedance and shunt
admittance based upon the transformer ratings.

down autotransformer to transform the voltage from 2400V down to 2160 V.

a.

b.

Q. n

7.3 A “Type B” step-voltage regulator is installed to regulate the voltage on
00-V single-phase lateral. The potential transformer and current trans-

a72

Draw the connection diagram including the series impedance and
shunt admittance.

Determine the autotransformer kVA rating.
. Determine the g, b, ¢, d, A, and B generalized constants.

. The autotransformer is serving a load of 80kVA, 0.95 lagging power
factor at a voltage of 2000V. Including the impedance and shunt
admittance, determine the input voltage, current, and complex
power.

. Determine the per-unit impedance and shunt admittance based
upon the autotransformer rating. How do these values compare to
the per-unit values of Problem 7.1?

former ratios connected to the compensator circuit are:

Potential transformer: 7200-120V
Current transformer: 500:5 A

The

The regulator tap is set on the +10 position when the voltage and current on

R and X settings in the compensator circuit are: R=5V and X =10V

the source side of the regulator are:

V.

=7200V and [

source — source

factor.

= 375 at a power factor of 0.866 lagging power

a. Determine the voltage at the load center.

b. Determine the equivalent line impedance between the regulator
and the load center.

c. Assuming that the voltage level on the regulator has been set
at 120V with a bandwidth of 2V, what tap will the regulator
move to?
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7.4 Refer to Figure 711. The substation transformer is rated 24 MVA, 230kV
delta -13.8kV wye. Three single-phase Type B regulators are connected in
wye. The equivalent line impedance between the regulators and the load-

center node is:

Z,.=0.264 + j0.58 Q/mile
The distance to the load-center node is 10,000 ft.

a.
b.

e.

7.5 Three Type B step-voltage regulators are connected in wye and located on
the secondary bus of a 12.47kV substation. The feeder is serving an unbal-
anced load. A power-flow study has been run, and the voltages at the substa-

Determine the appropriate PT and CT ratios.

Determine the R” and X’ settings in ohms and volts for the com-
pensator circuit.

The substation is serving a balanced three-phase load of 16 MVA,
09 lagging power factor when the output line-to-line voltages
of the substation are balanced 13.8kV and the regulators are set
in the neutral position. Assume the voltage level is set at 121V
and a bandwidth of 2V. Determine the final tap position for each
regulator (they will be the same). The regulators have 32-5/8%
taps (16 raise and 16 lower).

What would be the regulator tap settings for a load of 24 MVA,
0.9 lagging power factor, with the output voltages of the substa-
tion transformer balanced three-phase 13.8kV?

What would be the load-center voltages for the load of part d above?

tion and the load-center node are:

7200/0
[Vsuby ] =| 7200/-120 |V
7200/120

6890.6 / ~1.49
[VLC.oc]=| 6825.9/-122.90 |V
6990.5/117.05

The currents at the substation are:

362.8/-27.3
[Lec] =| 395.4/-1547 |A
329.0/98.9
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The regulator potential transformer ratio is 7200-120 and the current trans-
former ratio is 500:5. The voltage level of the regulators is set at 121 V and the
bandwidth at 2V.

a. Determine the equivalent line impedance per phase between the
regulator and the load center.

b. The compensators on each regulator are to be set with the same R
and X values. Specify these values in volts and in ohms.

7.6 The impedance compensator settings for the three step-regulators of
Problem 7.5 have been set as:

R'=30V X'=93V
The voltages and currents at the substation bus are:

7200/0
[Vsubue] = | 7200/-120 |V
7200/120

320.6/—-27.4
[Ie] =| 409.0/-155.1 |A
331.5/98.2

Determine the final tap settings for each regulator.
7.7 For a different load condition for the system of Problem 7.5, the taps on the
regulators have been automatically set by the compensator circuit to:

Tap,=+8 Tap,=+11 Tap.=+6
The load reduces so that the voltages and currents at the substation bus are:

7200/0
[Vsuby]=| 7200/-120 |V
7200/120

177.1/-28.5
[Loc] =| 213.4/-1564 |A
146.8/98.3
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Determine the new final tap settings for each regulator.

7.8 The load-center node for the regulators described in Problem 7.5 is located
1.5 miles from the substation. There are no lateral taps between the substa-

tion and the load center. The phase impedance matrix of the line segment
(Problem 4.1) is:

0.3375+;1.0478  0.1535+ j0.3849  0.1559+ ;0.5017
[Zae] =| 0.1535+70.3849 0.3414+ j1.0348 0.1580+ j0.4236 | <Q/mile
0.1559+;0.5017 0.1580+ j0.4236  0.3465+ j1.0179

A wye-connected, unbalanced constant impedance load is located at the
load-center node. The load impedances are:

ZL, =19+ j11IWQ, ZL, = 22+ j12WQ, ZL. =18+ j10WQ

The voltages at the substation are balanced three-phase of 7200V line-to-
neutral. The regulators are set on neutral.

a. Determine the line-to-neutral voltages at the load center.
b. Determine the R and X settings in volts for the compensator.

c. Determine the required tap settings in order to hold the load-center
voltages within the desired limits.

79 The R and X settings for the line in Problem 7.8 have been set to 2.3 +;7.4 V.
For this problem, the loads are wye-connected and modeled such that the
per-phase load kVA and Power Factor (constant PQ loads) are:

1200 0.90
[kVA] =| 1600 [PF]=| 0.85
1000 0.95

Determine:

a. The final regulator tap positions.
b. The compensator relay voltages.

c. The load line-to-neutral voltages on a 120-V base.

7.10 The phase impedance matrix for a three-wire line segment is:

0.4013+;1.4133  0.0953+;0.8515  0.0953+ j0.7802
[Zanc] =| 0.0953+;0.8515 0.4013+;1.4133  0.0953+ ;0.7266 | Q/mile
0.0953+;0.7802  0.0953+;0.7266  0.4013+ j1.4133
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The line is serving an unbalanced load so that at the substation transformer
line-to-line voltages and output currents are:

12,470/0
[VLLy]=| 12,470/-120 |V
12,470/120

307.9/-54.6
[Loc] =| 290.6/178.6 |A
268.2/65.3

Two Type B step-voltage regulators are connected in open delta at the sub-
station using phases A-B and C-B. The potential transformer ratios are
12,470/120, and the current transformer ratios are 500:5. The voltage level is
set at 121 V with a 2-V bandwidth.

a. Determine the line-to-line voltages at the load center.

b. Determine the R and X compensator settings in volts. For the open-
delta connection, the R and X settings will be different on each
regulator.

c. Determine the final tap positions of the two voltage regulators.

7.11 The regulators in Problem 7.10 have gone to the +9 tap on both regula-
tors for a particular load. The load is reduced so that the currents leaving the
substation transformer with the regulators in the +9 position are:

144.3/-53.5

[Is]=| 1363/179.6 |A
125.7/66.3

Determine the final tap settings on each regulator for this new load
condition.

7.12 Use the system of Example 7.8 with the delta-connected loads changed to:

1800 0.90
[kVA] =| 1500 [PF]=| 095
2000 0.92
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The source voltages, potential transformer, and current transformer ratings
are those in the example. The desired voltage level is set at 122 V with a band-
width of 2'V. For this load condition:

a. Use the R and X compensator values from Example 7.8.
b. Determine the required tap positions.
c. Determine the final relay voltages.

d. Determine the final load line-to-line load voltages and the line
currents.

WindMil Assignment

Use System 3 and add a step-voltage regulator connected between the source
and the three-phase OH line. Call this “System 4.” The regulator is to be
set with a specified voltage level of 122V at Node 2. The potential trans-
former ratio is 7200-120, and the CT ratio is 200:5. Call the regulator Reg-1.
Follow these steps in the User’s Manual on how to install the three-phase
wye-connected regulators.

1. Follow the steps outlined in the User’s Manual to have WindMil
determine the R and X settings to hold the specified voltage level at
Node 2.

2. Run “Voltage Drop.” Check the node voltages and in particular the
voltage at Node 2.

3. What taps did the regulators go to?

4. In Example 7.7, a method to hand calculate the compensator R and X

setting was demonstrated. Follow that procedure to compute the R
and X settings, and compare it to the WindMil settings.
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8

Three-Phase Transformer Models

Three-phase transformer banks are found in the distribution substation,
where the voltage is transformed from the transmission or subtransmission
level to the distribution feeder level. In most cases, the substation transformer
will be a three-phase unit, perhaps with high-voltage no-load taps and, per-
haps, low-voltage load tap changing (LTC). For a four-wire wye feeder, the
most common substation transformer connection is the delta-grounded
wye. A three-wire delta feeder will typically have a delta—delta transformer
connection in the substation. Three-phase transformer banks downstream
from the substation will provide the final voltage transformation to the cus-
tomer’s load. A variety of transformer connections can be applied. The load
can be pure three-phase or a combination of single-phase lighting load and a
three-phase load such as an induction motor. In the analysis of a distribution
feeder, it is important that the various three-phase transformer connections
be modeled correctly.

Unique models of three-phase transformer banks applicable to radial dis-
tribution feeders will be developed in this chapter. Models for the following
three-phase connections are included:

¢ Delta—grounded wye

e Ungrounded wye—delta

¢ Grounded wye—delta

* Open wye-open delta

¢ Grounded wye—grounded wye
¢ Delta—delta

* Open delta—open delta

8.1 Introduction

Figure 8.1 defines the various voltages and currents for all three-phase trans-
former banks connected between the source-side node n and the load-side
node m.

249
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Node n Iy 1, Node m
e - —e H, X, &— . o
VAN IB VAB Vab I A Vam

. ST ® H, X, ® » " o

Vn Ic Ve N ca V. L Vim
*—>——— 1@ H, X o+ — > o
+ +
VCN IN In ch

e ® H, X, ® —e
Source side Load side
FIGURE 8.1

General three-phase transformer bank.

In Figure 8.1, the models can represent a step-down (source side to load
side) or a step-up (source side to load side) transformer bank. The notation
is such that the capital letters A, B, C, and N will always refer to the source
side (node 1) of the bank, and the lower case letters 4, b, ¢, and n will always
refer to the load side (node m) of the bank. It is assumed that all variations of
the wye—delta connections are connected in the “American Standard Thirty
Degree” connection. The described phase notation and the standard phase
shifts for positive sequence voltages and currents are:

Step-down connection

VAB leads ‘/.ab by 30° (81)
I, leads I, by 30° 8.2
Step-up connection
Vb leads V5 by 30° (8.3)
I, leads I, by 30° 84

8.2 Generalized Matrices

The models to be used in power-flow and short-circuit studies are general-
ized for the connections in the same form as have been developed for line
segments (Chapter 6) and voltage regulators (Chapter 7). In the “forward
sweep” of the “ladder” iterative technique described in Chapter 10, the volt-
ages at node m are defined as a function of the voltages at node n and the
currents at node m. The required equation is:

[VEN ] =[A ] VN s ]-[B.]- [T ] 8.5)



Three-Phase Transformer Models 251

In the “backward sweep” of the ladder technique, the matrix equations for
computing the voltages and currents at node 7 as a function of the voltages
and currents at node m are given by:

[VLN asc |=[a ] [VENape | +[ B¢ ][ Lave | (8.6)
[Lasc |=[ce]-[VEN e [+ [de ] [ Lve ] 87)

In Equations 8.5, 8.6, and 8.7, the matrices [VLN 45| and [VLN,,, | represent
the line-to-neutral voltages for an ungrounded wye connection or the line-
to-ground voltages for a grounded wye connection. For a delta connection,
the voltage matrices represent “equivalent” line-to-neutral voltages. The cur-
rent matrices represent the line currents regardless of the transformer wind-
ing connection.

In the modified ladder technique, Equation 8.5 is used to compute new
node voltages downstream from the source using the most recent line
currents. In the backward sweep, only Equation 8.7 is used to compute
the source-side line currents using the newly computed load-side line
currents.

8.3 The Delta—Grounded Wye Step-Down Connection

The delta—grounded wye step-down connection is a popular connection that
is typically used in a distribution substation serving a four-wire wye feeder
system. Another application of the connection is to provide service to a load
that is primarily single-phase. Because of the wye connection, three single-
phase circuits are available, thereby making it possible to balance the single-
phase loading on the transformer bank.

Three single-phase transformers can be connected delta—grounded wye in
a “standard 30° step-down connection” (as shown in Figure 8.2).

8.3.1 Voltages

The positive sequence phasor diagrams of the voltages (Figure 8.2) show the
relationships between the various positive sequence voltages. Note that the
primary line-to-line voltage from A to B leads the secondary line-to-line volt-
age from a to b by 30° Care must be taken to observe the polarity marks
on the individual transformer windings. In order to simplify the notation,
it is necessary to label the “ideal” voltages with voltage polarity markings
as shown in Figure 8.2. Observing the polarity markings of the transformer
windings, the voltage Vt, will be 180° out of phase with the voltage V4 and the
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FIGURE 8.2
Standard delta—grounded wye connection with voltages.

voltage Vt, will be 180° out of phase with the voltage V5. Kirchhoff’s Voltage
Law at no-load gives the line-to-line voltage between phases a and b as:

V., =Vt, -Vt 8.8

The phasors of the positive sequence voltages in Equation 8.8 are shown in
Figure 8.2.

The magnitude changes between the voltages can be defined in terms of
the actual winding turns ratio (1,). With reference to Figure 8.2, these ratios
are defined as follows:

_ kVLL rated primary
kVLN rated secondary

89)

n;

With reference to Figure 8.2, the line-to-line voltages on the primary side of
the transformer connection as a function of the ideal secondary-side voltages
are given by:

VA B 0 -1 0 Vta
Ve |=ne-| 0 0 -1 || Vt [VLLpc |=[AV]- [Vtape] (8.10)
Vea -1 0 0 Vt.
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where
0 -1 0
[AV]=n, 0 0 -1
-1 0 0

Equation 8.10 gives the primary line-to-line voltages at node 7 as a function
of the ideal secondary voltages. However, what is needed is a relationship
between “equivalent” line-to-neutral voltages at node n and the ideal sec-
ondary voltages. The question is how the equivalent line-to-neutral voltages
are determined knowing the line-to-line voltages. One approach is to apply
the theory of symmetrical components.

The known line-to-line voltages are transformed to their sequence
voltages by:

[VLL 012] =[A, ]71 -[VLLAsc ] (8.11)
where
1 1 1
(Al 1 & a (812)

a,=1.0/120

By definition, the zero sequence line-to-line voltage is always zero. The rela-
tionship between the positive and negative sequence line-to-neutral and line-
to-line voltages is known. These relationships in matrix form are given by:

VLN, 1 0 0 VLL,
VIN, |=| 0 & 0 |-| VLL | [VLNu]=[T][VLLe:] (813)
VLN, 0 0 ¢ VLL,
where
1
t=—/30
\/5/7

Because the zero sequence line-to-line voltage is zero, the (1,1) term of the
matrix [T] can be of any value. For the purposes here, the (1,1) term is chosen
to have a value of 1.0. Knowing the sequence line-to-neutral voltages, the
equivalent line-to-neutral voltages can be determined.
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The equivalent line-to-neutral voltages as a function of the sequence line-
to-neutral voltages are:

[VLNABc‘] = [As] . [VLNOlz] (814)
Substitute Equation 8.13 into Equation 8.14:

[VLN asc |=[A][T]- [VLLou] (8.15)

Substitute Equation 8.11 into Equation 8.15:

[VLN apc |=[W]- [VLLABC] (8.16)
where
1 2 1 0
W]=[A]-[T]-[A]" =31 0 2 1 (8.17)
1 0 2

Equation 8.17 provides a method of computing equivalent line-to-neutral
voltages from a knowledge of the line-to-line voltages. This is an important
relationship that will be used in a variety of ways as other three-phase trans-
former connections are studied.

To continue on, Equation 8.16 can be substituted into Equation 8.10:

[VLN asc | = [W] [VLL] = [W] [AV] [Vene ] =[a ] [Vewe]  ©18)

where
R
[at]=[W]~[AV]=7f~ 1 0 2 (8.19)
2 1 0

Equation 8.19 defines the generalized [a; | matrix for the delta—grounded wye
step-down connection.

The ideal secondary voltages as a function of the secondary line-to-ground
voltages and the secondary line currents are:

[Vtabc ] = [VLGabc ] + [Ztabc ] : [Iabc ] (820)
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where
Zt, 0 0
[ZtabC ] = 0 Zty 0 (8.21)
0 0 Zt,

Notice in Equation 8.21 that there is no restriction that the impedances of the
three transformers be equal.
Substitute Equation 8.20 into Equation 8.18:

[VEN asc ] = [a]-([VLGape |+ [ Ztave ][ Luve ])

8.22)
[VLN asc]=[a ] [VLGabe ]+ [t ][ Labe ]
where
0 2.zt, Zt.
[b]=[a] [Zts]="20|  Zt, 0 2zt (8.23)

3
2-Zt, Zt, 0

The generalized matrices [2,] and [b,] have now been defined. The derivation
of the generalized matrices [A] and [B/] begins with solving Equation 8.10 for
the ideal secondary voltages:

[Vt |=[AV]" - [VLLsc | (8.24)

The line-to-line voltages as a function of the equivalent line-to-neutral volt-
ages are:

[VLLAgc] Z[DV]'[VLNAgc] (825)
where
1 -1 0
[Dvl]=l 0 1 -1 (8.26)
-1 0 1

Substitute Equation 8.25 into Equation 8.24:

[Vt |=[AV] " -[DV]-[VLN apc]=[Ac]-[VLN asc ] (8.27)
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where

) 1 1 0 -1
[AJ=[av™[Dv]=—| 21 1 0 (8.29)
"lo 1 1
Substitute Equation 8.20 into Equation 8.27:
[VLG e | +[ Ztabe | [ Lave | = [A¢ ] [ VLN apc | (8.29)
Rearrange Equation 8.29:
[VLGabc] = [At]'[VLNABC]_[Bt]'[Iabc] (830)
where
Zt, 0 0
[B] = [Ztan] = 0 Zty 0 (8.31)
0 0 Zt,

Equation 8.22 is referred to as the “backward sweep voltage equation,”
and Equations 8.30 is referred to as the “forward sweep voltage equation.”
Equations 8.22 and 8.30 apply only for the step-down delta—grounded
wye transformer. Note that these equations are exactly in the same form
as those derived in earlier chapters for line segments and step-voltage
regulators.

8.3.2 Currents

The 30° connection specifies that the positive sequence current entering the
H, terminal will lead the positive sequence current leaving the X, terminal
by 30°. Figure 8.3 shows the same connection as Figure 8.2 but with the cur-
rents instead of the voltages displayed.

As with the voltages, the polarity marks on the transformer windings
must be observed for the currents. For example, in Figure 8.3 the current
I, is entering the polarity mark on the low-voltage winding; so the current
I, flowing out of the polarity mark on the high-voltage winding will be in
phase with I,. This relationship is shown in the phasor diagrams for positive
sequence currents in Figure 8.3. Note that the primary line current on phase
A leads the secondary phase a current by 30°.
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FIGURE 8.3
Delta—grounded wye connection with currents.

The line currents can be determined as a function of the delta currents by
applying Kirchhoff’s Current Law (KCL):

I, 1 -1 0 Iac
Iy |= 0 1 1 || Isa (8.32)
I -1 0 1 Icg

In condensed form, Equation 8.32 is:

[Zasc|=[D]-[IDasc] (8.33)
where
1 -1 0
D= 0 1 -1
1 0 1

The matrix equation relating the delta primary currents to the secondary
line currents is given by:

Iac (1 0o I,
Iga |=— 0 1 0 || I (8.34)
I | ™ML 0 0 1 1.

[IDapc | =[AI][Lapc ] (8.35)
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where
1 1 0 0
[AI]= - 0 1 0
10 0 1

Substitute Equation 8.35 into Equation 8.33:

[Lasc|=[D]-[AI] [Lec ] =[c: ] [VLGape | +[d: |- [ Lve ] (8.36)
where
LT oo
[d]=[D]-[AI]=—] 0 1 -1 (8.37)
N S T R
0 0 0
[c]=] 0 0 0O (8.38)
0 0 0

Equation 8.36 (referred to as the “backward sweep current equations”) pro-
vides a direct method of computing the phase line currents at node n by
knowing the phase line currents at node m. Again, this equation is in the
same form as that previously derived for three-phase line segments and
three-phase step-voltage regulators.

The equations derived in this section are for the step-down connection.
The next section (8.4) will summarize the matrices for the delta—grounded
wye step-up connection.

Example 8.1

In the example system in Figure 8.4, an unbalanced constant impedance
load is being served at the end of a 10,000-ft section of a three-phase
line. The 10,000 ft long line is being fed from a substation transformer
rated 5000kVA, 115kV delta—12.47kV grounded wye with a per-unit

2 3

1
@_H g | 10,000 ft |
A \q?
FIGURE 8.4

Example system.
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impedance of 0.085/85. The phase conductors of the line are 336,400 26/7
Aluminum Conductor Steel Reinforced (ACSR) with a neutral conductor
4/0 ACSR. The configuration and computation of the phase impedance
matrix are given in Example 4.1. From that example, the phase imped-
ance matrix was computed to be:

0.4576+;1.0780  0.1560+;0.5017  0.1535+ j0.3849
[zime] =| 0.1560+70.5017  0.4666+;1.0482  0.1580+ j0.4236 |Q/mile
0.1535+;0.3849  0.1580+;0.4236  0.4615+ ;1.0651

L= 10,000
5280

mile

0.8667+j2.0417  0.2955+ j0.9502  0.2907+ j0.7290
[Zlinepe | =L-[Zime]=| 0.2955+;0.9502  0.8837+;1.9852  0.2992+ j0.8023
0.2907+j0.7290  0.2992+j0.8023  0.8741+ j2.0172

The general matrices for the line are:

1 0 0 1 0 0
[Aie]=| 0 1 0 [Bine|=[Zlinew.] [dine]=| 0 1 0
0 0 1 0 0 1

The transformer impedance needs to be converted to ohms referenced to
the low-voltage side of the transformer. The base impedance is:

2 .
iy = 12.477-1000 _ 311
5000
The transformer impedance referenced to the low-voltage side is:

Zt =(0.085/85)-31.3=0.2304 + j2.6335 Q

The transformer phase impedance matrix is:

0.2304+ j2.6335 0 0
[Ztane ] = 0 0.2304 + j2.6335 0 Q
0 0 0.2304+ j2.6335

The unbalanced constant impedance load is connected in grounded
wye. The load impedance matrix is specified to be:

12+j6 0 0
Zloady]=| 0  13+j4 0 |Q
0 0  14+j5

259
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The unbalanced line-to-line voltages at node 1 serving the substation
transformer are given as:

115,000/0
[VLLisc]=| 116,500/-1155 |V
123,538/121.7

a. Determine the generalized matrices for the transformer:
The “transformer turn’s” ratio is:

_ KVLLyg, 115

n, = kVLNIOW = W =15.9732
J3
From Equation 8.19:
“n 0 2 1 0 -10.6488  -5.3244
[a] = Tt 11 0 2 [=| -53244 0 -10.6488
2 1 0 -10.6488  —-5.3244 0
From Equation 8.23:
_n 0 2-Zt Zt
[b]= 3’ |zt 0 2.7t
2.7t Zt 0
0 —2.4535—j28.0432  -1.2267 - j14.0216
[b,] =| -1.2267-;14.0216 0 —2.4535— j28.0432
—2.4535—j28.0432  -1.2267 — j14.0216 0
From Equation 8.37:
1 1 -1 0 0.0626  —0.0626 0
[d]=—-] 0 1 -1 |= 0 0.0626  —0.0626
L I ~0.0626 0 0.0626
From Equation 8.28:
1 1 0 -1 0.0626 0 -0.0626
[A] :I‘T -1 1 0 [=]| -0.0626 0.0626 0
t

o -1 1 0 -0.0626  0.0626
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From Equation 8.31:

0.2304+ j2.6335 0 0
[B,]=[Ztw. ] = 0 0.2304+ j2.6335 0
0 0 0.2304 + j2.6335

b. Given the line-to-line voltages at node 1, determine the “ideal”
transformer voltages:

From Equation 8.13:
0o -1 0 0 -15.9732 0
[AV]=n.-| 0 0 -1 |= 0 0 -15.9732
-1 0 0 -15.9732 0 0
7734.1/-58.3
[Vtane | = [AV]_1 [VLLpc | = 7199.6/180 \%
7293.5/64.5

c. Determine the load currents.

Since the load is modeled as constant impedances, the sys-
tem is linear and the analysis can combine all of the impedances
(transformer, line, and load) to an equivalent impedance matrix.
Kirchhoff’s Voltage Law (KVL) gives:

[Vtabc ] = ([Ztabc ] + [Zlineabc ] + [Zloadabc ]) : [Iabc ] = [Zeqabc ] : [Iabc]

13.0971+ j10.6751  0.2955+ j0.9502 0.2907 + j.7290
[Zequsc]=| 0.2955+ j0.9502 14.1141+ j8.6187  0.2992+j0.8023 |Q
0.2907 + j.7290 0.2992+j0.8023  15.1045+ j9.6507

The line currents can now be computed as:

471.7/-95.1
[Lic]=[Zeque | - [Vtwe]=| 456.7/149.9 |A
427.3/33.5

d. Determine the line-to-ground voltages at the load in volts and
on a 120-V base.

6328.1/-68.6
[Vioad,s | =[Zload,. | [Iwc]=| 62122/167.0 |V
6352.6/53.1
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The load voltages on a 120-V base are:

105.5/-68.6
[V]Oadlzo] = 103.5/167.0
105.9/53.1

The line-to-ground voltages at node 2 are:

6965.4/ -66.0
[VLG.pe | =[aiine |- [VIoadape |+ [Biine |- [Lpnc | =|  6580.6/171.4 |V
6691.4/56.7

e. Using the backward sweep voltage equation, determine the
equivalent line-to-neutral voltages and the line-to-line voltages

at node 1.
69.443/-30.3
[VEN asc | =[a | [VLGape | +[be ][ L | =| 65,263/ -147.5 |V
70,272/94.0
115,000/0

[VLLAgc]Z [DV]'[VLNAgc] = 116,500—1155 A\
123.538/121.7

It is always comforting to be able to work back and compute
what was initially given. In this case, the line-to-line voltages
at node 1 have been computed, and the same values result that
were given at the start of the problem.

f. Use the forward sweep voltage equation to verify that the line-
to-ground voltages at node 2 can be computed knowing the
equivalent line-to-neutral voltages at node 1 and the currents
leaving node 2.

6965.4/ —66.0
VLG |=[ At | VLN asc ] - [B:].[Tnc] = |  6580.6/1714 |V
6691.4/56.7

These are the same values of the line-to-ground voltages at node
2 that were determined working from the load toward the source.

Example 8.1 has demonstrated the application of the forward and back-
ward sweep equations. The example also provides verification that the same
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voltages and currents result working from the load toward the source or
from the source toward the load.

In Example 8.2, the system in Example 8.1 is used only when the source
voltages at node 1 are specified and the three-phase load is specified as con-
stant PQ. Because this makes the system nonlinear, the ladder iterative tech-
nique must be used to solve for the system voltages and currents.

Example 8.2

Use the system in Example 8.1. The source voltages at node 1 are:

115,000/0
[ELLAgc] = 115, 000/— 120
115,000/120
The wye-connected loads are:
1700 0.90
[kVA] =| 1200 [PF]=| 0.85
1500 0.95

The complex powers of the loads are computed to be:

1530 + j741.0
SL; = kVA; &) =| 1020+ j632.1 |kW + jkvar
1425+ j468.4

The ladder iterative technique must be used to analyze the system.
A simple Mathcad program is initialized with:

0
12,470
start | = ol =U. = = .
L] =| 0 | Tol=0.000001 VM =-% 7199.5579
0 V3

The Mathcad program is shown in Figure 8.5.

Note in this routine that in the forward sweep, the secondary trans-
former voltages are first computed and then those are used to compute
the voltages at the loads. At the end of the routine, the newly calculated
line currents are taken back to the top of the routine and used to com-
pute the new voltages. This continues until the error in the difference
between the two most recently calculated load voltages is less than the
tolerance. As a last step, after conversion, the primary currents of the
transformer are computed.
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0 KVLLg,. -1000
Start:=| 0| Tol:=.000001 VM:i= ————— VM = 7199.5579

0 V3

XL= |I. < Start
lload,,, <« Start
Vg < Start
ELNpc < W-ELLpc
for n € 1..200
V2LN,p. < A-ELNppc — BT
V3LN,pe <= Ajine ' V2LNpe = Bype-Tload,p,
for j €1.3
SL;-1000

Iloadabcj <« m
)

for k €1..3

V3LNabck - Voldl<

Error <«
VM

Error,,, < max(Error)

break if Error,,, < Tol

max

Voia < V3LNgp

Lipe < dline'Hoadabc

Iapc < di-Tape
Out; <= V3LN,,.
Out, <= V2LN,.
Outy < L.

Outy < Izpc

Out; < n

Out

FIGURE 8.5
Example 8.2 Mathcad program.

After nine iterations, the load voltages and currents are:

6490.1/ - 66.7
[VLNpua ] =| 6772.4/176.2
6699.4/53.9
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261.9/-92.5
[Lnc] =| 177.2/1444
223.9/35.7
The primary currents are:
24.3/-70.0
[IAgc] = 205/—1752
27.4/63.8

The magnitude of the load voltages on a 120-V base are:

108.2/-66.6
[Vloadlzo] = 1129/1762
111.7/53.9

Needless to say, these voltages are not acceptable. In order to correct this
problem, three step-voltage regulators can be installed at the secondary
terminals of the substation transformer as shown in Figure 8.6. The volt-
age level set on the regulator is 120 V with a bandwidth of 2'V.

Using the method as outlined in Chapter 7, the initial steps for the
three regulators are:

T ‘119—‘V]Oﬂd120[ H 14.44
apj=— _——— =| 817
P 0.75 0.7
14
Round off tap: Tap =| 8
10

With these tap positions, the load voltages are:

119.8/-66.2
Vloadlz(] = 1189/1763 Vv
119.7/54.1

2 3

1 R
®_|—§ | 10,000 ft |
g | §Z I
A \q
FIGURE 8.6

Voltage regulators installed.

265
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Because the phase b voltage is low, the phase b tap is changed to 9.

14
(Tap] =| 9
10
The regulator turns ratios are:
0.9125
aR; =1-.00625-Tap; =| 0.9438
0.9375
The regulator matrices are:
1 0 0
aR1
1 1.0959 0 0
[An J=[dus ]=| 0 & 0 s 0 1.0596 0
a . 0 0 1.0667
0 I
L aR3 B
0 0 O
[(Bes]=| 0 0 o0
0 0 0

At the start of the Mathcad routine, the following equation is added:

I,e < Start
In the Mathcad routine, the first three equations inside the # loop are:
VRupe <= A¢ - ELN gpc =By - g
V2LNpe <= Areg - VRape = Breg - Labe
V3LNape <= Ajine  V2LNape — Biine - Lanc
At the end of the loop, the following equations are added:
I < dreg abe

IABC edt 'Ireg

With the three regulators installed, the load voltages on a 120-V base are:

119.8/-66.2
[Vioad,]=| 119.7/1763 |V
119.7/54.1
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As can be seen from this example, as more elements of a system are added, there
will be one equation for each of the system elements for the forward sweep and
backward sweeps. This concept will be further developed in later chapters.

8.4 The Delta—Grounded Wye Step-Up Connection

Figure 8.7 shows the connection diagram for the delta—grounded wye step-
up connection.

The no-load phasor diagrams for the voltages and currents are also shown
in Figure 8.7. Note that the high-side (primary) line-to-line voltage from A to
B lags the low-side (secondary) line-to-line voltage from a to b by 30° and the
same can be said for the high- and low-side line currents.

The development of the generalized matrices follows the same procedure
as was used for the step-down connection. Only two matrices differ between
the two connections.

The primary (low-side) line-to-line voltages are given by:

Vs 1 0 0 Vt,
Viec |=m-| 0 1 0 || Vtp |[VLLapc]|=[AV]-[Vts.] (839
Vea 0 0 1 Vt.
where
1 0 0
[AV]=n 0 1 O
0 0 1
n, = k VLLra ted primary

kVLN rated secondary

The primary delta currents are given by:

I 1 0 0 I,
1
Ipc = I’T : 0 1 0 I, [IDABC] = [AI][IabC] (840)
Ica ! 0 0 1 1.
where
1 1 0
[AT]=—-| 0 1 0
I
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FIGURE 8.7
Delta—grounded wye step-up connection.

The primary line currents are given by:

Ia 1 0 -1 Iap
I |=| -1 1 0 || Isc | [Lasc]=[Di]-[IDasc]  (841)
Ie 0 -1 1 Iea
where
1 0 -1
[Dil=| -1 1 0
0 -1 1

The forward sweep matrices are:
Applying Equation 8.28:

[At]=AV‘1-Di=i- 0 1 -1 (842
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Applying Equation 8.31:
Zt, 0 0
[B] = [Ztu] = 0 Zt, 0 (8.43)
0 0 Zt
The backward sweep matrices are:
Applying Equation 8.19:
n 2 1 0
la]=[W]-[AV]="--] 0 2 1 (8.44)
3
1 0
Applying Equation 8.23:
2-Zt, Zty, 0
[b]=la] [Ztw]="7 | 0 228 2t (845)
Zt, 0 2-Zt.
Applying Equation 8.37:
1 1 0 -1
d] =[Di] - [All=—--] 0 1 -1 (8.46)
‘ -1 0 1
I

8.5 The Ungrounded Wye-Delta Step-Down Connection

Three single-phase transformers can be connected in a wye—delta connec-
tion. The neutral of the wye can be grounded or ungrounded. The grounded
wye connection is characterized by the following:

¢ The grounded wye provides a path for zero sequence currents
for line-to-ground faults upstream from the transformer bank.
This causes the transformers to be susceptible to burnouts on the
upstream faults.

e If one phase of the primary circuit is opened, the transformer bank
will continue to provide three-phase service by operating as an open
wye-open delta bank. However, the two remaining transformers
may be subject to an overload condition leading to burnout.
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The most common connection is the ungrounded wye—delta. This connec-
tion is typically used to provide service to a combination of single-phase
“lighting” load and a three-phase “power” load such as an induction motor.
The generalized constants for the ungrounded wye—delta transformer con-
nection will be developed following the same procedure as was used for the
delta—grounded wye.

Three single-phase transformers can be connected in an ungrounded wye
“standard 30° step-down connection” as shown in Figure 8.8.

The voltage phasor diagrams in Figure 8.7 illustrate that the high-side
positive sequence line-to-line voltage leads the low-side positive sequence
line-to-line voltage by 30°. In addition, the same phase shift occurs between
the high-side line-to-neutral voltage and the low-side “equivalent” line-to-
neutral voltage. The negative sequence phase shift is such that the high-side
negative sequence voltage will lag the low-side negative sequence voltage
by 30°.

Figure 8.8 illustrates that the positive sequence line current on the high
side of the transformer (node 7) leads the low-side line current (node m) by
30°. It can also be shown that the negative sequence high-side line current
will lag the negative sequence low-side line current by 30°.

The definition for the “turns ratio n,” will be the same as Equation 8.9, with
the exception that the numerator will be the line-to-neutral voltage and the
denominator will be the line-to-line voltage. It should be noted in Figure 8.7
that the “ideal” low-side transformer voltages for this connection will be
line-to-line voltages. Moreover, the “ideal” low-side currents are the currents
flowing inside the delta.

Vs

[ ] [ J
Xl-a Ve X3-¢

FIGURE 8.8
Standard ungrounded wye-delta connection step-down.
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The basic “ideal” transformer voltage and current equations as a function

of the “turn’s ratio” are:

Van n 0 O Vtap
Ven |=| 0 n 0 |-| Vit
Ven 0 0 n Vi
where
n = kVLN rated primary
kVLL rated secondary

[VLN apc |=[AV]-[Vitape |

I, 1 1 0 0 IDy,
Iy = P 0 1 0 || IDs
Ic 10 0 1 D,

[Lanc]=[AI]-[IDas ]

(D | =[AIT™ [Tanc]
Solving Equation 8.48 for the “ideal” delta transformer voltages:

[Viawe]=[AV] " [VLN asc]

(847)

(8.48)

(8.49)

(8.50)

(8.51)

The line-to-line voltages at node m as a function of the “ideal” transformer

voltages and the delta currents are given by:

Vb Vit Ztap 0 0 1D,
Ve |=| Vtee |- 0 Zta 0 | IDg
Vea Vtea 0 0 Zt e, ID,.

[VLLabc] = [Vtabc] - [Ztabc] ) [IDabc]
Substitute Equations 8.50 and 8.51 into Equation 8.53:

[VLLope |=[AV] " -[VLN apc |- [ ZNtae |- [T anc ]

(8.52)

(8.53)

(8.54)
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where
n; - Ztab 0 0
[ZNtope |= [ Ztase |- [AI]" = 0 n, - Zty 0 (8.55)
0 0 I’It ‘ Ztca

The line currents on the delta side of the transformer bank as a function of
the wye transformer currents are given by:

[Iabc]z [DI][IDabC] (856)
where
1 0o -1
[Di]=| -1 1 0 (8.57)
0o -1 1

Substitute Equation 8.50 into Equation 8.56:

[Labe | =[Di]- [AI]_I “[Lasc ]=[DY] [Lasc] (8.58)
where
n; O —I1;
[DY]=[Di]-[AI]"'=| -n, n. 0 (8.59)
0 -n; n

Because the matrix [Di] is singular, it is not possible to use Equation 8.56
to develop an equation relating the wye-side line currents at node # to the
delta-side line currents at node m. In order to develop the necessary matrix
equation, three independent equations must be written. Two independent
KCL equations at the vertices of the delta can be used. Because there is no
path for the high-side currents to flow to the ground, they must sum to zero
and, therefore, so must the delta currents in the transformer secondary sum
to zero. This provides the third independent equation. The resulting three
independent equations in matrix form are given by:

I, |=| -1 1 0 || Ie (8.60)
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Solving Equation 8.60 for the delta currents:

Iba 1 0 -1 Ia 1 1 -1 1 Ia
I, =] -1 1 0 I, |= 3 1 2 1 I,
L. 1 1 1 0 2 -1 1 0
8.61)
[IDabC]Z[LO]'[IabO] (862)

Equation 8.62 can be modified to include the phase ¢ current by setting the
third column of the [LO] matrix to zero.

T 1 -1 0 I,

1
I, |= 3 1 2 0 || I (8.63)
L. 2 -1 0 I.

[ID.pe | =[L][Labe ] (8.64)

Solve Equation 8.50 for [I,;.], and substitute into Equation 8.64:

[Lasc]=[AI]-[L] [Tape ] = [de] - [Tape ] (8.65)
where
1 1 -1 0
[d:]=[AIl-[L]=5"—~ 1 2 0 (8.66)
AR I T )

Equation 8.66 defines the generalized constant matrix [d] for the ungro-
unded wye—delta step-down transformer connection. In the process of the
derivation, a very convenient Equation 8.63 evolved that can be used any-
time the currents in a delta need to be determined knowing the line cur-
rents. However, it must be understood that this equation will only work
when the delta currents sum to zero, which means an ungrounded neutral
on the primary.

The generalized matrices [2] and [b] can now be developed. Solve
Equation 8.54 for [VLN asc] .

[VLN s5c |=[AV]-[VLLope |+[AV ][ ZNtase | [ T anc | (8.67)
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Substitute Equation 8.65 into Equation 8.67:
[VLNAgc] = [AV] . [VLLabC ] + [AV] . [ZNtabc ] . [dt ] . [Iabc]

[VLLape |=[Dv]-[VLN ape ]

where
1 -1 0
[Dvl=| 0 1 -1
100 1
[VLN asc ] =[AV]-[Dv] [VLN e ]+ [AV]- [ZNtuse ][] [Lase ] oo
[VLN asc ] =[a]- [VEN e ]+ [Be]- [T | ‘
where
1 4 o
[a]=[AV]-[Dv]=n,-| 0 1 -1 (8.69)
1 0 1
[ zt,  -zt, 0
[bf]=[AV]-[ZNtabc]-[dt]=%- Zty  2-Zte O (8.70)
2.2t ~Zt. 0

The generalized constant matrices have been developed for computing volt-
ages and currents from the load toward the source (backward sweep). The
forward sweep matrices can be developed by referring back to Equation 8.54,
which is repeated here for convenience.

[VLL. = [AV]f1 [VLN apc |- [ ZNtape |- [ Lanc | 8.71)

Equation 8.16 is used to compute the equivalent line-to-neutral voltages as a
function of the line-to-line voltages.

[VLNabc ] = [W] . [VLLabc ] (872)
Substitute Equation 8.71 into Equation 8.72:
[VEN e ] = [WI-LAV] - VEN anc ]~ [W]- [ 2Nt ] e |- [Lanc]

[VEN e ]=[ A} [VEN asc 1~ [B. ][ L] 873
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where
. 2 1 0
[A]=[W]-[AV]" = 0 2 1 (8.74)
S T

) 2-Ztw+Ztpe 2 Ztpe=2-Zty 0
[B:]=[W] [ZNtae |- [di]==-| 2 Ztp.—2-Zt., 4. Ztpe — Zte, 0
Ztap—4-Zte, Tty —2-Zte 0

8.75)

The generalized matrices have been developed for the ungrounded wye-
delta transformer connection. The derivation has applied basic circuit theory
and the basic theories of transformers. The end result of the derivations is
to provide an easy method of analyzing the operating characteristics of the
transformer connection. Example 8.3 will demonstrate the application of the
generalized matrices for this transformer connection.

Example 8.3

Figure 8.9 shows three single-phase transformers in an ungrounded
wye—delta step-down connection serving a combination of single-phase
and three-phase load in a delta connection. The voltages at the load are
balanced three-phase of 240 V line-to-line. The net loading by phase is:

S, =100kVA at 0.9 lagging power factor
Sy =S, =50kVA at 0.8]lagging power factor

The transformers are rated:

Phase A-N: 100kVA, 7200240V, Z = 0.01 + j0.04 per unit
Phases B-N and C-N: 50kVA, 7200-240V, Z = 0.015 +j0.035 per unit

FIGURE 8.9
Ungrounded wye-delta step-down with unbalanced load.
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Determine the following:

1. The currents in the load

2. The secondary line currents

3. The equivalent line-to-neutral secondary voltages

4. The primary line-to-neutral and line-to-line voltages
5. The primary line currents

Before the analysis can start, the transformer impedances must be con-
verted to actual values in ohms and located inside the delta-connected
secondary windings.

“Lighting” transformer:

2 .
Zp, = 02471000 _ ) o
100

Zty, =(0.01+ j0.4)-0.576 = 0.0058 + j.023 Q

“Power” transformers:

_0.24%-1000

Lpase = =1.152

Ltpe =Lt = (0.015+j0‘35)~1.152 =0.0173+ j0.0403 Q

The transformer impedance matrix can now be defined:

0.0058+ j.023 0 0
[Zt e | = 0 0.0173+ j.0403 0 Q
0 0 0.0173+ j.0403

7200 _ 30

The turn’s ratio of the transformers is: n, = 240

Define all of the matrices:
2 1 0 1 -1 0 1 0 -1

0 2 1 [Dv]=| o0 1 -1 [Di]=] -1 1 0
1 0 2 -1 0 1 o -1 1

Zt,  ~Zts 0 0.0576+j.2304  -0.576—7.2304 0

[b]="C| Ztpe 2:Zth 0 |=| 01728+;.4032 0.3456+;.8064 O

2-Zt, —Zt, 0 —0.3456—-;.8064 -0.1728-;.4032 0
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0 0 0
[e:]=] 0 0 O
0 0 0

0 0.0111 -0.0111 0
[d] = 101 2 0 [=[ 00111 0.0222 0
0 -0.0222 -0.0111 0

1 2 1 0 0.0222  0.0111 0
[A]= o 0 2 1 |= 0 0.0222  0.0111
Ml1 o0 2 0.0111 0 0.0222

) 2-Ztw+Ztee 2 Ztpe—2-Ztp, O

[Bt]=§- 2-Ztpe =2 Ztea 4-Ztp. — Zte, 0

Zty—4-Zty — ~Ztw—2-Zt, O
0.0032+;.009  0.0026+;.0038 0
(B/]= 0 0.0058+;.0134 0
-0.007-7.0154  —0.0045- j.0115

Define the line-to-line load voltages:

240/0
[VLLabC] =| 240/-120 |V
240/120
Define the loads:
[SDac]=| 50/acos(0.8) |=| 40+ ;30 kVA
50/acos (0.8) 40+;30

Calculate the delta load currents:

D, :(SDj ~1000) A

VLLabc,-
I 416.7/-25.84
[[Du]=| L. |=| 2083/-156.87 |A

I, 208.3/83.13
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Compute the secondary line currents:

522.9/-47.97
575.3/-119.06 |A

360.8/53.13

[Ls ] =[Di]-[ 1D | =

Compute the equivalent secondary line-to-neutral voltages:

138.56/ -30

[VLN e | =[W]-[VLLa |=| 138.56/-150 [A
138.56/90

Use the generalized constant matrices to compute the primary line-to-

neutral voltages and line-to-line voltages:

7367.6/1.4
7532.3/-119.1
7406.2/121.7

[VLNABC]= [at]'[VLNabc]+[bt]'[labc]: \Y%

12,9356/31.54
12,8845/-88.95 |kV

12,8147 /151.50

[VLLABC] = [DV] . [VLNABC] =

The high primary line currents are:

11.54/-28.04
8.95/-16643 | A

[IABC] = [dt] ) [Iabc] =
7.68/101.16

It is interesting to compute the operating kVA of the three transformers.
Taking the product of the transformer voltage times the conjugate of the

current gives the operating kVA of each transformer.

. | 85.02/29.46
ST, = VN sc (Lascr) 67.42/47.37 |kVA
1000
56.80/20.58
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The operating power factors of the three transformers are:

€0s(29.46) 87.1
[PF]=| cos(47.37) |=| 67.7 |%
€0s(20.58) 93.6

Note that the operating kVAs do not match very closely with the rated kVAs
of the three transformers. In particular, the transformer on phase A did not
serve the total load of 100kVA that is directly connected to its terminals.
That transformer is operating below the rated kVA, whereas the other two
transformers are overloaded. In fact, the transformer connected to phase
B is operating 35% above the rated kVA. Because of this overload, the rat-
ings of the three transformers should be changed so that the phase B and
phase C transformers are rated 75kVA. Finally, the operating power factors
of the three transformers bear little resemblance to the load power factors.

Example 8.3 demonstrates how the generalized constant matrices can be used
to determine the operating characteristics of the transformers. In addition, the
example shows that the obvious selection of transformer ratings will lead to
an overload condition on the two power transformers. The advantage in this is
that if the generalized constant matrices have been applied in a computer pro-
gram, it is simple to change the transformer kVA ratings, and we can be assured
that none of the transformers will be operating in an overload condition.

Example 8.3 has demonstrated the “backward” sweep to compute the pri-
mary voltages and currents. As before, when the source (primary) voltages
are given along with the load PQ, the ladder iterative technique must be used
to analyze the transformer connection.

Example 8.4

The Mathcad program that has been used in previous examples is modi-
fied to demonstrate the ladder iterative technique for computing the
load voltages given the source voltages and load power and reactive
powers (PQ load). In Example 8.4, the computed source voltages from
Example 8.3 are specified along with the same loads. From Example 8.3,
the source voltages are:

12,935.6/31.5
[VLLspc]=| 12,884.5/-88.9
12,814.7/151.5

The initial conditions are:

0
[Start]=| 0 Tol =0.000001 VM =240
0
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The modified Mathcad program is shown in Figure 8.10.
With balanced source voltages specified, after six iterations the load
voltages are computed to be exactly as they were specified in Example 8.3:

240/0
[VLL.]=| 240/-120 |V
240.0/120
0
Start:= | 0 Tol := .000001 VM :=kVLL.-1000 VM =240
0
XI:= | L;. <« Start

abc

Vg € Start
VLNjpc < W-VLLppc

for n e 1..200
VLNabc <« At'VLNABC - Bt'Iabc

VLL,

abc

< Dv-VLN

abc
for j €1..3

SLj -1000
IDabcj <« VLL

abcj

for k e1..3

VLLabck - Voldk

Error, <
VM

Error,, <« max(Error)

break if Error,,, < Tol

max

Vold <« VLLabc

I <« DirID

abc abc

Inpc < diLipe

Out; < VLN,
Out, < VLL,,.
Outz < I

Outy < Izpc

Out; < n

Out

FIGURE 8.10
Example 8.4 Mathcad program.
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Example 8.4 has demonstrated how the simple Mathcad program can be
modified to analyze the ungrounded wye—delta step-down transformer

bank connection.
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8.6 The Ungrounded Wye-Delta Step-Up Connection

The connection diagram for the step-up connection is shown in Figure 8.11.
The only difference in the matrices between the step-up and step-down
connections is the definitions of the turn’s ratio n;, [AV] and [ AI]. For the

step-up connection:

kVLN rated primary

n; =
k VLLrated secondary
Van 0 0
Ven |=nm-| -1 0
Ven 0 -1

[VLN apc |=[AV ][ Vtabe]

where

FIGURE 8.11
Ungrounded wye—delta step-up connection.

(8.76)

8.77)
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Ia , 0 0 -1 1Dy,
I = o -1 0 0 | IDg
IC ‘ 0 -1 0 IDaC

where
1 0 0o -1
[AIl=— -1 0O 0
Tl o -1 o0
Example 8.5

The equations for the forward and backward sweep matrices, as defined
in Section 8.3, can be applied using the definitions in Equations 8.76, 8.77,
and 8.77. The system in Example 8.3 is modified so that transformer con-
nection is step up. The transformers have the same ratings, but now the

rated voltages for the primary and secondary are:

Primary: VLL,; =240 VLN,;=138.6 V
Secondary: VLL..=12,470V

_VIN,: 1386

= = =0.0111
VLL,. 12,470

ng

The transformer impedances must be computed in Ohms relative to the

(8.78)

delta secondary and then used to compute the new forward and back-

ward sweep matrices. When this is done, the new matrices are:

60 30 O

[d:]=[AI]"-[L]=| =30 30 ©
| 30 60 0

0 -60 -30

[A]=[W][AV]'=]| =30 0 -60
60 -30 0

8.64+j2592  6.91+10.37
[B/]=[W]-[ZNtu)-[di]= 0 1555+ j36.28
-19.01-j41.47  -12.09- j31.10
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Using these matrices and the same loads, specify the primary line-to-
line voltages to be:

240/30
[VLLasc] =| 240/-90
240/150

Using the Mathcad program in Figure 8.9, the Ladder iterative technique
computes the load voltages as:

12,055/58.2
[VLLy]=| 11,982/-61.3
12,106/178.7
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8.7 The Grounded Wye-Delta Step-Down Connection

The Connection diagram for the standard 30° grounded wye (high)-delta
(low) transformer connection grounded through an impedance of Z, is
shown in Figure 8.12. Note that the primary is grounded through an imped-

ance of Zg.

Vi Vb Van

+ Vab X2-b

'y .
Xl-a Vhe X3-¢

FIGURE 8.12
The grounded wye-delta connection.

AU: Please
check if there
any missing text
in this sentence.
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Basic transformer equations:

The turn’s ratio is given by:

_ kVLN rated primary (879)
kVLL rated secondary

n;

The basic “ideal” transformer voltage and current equations as a function of
the turn’s ratio are:

Van 1 0 0 Vtab
Ven =n; - 0O 1 0 . Vipe
Vo 0o o0 1 Ve, (8.80)
[VLNAgc] = [AV] . [Vtabc]
where
1 0
[AV]=n,- 0 1 0
0 1
I, , 1 0 0 1Dy,
I = IT : 0O 1 0 1D,
Ic ‘ 0 0 1 ID,. 8.51)
[Lasc ] =[AI]-[IDas]
[IDse |=[AIT" [Lasc]
where
1 1 0 O
[AIl=—1 0 1 O
n;
0 0 1

Solving Equation 8.80 for the “ideal” transformer voltages:

[Vtwe |=[AV] " -[VLN a5c] (8.82)
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The line-to-neutral transformer primary voltages as a function of the system
line-to-ground voltages are given by:

Van=Vac—Zy - Ua+1p+Ic)

Ven =V —Zg - (Ia+1+1c)

Ven =Vee —Zg -(Ia+1p+1c)
8.83
Van Vac Z 8 Z g Z g I, ( )
VBN = VBG - Zg Zg Zg : I

Ven Vee Z Z Ic

& &

[VLN apc|=[VLGapc]-[ZG]-[Lasc]

where
Zg

[ZGl=| Z;, Z; Z;
Zg

The line-to-line voltages on the delta side are given by:

Vb Vt, Ztap 0 0 1D,
Vbc = Vfb - O Z tbc 0 . I ch

V. V. 0 0 Zt. m, | 689

[VLLae ] = [Vtare | = [ Ztase |- [ 1D ]
Substitute Equation 8.82 into 8.84:
[VLLue |=[AV]" [VLN asc |~ [ Ztase |- [ IDasc | (8.85)
Substitute Equation 8.81 into 8.85:

[VLLyte)=[AVT"-[VEN anc |~ ([ Ztare - [AIT" ) [Lasc | (8.86)
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Substitute Equation 8.83 into Equation 8.86:

[VLLye |=[AV]"-([VLGasc]- [ZG]'[IABC])—([Zfabc]'[Af]fl)'[IABC] 557)
[VLLy ) =[AV]"-[VLG anc |- ([AV]" [ 2G]+[ Ztue |- [AIT" ) [ Lasc ] '

Equation 8.81 gives the delta secondary currents as a function of the primary
wye-side line currents. The secondary line currents are related to the sec-
ondary delta currents by:

I, 1 0 -1 IDy,
I, |=] -1 1 0 || IDs |[ls]=[Di]-[IDs] (8:88)
I. 0 -1 1 ID,.

The real problem of transforming currents from one side to the other occurs
for the case when the line currents on the delta secondary side [I,;] are
known and the transformer secondary currents [ID,,] and primary line
currents on the wye side [I 5] are needed. The only way a relationship can
be developed is to recognize that the sum of the line-to-line voltages on the
delta secondary of the transformer bank must add up to zero. Three inde-

pendent equations can be written as follows:

Ia = Iba - Iac
(8.89)
Iy =14 — I,
KVL around the delta secondary windings gives:
Vit — Lty Ipg+Vitpe — Ztpe Iy +Vitgy— Zt ey - 1, =0 (890)

Replacing the “ideal” secondary delta voltages with the primary line-to-
neutral voltages:

Van | Vv | Vev _ Ztw oo+ Ztoe Ty + Zt s Lo (891)
Ht Ht Ht

Multiply both sides of the Equation 8.91 by the turn’s ratio 7,:

VAN +VBN +VCN =1y 'Ztab ’Iba +1n, 'thc : ch +1n; 'Ztca ’Iac (892)
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Determine the left side of Equation 8.92 as a function of the line-to-ground
voltages using Equation 8.83:

VAN +VBN+VCN =VAG +VBG +VCG_3'Zg (IA +IB +IC)

1 (8.93)
Van +Ven +Ven =Vag + Vg + Vg -3 —-Z, ‘(Iba +1g +Iac)
1
Substitute Equation 8.93 into Equation 8.92:
3
VAG +VBG +VCG - Zg : (Iba +Iz:b +Iac) =1 - Ztab : Iba
n;
+1y Ztpe Lp+ 14 Lty 1o
3 3 (8.94)
Veum =| D¢ - Ztap +7'Zg Ap,+| 1y 'thc'l‘f'Zg s
n; n;
3
o Ztoa+—Zg | L
n;
where
Veum =Vac +Vsc +Vce
Equations 8.88, 8.89, and 8.94 can be put into matrix form:
Ia 1 0 -1 Iba
-1 1
Ib = 3 3 0 3 ch
Vo nt-Ztab+n—t-Zg n,-thC+n—t-Zg nt-Ztca+n—t-Zg I
(8.95)
Equation 8.95 in general form is:
[X]=[F]-[IDa] (8.96)

Solve for [ID.]:

(1D, )=[FT"[X]=[G] [ X] 897)
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Equation 8.97 in full form is:

Gu Gn G I,
[IDabc] = G21 Gzz st . 1
Gn Gn Gxp Vac +Vse +Vee
G Giz Gis Vac Gu Gn O I,
[IDabc] =| Gz Gxn Gxn || Vee [+]| Gu Gn 0 || I
Gx Gz G Vee Gu Gy 0 I.

(8.98)
Equation 8.98 in shortened form is:

[ID.pe | =[G1]-[VLGasc | +[G2 ] [ Lae | (8.99)
Substitute Equation 8.81 into Equation 8.98:
[Lasc | =[AI]-[ID.sc | = [AI]-([G1]-[VLG apc |+ [G2 ][ Lec ])
(8.100)
[IABC] = [Xt ] : [VLGABC]+ [dt ] : [Iabc]

where

[x:]=[AI]-[G1]
[dt] =[AIl-[G]

Equation 8.100 is used in the “backward” sweep to compute the primary cur-
rents based upon the secondary currents and primary LG voltages.

The “forward” sweep equation is determined by substituting Equation 8.100
into Equation 8.87.

[VLLae|=[AV]" - [VLG yye |- ([AV] " [ZG]+ [ Ztaec ) [AIT) [ Laac ]
[VLLuc]=[AV]" - [VLGasc ] =([ Ztae |- [AIT +[AV] [ ZG])
(%] [VLG saec 1+ [de] [Tave ])
Define: [ Xi]=[Ztwe]-[AI]+[AV]"-[ZG]
[VLLae ] = ([AV]=[Xa]- [xe]) [VLG asc |- [Xa]- [ ] [ Lase ] (8.101)
[VLNabc] = [W] ' [VLLabc]

VEN e =W (([AVT =01 D) [VEG e |- [X0 ][] L)

VLN e ]=[W]- ([AVT = (X0 D)) [VEGase 1= [W]-[XG]- [dh ][ L]
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The final form of Equation 8.101 gives the equation for the forward sweep.

[VLN b |=[ A |- [VLG apc |- [ Bt |-[ Labe | (8.102)
where
[Ad=W]-([AV]" = [Xi] - [x])
[B:]=[W]-[Xi]-[d]
Example 8.6

The system in Examples 8.3 and 8.4 is changed so that the same trans-
formers are connected in a grounded wye—delta step-down connection
to serve the same load. The neutral ground resistance is 5 Q. The com-
puted matrices are:

0.0053 - j0.0061  0.0053-;0.0061  0.0053 - j0.0061
[x¢] =] 0.0053-;0.0061 0.0053-70.0061 0.0053— ;j0.0061
0.0053 - j0.0061  0.0053-;0.0061  0.0053 - j0.0061

0.0128+;0.0002  -0.0128-;0.0002 0
[d:]=| 0.0128+ ;0.0002 0.0206-0.0002 0
-0.0206+;0.0002 —-0.0128-;0.0002 0

0.0128+;0.0002  0.0017 +j0.0002  —0.0094 + j0.0002
[A]=| -0.0128-;0.0002 0.0094-j0.0002 —0.0017 — j0.0002
0 -0.0111 0.0111

0.0043+j0.0112  0.0014+ j0.0022 0
[B.]=| 00014+ /0.0022  0.0043+j0.0112 0
~0.0058— j0.0134  —0.0058-j0.0134 0

The only change in the program from Example 8.4 is for the equation
computing the primary line currents.

[Lapc]=[x¢]- [VLG apc |+ [dt] [Lape |

The source voltages are balanced of 12,470 V. After five iterations, the
resulting load line-to-line load voltages are:

232.6/-1.7
[VLL,,.]=| 231.0/-121.4
233.0/118.8
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The voltage unbalance is computed to be:
Vinbatance = 0.53%
The currents are:
540.8/-49.5

[Loc]=| 594.1/168.5
373.0/51.7

13.7/-28.6
[Lasc]=| 7.8/-160.4
7.1/87.3

I, =—(Ia+I5+Ic)=54/157.8

As can be seen, the major difference between this and the ungrounded
connection is in the line currents and the ground current on the pri-
mary side. Experience has shown that the value of the neutral grounding
resistance should not exceed the transformer impedance relative to the
primary side. If the ground resistance is too big, the program will not
converge.

The question can be whether the neutral for the wye—delta connec-
tion can be grounded or not. In Chapter 10, the short-circuit calculations
for the grounded wye-delta transformer bank will be developed. In this
development, it will be shown that during a grounded fault upstream
from the transformer bank, there will be a back feed current from the
grounded wye—-delta bank back to the grounded fault. This typically
results in blowing the transformer fuses for the upstream ground fault.
With that in mind, the grounded wye-delta transformer connection
should not be used.

8.8 Open Wye-Open Delta

A common load to be served on a distribution feeder is a combination of a
single-phase lighting load and a three-phase power load. Mostly, the three-
phase power load will be an induction motor. This combination load can be
served by a grounded or ungrounded wye—delta connection as previously
described or by an “open wye—open delta” connection. When the three-
phase load is small compared to the single-phase load, the open wye—open
delta connection is commonly used. The open wye—-open delta connection
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+
Xl-a € X3-c

FIGURE 8.13
Open wye-open delta connection.
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requires only two transformers, but the connection will provide three-
phase line-to-line voltages to the combination load. Figure 8.13 shows the
open wye—open delta connection and the primary and secondary positive

sequence voltage phasors.

With reference to Figure 8.11, the basic “ideal” transformer voltages as a

function of the “turn’s ratio” are:

Vac 1 0 0 Vtap
Ve |=n-] 0 1 0 || Vie
VC G 0 0 0 Vtca

[VLGapc | =[AV] [Vt ]

The currents as a function of the turn’s ratio are given by:

IA:l'Iba:l'Ia
n n
IB:i'ch:_i'Ic
n n

Iy =—(I,+1.)

(8.103)

(8.104)
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Equation 8.104 can be expressed in matrix form by:

Ia . 1 0 0 I,
Is |=—-1 0 0o -1 || I
I o 0 0 0 L (8.105)

[Lasc ] =[d ] [Lavc]

where

N I BN
[d]=—1 0 0 -1
1o 0 o0

The secondary line currents as a function of the primary line currents are:

~
B
—_
o
o

~

A
I, |=n -1 1 O Iy
I 0 -1 0 Ie (8.106)
[Labe | = [Ai] - [Lasc]
where
1 0 0
[Ai]=n -] -1 1 0
0 -1 0
The ideal transformer secondary voltages can be determined by
Vtab = ‘/ab +Ztab : Ia
(8.107)
Vitpe =Vpe = Ztpe - I
Substitute Equation 8.107 into Equations 8.103:
VAG =n: Vtab =1 Vab +1n- Ztab : Ia (8108)

Voe =1, - Vitpe =1y - Vipe =11 - Zte - 1.
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Equation 8.108 can be put into three-phase matrix form as:

Vag 10 o | |™ Zty, 0 0 I,
Ve |=n: -1 0 1 0 ||V |+nn- 0 0 —Zty I,
VCG O O 0 Vca O 0 0 IC
[VLGapc | =[AV]: [VLLapc |+ (B¢ ] [Lac ] (8.109)

The secondary line-to-line voltages in Equation 8.109 can be replaced by the
equivalent line-to-neutral secondary voltages.

[VLGapc |=[AV]-[DV]-[VLN e |+ [b¢] - [ Lanc ]

(8.110)
[VLGasc]=[a]-[VLN apc |+ [Be ] - [Lape ]

where

[a]=[AV]-[Dv]

Ztap 0 0
[bt] =n - 0 0 —Ztp
0 0 0

Equations 8.109 and 8.110 give the matrix equations for the backward sweep.
The forward sweep equation can be determined by solving Equation 8.108
for the two line-to-line secondary voltages:

Vo= Vo = Ztws 1,
n;
(8.111)
Vie = Vi — Ztw - .
I

The third line-to-line voltage V,, must be equal to the negative sum of the
other two line-to-line voltages (KVL). In matrix form, the desired equation is:

Vab 1 1 0 0 Vac Zt 0 0 1,

Vie | = P 0 1 0 ||Ve |- 0 0 Zty. || Iv
t

V., -1 -1 0 Ve Lty 0 Ztpe 1.

[VLLube 1= [BV |- [VLG asc |~ [ Ztase ] [ Labe] (8.112)
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The equivalent secondary line-to-neutral voltages are then given by:

[VLNbe ] = [W]-[VLLasc ] = [W] [BV]-[VLGasc | = [W]-[Ztase ] [Larc] (8113)

The forward sweep equation is given by:

[VLN 1= [A]- [VLG asc |~ [B: ] [Lave ] (8.114)
where
1 2 1 0
[A]=[W] [BV]= 3 -1 1 0
R I T, B

| 2% 0 -2
[B:] = [W] - [Ztan] = 3| Hw 0 —Zh
Tty 0 2-Zty

The open wye—open delta connection derived in this section utilized phases
A and B on the primary. This is just one of three possible connections. The
other two possible connections would use phases B and C and then phases
C and A. The generalized matrices will be different from those derived now.
The same procedure can be used to derive the matrices for the other two
connections.

The terms “leading” and “lagging” connection are also associated with
the open wye—open delta connection. When the lighting transformer is con-
nected across the leading of the two phases, the connection is referred to as
the “leading” connection. Similarly, when the lighting transformer is con-
nected across the lagging of the two phases, the connection is referred to as
the “lagging” connection. For example, if the bank is connected to phases
A and B and the lighting transformer is connected from phase A to the
ground, this would be referred to as the “leading” connection because the
voltage A-G leads the voltage B—G by 120°. Reverse the connection, and it
would now be called the “lagging” connection. Obviously, there is a leading
and lagging connection for each of the three possible open wye—open delta
connections.

Example 8.7

The unbalanced load in Example 8.3 is to be served by the “leading”
open wye—open delta connection using phases A and B. The primary
line-to-line voltages are balanced 12.47kV.

The “lighting” transformer is rated: 100kVA, 7200 Wye—240 delta,
Z=1.0+j4.0%
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The “power” transformer is rated: 50kVA, 7200 Wye—240 delta,
Z=15+3.5%.
Use the forward/backward sweep to compute:

1. The load line-to-line voltages
2. The secondary line currents
3. The load currents

4. The primary line currents

5. Load voltage unbalance

The transformer impedances referred to the secondary are the same as
in Example 8.7, since the secondary rated voltages are still 240'V.
The required matrices for the forward and backward sweeps are:

0.0128  0.0064 0
[Ai]=| -0.0064 0.0064 O
-0.0064 —0.0128 0

0.0038+/0.0154 0 —0.0058— j0.0134
[B.]=| —0.0019-70.0077 0 —0.0058- j0.0134
-0.0019-j0.0077 0  0.0115+ j0.0269

00192 0 0
[di] = 0 0 -0.0192
0 0 0

The same Mathcad program from Example 8.3 can be used for this
example. After seven iterations, the results are:

228.3/-1.4
[VLL,]=| 231.4/-123.4
222.7/116.9

548.2/-50.3
[Lsc]=| 606.5/167.8
381.0/50.5

438.0/-27.3
[IDy]=| 216.1/-160.4
224.6/80.0
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18.3/-50.3
[{asc]=| 12.7/-129.5
0

Vunbalancc =211%

Note the significant difference in voltage unbalance between this and
Example 8.6. While it is economical to serve the load with two rather
than three transformers, it has to be recognized that the open connection
will lead to a much higher voltage unbalance.

8.9 The Grounded Wye—-Grounded Wye Connection

The grounded wye—grounded wye connection is primarily used to supply
single-phase and three-phase loads on four-wire multigrounded systems.
The grounded wye-grounded wye connection is shown in Figure 8.14.

Unlike the delta-wye and wye—delta connections, there is no phase shift
between the voltages and the currents on the two sides of the bank. This
makes the derivation of the generalized constant matrices much easier. The
ideal transformer equations are:

_ VLN rated primary

n = (8.115)
VLN rated secondary
H1-A H2-B H3-C
IAl IBlI
+ Vi - + Ve -

FIGURE 8.14
Grounded wye-grounded wye connection.
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Vac 1 0 0 Vtag
Ve =n - 0 1 0 : thg
Ve 0 0 1 Ve, (8.116)
[VLGAgc] = [AV] . [Vtabc]
where
1 0 0
[AV]=n; 0 1 0
0 0 1
Ia 1 1 0 0 I,
Ig |=—-1 0 1 0 1,
I n 0 0 1 1. (8.117)
[Lasc | =[AI]-[Lanc]
where
1 1 0 O
[AIl=—-| 0 1 0O
I
0 0 1

With reference to Figure 8.12, the ideal transformer voltages on the second-
ary windings can be computed by:

Vi, Vag Zt, 00 I,
Vi, = ng + 0 Zty, 0 : I,
Vi, Vi 0 0 2z I, ®118)
[Vtabc] = [VLGabc] + [Ztabc] . [Iabc]
Substitute Equation 8.118 into Equation 8.116:
[VLGAgc] = [A V] . ([VLGabC ] + [Ztabc] . [Iabc])
(8.119)

[VLG asc | =[] - [VLGape |+ [be ] - [Labe ]
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Equation 8.119 is the backward sweep equation with the [2,] and [b,] matrices
defined by:

1 0 0
[a]=[AV]=n,| 0 1 0 (8.120)
L 0 0 1
Zt, 0 0
[b:]=[AV].[Ztsc]=n;| O Zt, O (8.121)
00z

The primary line currents as a function of the secondary line currents are
given by:

(Lasc|=[d:]" [Tanc] (8.122)
where
1 1 0 0
[di]=[AIl=—-] 0 1 0
Tl o 0 1

The forward sweep equation is determined solving Equation 8.119 for the
secondary line-to-ground voltages:

[VLG s |=[AV] " [VLGapc |~ [ Ztase | [Lose ] (8123)

[VLGabe | =[A¢]- [VLGasc | = [Bt ] [Labe ]
where

[A]=[AV]

[Bi]=[Ztac]

The modeling and analysis of the grounded wye—grounded wye connec-
tion does not present any problems. Without the phase shift, there is a direct
relationship between the primary and secondary voltages and currents
as had been demonstrated in the derivation of the generalized constant
matrices.



Three-Phase Transformer Models

299

8.10 The Delta-

Delta Connection

The delta—delta connection is primarily used on three-wire delta systems to
provide service to a three-phase load or a combination of three-phase and
single-phase loads. Three single-phase transformers connected in a delta—

delta are shown in

Figure 8.15.

The basic “ideal” transformer voltage and current equations as a function
of the “turn’s ratio” are:

_ VLL rated primary
n=———————"
VLL rated secondary
VLL4p 1 0 0 Vtap
VLL,. |=n.-| 0 1 0 || Vtp
VLL,, 0 0 1 Vi,

[VLLABC] = [AV] : [Vtabc]

where

1 0 0
[AV]=n,-| 0 1 0
0 0 1

FIGURE 8.15
Delta—delta connection.

(8.124)

(8.125)
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Iap 1 1 0 O I,
Ipc |= P 0 1 0 I,
Ica t 0O 0 1 L. (8.126)

[IDapc | =[AI] [ID.p ]

where

R
[AI]=—- 0 1 o0
Ml o o0 1

Solve Equation 8.126 for the secondary-side delta currents:
[IDay | =[AI]" - [IDasc] (8.127)

The line currents as a function of the delta currents on the source side are
given by:

Ia 1 0 -1 Iag
Iz [=] -1 1 0 - Ipe
I 0 -1 1 I, (8.128)

[Lasc | =[Di]- [IDasc |

where

1 0 -1
[Di]=| -1 1 0
0 -1 1

Substitute Equation 8.126 into Equation 8.128:

[Lasc]=[Di] - [AI]- [ID,] (8.129)

Since [Al]is a diagonal matrix, Equation 8.129 can be rewritten as:

[Lasc | =[AI]-[Di] - [IDas ] (8.130)
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The load-side line currents as a function of the load-side delta currents are:
[Labe ] = [Di] [ IDape ]
or: [IDyse]=[Di]™ [Lsc] (8131)
even though [Di]™ is singular
Applying Equation 8.131, Equation 8.130 becomes:
[Lasc 1= [AI]-[Di]-[Di]™" - [Lsc]

[Lasc | =[AI]" [Lupc]

(8.132)

Turn Equation 8.132 around to solve for the load-side line currents as a func-
tion of the source-side line currents:

[Lic1=[AIT" - [Lagc] (8.133)

Equations 8.132 and 8.133 merely demonstrate that the line currents on the
two sides of the transformer are in phase and differ only by the turn’s ratio of
the transformer windings. In the per-unit system, the per-unit line currents
on the two sides of the transformer are exactly equal.

The ideal delta voltages on the secondary side as a function of the line-
to-line voltages of the delta currents and the transformer impedances are
given by:

[Vtase | =[VLLape |+ [ Ztave | - [IDabe | (8.134)

where

Lt 0 0
[Ztabc‘] = 0 thc O
0 0 Zt.,

Substitute Equation 8.134 into Equation 8.125:
[VLLApc | =[AV ] [VLLupe | +[AV] - [Ztase | - [IDape | (8.135)
Solve Equation 8.135 for the load-side line-to-line voltages:

[VLL|=[AV]" [VLLasc ] =[Ztase] - [IDse ] (8.136)
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The delta currents [ID, | in Equations 8.135 and 8.136 need to be replaced by
the secondary line currents [l ]. In order to develop the needed relationship,
three independent equations are needed. The first two come from applying
KCL at two vertices of the delta-connected secondary.

Ia = Iba _Iac
(8.137)
Ib = ch _Iba

The third equation comes from recognizing that the sum of the primary line-
to-line voltages and therefore the secondary ideal transformer voltages must
sum to zero. KVL around the delta windings gives:

Vit —Ztap  Ipat Vipe = Ztpe - Iy + Ve = Zt g Ioc =0 (8138)

Replacing the “ideal” delta voltages with the source-side line-to-line voltages:

Vao  Voc  Vea _ gt 14 Ztye - Loy + Ztey Lc (8.139)
1’lt Ht I‘lt

Because the sum of the line-to-line voltages must equal zero (KVL) and the
turn’s ratios of the three transformers are equal, Equation 8.139 is simplified to:

0=Zt, Ipu+Zty Iy +Zt. - L (8.140)

Note in Equation 8.140 that if the three transformer impedances are equal,
then the sum of the delta currents will add to zero, meaning that the zero
sequence delta currents will be zero.

Equations 8.137 and 8.140 can be put into matrix form:

I, 1 0 -1 T
Iy = -1 1 0 : I,
0 Ztab thc Ztca Iac (8141)

[IOabc] = [F] : [IDabc]

where
I,
[Ioabc ] = Ib
0
1 0 -1
[Flsf -1 1 o0

Lty Ztpe Zita
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Solve Equation 8.141 for the load-side delta currents:
[IDap]=[F]" [10.6¢]=[G] [10u] (8.142)
where
[Gl=[F]"

Writing Equation 8.142 in matrix form gives:

Iy, Gn Gir G 1,
ch = 621 Gzz G23 . Ib (8143)
I, Gy Gn  Ga 0

From Equations 8.142 and 8.143, it is seen that the delta currents are a func-
tion of the transformer impedances and just the line currents in phases
a and b. Equation 8.143 can be modified to include the line current in phase ¢
by setting the last column of the [G] matrix to zeros.

Iy, Gn Gp O 1,
Iy = Gn Gxn 0 : I,
I, Gan Gy 0 I, (8.144)

[IDabc] = [Gl] ' [Iabc]

where

Gn Gp O
[Gi]=| Gu G»n 0
Gun Gxp O

When the impedances of the transformers are equal, the sum of the delta
currents will be zero, meaning that there is no circulating zero sequence cur-
rent in the delta windings.

Substitute Equation 8.144 into Equation 8.135:

[VLLApc |=[AV]-[VLLape | +[AV ] [ Ztave ] [G1] - [Labe ] (8.145)

The generalized matrices are defined in terms of the line-to-neutral voltages
on the two sides of the transformer bank. Equation 8.145 is modified to be in
terms of equivalent line-to-neutral voltages.
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[VLN 45c]=[W]:[VLLasc] 146
[VLN apc | = [W][AV]-[Dv]-[VLNap ]+ [W]- [ Ztanc ] - [Gi] - [Lane ]
Equation 8.146 is in the general form:
[VLN asc]=[a ] [VLN e ]+ [B:] - [ Lusc | (8.147)
where
[a]=[W]-[AV]-[Dv]
[be]=[AV][W]:[Ztaec]-[G1]
Equation 8.133 gives the generalized equation for currents:
[Lasc ] =[AI]- [Lsc ] =[d: ] [Lanc ] (8.148)
where

[d:]=[Al]

The forward sweep equations can be derived by modifying Equation 8.136 in
terms of equivalent line-to-neutral voltages.

[VLNabc] = [W] ! [VLLabc]

(8.149)
[VEN ] =[W]-[AVT - [DV]- [VEN asc 1= [W]-[ Ztuse ] [Ga]- [Tusc
The forward sweep equation is:
[VLNabC] = [At] . [VLNAgcl - [Bt] . [Iabc] (8150)

where
[A]=[W]-[AV]"[Dv]

[Be]=[W]-[Ztane ] [G1]

The forward and backward sweep matrices for the delta—delta connection
have been derived. Once again, it has been a long process to get to the final
six equations that define the matrices. The derivation provides an excellent
exercise in the application of basic transformer theory and circuit theory.
Once the matrices have been defined for a particular transformer connection,
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the analysis of the connection is a relatively simple task. Example 8.8 will
demonstrate the analysis of this connection using the generalized matrices.

Example 8.8

Figure 8.16 shows three single-phase transformers in a delta—delta con-
nection serving an unbalanced three-phase load connected in delta.

The source voltages at the load are balanced three-phase of 240V
line-to-line.

12,470/0
[VLLpe]=| 12,470/-120 |V

12,470/120

The loading by phase is:

S, =100kVA at 0.9 lagging power factor
Sy =S, =b0kVA at 0.8 lagging power factor

The ratings of the transformers are:

Phase A-B: 100kVA, 12,470-240V, Z = 0.01 + j0.04 per unit
Phases B-C and C-A: 50kVA, 12,470-240V, Z = 0.015 + j0.035
per unit

Determine the following:

1. The load line-to-line voltages
2. The secondary line currents
3. The primary line currents

4. The load currents

5. Load voltage unbalance

Before the analysis can start, the transformer impedances must be con-
verted to actual values in ohms and located inside the delta-connected
secondary windings.

Eﬂb Vab

FIGURE 8.16
Delta—delta bank serving an unbalanced delta-connected load.
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Phase a—b transformer:

~0.24%-1000

Zbase - =0.576 Q
100

Zty = (0.01+j0.04) -0.576 =0.0058+ j.023 Q
Phase b—c and c—a transformers:

2 .
Zigoe =222 10004 455 g
50

Ztpe = Zt, =(0.015+70.035)-1.152 = 0.0173+ j0.0403 Q

The transformer impedance matrix can now be defined as:

0.0058+;.023 0 0
[Ztae]= 0 0.0173+ j.0403 0 Q
0 0 0.0173+ j.0403
The turn’s ratio of the transformers is: n, = 12,470 =51.9583
Define all of the matrices: 240
1 2 1 0 1 -1 0 1 0 -1
W] = 3 0 2 1 [Dv]=| o0 1 -1 [Di]=| -1 1
1 0 2 -1 0 1 0 -1 1
1 0 O 51.9583 0 0
[AV]=n -] 0 1 0 |= 0 51.9583 0
0 0 1 0 0 51.9583
1 1 0 O 0.0192 0 0
[All=—-| 0 1 0 |[= 0 0.0192 0
ol o o0 1 0 0 00192
1 0 -1
[F]= -1 1 0

0.0058+;0.023  0.0173+;0.0403  0.0173+ ;j0.0404

0.3941-j0.0134  —0.3941+;0.0134 3.2581—8.378
[G]=[F]"=| 03941-j0.0134  0.6059+;0.0134 3.2581-8.378
-0.6059-j0.0134  —0.3941+0.0134  3.2581- j8.378
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0.3941-;0.0134  -0.3941+;0.0134 0
[Gi]=| 0.3941-;0.0134 0.6059+;0.0134 0
-0.6059-;0.0134 -0.3941+;0.0134 0

346489 173194 -17.3194
[a]=[W]-[AV] - [Dv]=| -17.3194 34.6489 —17.3194
-17.3194 -17.3194  34.6489

0.2166+/0.583  0.0826+;0.1153 0
[b]=[AV]-[W]-[Ztw]-[Gi]=| 0.0826+j0.1153  02166+/0.583 0
~0.2993—j0.6983  -0.2993—j0.6983 0

0.0192 0 0
[d:]=[AI]= 0 0.0192 0
0 0 0.0192

) 0.0128 —0.0064 —0.0064
[A]=[W]-[AV] -[D]=| -0.0064 0.0128 —0.0064
—0.0064 -0.0064 0.0128

0.0042+j0.0112  0.0016+0.0022 0
[B.]=[W]-[Ztw] [Gi]=| 0.0016+;0.0022  0.0042+0.0112 0
~0.0058—j0.0134  —0.0058—j0.0134 0

The Mathcad program is modified slightly to account for the delta con-
nections. The modified program is shown in Figure 8.17.
The initial conditions are:
12470/30 0
[VLLapc]=| 12470/-90 [Start]=| 0 Tol =0.000001 VM =240
12470/1500 0

After six iterations, the results are:

232.9/28.3
[VLLy]=| 231.0/-91.4
233.1/148.9

540.3/-19.5
[Loc]=| 593.6/-1615
372.8/81.7
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10.4/-19.5
7.2/81.7

0
Start:=| 0 Tol :=.000001 VM :=kVLLg-100 VM =240
0

XI:= [I,, <« Start

Voq < Start
VLGapc ¢ W-VLLpgc

for n € 1..200
VLNabc <~ At 'VLGABC - Bt'Iabc

VLL < Dv-VLN,

abc abc

forj € 1.3

SL;-1000

1D, “«—

G T VLL

abci

for kel.3
VLLabck - voldk

Error), «
VM

Error,,, < max(Error)

break if Error,,, < Tol

max

Vold <« vLLabc

Ipe < DilDy.

abc

Inpc < di-Lape

Out; < VLN,
Outy < VLL,,.
Outy « L,
Out, < Izpc

Outs < 1Dy,

Outg < n

Out

FIGURE 8.17
Delta—delta Mathcad program.
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429.3/2.4
[ID.., ]=| 2165/-1283 |A
214.5/112.0

Vunba]ance =0.59%

This example demonstrates that a small change in the Mathcad program can
be made to represent the delta—delta transformer connection.

8.11 Open Delta—Open Delta

The open delta—open delta transformer connection can be connected in three
different ways. Figure 8.18 shows the connection using phase AB and BC.

The relationship between the primary line-to-line voltages and the sec-
ondary ideal voltage is given by:

Vas 1 0 0 Vtap
Vee |[=n-] 0 1 0 || Vit
Vea 4 -1 0 V., (8.151)

[VLLasc |=[AV] [VEtabe ]

where
1 0 0
[AV]=n, 0 1 0
-1 -1 O

The last row of the matrix [AV] is the result that the sum of the line-to-line
voltages must be equal to zero.

A

Ce

FIGURE 8.18
Open delta—open delta using phases AB and BC.
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The relationship between the secondary and primary line currents is:

I, , 1 0 0 I,
Ip |=—| =1 0 =1 || I
I n 0o 0 1 I (8.152)

[Lasc = [AI]- [Lape]

where
1 1 0 0
[AIl=[d]=—-] -1 0 -1
oo 0 o1

The ideal secondary voltages are given by:

Vtab = ‘/ab +Ztab : Ia
(8.153)
Vitre =V +Ztpe - 1.

The primary line-to-line voltages as a function of the secondary line-to-line
voltages are given by:

VAB =1 'Vtab =1L "/ab+nt 'Ztab 'Ia

(8.154)
VBC =1 - thc =1 - Vbc +n; - thc : Ic

The sum of the primary line-to-line voltages must equal zero. Therefore, the
voltage V., is given by:

Vea==(Vap+Vec)=—n, - (Vap + 1y - Zt g - L+ Vipe + 10 - Zity, - 1)

(8.155)
Vea==1¢ - Vap =14 - Ve =10 - Ztop, - Iy =10y - Zitpe - I

Equations 8.154 and 8.155 can be put into matrix form to create the backward
sweep voltage equation:

[VLLapc |=[AV]-[VLLape |+ 1% - [ Ztape | - [Labe | (8.156)
where
Zta 0 0
[Ztabc] = O 0 thc

Lty 0 —Zty
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Equation 8.156 gives the backward sweep equation in terms of line-to-line
voltages. In order to convert the equation to equivalent line-to-neutral volt-
ages, the [W] and [Dy] matrices are applied to Equation 8.156.

[VLLAgc] = [A V] . [VLLabC]‘f‘Ht . [Ztabc] . [Iabc]
[VLN apc]=[W]-[VLLasc |=[W]-[AV]-[DV]- [VLN e |+ [W]- 1 - [ Ztabec ] - [Lanc ]
[VLN asc] = [a] [VEN o |+ [B]- [ Lo | (8.157)

where

la]=[W]-[AV]-[Dv]

[be]=[W] 1 - [ Ztane]

The forward sweep equation can be derived by defining the ideal voltages as
a function of the primary line-to-line voltages:

Vit 1 1 0 O Vs
Vtpe |= P 0 1 0 [| Vi
Vi, ‘ -1 -1 0 Vea (8.158)

[Vtae]=[BV]:- [VLLasc ]

where

1 1 0 0

[BV]=—| 0 1 o0
n;

-1 -1 0

The ideal secondary voltages as a function of the terminal line-to-line volt-
ages are given by:

Vit Vb Ztap 0 0 1,
Vtee |= Ve |+ 0 0 Zty T

g " > b (8.159)
Vtca Vca —Zt ab 0 _thc I c

[Vtabc] = [VLLabc ] + [Ztabc] : [Iabc]
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where

Zty, 0 0
[Ztabc ] = 0 O thc
Lty 0 —Zty

Equate Equation 8.158 to Equation 8.159:

[BV]:[VLLasc | = [VLLabe |+ [ Ztasc |- [Tavc ]
(8.160)
[VLLupe ]| =[BV]-[VLLapc | = [Ztapc ] [Lave ]

Equation 8.160 gives the forward sweep equation in terms of line-to-line volt-
ages. As before, the [W] and [D] matrices are used to convert Equation 8.160
to line-to-neutral voltages as shown in Equation 8.161:

[VLLabc] = [BV] : [VLLABC] - [Ztabc] . [Iabc]
[VIN 1= W] [VLL = [W]-[BV]-[Dv] [VEN ape = (W] [ Ze ][]

[VLNabc] = [At] : [VLNABC] - [Bt] . [Iabc]
(8.161)

where
[A]=[W]-[BV]-[Dv]

[Bt] = [W] ’ [Ztabc]

Example 8.9

In Example 8.8, remove the transformer connected between phases C
and A. This creates an open delta—open delta transformer bank. This
transformer bank serves the same loads as in Example 8.8.

Determine the following:

1. The load line-to-line load voltages
2. The secondary line currents

3. The primary line currents

4. The load currents

5. Load voltage unbalance

The exact same program from Example 8.8 is used, since only the val-
ues of the matrices change for this connection. After six iterations, the
results are:
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229.0/28.5
[VLL.]=| 248.2/-86.9
255.4/147.2

529.9/-17.9
[Isc]=| 579.6/-161.1
353.8/82.8

10.2/-17.9
[Lasc]=| 11.2/-161.1

6.8/82.8

436.7/2.7
[ID,.]=| 201.4/-123.8
195.8/110.3

Vunba]ance =6.2%

An inspection of the line-to-line load voltages should raise a question,
as two of the three voltages are greater than the no-load voltages of
240V. Why is there an apparent voltage rise on two of the phases? This
can be explained by computing the voltage drops in the secondary
circuit:

v,=Ztyp-1,=12.6/58.0
Vp =Ztp. - 1. =15.5/149.6

The ideal voltages are:

Vit,» =240/30
Vit =240/ 90

The terminal voltages are given by:

Vi =Vt —v,=229.0/28.5
Ve =Vitpe —v, =248.2/-86.9

Vca = _(Vab + Vbc ) = 2554/1472
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FIGURE 8.19
Voltage phasor diagram.

Figure 8.19 shows the phasor diagrams (not to scale) for the voltages defined
earlier. In the phasor diagram, it is clear that there is a voltage drop on phase
ab and then a voltage rise on phase bc. The voltage on ca is also greater than
the rated 240 V because the sum of the voltages must add to zero.

It is important that when there is a question about the results of a study,
the basic circuit and transformer theory along with a phasor diagram can
confirm that the results are correct. This is a good example of when the
results should be confirmed. Notice also that the voltage unbalance is
much greater for the open delta—open delta than the closed delta—delta
connection.

8.12 Thevenin Equivalent Circuit

This chapter has developed the general matrices for the forward and back-
ward sweeps for most standard three-phase transformer connections. In
Chapter 10, the section for short-circuit analysis will require the Thevenin
equivalent circuit referenced to the secondary terminals of the transformer.
This equivalent circuit must take into account the equivalent impedance
between the primary terminals of the transformer and the feeder source.
Figure 8.20 is a general circuit showing the feeder source down to the sec-
ondary bus.

The Thevenin equivalent circuit needs to be determined at the second-
ary node of the transformer bank. This is basically the same as “referring”
the source voltage and the source impedance to the secondary side of the
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—> [Uyad]

| 3¢ I I
s

[Zsysssc]

@ S I I} I I

[ELG4pc] [VLN gpc] [VLN ] [Vioad]

FIGURE 8.20
Equivalent system.

I VLN, abc] [ I/load]

FIGURE 8.21
Thevenin equivalent circuit.

transformer. The desired “Thevenin equivalent circuit” at the transformer
secondary node is shown in Figure 8.21.

A general Thevenin equivalent circuit can be used for all connections
defined by the forward and backward sweep matrices.

In Figure 8.18, the primary transformer equivalent line-to-neutral voltages
as a function of the source voltages and the equivalent high-side impedance
is given by:

[VLNAgc] = [ELNABC ] - [ZSYSAgc] . [IAgc] (8162)

but: [IAgc] = [dt] : [Iabc]
Therefore:

[VLNAgc] = [ELNAgc] - [ZSYSAgc] . [dt] . [Iabc] (8163)

The forward sweep equation gives the secondary line-to-neutral voltages as
a function of the primary line-to-neutral voltages.

[VLN e ]| =[A]- [VEN asc |- [Be] - [Lave ] (8.164)

Substitute Equation 8.163 into Equation 8.164:
[VLNabc] = [At]-{[ELNABC]_ [ZSYSABC] : [dr] : [Iabc]}_ [Bt] : [Iabc]

[VLNape ] =[Ac]-[ELN apc 1= ([Ae]- [Zsysasc] - [de ]+ [Bi]) - Lo ] (8.165)

[VLNuape | =[En]=[Zwn ] [Lanc ]
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where

[Eth] = [At] : [ELNABC]

[Zan]=([Ac]-[Zsysasc] - [de]+[B:])

The definitions of the Thevenin equivalent voltages and impedances as
given in Equation 8.165 are general and can be used for all transformer con-
nections. Example 8.5 is used to demonstrate the computation and applica-
tion of the Thevenin equivalent circuit.

Example 8.10

The delta—grounded wye transformer bank in Example 8.2 is connected
to a balanced three-phase source of 115kV through a 5-mile section of a
four-wire three-phase line as shown in Figure 8.20.

The phase impedance matrix for the 5-mile long 115kV line is given by:

22040+ j5.6740 0.6415+;2.2730 0.6415+ j1.7850
[Zsysapc] =| 0.6415+;2.2730 2.1430+ 5.8920  0.6130+ j1.9750 Q
0.6415+;1.7850  0.6130+ j1.9750  2.2430+ j5.8920

For the unbalanced load in Example 8.2 using a Mathcad program, the
load line-to-neutral voltages and secondary and primary currents are
computed as:

6477.3/ -66.7
[Viad]=| 6764.6/176.1
6691.9/53.8

262.5/-92.6
[Luc]=| 177.4/1443
224.2/35.6

24.3/-70.1
[Lasc]=| 20.5/-175.2
27.4/63.7
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The Thevenin equivalent voltages and impedances referred to the sec-
ondary terminals of the transformer bank are:

7200/ —60
[Ethy.]=[A:]-[ELNasc]=| 7200/180 |V
7200/60

[Zthae | =[Ar ] [Zsysasc |- [de |+ B ]

0.2328+;2.6388  —-0.0012-;0.0024  -0.0012-0.0030
[Zthy]=| —0.0012-;0.0024  0.2328+;2.6379  -0.0012-;0.0020 |Q
-0.0012-0.0030  -0.0012-;0.0020  0.2328+ ;j2.6384

The Thevenin equivalent circuit for this case is shown in Figure 8.18.

It is always good to confirm the Thevenin equivalent circuit by using
the solved-for-load currents and then the Thevenin equivalent circuit to
compute the load voltage.

[Viesd | = [ Ethape || (Zthape + Zline,se) |- [Tve ]

6477.3/—66.7
[Viead]=|  6464.6/176.1
6691.9/53.8

The Mathcad program was modified to match the equivalent system in
Figure 8.18. The load voltages and load currents were computed. This
example is intended to demonstrate that it is possible to compute the
Thevenin equivalent circuit at the secondary terminals of the trans-
former bank. The example shows that using the Thevenin equivalent
circuit and the original secondary line currents, the original equivalent
line-to-neutral load voltages are computed. The major application of the
Thevenin equivalent circuit will be in the short-circuit analysis of a dis-
tribution that will be developed in Chapter 10.

8.13 Summary

In this chapter, the forward and backward sweep matrices have been devel-
oped for seven common three-phase transformer bank connections. For
unbalanced transformer connections, the derivations were limited to just
one of at least three ways that the primary phases could be connected to the
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transformer bank. The methods in the derivation of these transformer banks
can be extended to all possible phasing.

One of the major features of the chapter has been to demonstrate how the
forward and backward sweep technique (ladder) is used to analyze the oper-
ating characteristics of the transformer banks. Several Mathcad programs
were used in the examples to demonstrate how the analysis is mostly inde-
pendent of the transformer connection by using the derived matrices. This
approach was first demonstrated with the line models and then continued to
the voltage regulators and now the transformer connections. In Chapter 10,
the analysis of a total distribution feeder will be developed using the for-
ward and backward sweep matrices for all possible system components.

Many of the examples demonstrated the use of a Mathcad program for the
analysis. An extension of this is the use of the student version of the WindMil
distribution analysis program that can be downloaded as explained in the
Preface of this text. When the program is downloaded, a “User’s Manual”
will be included. The User’s Manual serves two purposes:

¢ A tutorial on how to get started using WindMil for the first-time user

¢ Included will be the WindMil systems for many of the examples in
this and other chapters.

It is highly encouraged that the program and manual be downloaded.

Problems

8.1 A three-phase substation transformer is connected delta—grounded wye
and rated:

5000kVA, 115kV delta—12.47kV grounded wye, Z = 1.0 + j7.5%

The transformer serves an unbalanced load of:

Phase a: 1384.5kVA, 89.2% lagging power factor at 6922.5/=33.1V
Phase b: 1691.2kVA, 80.2% lagging power factor at 6776.8/=153.4V
Phase c: 1563.0kVA, unity power factor at 7104.7/859V

a. Determine the forward and backward sweep matrices for the
transformer.

Compute the primary equivalent line-to-neutral voltages.
Compute the primary line-to-line voltages.
Compute the primary line currents.

Compute the currents flowing in the high-side delta windings.

- 0o & n T

Compute the real power loss in the transformer for this load
condition.
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8.2 Write a simple Mathcad or MATLAB® program using the ladder technique
to solve for the load line-to-ground voltages and line currents in the bank of
8.1 when the source voltages are balanced three-phase of 115kV line-to-line.

8.3 Create the system in WindMil for Problem 8.2.

8.4 Three single-phase transformers are connected in delta—grounded wye
serving an unbalanced load. The ratings of three transformers are:

Phase A-B: 100kVA, 12,470—120V, Z =1.3 + j1.7%
Phase B-C: 50kVA, 12,470—120V, Z =11+ j1.4%

Phase C-A: same as Phase B—C transformer

The unbalanced loads are:

Phase a: 40kVA, 0.8 lagging power factor at V =117.5/=32.5V
Phase b: 85kVA, 0.95lagging power factor at V =115.7/-147.3V
Phase c: 50kVA, 0.8 lagging power factor at V = 117.0/95.3V

a. Determine the forward and backward sweep matrices for this
connection.

. Compute the load currents.

. Compute the primary line-to-neutral voltages.

. Compute the primary line-to-line voltages.

. Compute the primary currents.

. Compute the currents in the delta primary windings.

Q -~ 0 & n T

. Compute the transformer bank real power loss.

8.5 For the same load and transformers in Problem 8.4, assume that the pri-
mary voltages on the transformer bank are balanced three-phase of 12,470V
line-to-line. Write a Mathcad or MATLAB® program to compute the load
line-to-ground voltages and the secondary line currents.

8.6 For the transformer connection and loads in Problem 8.4, build the sys-
tem in WindMil

8.7 The three single-phase transformers in Problem 8.4 are serving an unbal-
anced constant impedance load of:

Phase a: 0.32 +j0.14 Q
Phase b: 0.21 +j0.08 Q
Phase c: 0.28 +/0.12 Q
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The transformers are connected to a balanced 12.47kV source.

a. Determine the load currents.

b. Determine the load voltages.

c. Compute the complex power of each load.

d. Compute the primary currents.

e. Compute the operating kVA of each transformer.

8.8 Solve Problem 8.7 using WindMil.
8.9 A three-phase transformer is connected wye—delta and rated as:
500kVA, 4160—240V, Z = 1.1 + j3.0%

The primary neutral is ungrounded. The transformer is serving a balanced
load of 480kW with balanced voltages of 235V line-to-line and a lagging
power factor of 0.9.

a. Compute the secondary line currents.

b. Compute the primary line currents.

c. Compute the currents flowing in the secondary delta windings.
d. Compute the real power loss in the transformer for this load.

8.10 The transformer in Problem 8.9 is serving an unbalanced delta load of:

S =150kVA, 0.95 lagging power factor
S, =125kVA, 090 lagging power factor
S..=160kVA, 0.8 lagging power factor

The transformer bank is connected to a balanced three-phase source of
4160V line-to-line.

a. Compute the forward and backward sweep matrices for the trans-
former bank.

b. Compute the load equivalent line-to-neutral and line-to-line
voltages.

. Compute the secondary line currents.

. Compute the load currents.

. Compute the primary line currents.

. Compute the operating kVA of each transformer winding.

QR -~ O & n

. Compute the load voltage unbalance.
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8.11 Three single-phase transformers are connected in an ungrounded
wye—delta connection and serving an unbalanced delta-connected load. The
transformers are rated:

Phase A: 15kVA, 2400240V, Z =13 +j1.0%
Phase B: 25kVA, 2400240V, Z =11 +j1.1%
Phase C: Same as phase A transformer

The transformers are connected to a balanced source of 4.16kV line-to-line.
The primary currents entering the transformer are:

1,=4.60 A, 095 lagging power factor
I;=692 A, 0.88 lagging power factor
1-=5.37 A, 0.69 lagging power factor

a. Determine the primary line-to-neutral voltages. Select V,; as
reference.

. Determine the line currents entering the delta-connected load.
. Determine the line-to-line voltages at the load.
. Determine the operating kVA of each transformer.

o &n T

. Is it possible to determine the load currents in the delta-connected
load? If so, do it. If not, why not?

8.12 The three transformers in Problem 8.11 are serving an unbalanced delta-
connected load of:

S =10kVA, 095 lagging power factor
S, =20kVA, 090 lagging power factor
S..=15kVA, 0.8 lagging power factor

The transformers are connected to a balance 4160 line-to-line voltage source.
Determine the load voltages, and the primary and secondary line currents
for the following transformer connections:

e Ungrounded wye—delta connection
¢ Grounded wye—-delta connection

* Open wye-open delta connection where the transformer connected
to phase C has been removed

8.13 Three single-phase transformers are connected in grounded wye-
grounded wye and serving an unbalanced constant impedance load. The
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transformer bank is connected to a balanced three-phase 12.47 line-to-line
voltage source. The transformers are rated:

Phase A: 100kVA, 7200-120V, Z =09 +j1.8%
Phase B and Phase C: 37.5kVA, 7200-120V, Z =11 +j14 %

The constant impedance loads are:

Phase a: 0.14 + j0.08 Q
Phase b: 0.40 + j0.14 Q
Phase c: 0.50 + j0.20 Q

a. Compute the generalized matrices for this transformer bank.
b. Determine the load currents.

c. Determine the load voltages.

d. Determine the kVA and power factor of each load.

e. Determine the primary line currents.

f. Determine the operating kVA of each transformer.

8.14 Three single-phase transformers are connected in delta—delta and are
serving a balanced three-phase motor rated 150 kVA, 0.8 lagging power fac-
tor and a single-phase lighting load of 25kVA, 0.95 lagging power factor con-
nected across phases a—c. The transformers are rated:

Phase A-B: 75kVA, 4800-240V, Z =1.0 +j1.5%
Phase B—-C: 50kVA, 4800240V, Z =1.1 +j1.4%
Phase C-A: same as Phase B-C

The load voltages are balanced three-phase of 240V line-to-line.

Determine the forward and backward sweep matrices.
Compute the motor input currents.
Compute the single-phase lighting load current.

a.

b.

c.

d. Compute the primary line currents.

e. Compute the primary line-to-line voltages.
f.

Compute the currents flowing in the primary and secondary delta
windings.
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815 In Problem 814, the transformers on phases A-B and B-C are
connected in an open delta—open delta connection and serving an unbal-
anced three-phase load of:

Phase a-b: 50kVA at 0.9 lagging power factor
Phase b—c: 15kVA at 0.85 lagging power factor
Phase c—a: 25kVA at 0.95 lagging power factor

The sourceline-to-line voltages are balanced at 4800 V line-to-line. Determine:

* The load line-to-line voltages
¢ The load currents
® The secondary line currents

e The primary line currents

WindMil Assignment

Use System 4 to build this new System 5. A 5000kVA delta—grounded wye
substation transformer is to be connected between the source and Node 1.
The voltages for the transformer are 115kV delta to 12.47kV grounded wye.
The impedance of this transformer is 8.06% with an X/R ratio 8. By install-
ing this substation transformer, be sure to modify the source so that it is
115,000V rather than the 12.47V. Follow the steps in the User’s Manual on
how to install the substation transformer.

1. When the transformer has been connected, run Voltage Drop.
2. What are the node voltages at Node 2?
3. What taps has the regulator gone to?

4. Why did the taps increase when the transformer was added to the
system?
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9

Load Models

The loads on a distribution system are typically specified by the complex
power consumed. With reference to Chapter 2, the specified load will be the
“maximum diversified demand.” This demand can be specified as kVA and
power factor, kW and power factor, or kW and kvar. The voltage specified
will always be the voltage at the low-voltage bus of the distribution substa-
tion. This creates a problem because the current requirement of the loads
cannot be determined without knowing the voltage. For this reason, some
form of an iterative technique must be employed. An iterative technique is
developed in Chapter 10 that is called the “ladder” technique or the “back-
ward/forward sweep” technique.

Loads on a distribution feeder can be modeled as wye-connected or delta-
connected. The loads can be three-phase, two-phase, or single-phase with
any degree of unbalance and can be modeled as:

¢ Constant real and reactive power (constant PQ)
e Constant current
¢ Constant impedance

¢ Any combination of the above

The load models developed are to be used in the iterative process of a power-
flow program, where the load voltages are initially assumed. One of the
results of the power-flow analysis is to replace the assumed voltages with
the actual operating load voltages. All models are initially defined by a com-
plex power per phase and an assumed line-to-neutral voltage (wye load) or
an assumed line-to-line voltage (delta load). The units of the complex power
can be in volt-amperes and volts or per-unit volt-amperes and per-unit volt-
ages. For all loads, the line currents entering the load are required in order to
perform the power-flow analysis.

9.1 Wye-Connected Loads

Figure 9.1 is the model of a wye-connected load.
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FIGURE 9.1
Wye-connected load.

The notation for the specified complex powers and voltages are as follows:

Phase a:|S,|/0,=F,+jQ, and |V,,|/3, 9.1
Phase b Z|5b| /& =P, + ]Qb and ‘Vbn‘@ (92)
Phasec:|S.[/8.=P.+jQ. and [V|/3. 9.3)

9.1.1 Constant Real and Reactive Power Loads

The line currents for constant real and reactive power loads (PQ loads) are
given by:

s.) _ s
IL, = a = 5,—0,=|IL,|/a,
van) AR
So ) ISl
IL, = = S, — 0, =|IL,| /0. 04
b Vbn) \Vbn\/b b =|ILy| /0
S.) _Isd
IL. = < = 0. —0.=|IL.|/o.
vm] v,/ =0 =1L/ /o

In this model, the line-to-neutral voltages will change during each iteration
until convergence is achieved.
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9.1.2 Constant Impedance Loads

The “constant load impedance” is first determined from the specified com-
plex power and assumed line-to-neutral voltages.

Vanl* _ [Vin!”

Z,= = /ea =\Z, /ea
s, |Sa‘ | ‘
|Vbn 2 ‘Vbn‘z

b S, ’51;‘ /J ‘ b‘/J

Vanl* _ Vel

Z.= = 0. =|Z.|/6.
s s e

The load currents as a function of the “constant load impedances” are given by:

Vor _ [Van|
1L, = 5,-0,=|IL,
z, |z, 2= lLl/o
Vbn ‘Vbn‘
I, = O, — 0, =|IL 9.6
b Z ‘Z ‘/ b ‘ b‘/ab 9.6)
V. ‘Vm‘
IL.=—= 0. —0.=|IL.|/ 0.

In this model, the line-to-neutral voltages will change during each iteration,
but the impedance computed in Equation 9.5 will remain constant.
9.1.3 Constant Current Loads

In this model, the magnitudes of the currents are computed according
to Equations 9.4 and then held constant while the angle of the voltage (5)

changes, resulting in a changing angle on the current so that the power fac-
tor of the load remains constant.

IL, =|IL,| /8, -8,
1L, =|IL,| /8, — 8, 97)
IL. =|IL.| /3. -6,

where

abE = line-to-neutral voltage angles
0,,. = power factor angles
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9.1.4 Combination Loads

Combination loads can be modeled by assigning a percentage of the total
load to each of the three aforementioned load models. The current for the
constant impedance load is computed assuming the nominal load voltage.
In a similar manner, the current for the constant current load is computed
assuming the nominal load voltage. All load currents will change as the load
voltage changes in the iterative process. The total line current entering the
load is the sum of the three components.

Example 9.1

A combination load is served at the end of a 10,000t long, three-phase
distribution line. The impedance of the three-phase line is:

0.8667 +j2.0417  0.2955+;0.9502  0.2907 + ;j0.7290
[Zae]=| 0.2955+0.9502  0.8837+;1.9852  0.2992+ j0.8023
0.2907+;0.7290  0.2992+;0.8023  0.8741+ ;2.0172

The complex powers of a combination wye-connected load at nominal
voltages are:

San =2240 at 0.85 power factor
Spka =2500 at 0.95 power factor
Sen =2000 at 0.90 power factor

S, 1904.0+ j1180.0
[Sac]=| Sen |5| 2375.0+j780.6 |kVA
Sen 1800.0+ j871.8

The load is specified to be 50% constant complex power, 20% constant
impedance, and 30% constant current. The nominal line-to-line voltage
of the feeder is 12.47kV.

a. Assume the nominal voltage and compute the component of load
current attributed to each of the loads and the total load current.
The assumed line-to-neutral source voltages at the start of the
iterative routine are:

7200/0
[ELN,.]=| 7200/-120 |V

7200/120
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The complex powers for each of the loads are:
Complex power load:

952.0+7590.0
[SP]=[Suwc]-0.5=| 1187.5+390.3
900.0+ ;435.9
Constant impedance load:
380.8+ j236.0
[SZ]=[Swc]-02=| 475.0+j156.1
360.0+ j174.4
Constant current load:
571.2+ j354.0

[SI]=[Sasc]-0.3=| 7125+ 2342
540.0+ j261.5

The currents due to the constant complex power computed at
nominal voltages are:

.| 155.6/-318
Ipqi = (W} =| 1736/-1382 |A
' 138.9/94.2

The constant impedances for that part of the load are computed as:

, 98.4+ j61.0
z, :752/?\?‘ -| 985+j334 |a
10000 664 j56.5

For the first iteration, the currents due to the constant impedance
portion of the loads are:

62.2/-31.8
17, =(VLNI')= 69.4/-1382 |A
! 55.6/94.2
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The magnitudes of the constant current portion of the loads are:

* 93.3
L1
= (00 a4
i 83.3

The contribution of the load currents due to the constant current
portion of the loads is:

93.3/-31.8
II;=IM;/5;-8; = 1042/—1& A
83.3/94.2

The total load currents are the sum of the three components:

311.1/-31.8
(Lol =[Ipq |+ [12] + [IT])=| 3472/-1382 |A
277.8/94.2

To check that the computed currents give the initial complex
power:

. 1904.0+ j1180.0
Sabe: = VIN: Labes _ | 37504 j780.6

: 1000 .
1800.0+ j871.8

This gives the same complex powers that were given for nominal
load voltages.

b. Determine the currents at the start of the second iteration. The
voltages at the load after the first iteration are:

[VLN|=[ELN]~[Zabc ] [Lac ]

6702.2/-1.2
[VLN]=| 6942.8/-1235 |V
7006.5/118.4

The steps are repeated with the exceptions that the impedances of
the constant impedance portion of the load will not be changed
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and the magnitude of the currents for the constant current portion
of the load change will not change.
The constant complex power portion of the load currents is:

.| 1e71/-331
Ipg; :(5131"1000] ~| 1800/-1417 |A

VLN;
142.7/92.5

The currents due to the constant impedance portion of the load are:

57.9/-33.1
1z, - (VLN) -| 670/-1417 |A
1 53.1/92.5

The currents due to the constant current portion of the load are:

93.3/-33.1
I, =1IM;/8;, -0, =| 1042/-141.7 |A
83.3/92.5

The total load currents at the start of the second iteration will be:

318.4/-33.1
[Loc]=[Ipq] +[IZ]+[IT] =| 351.2/-141.7 |A
280.1/92.5

The new complex powers of the combination loads are:

. 1813.7 + j1124.0
be = VIN: Lo _ | 93160+ j761.3

' 1000 .
1766.4 + j855.5

Because the load voltages have changed, the total complex power
has also changed.

Observe how the currents have changed from the original currents. The
currents for the constant complex power loads have increased because
the voltages are reduced from the original assumption. The currents
for the constant impedance portion of the load have decreased because
the impedance stayed constant but the voltages are reduced. Finally,
the magnitude of the constant current portion of the load has remained
constant. Again, all three components of the loads have the same phase
angles because the power factor of the load has not changed.

331
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9.2 Delta-Connected Loads

The model for a delta-connected load is shown in Figure 9.2.
The notation for the specified complex powers and voltages in Figure 9.2
are as follows:

Phaseab :|S.p|/0a = Pop+ jQop  and V| /8 9.8)
Phase bc :|Spc|/Opc = Poc + jQpe  and V| /8pc 9.9)
Phaseca:|Sq|/0c =Pu+jQu and [Va|/8a (9.10)

9.2.1 Constant Real and Reactive Power Loads

The currents in the delta-connected loads are:

S.) IS,
ILab=( b] | b‘/sab—eaﬁ\mab\/o«ab

Vo ) V|
Spc ) _ [Seel
IL,. = = Ope — Ope = ILpe| /Olpe .
b (Vbc] ‘Vbc|/b pe =|ILpe| /0, (9.11)

Su) _ISal
ILca = = = 60’1 - eca = ILca Qe
(%) = Lall

In this model, the line-to-line voltages will change during each iteration,
resulting in new current magnitudes and angles at the start of each iteration.

>
IL,—>
< Sab
>
Sca S bc
IL, 1Ly
—>

FIGURE 9.2
Delta-connected load.
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9.2.2 Constant Impedance Loads

The “constant load impedance” is first determined from the specified
complex power and line-to-line voltages:

Vael” _ Vs’
Zap = = ea = Za ea
b Sab ‘Sab‘ / b ‘ b‘/ b
|VLbC‘2 |Vb6‘2
Lpe = = Obc =|Zbc|/Bbe 9.12
b 5, ‘Sbc‘/b | Zbe| /80 9.12)
2 2
an = “/Ca* = “/Ca‘ /eca :|an‘/eca

Sca ‘Sca‘

The delta load currents as a function of the “constant load impedances” are:

Vo _ |Vas|
IL,, = = O — 0. =1L, a
b Z ‘Zab|/ b b ‘ b‘/ab
Vb ‘Vbc‘
I, =—"5= Ope —Ope =1Ly, "
b Zoe | Zbc‘/ be = Obe =|ILec| /O 9.13)
Ve _ Vel
ILca =—2= 8&3 _eca = ILca ca
Z., "z, P ba = el O

In this model, the line-to-line voltages will change during each iteration
until convergence is achieved.

9.2.3 Constant Current Loads

In this model, the magnitudes of the currents are computed according
to Equations 9.11 and then held constant while the angle of the voltage
(6) changes during each iteration. This keeps the power factor of the load
constant.

ILab = ‘ILab‘ /Sab - eab
IL, = ‘ILbc‘ /Sbc =0 (914)

ILCa = ‘ILbca‘ /Sca - eca
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9.2.4 Combination Loads

Combination loads can be modeled by assigning a percentage of the total
load to each of the three aforementioned load models. The total delta current
for each load is the sum of the three components.

9.2.5 Line Currents Serving a Delta-Connected Load

The line currents entering the delta-connected load are determined by apply-
ing Kirchhoff’s Current Law at each of the nodes of the delta. In matrix form,
the equations are:

I, 1 0 -1 1L,
I b = -1 1 0 : ILbc
I 0 -1 1 IL., ©.15)

[Iabc] = [DI] : [ILabc]

9.3 Two-Phase and Single-Phase Loads

In both the wye- and delta-connected loads, single-phase and two-phase
loads are modeled by setting the currents of the missing phases to zero. The
currents in the phases present are computed using the same appropriate equa-
tions for constant complex power, constant impedance, and constant current.

9.4 Shunt Capacitors

Shunt capacitor banks are commonly used in distribution systems to help
in voltage regulation and to provide reactive power support. The capacitor
banks are modeled as constant susceptances connected in either wye or delta.
Similar to the load model, all capacitor banks are modeled as three-phase
banks with the currents of the missing phases set to zero for single-phase
and two-phase banks.

9.4.1 Wye-Connected Capacitor Bank

The model of a three-phase wye-connected shunt capacitor bank is shown
in Figure 9.3.
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I Cu% l"—

c

ij Vm
C——> ", B '
bn
+
c,——>

FIGURE 9.3
Wye-connected capacitor bank.

The individual phase capacitor units are specified in kvar and kV.
The constant susceptance for each unit can be computed in Siemens. The
susceptance of a capacitor unit is computed by:

kvar

- Kxvar 9.16
kV2, -1000 016

c

With the susceptance computed, the line currents serving the capacitor bank
are given by:

IC,= jBa “Vian
IC, = jBy, - Vin 917)
ICC = ]Bc "/Cn

9.4.2 Delta-Connected Capacitor Bank

The model for a delta-connected shunt capacitor bank is shown in Figure 9.4.

The individual phase capacitor units are specified in kvar and kV.
For the delta-connected capacitors, the kV must be the line-to-line voltage.
The constant susceptance for each unit can be computed in Siemens. The
susceptance of a capacitor unit is computed by:

kvar

= 9.18
kV/; -1000 18)

c
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16—
ICyy ——>
R |(
c— I\ Bu
ca
1& By, ICy,
c—>

FIGURE 9.4
Delta-connected capacitor bank.

With the susceptance computed, the delta currents serving the capacitor
bank are given by:

ICab = jBa . ‘/ab
ICy = jBy - Ve 9.19)
ICca = ]BC : Vca

The line currents flowing into the delta-connected capacitors are computed

by applying Kirchhoff’s Current Law at each node. In matrix form, the
equations are:

IC, 1 0 -1 IC,,
Ic, =] -1 1 0 || ICh (9.20)
IC. 0o -1 1 IC,,

9.5 Three-Phase Induction Machine

The analysis of an induction machine (motor or generator) when operat-
ing with unbalanced voltage conditions has traditionally been performed
using the method of symmetrical components. In this section, the symmetri-
cal component analysis method will be used to establish a base line for the
machine operation. Once the sequence currents and voltages in the machine
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have been determined, they are converted to the phase domain. A direct
analysis of the machine in the phase domain is introduced and is employed
for the analysis of both motors and generators.

9.5.1 Induction Machine Model

The equivalent positive and negative sequence networks for an induction
machine can be represented by the circuit in Figure 9.5. Because all induction
machines are connected either in an ungrounded wye or in delta, there will
not be any zero sequence currents and voltages; therefore, only the positive
and negative sequence networks are analyzed. In the circuit in Figure 9.5, the
power consumed by the resistors (RL;) represents the electrical power being
converted to shaft power.
In Figure 9.5:

i =1 for the positive sequence circuit

i =2 for the negative sequence circuit
The given parameters for the induction machine are assumed to be:

kVA; = HP = three phase rating

KVA, = kVA,

= single-phase rating
Vi rated line-to-line voltage

Vin = &: rated line to neutral voltage

NG

Zs=Rs+ jXs: stator sequence impedance in per-unit
Zr = Rr+ jXr: rotor sequence impedance in per-unit

Zm= jXm: magnetizing impedance in per-unit

FIGURE 9.5
Sequence network.
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The impedances must be converted to actual impedances in ohms. Two sets
of base values are needed. The impedances in ohms are computed for the
wye and delta connections by:

Wye Delta
Iv,,,, = KVAi-1000 ID,,,, = KVAi-1000
VLN VLL
V4 Ybase = Vi ZD, base = Vi (921)
I Ybase 1D, base
ZYQ =Zpu 'ZYbase ZDQ =Zpu 'ZDbase

Typically, the sequence networks are assumed to be a wye connection. When
the motor is delta-connected, the computation for the impedances inside the
delta is shown in Equation 9.21. These delta impedances are equal and can be
converted to an equivalent wye by dividing by three. As it turns out, these
values of the machine impedances in ohms will be the same as that com-
puted using the wye-connected base values.

ZYo= 9.22)

3

Example 9.2

A three-phase induction machine is rated:

150 kV A, 480 line-to-line volts, Py =3.25 kW
Z5py =0.0651+j0.1627, Zr,, =0.0553+ j0.1139, Zm,,, = j4.0690

Determine the wye and delta impedances in ohms.
Set base values:
kVApase =150

kVA,,,. = % =50

kVLLpsse = 480 =048
1000
KVLN e = KVLLouse =0.2771

NG
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Base values for wye connection:

kVAlpsse

=180.42
k VLN, base

I Ybase =

kVL -1
ZYbase = Nbase 0700 =1.536
I Ybase

k VLLbase

2
-1000
KVLN pysc? -1000_( V3 J

Z Ybase =

kVAlbase - kVAbase
3

_ kVLL,,> 1000

ZY pase = =1.536
> kVAbase

Wye-connected impedances in ohms:

Z5=Z8py + ZYpase = 0.1+ j0.2499 Q
Zr = Zrpy - ZYpase = 0.0849+ j0.175 Q

Zm = Zmy, - ZY e = j6.2501 Q

Base values for delta connection:

1Dy = % =104.1667

kVLLy,
ZDhose = M =4.608
ID base
ZDh = kVLLE,. 1000  kVLLZ,. - 1000
base 1( VAl base k VAbase
3
2
ZDpoe =3 M =3-ZYee

k VAbase

Delta-connected impedances in ohms:
ZDg = Z5py - ZDpase = 0.3+ j.7497 Q
ZD, = Zrpy - ZDpase =0.2548+ j0.5249 Q

ZDy = Zmyp, - ZDpase = 18.7504 Q

339
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Note that converting the delta impedances to wye impedances in ohms
results in the same values by using the wye base values.

Zs, = % =R, +jX, =0.1+ j0.2499 O

Zr, = Z? =R, +X, =0.0849+ j0.175 Q
Zm, = ng = X = j6.2501 Q
1

Ym; =——=-j0.16S
Zm;

1

where
i=1 positive sequence

i=2 negative sequence

9.5.2 Symmetrical Component Analysis of a Motor

In Figure 9.5, the motor sequence resistances are given by:

RL =175 R 9.23)
S;

where

ns —n,

positive sequence slip = 5, =
S

negative sequence slip = s, =2 -5

. 120- f
n, =synchronous speed in rpm = ——

p
f =synchronous speed

p =number of poles

n, =rotor speed in rpm

Note that the negative sequence load resistance will be a negative value that
will lead to a negative component of shaft power.

The positive and negative sequence networks can be analyzed individually,
and then sequence currents and voltages are converted to phase components.
At this point, it is assumed that the stator line-to-line voltages are known.
When only the magnitudes of the line-to-line voltages are known, the Law
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of Cosines is used to establish the angles on the voltages. The equivalent line-
to-neutral voltages are needed for the analysis of the sequence networks. The
line-to-neutral voltages are computed by:

Vb
[VLLope|=| Ve
Vea
(9.24)
Van
[VLN abc] = [W] ’ [VLLabc] =l Vin
Ven
where
1 2 1 0
(W] =§- 0 2 1
1 0 2

The computed line-to-neutral voltages are converted to sequence
voltages by:

0
[V, = [A]_l [VLNape]=| Vs (9.25)
V52
where
1
[A]= a a
a 32

a=1/120

With the stator sequence voltages computed, the circuits of Figure 9.5 are
analyzed to compute the sequence stator and rotor currents. The sequence
input impedances for i =1 and 2 are:

Zm; -(Zr; + RL;)

Zini = ZSI‘ +
Zm,- + ZI'I + RL,

9.26)

The stator input sequence currents are:
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ISI' = &
ij
0 9.27)
[IS()]Z ] = ISl
ISZ

The rotor currents and voltages are computed by:

Vm,— :VSj _ZSi . ISI'

Imi = ij
ij
II'I = ISI‘ — Imi
Vr, =Vm,; - Zr; - Ir; 9.29)
or: Vr;=RL; Ir;
0
[Ifolz] =| In
i Irz
0
[Vrmz] = Vrl
Vrz

After the sequence voltages and currents have been computed, they are con-
verted to phase components by:

[18abe | =[A] [Is012]
[Irape | = [A]- [Ion2 ] (9.29)
[Viae | =[A] - [Vinz ]

The various complex powers are computed by:
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Ve abc; I abci
SSabc.= be (SbX)
! 1000
3
Sstotal = zssabck = Pstota] + jQStotaI kW+jkV£:11‘
P 9.30)
Vi abc; * I abc;
Sy = Ve (L)
1000
3
SI}otaI = zsrtotalk = L converted kW
k=1
Example 9.3

The motor of Example 9.2 is operating with a positive sequence slip of
0.035 and line-to-line input voltages of:

480/0
[VLL.]=| 490/-121.4

475/118.3

Compute:

* Stator and rotor currents
* Load output voltages
¢ Input and output complex powers

The line-to-neutral input phase and sequence voltages are:

273.2/-30.7

[VSase | = [W]-[VLLupe ] =| 281.9/-150.4
279.1/87.9

0
278.1/-31.0

[Vsoz]=[A]"[Vsape ] =
5.1/130.1

The positive and negative sequence stator voltages are:
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278.1/-31.0
| 5.1/130.1

The input stator sequence impedances are:

For: k=1and 2
. 2.1090+ j1.1786
Zink=Z5+Zm (Zr+RLk): ]
Zm+ Zr+ RL; 0.1409 + j0.4204

The positive and negative sequence stator, magnetizing, and rotor
currents are:

Vee 115.1/-60.2
Isp = — 2k = —=
Zing 11.5/58.6
e ve g 254.7/-35.4
MU= VSem 28 8= 5 0/135.1

Vm, _[ 40.8/-1254 }

Im, = =
M m 0.3/45.1
. 104.7/-39.6
=TIs, — Im, =
Tl = Ak At 11.2/59.0
The sequence current arrays are:
0 0
[soe] =| I |=| 115.1/-60.2
Is, 11.5/58.6
0 0
2] =| In |= 104.7/-39.6
I 11.2/59.0

The stator and rotor phase currents are:
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110.0/-55.0
[Isabc] = [A] . [15012] = 1266/1797
109.6/54.6

103.7/-33.4
[Itne] = [A]- [Irn2] =| 115.2/-161.6
96.2/76.3

The rotor sequence and phase voltages are:

245.2/-39.6
VI'k :Il'k RLk =
0.5/-121.0
0
[Vi]=| 245.2/-39.6
0.5/-121.0
245.3-39.7
[V ] = [A] [Vioa ] =|  244.7/-159.5
245.5/80.5

The input and output complex powers are:

Fori=1,2,3
e ey | ZArin24
SSabe, = Voane, (Bue) _| 309, j17.8
: 1000 :
25.6+ j16.8

3
St = ) Stk =83.87+ j47.00 kW + jkvar

k-1
. 253+ j2.8
Sr. = Vi (T ) _ 282+ j1.0
e 1000 :
236+ j1.7

3
Stige = D Stivek =77.03 kW

k=1

I)loss = Re(sstotal ) - Re(SI}om ) =6.84 kW

345
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9.5.3 Phase Analysis of an Induction Motor [1]

In the previous section, the analysis starts by converting known phase
voltages to sequence voltages. These sequence voltages are then used to
compute the stator and rotor sequence currents along with the rotor output
sequence voltages. The sequence currents and voltages are then converted
to phase components. In the following sections, methods will be developed
where the total analysis is performed only using the phase domain.

When the positive sequence slip (s;) is known, the input sequence
impedances for the positive and negative sequence networks can be
determined as:

(jXm;)- (Rr; + RL; + jXr;)
Rr; + RL; + j (Xm; + Xr;)

ZMi = RSI' + jXS,‘ + (931)

Once the input sequence impedances have been determined, the analysis
of an induction machine operating with unbalance voltages requires the
following steps:

Step 1: Transform the known line-to-line voltages to sequence line-to-
line voltages.

Vab, 1 1 1 1 Vab
Va b1 = g 1 a a2 : Vbc (932)
Va b2 1 a2 a Vca

In Equation 9.32, Vab, = 0 because of Kirchhoff’s Voltage Law (KVL).
Equation 9.32 can be written as:

[VLL12]=[A]™" - [VLLac] (9.33)

Step 2: Compute the sequence line-to-neutral voltages from the
line-to-line voltages:

When the machine is connected either in delta or in ungrounded wye,
the zero sequence line-to-neutral voltage can be assumed to be zero.
The sequence line-to-neutral voltages as a function of the sequence
line-to-line voltages are given by:

Vany,=Vab, =0

Van, =t" - Vab, (0:39)

Van, =t -Vab,
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where

1
t=—/30
g/

Equations 9.34 can be put into matrix form:

Van, 1 0 0 Vab,
Van, |=| 0 + 0 || Vab 9.35)
Van, 0 0 ¢t Vab,

[VLN(nz] = [T] ’ [VLLmz ]

where

1 0 0
[T]= o ¢ o
0 0 ¢

Step 3: Compute the sequence line currents flowing into the machine:

Iao =0
_ Vanl
la= M, (9.36)
Tay = Van,
ZM,

Step 4: Transform the sequence currents to phase currents:

[IabC] = [A] : [IOIZ] (937)
where
1 1 1
[Al=] 1 & a
1 a a°
a=1/120

The four steps outlined previously can be performed without actually

computing the sequence voltages and currents. The procedure basically
reverses the steps.
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Define:
YMI‘ = 1
ZM;
The sequence currents are:
Io = O
Il = YMl . Van1
Iz = YMZ . Vanz

Since I, and Vab, are both zero, the following relationship is true:

IO =Vab0 =0

Equations 9.39 and 9.40 can be put into matrix form:

I, 1 0 0 Van,
Il = 0 YM] 0 . Van 1
I 0 0 YM, Van,

[1012] = [YMou] . [VLN012 ]

where

1 0 0
[YMOIZ ] = 0 YMl O
0 0 YM,

Substitute Equation 9.35 into Equation 9.41:
[Lo12]=[YMo12]-[T]-[VLLo2 ]
From symmetrical component theory:
[VLLy2]=[A]™" - [VLLos.]

[Iabc] :[A]'[Imz]

(9.38)

(9.39)

(9.40)

(941)

942)

(943)

(9.44)
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Substitute Equation 943 into Equation 9.42, and substitute the resultant
equation into Equation 9.44 to get:

[Lbe]=[A]l [YMoo]- [T]-[A]" - [VLLob ] (9.45)
Define:
[YM e 1=[A]- [YMoo]- [T]-[AT” (©.46)
Therefore:
[Labe 1= [YMape ] [VLLope ] 047)

The induction machine “phase frame admittance matrix” [YM .| is defined
in Equation 9.46. Equation 9.47 is used to compute the input phase currents of
the machine as a function of the phase line-to-line terminal voltages. This is
the desired result. Recall that [YM ;.| is a function of the slip of the machine,
so that a new matrix must be computed every time the slip changes.

Equation 9.47 can be used to solve for the line-to-line voltages as a function
of the line currents by:

[VLLabc ] = [ZMabc ] : [Iabc] (948)
where
[ZMabc ] = [YMabc ]71

As was done in Chapter §, it is possible to replace the line-to-line voltages in
Equation 9.48 with the “equivalent” line-to-neutral voltages:

[VLN 3 1=[W]-[VLLu] (949)
where
1 2 1 0
W1=[A]-[T]-[AT]" =3 0 2 1
1 0 2

The matrix [W] is a very useful matrix that allows the determination of
the “equivalent” line-to-neutral voltages from the line-to-line voltages. It is
important to know that if the feeder serving the motor is grounded wye,
then there will be line-to-ground voltages at the motor terminals. Because
the motor is either ungrounded wye or delta, it will be necessary to convert
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the feeder line-to-ground voltages to line-to-line voltages and then apply
Equation 9.48 to compute the equivalent line-to-neutral voltages of the motor.
Equation 948 can be substituted into Equation 9.49 to define the “line-to-
neutral” impedance equation.

[VLNabC] = [W] : [ZMabc] : [Iabc']
(9.50)
[VLNabc] = [ZLNabC] : [Iabc]

where
[ZLN 3 1=[W]-[ZM 11 ]

The inverse of Equation 9.50 can be taken to determine the line currents as a
function of the equivalent line-to-neutral voltages.

[Labe1=[YLN apc ] [VLN ap ] ©.51)
where
[YLNabC] = [ZLNabc ]71

Care must be taken in applying Equation 9.51 to ensure that the voltages
used are the equivalent line-to-neutral, not the line-to-ground, voltages. As
was pointed out earlier, when the line-to-ground voltages are known, they
must first be converted to the line-to-line values, and then Equation 949
should be used to compute the line-to-neutral voltages.

Once the machine terminal currents and line-to-neutral voltages are
known, the input phase complex powers and the total three-phase input
complex power can be computed.

Sa = Van '(Ia)*
Sb = Vbn : (Ib )* (952)
SC = VCH '(IC)*

STota] = Sa + Sb + SC

Mostly, the only voltages known will be the magnitudes of the three
line-to-line voltages at the machine terminals. When this is the case, the Law
of Cosines must be used to compute the angles associated with the measured
magnitudes.
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Example 9.4

The induction machine in Example 9.2 is operating such that:

Vs, 480.0/0
[VLLuye]=| Vs |=| 490/-1214 |V
Vs 475/118.3

Positive sequence slip: s, =0.035
Determine the input line currents and complex power input to the

machine (motor).
Compute the negative sequence slip:

Sy :2—51 =1.965

Compute the sequence load resistance values:

RL 1= g | 23408
s -0.0417

Calculate the input sequence impedances and admittances:

(Zr+RL) | 2109+ j1.1786
ZM, = 7, + 200 (Lt RLi) (Z“RL’)—l / ]

Zm;+Zr,+RL; | 0.1409+ j0.4204

1 l 0.3613-;0.2019 ]
YMI* =

T ZM; | 0.7166-j2.1385

Define the T, A, and W matrices:

1 1 0 0
=m0 M- 0 ¢ o
3 2
3 0 0 ¢t
1 1 1
a=1/120 [A]l=] 1 a> a
1 a a°
1 2 1
Wi=3f 0 2 1
1 O
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Define the sequence input admittance matrix:

1 0 0 1 0 0
[YMu]=| 0 YM, 0 |=| 0 03613-;0.2019 0
0 0 YM, 0 0 0.7166— j2.1385

Compute the phase input admittance matrix:

[YMusc ] =[A] [YMoio ] [T]-[A]T"

0.6993—-;0.3559  —-0.0394 - j0.0684 0.34+;0.4243
= 0.34+j0.4243 0.6993-;0.3559  —-0.0394-;0.0684
—0.0394 - ;j0.0684 0.34+;0.4243 0.6993-;j0.3559

Compute input line currents:

110.0/-55.0
[Isabc | =[YMape |- [VLLapc | =|  126.6/179.7
109.6/54.6
Compute line-to-neutral voltages:
273.2/-30.7
[VLN b ]=[W]-[VLLas]=| 281.9-150.4
279.1/87.9
Compute the stator complex input power:
Forj=1,2,3
. 27.4+j12.4
VLNabC]' : (ISabc)' ) +]‘
Ssj=——————=| 309+,17.8
1000 ]
25.6+j16.8

SSiorar = 83.9+ j47.0 KW + jkvar

Note that these are the same results as in Example 9.3, and only fewer
steps are required.
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9.5.4 Voltage and Current Unbalance [2]

Three-phase distribution feeders are unbalanced because of conductor
spacings and the unbalanced loads served. Because of this, the line-to-line
voltages serving an induction motor will be unbalanced. When a motor
operates with unbalanced voltages, it will overheat and draw unbalanced
currents that may exceed the rated current of the motor. It has become a
rule of thumb to not let the voltage unbalance exceed 3%. A common way of
determining voltage and current unbalance is based upon the magnitudes
of the line-to-line voltages and line currents. The computation of unbalance
involves three steps:

Step 1: Compute the average of the line-to-line voltages

Step 2: Compute the magnitudes of the deviation (dev) between the
phase magnitudes and the average

max(dev)

Step 3: Compute unbalance Unbalance = -100%

average

The same three steps are used to compute current unbalance.

Example 9.5

Determine the voltage and current unbalances for the motor in
Examples 9.2 and 9.3.
The terminal line-to-line voltages were:

480/0
[VLL.]=| 490/-121.4

475/118.3

St@P 1: ‘/‘average =

W=

3
Y VL, | = 4817
k=1

1.67
=| 833
6.67

St@p 2: der = “VLLI‘ - Vaverage

max(dev) _ 833 40 _1 739,

Step 3: Vibance =
P bal Vierge 4817

The line currents were:

110.0/-55.0
[Isac]=| 126.6/179.7
109.8/54.6
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3
1
Step 1: Iaverage = g'z‘lsabq‘ =1154
k=1
5.39
Step 2: deVi = HISabci ‘ - Iaverage = 1120
5.82

max(dev) 11.20
Iaverage 1 154

Step 3: Iu.nbalance = -100=9.71%

9.5.5 Motor Starting Current

An induction motor under line starting will cause a current to flow that
is much greater than rated. Typically, the motor is not line-started, but the
input voltages will be reduced under starting conditions. The starting cur-
rent can be computed by setting the positive sequence slip to 1. For the motor
in Example 9.2 with the same line-to-line voltages applied, the starting cur-
rents are:

596.4/-97.5
[Isme]=| 615.3/142.8
609.2/21.1

When the starting voltage is reduced to one-half, the starting currents are:

298.2/-97.5
[Isa]=| 307.7/142.8
304.6/21.1

Note that the rated current for the motor is 180 A.

9.5.6 The Equivalent T Circuit

Once the terminal line-to-neutral voltages and currents are known, it is desired
to analyze as to what happens inside the machine. In particular, the stator and
rotor losses are needed in addition to the “converted” shaft power. A method
of performing the internal analysis can be developed in the phase frame by
starting with the equivalent T sequence networks as shown in Figure 9.6.

The three sequence networks in Figure 9.6 can be reduced to the equivalent
T sequence circuit shown in Figure 9.7.
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+ @
+ @

——>1I5y=0 —>1Iry=0
Vso =0 \L Vrg=0

Imy=0

Zero sequence network

Negative sequence network

FIGURE 9.6
Induction machine equivalent T sequence networks.

FIGURE 9.7
Sequence equivalent T circuit.

Because the zero sequence voltages and currents are always zero in
Figure 9.7, the sequence matrices are defined as:

0 0
Voltages: [Vsoi2|=| Vs [Vip]=| Vn
V52 Vr by
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0 0 0
Currents: [Iso;2 | =| Is [Imo2]=|  Im [Iro2]=| I
ISz Imz Ir2
0 0 0 0 0 0
Impedances: [Zso2]=| 0 Zs; 0 [Zr2]=| 0 Zn 0
0 0 Zs 0 0 ZZn
(9.53)
0 0 0
[Zm(nz] = 0 Zm1 0
0 0 Zm,
The sequence voltage drops in the rotor circuit of Figure 9.7 are:
[V | = [Z1o2] - [ 11012 ] (9.54)

As an example, the rotor phase voltage drops are given by:
[vion | =[Zrowa |- [ Iz |
[VEabe | =[A]-[vron |
[I2]=[ A7 ][ Iraec (9.55)
(Vi = [A]-[Zroa ] [A] " [Fryec ]
[Vtape | = [ Zrabe |- [ Irane ]
where
[Zte = [A]- [ Z1no ]-[AT”

The same process is used on the other voltage drops, so that the circuit of
Figure 9.7 can be converted to an equivalent T circuit in terms of the phase
components (Figure 9.8).

The stator voltages and currents of the phase equivalent T circuit as a
function of the rotor voltages and currents are defined by:

[Vsabc ] _ [Amabc ] [Bmabc ] . [Vl'abc ] 9.56)
[Isabc ] [Cmabc ] [Dmabc ] [Irabc ]
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where

[Amabc] [U] [Zsabc] : [Ymabc]

[BMupe | =[ZSabe |+ [ Ztave | + [ ZSave |- [YMabe | [ ZLabe |
[Cmabc ] [Ymabc ]

[

Dmgpe | =[U |+ [Ymape |- [ Zapc |

1 0 0
[Ul=f 0 1 0
0 0 1

The inverse of the ABCD matrices of Equation 9.56 is used to define the rotor
voltages and currents as a function of the stator voltages and currents.

[ [Vrabc ] _ [Amabc ] [Bmabc ] B ) [Vsabc ]
[Irabc ] [Cmabc ] [Dmabc ] [Isabc ]

[ Vrabc _ [Dmabc] - [Bmabc] ) [Vsabc] (957)
Irabc - —[Cmabc] [Amabc] [ISabc]

because [Amyp |- [Dimape | —[BMape |- [Citape | = [U ]

The power converted to the shaft is given by:

Prony = V1, (I, ) +Vn,-(In,) +Vr, (I, )

3 * (9.58)
or: chonv = ZVI}bck '(Irabck )
k=1
[Zsabc] [Zrabc]
* — [lsahc] — []rabc] !
[ Vsabc] [ Ym“bc] \L [ Vrabc]

Lz

where [Ym | = [Zmg]” !

FIGURE 9.8
Phase equivalent T circuit.



358 Distribution System Modeling and Analysis

The useful shaft power can be determined as a function of the rotational

(FW) losses:
ljsha[t = I)COHV - P Fw
The stator total power loss is:

[Vdrops]=[Zsabc ] [15abc ]

3 *
-Pstator = Rez Vdrop?;)b(olsabq )

The rotor total power loss is:

[Vdropr | = Ztase |- [ Ianc |

B i Vdropry - (Iype, )*
B 1000

l’ otor

k=1

The total input complex power is:

*

3

abci * I abc . .
E Voaney (Bt ) =Py + jQin kW + jkvar
. 1000

Example 9.6

For the motor in Example 9.2, determine:

1. ABCD matrices for the phase equivalent T circuit
2. Rotor output voltages and currents

3. Rotor converted and shaft powers

4. Rotor and stator “copper” losses

5. Total complex power input to the stator

Define the sequence impedance matrices:

For: Ym; = =-j0.16
Im;
0 o0 0 0 0 0
[Zsoz]=| O Zsi 0 |=| 0 0.1+0.2499 0
0 0 Zs 0 0 0.1+;70.2499

9.59)

(9.60)

9.61)

9.62)
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0 0 0 0 0
[ZI'[)]z] = 0 ZI‘] 0 = 0 00849"1‘]0175
0 0 Zn 0 0 0.0849
0 0 0 0 0 0
[Yme,]=| 0 Ymy, 0 || 0 =—j016 0
0 0 Ym 0 0 -j0.16

Compute the phase impedance and admittance matrices:

-0.0333-;0.0833
0.0667 + j0.1666
-0.0333-;0.0833

0.0667 + j0.1666
—-0.0333-;0.0833
—-0.0333-;0.0833

[A][Zsua]-[A]”

[Z8abe ]

—0.0283-;0.0583
0.0566+ j0.1167
—0.0283~-;0.0583

0.0566+ j0.1167
~0.0283 - j0.0583
~0.0283 - j0.0583

[Zte]=[A]-[Zr ] [A] =

j0.0533
j0.0533
~j0.1067

~j0.1067
j0.0533
j0.0533

j0.0533
-j0.1067
j0.0533

[Yma | = [A]- [Yimon]-[A] =

Compute the phase ABCD matrices:

—0.0133+;0.0053
1.0267 - j0.0107
-0.0133+;0.0053

1.0267 — j0.0107
—0.0133+0.0053
-0.0133+;0.0053

[Amp | = [U ]+ [ Zsape |- [YMape | =

[Bmabc ] = [Zsabc ] + [Zrabc ] + [Zsabc] . [Ymabc] . [Zrabc ]

—-0.0637 - j0.1435

0.1274+;0.2870  -0.0637 — j0.1435

[Bm]=| —0.0637-j0.1435  0.1274+;0.2870  —0.0637 - j0.1435
~0.0637—j0.1435  —0.0637—j0.1435  0.1274+ j0.2870
-j0.1067  j0.0533  j0.0533
[Cmpe ] =[Ymue]=|  j0.0533  —j0.1067  j0.0533
j0.0533  j0.0533  —j0.1067
[Dmagc]=[U]+[YMape |- [ Z1ac ]
1.0187-70.0091  —0.0093+ j0.0045  —0.0093+ j0.0045
[Dmpe]=| —-0.0093+;0.0045 1.0187-;0.0091  —0.0093+ j0.0045
~0.0093+j0.0045 —0.0093+ j0.0045  1.0187 — j0.0091

359

0
0

+j0.175

-0.0333~-0.0833
—-0.0333-;0.0833
0.0667 + j0.1666

~0.0283 - j0.0583
~0.0283 - j0.0583
0.0566+ j0.1167

—0.0133+ j0.0053
—-0.0133+;0.0053
1.0267 - j0.0107
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Compute the rotor output voltages and currents:

245.3/-39.7
[VLase | = [DMiape | - [VSabe | — [BMape |- [ISabe | =|  244.7/—=159.5
245.6/80.5

103.7-33.4
[Ir"bc] = _[Cmabf] ’ [Vsabc ] + [Amabc] ! [Isabc] = 1152%
96.2/76.3

Compute the rotor converted and shaft powers:

>(-

. Labey Ira c
Py = 3 Vs M) J 7701w
1000

k=1
Pipatt = Prony — Prw =77.03-3.25=73.78 kW

Pp = 73.78 =98.90 HP
0.746

Compute stator and rotor power losses:

29.6/13.2
[Vdrops | =[Zsue | [Isac ] =| 34.1/-112.1
29.5/122.8

P,=Re ZVdmp 50 (T ) —4.01 kW

1000
20.2/30.7
[Vdropr] [Zrwe | [Tt |=| 22.4/-97.5
18.7/140.4

P =Re szropr Irabck) 283 KW
1000 '

Compute complex power into stator:

>(-

s, ivsﬁb“k' Bas) _ ga g7+ 47,00
in= 1000 SIFIE

k=1

Peony = P — P, — P, =83.87-4.01-2.83=77.03



Load Models 361

9.5.7 Computation of Slip

When the input power to the motor is specified instead of the slip, an
iterative process is required to compute the value of slip that will force the
input power to be within some small tolerance of the specified input power.

The iterative process for computing the slip that will produce the specified
input power starts with assuming an initial value of the positive sequence
slip and a change in slip. To compute the slip the initial values are:

Sola = 0.0
i 9.63)
ds =0.01
The value of slip used in the first iteration is then:
S1 =Sy +ds (9.64)

where s, = positive sequence slip.

With the new value of slip, the input shunt admittance matrix [YM_p.] is
computed. The given line-to-line voltages are used to compute the stator
currents. The [W] matrix is used to compute the equivalent line-to-neutral
voltages. The total three-phase input complex power is then computed. The
computed three-phase input power is compared to the specified three-phase
input power. The error is computed as:

€rror = ]jspea'ﬁed - chomputed (965)

If the error is positive, the slip needs to be increased so that the computed
power will increase. This is done by:

Soa = value of slip used in previous iteration

Snew = 8i = Soild + ds (966)

The new value of s, is used to repeat the calculations for the input power to
the motor.

If the error is negative, it means that a bracket has been established. The
required value of slip lies between s,y and ;. In order to zero in on the
required slip, the old value of slip will be used, and the change in slip will
be reduced by a factor of 10.

_ds
10 9.67)

S; = Soid + ds

ds
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1 2 3 45 6 7 8 910
Iteration

FIGURE 9.9
Slip vs. iteration.

This process is illustrated in Figure 9.9.
When the slip has produced the specified input power within a specified
tolerance, the T circuit is used to compute the voltages and currents in the

rotor.

Example 9.7

For the induction motor and voltages in Example 9.2, determine the value
of positive sequence slip that will develop 100kW input power to the motor.
To start set:

Soig =0
ds=0.01
tol =0.01

Ijspeciﬁed =100

Figure 9.10 shows a Mathcad program that computes the required slip.
After 22 iterations, the Mathcad program gives the following results.
s1 =0.0426
Stotar =100.00+ j52.54
Error =0.004

Note that the motor is being supplied reactive power.

9.5.8 Induction Generator

Three-phase induction generators are becoming common as a source of
distributed generation on a distribution system. In particular, Windmills
generally drive an induction motor. It is, therefore, important that a simple
model of an induction generator be developed for power-flow purposes.
In reality, the same model as that which was used for the induction motor
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FIGURE 9.10
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for n €1..200

1 < Soiq + ds
Sy4— 2-5;
foriel.2

Si

Si

RL; « Rr

Zr; < Zxr;+ RL;

Zm;-Zr;
IM; < Zsj+ ———
Zm; + Zr;

1
YM; ¢« —
ZM

i

1 0 0

YWy < |0 M1 0

0 0 YM,

YM,pe ¢ AYMgpp T-A7L
ISabc <« YMabc' VLLabc

foriel.3

Vsabcl : Isabci

I —
abe; 1000

3
Stotal « Z sabck
k=1

Pcomputed < Re (stota[ )

Error «— | P

specified — Pcomputed
break if Error < tol

S1 ¢ S1— ds if Pcomputed > Pspeciﬁed

ds .
ds « B if Pcomputed > Pspeciﬁed

Sold € S1

Out; < s;
OUtZ « Stotal
Outy « Error

Out

Mathcad program for computed required slip.
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is used for the induction generator. The only change is that the generator
will be driven at a speed in excess of synchronous speed, which means that
the slip will be a negative value. The generator can be modeled with the
equivalent admittance matrix from Equation 9.46.

Example 9.8

Using the same induction machine and line-to-line voltages in Examples
9.2 and 94, determine the slip of the machine so that it will generate
100kW. Because the same model is being used with the same assumed
direction of currents, the specified power at the terminals of the machine
will be:

Pyep =—100

As before, the initial “old” value of slip is set to 0.0. However, because the
machine is now a generator, the initial change in slip will be:

ds=-0.01
As before, the value of slip to be used for the first iteration will be:
S1 = Spq +ds =-0.01
The same Mathcad program as that which was used in Example 9.7 is

used with the exception that the two “if” statements are reversed in
order to determine the new value of slip. The two equations changed are:

Sj S — ds if I)computed < I)speciﬁed

ds < (11% if R:omputed < Pspeciﬁed

After 34 iterations, the results are:

s1 =-0.03997
Scomputed ==99.99 + j59.73 KW + jkvar
Error =0.0084

It must be noted that even though the machine is supplying power to the
system, it is still consuming reactive power. The point being that even
though the induction generator can supply real power to the system, it
will still require reactive power from the system. This reactive power
is typically supplied by shunt capacitors or a static kvar supply at the
location of the Windmill.
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9.5.9 Induction Machine Thevenin Equivalent Circuit

When an induction motor is operating under load and a short circuit occurs
on the feeder for a brief period of time, the motor will supply short-circuit
current as a result of the stored energy in the rotating mass of the motor and
load. The induction machine T circuit is modified to indicate that there is a
voltage at the rotor terminals as shown in Figure 9.11.

The stator input line-to-neutral voltages and currents are given by:

[VSape | = [Amape |- [VEape |+ [ BMape |- [ Iape |

(9.68)
[Isabc] = [Cmabc] ' [Vrabc ] + [Dmabc] ' [Irabc]
Solve for the rotor current in Equation 9.68:
[Itspe | =—[Dmase | - [Citigpe | [Viape |+ [ Dimiape ]+ [ ISase 9.69)

Substitute Equation 9.69 into Equation 9.68:

[Vsabc] = [Amabc] : [Vrabc ] + [Bmabc] . (_ [Dmabc ]71 : [Cmabc] . [Vrabc ] + [Dmabc ]71 . [Isabc ])

[Vsabe ] = ([ Attt | = [ Bt |- [Dittgi ] - [Cittape ]) - [ Ve |+ [ Bttase |- [ Dittgee ] - [Tt |

Define: [ Ethue ] = ([ A |~ [Biaee ] [Diftane | [Cittae 1) [ Ve

[Zthyie] = [Bma. | [Dmg ]

Therefore: [Vs.pe | =[Ethuse |+ [ Zthape |- [ISabe | 9.70)

The final form of Equation 9.70 reduces the T circuit to the Thevenin
equivalent circuit of Figure 9.12.
In Figure 9.12, the Thevenin voltage drops are:

FIGURE 9.11
Induction motor phase equivalent T circuit.
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FIGURE 9.12
Motor Thevenin equivalent circuit.

Va Zth,, Zth,, Zth, I,
Vb = Zthba Zthbb Zthbc : Ib
Ve Z thca Z thcb Z thca I c (9 71)

[Vabc] = [Zthabc] : [Iabc]

The motor terminal Thevenin line-to-line voltages are:

Vs Eth, — Eth, V,—Vp
Vsw. |=| Eth,-Eth. |+| v,-v,
Vse Eth, — Eth, Ve —V,

1 -1 0 Va Va= Vb

Note that: 0 1 -1 || ve |=| vb—ve

-1 0 1 Ve Ve —V,

Apply the matrix [Dv ]:

Vsap 1 -1 0 Eth, 1 -1 0 Va
Vspe = 0 1 -1 || Eth + 0 1 -1 || wvp
Ve -1 0 1 Eth. -1 0 1 V.

[VSLL,,. |=[Dv]-|Ethuc |+ [Dv]-[Vase ] 9.72)
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Substitute Equation 6.71 into Equation 9.72:

Vs 1 -1 0 Eth, 1 -1 0

Vspe |=| 0 1 -1 || Eth, |+| 0 1 -1

Ve -1 0 1 Eth, -1 0 1
Zth,, Zthy Zth, I, 073)
Z thba Z thbb Z thbc . I b
Zth, Zthy,  Zth, I

[VSLLupe | =DV ]| Ethae |+ [Dv ][ Zthupe |- [ Lpe |

[VSLLabC ] [EthLLabc ] + [ZthLL ] abc

where

[EthLLabc] v ][ Ethpe |
[Zthy, | =[Dv] [ Zthu. |

Equation 9.73 gives the terminal Thevenin equivalent line-to-line voltages.

Example 9.9

Use the computed rotor voltages and stator currents from Example 9.3
and the ABCD matrices from Example 9.6 and compute the Thevenin
equivalent terminal line-to-line voltages and Thevenin equivalent

matrix.
From Example 9.3:
245.3/-39.7 110.0/-55.0
[Vise |=| 244.7/-159.5 [Isape]=| 126.6/179.7
245.5/80.5 109.8/54.6

Compute the Thevenin emfs and the Thevenin impedance matrix:

238.6/—-38.9

[Ethus | = ([ Amase |- [Bmse |- [ Dimgsc ] -[Coge 1) [ Vi e ]=| - 238.1/-158.8
238.8/81.3
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0.1202+j0.2808 —0.0601— j0.1404 —0.0601— j0.1404
[ Zthse ] = [Bmase |- [Dmape | =| —0.0601- j0.1404  0.1202+ j0.2808 —0.0601— j0.1404
~0.0601- j0.1404 —0.0601— j0.1404 0.1202+ j0.2808

Define the matrix [Dv]:

1 -1 0
[Dvl=] 0 1 -1
-1 0 1

Compute the Thevenin line-to-line voltages and the Thevenin line-to-
line impedance matrix:

412.6/-8.9
[EthLL ] = [Dv]-[Ethy]=| 412.9/-128.7
413.8/111.2
0.1803+j0.4212  —0.1803— j0.4212 0
[Zth,, | =[Dv]-[ Zthu | = 0 0.1803+j0.4212  —0.1803— j0.4212
~0.1803— j0.4212 0 0.1803+ j0.4212

Compute the terminal Thevenin line-to-line voltages:

480/0
[VnLLye | =[EthLL e |+[ Zthy, |- [Isae | =| 490/ -121.4
475/118.3

It is obvious that the terminal Thevenin line-to-line voltages are equal
to the initial stator line-to-line voltages as specified in Example 9.3. This
is a method to prove that the development of the Thevenin equivalent
circuit is correct.

9.5.10 The Ungrounded Wye-Delta Transformer Bank
with an Induction Motor

In Section 9.5.9, the Thevenin equivalent circuit of a three-phase induction
motor was developed and shown in Figure 9.12.

The Thevenin voltages and impedance matrix are given in Equation 9.70,
and the line-to-line terminal voltages of the Thevenin circuit is given in
Equation 9.73.
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The preferred and the most common method of connecting the motor to the
distribution feeder is through a three-wire secondary and an ungrounded
wye—delta transformer bank. This connection is shown in Figure 9.13.

In Figure 9.3, the voltage drops in the induction motor and secondary
are shown rather than the impedances. For short-circuit studies, it is desired
to develop a Thevenin equivalent circuit at the primary terminals of the
ungrounded wye—delta transformer bank. The resulting primary Thevenin
circuit is shown in Figure 9.14.

The equivalent impedance matrix between the motor and the secondary
terminals of the transformer is given by:

[ Zequve | = [ Zthase | +[ Zase | 9.74)

Carson’s equations and the length of the secondary are used to define the
3 X 3 secondary phase impedance matrix as:

FIGURE 9.13
Ungrounded wye—-delta with secondary connected to induction motor.

FIGURE 9.14
Primary Thevenin circuit.
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Z] aa ZI ab Z]ac
[Zlabc ] = Z1 ba Z1 bb Z1 be (9 75)
ZI ca ZI cb Z1 cc

The ungrounded wye—delta connected transformer per-unit impedance
converted to actual impedance is ohms referenced to the delta-connected
secondary terminals are:

Zty O 0
[Ztwl=| 0  Ztp 0 9.76)
0 0 Zt,

The voltage drops including the secondary lines and the motor are:

[Vabc ] = [Zeqabc ] : [Iabc ] (977)

The line-to-line voltages at the secondary terminals of the transformer
bank are:

Vab Etha - Ethb Va—Vp
Vie = Ethb — Ethc + Vp — V¢
Ve Eth,, — Eth, Ve —V,
[VLLup | =[Dv ][ Ethase | + [Dv]-[ Zeqase | [ Lave ] 9.78)

[VLLop | = EthLL e |+ Zeqir |- [Lanc ]

where
[EthLL,y. | =[Dv]-[ Ethe |

[ Zequ |=[Dv]-[ Zeqap |
The primary currents are:

L4
[IABC ] = IB (9-79)
Ic
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In Chapter 8, the currents flowing inside the delta secondary windings were

defined as:

[IDae]=[AI]" -[Lanc ]

where

Iba
[IDabc]: ch
Ica
(|1 oo
[Al]=—-| 0 1 0
L |
. _ KVLN
‘7 kVLL,,

(9.80)

The secondary line currents as a function of the primary line currents are:

[Iabc] = [Dl] : [IDabc]

[Zaoe]=[Di]- [AI]" [ Lasc]

where

1 0o -1
[Dil=| -1 1 o0
0o -1 1

Substitute Equation 9.81 into Equation 9.78:

[VLL,pe | = [EthLLape | + [ Zequr |- [Lase |

[Loe ] = [Di]-[AIT" [ Lasc ]

[VLLu | =[EthLL s | + [ Zequs |- [Di]-[AI]" - [Lasc ]

(9.81)

9.82)
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The voltage across the transformer secondary windings are:

Vtab Vab Z tab 0 0 I ab
Vipe = Vpe |+ 0 Ztpe 0 A Ty
Vt., Vea 0 0 Zt., I,
[Vtabc] = [VLLabc ] + [Ztabc ] : [IDabC] (983)

[Vtase | = [VLLape | +[ Ztase - [AI]" - [Lasc ]

Substitute Equation 9.82 into Equation 9.83:

[Vtase ] = [VLLope ]+ [ Ztae |- [AI]" - [Lasc ]
[VLLape | = [EthLL )+ [Zeqy. - [Di]-[AI]" - [Lasc ]
[Viaoe ] = ([BthLLase |+ [ Zequi - [Di]-[AIT" - [Lasc 1)+ [ Ztane ] - [AT]-[Lanc]
[Vtase] = [BthL Ly |+ ([ Zequs ] [Dil+[ Ztue ) { AT [Tanc ]
(9.84)

The primary line-to-neutral voltages are:

[VLN 45c]=[AV ] [Vta]
[Vtase ] = [BhLLosc |+ ([Zequs ] [Dil+[ Ztuwe])- [AIT" [ Lasc |
[VLN asc 1= [AV]-([EthLL s 1+([ Zeque] [Di+[ Ztue]) [AIT - [Lusc])
[VLN asc]=[AV]- [BhLLp ]+ [AV]-([Zequs]- [Di]+[ Ztuwe])- [AIT" - [Tasc]
but: [EthLL,u.|=[Dv]-[Ethu.]
[Zeqi.]=[Dv]-[Zeqas.
[VLN asc]=[AV]-[Dv]: [Ethus |+ [AV]-([DV]-[ Zeqase ] [Dil+[ Ztae])- [AI] - [Lasc]

[VLN apc | =[Ethapc |+ [Ztapc |- [L anc]
(9.85)

where
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[Ethapc | =[AV ][ Dv]-[ Ethas |
[Zthasc | =[AV]-([DV]-[ Zequse |- [ Di]+[ Zthy ) -[AIT"

Example 9.10

For the system in Figure 9.13, the ungrounded wye—delta transformer
bank consists of three single-phase transformers each rated:

50 kVA, 7200/480 V, Z, = 0.011+;0.018 per-unit

The impedance matrix for the transformer bank relative to the 480-V

side is:
0.0507 + j0.0829 0 0
[Ztase ] = 0 0.0507 + j0.0829 0 Q
0 0 0.0507 + j0.0829

The secondary in the system is a triplex cable of 500ft long. The
impedance matrix for the cable is:

0.1140+;0.4015 0.0271+;0.2974  0.0271+ ;0.2735
[ZLp]=| 0.0271+j0.2974 0.1140+;0.4015 0.0271+;0.2974 |Q
0.0271+j0.2735  0.0271+;0.2974  0.1140+ ;j0.4015

The induction motor is the motor from Example 99 operating at a
slip of 0.035. The line-to-line voltages at the primary terminals of the
transformer bank are:

12470/0
[VLLAgc] = 11850/—118 V
12537/123.4

Determine the Thevenin equivalent circuit of Figure 9.13 relative to the
primary side of the transformer bank.

Step : Because the system conditions have changed, it is necessary to run
a power-flow program to determine the motor stator voltages and cur-
rents. For the ungrounded wye—-delta transformer bank, the equivalent
line-to-neutral voltages must first be computed.
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7340.4/-28.4
[VLNAgc] = [W] . [VLLAgc] = 69496/— 1499 V

6989.6/93.7

A simple Mathcad routine was run to compute the stator and rotor
voltages and currents with the following results:

258.1/-58.3 224.9/-68.3
[Veae]=| 259.9/-179.0 | [Viwe]=| 2257/1716 |V
250.8/59.9 227.1/51.6
118.9/-85.7 110.4/-67.3
[Ise]=| 106.6/143.2 [Irs]=| 922/1636 |A
94.1/35.6 88.6/58.8

The total three-phase converted power is:

3

sr. =27m’“ i _ 5.4 kW
P74 1000 '

The ABCD matrices for the motor are those computed in Example 9.6.
The Thevenin equivalent voltages and currents are:

218.7/-67.4
[Ethy ] = ([Amabc] ~[Bmape |- [Dmgpe |- [Criee ]) Vige =| 219.5/172.4
220.9/52.3

0.1202+ j0.2808 —0.0601— j0.1404 —0.0601— j0.1404
[Zth,e | = [Bmae |- [Dmase | =| —0.0601—j0.1404 0.1202+ j0.2808 —0.0601— j0.1404
~0.0601—j0.1404 —0.0601— j0.1404 0.1202+ j0.2808

It is always a good practice to confirm that the Thevenin equivalent
voltages and currents will give the same stator line-to-neutral voltages
that were computed at the end of the power-flow program.
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258.1/-58.3
[VSabC] = [Ethabc]+ [Zthabc] . [ISabC] =| 259.9/-179.0

250.8/59.9

These voltages match those from the power-flow program, which
confirms the accuracy of the Thevenin equivalent circuit for the motor.

From Equations 9.78 and 9.85, the Thevenin equivalent voltages and
currents on the primary side of the transformer bank are:

5699.3/ 374
[Ethasc|=[AV]-[Dv]-[Ethy | =| 5722.9/-157.5

5702.8/82.3

131.7+j255.0 —60.1-j112.8 —60.1-j123.6
[Zthusc]=| —60.1-j112.8  131.7+255.0 —60.1-123.6
—60.1-j123.6  —60.1-j123.6  131.7+j265.8

Check to confirm that the Thevenin voltages and currents give the
initial values of the primary line-to-neutral voltages at the start of the
power-flow program.

[VLN agc | =[Ethapc |+ [ Zthasc |- [T anc |

7340.4/-28.4
[VLN spc]=| 6949.6/-149.9
6989.6/93.7

These exactly match the initial LN transformer voltages.
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9.6 Summary

This chapter has developed load models for typical loads on a distribution
feeder. It is important to recognize that a combination of constant PW, con-
stant Z, and constant current loads can be modeled using a percentage of
each model. An extended model for a three-phase induction machine has
been developed with examples of the machine operating as a motor and as
a generator. An iterative procedure for the computation of slip to force the
input power to the machine to be a specified value was developed and used
in examples for both a motor and a generator. Thevenin equivalent circuits
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have been developed for an induction motor. The Thevenin circuit is used to
develop a Thevenin equivalent circuit at the primary terminals of the step-
down transformer feeding the secondary and the induction motor. This final
Thevenin circuit is used in Chapter 10 on short-circuit analysis.

Problems

9.1 A 12.47-kV feeder provides service to an unbalanced wye-connected load
specified to be:

Phase a: 1000kVA, 0.9 lagging power factor
Phase b: 800kVA, 0.95 lagging power factor
Phase c: 1100kVA, 0.85 lagging power factor

a. Compute the initial load currents, assuming the loads are modeled
as constant complex power.

b. Compute the magnitude of the load currents that will be held
constant, assuming the loads are modeled as constant current.

c. Compute the impedance of the load to be held constant, assuming
the loads are modeled as constant impedance.

d. Compute the initial load currents, assuming that 60% of the
load is complex power, 25% constant current, and 15% constant
impedance.

9.2 Using the results of Problem 9.1, rework the problem at the start of
the second iteration if the load voltages after the first iteration have been
computed to be:

6851/-1.9
[VLN . ]=| 6973/-122.1 |V
6886/117.5

9.3 A 12.47-kV feeder provides service to an unbalanced delta-connected
load specified to be:

Phase a: 1500kVA, 0.95 lagging power factor
Phase b: 1000kVA, 0.85 lagging power factor
Phase c: 950kVA, 0.9 lagging power factor
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a. Compute the load and line currents if the load is modeled as constant
complex power.

b. Compute the magnitude of the load current to be held constant if the
load is modeled as constant current.

c. Compute the impedance to be held constant if the load is modeled as
constant impedance.

d. Compute the line currents if the load is modeled as 25% constant
complex power, 20% constant current, and 55% constant impedance.

9.4 After the first iteration of the system in Problem 9.5, the load voltages are:

11,981/28.3
[VLLupe]=| 12,032/-925 |V
11,857/147.7

a. Compute the load and line currents if the load is modeled as constant
complex power.

b. Compute the load and line currents if the load is modeled as constant
current.

c. Compute the load and line current if the load is modeled as constant
impedance.

d. Compute the line currents if the load mix is 25% constant complex
power, 20% constant current, and 55% constant impedance.

9.5 A three-phase induction motor has the following data:

25Hp, 240V
Z,=0.0336+j0.08 pu
Z,=0.0395+j0.08 pu
Z, =i312pu

The motor is operating with a slip of 0.03 with balanced three-phase voltages
of 240V line-to-line. Determine the following:

a. The input line currents and complex three-phase input complex power
b. The currents in the rotor circuit
c. The developed shaft power in HP

9.6 The motor in Problem 9.5 is operating with a slip of 0.03, and the line-to-
line voltage magnitudes are:
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Var =240, Vpe =230, V=250V

a. Compute the angles for the line-to-line voltages assuming the
voltage a-b is reference.

b. For the given voltages and slip, determine the input line currents
and complex input complex power.

c. Compute the rotor currents.
d. Compute the developed shaft power in HP.

9.7 The motor of Problem 9.5 is operating with line-to-line voltages of:

V» =240/0, V,.=233.4/-118.1, V,,=240/122.1V

The motor input kW is to be 20 kW.
Determine the following;:

a. Required slip
b. The input kW and kvar
c. The converted shaft power

9.8 A three-phase 100-hp, 480V wye-connected induction motor has the
following per-unit impedances:

Zpu, =0.043+j0.089, Zpu, =0.034+ j0.081, Zpu, =j3.11
The rotating loss is Ppy =2.75 kW

a. Determine the impedances in ohms.

b. The motor is operating with a slip of 0.035. Determine the input
shunt admittance matrix [YM].

9.9 The motor in Problem 9.8 is operating at a slip of 0.035 with line-to-line
input voltages of:

Vi 480.0/0
[VLLw]=| Vi |2| 475.0/-1215
Vaa 466.7/119.8

Determine the following;:

a. The input stator currents
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b. The per-phase complex input power
c. The total three-phase complex input power

d. The stator voltage and current unbalances
9.10 For the motor in Problem 9.8, determine:

a. For the T equivalent circuit, the matrices
[Amabc ] 7 [Bmabc ] 7 [Cmabc ] ’ [Dmabc ]

b. For the results in Problem 9.9, determine:
i. The rotor currents and output voltages
ii. The rotor converted and shaft powers

iii. Rotor and stator “copper” losses

9.11 For the induction motor in Problem 9.8, determine the value of the
positive sequence slip that will develop 75kW of input power to the motor.

9.12 The induction motor in Problem 9.9 is operating as a generator with a
positive sequence slip of —0.04. Determine the stator output complex power.

9.13 Using the results of Problem 9.10, determine the line-to-line motor
Thevenin voltages and Thevenin equivalent matrix.

9.14 The motor in Problem 9.8 is connected through a three-phase distribution
line to three single-phase transformers as shown in Figure 9.15.

The three-phase induction motor is that of Problem 9.8. The secondary
impedance matrix is:

0.4013+;1.4133 0.0953 + j1.0468 0.0953 + j0.9627
[ZLs]=| 0.0953+ j1.0468 0.4013+ j1.4133 0.0953+ j1.0468 |<Q/mile
0.0953 + j0.9627 0.0953 + j1.0468 0.4013+ j1.4133

12,470 — 480 V
|3 | awer |
12.47 kv
Source YA
FIGURE 9.15

Simple system.
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The three-phase transformer bank consists of three single-phase transformers
each rated:

kVA =100, kVLN,; =72, kVLLy, =048, Z,, =0.0133+;0.019

The motor is operating at a slip of 0.035.

Determine the Thevenin equivalent line-to-neutral voltages referenced to
the high-voltage side of the transformers [Ethapc | and Thevenin equivalent
line impedance matrix [ Zthapc].
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Distribution Feeder Analysis

The analysis of a distribution feeder will typically consist of a study of the
feeder under normal steady-state operating conditions (power-flow analy-
sis) and a study of the feeder under short-circuit conditions (short-circuit
analysis). Models of all of the components of a distribution feeder have been
developed in previous chapters. These models will be applied for the analy-
sis under steady-state and short-circuit conditions.

10.1 Power-Flow Analysis

The power-flow analysis of a distribution feeder is similar to that of an
interconnected transmission system. Typically, what will be known prior to
the analysis will be the three-phase voltages at the substation and the com-
plex power of all of the loads and the load model (constant complex power,
constant impedance, constant current, or a combination). Sometimes, the
input complex power supplied to the feeder from the substation is also
known.

In Chapters 6, 7, and 8, phase frame models are developed for the series
components of a distribution feeder. In Chapter 9, models are developed
for the shunt components (static loads, induction machines, and capacitor
banks). These models are used in the “power-flow” analysis of a distribution
feeder.

A power-flow analysis of a feeder can determine the following by phase
and total three-phase:

* Voltage magnitudes and angles at all nodes of the feeder

* Line flow in each line section specified in kW and kvar, amps and
degrees, or amps and power factor

* Power loss in each line section

¢ Total feeder input kW and kvar

e Total feeder power losses

® Load kW and kvar based upon the specified model for the load

381
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10.1.1 The Ladder Iterative Technique

Because a distribution feeder is radial, iterative techniques commonly used
in transmission network power-flow studies are not used because of poor
convergence characteristics [1]. Instead, an iterative technique called the
“ladder technique” specifically designed for a radial system is used [2].

10.1.1.1 Linear Network

A modification of the “ladder” network theory of linear systems provides
a robust iterative technique for power-flow analysis. A distribution feeder
is nonlinear because most loads are assumed to be constant kW and kvar.
However, the approach taken for the linear system can be modified to
take into account the nonlinear characteristics of the distribution feeder.
Figure 10.1 shows a linear ladder network.

For the ladder network, it is assumed that all of the line impedances and
load impedances are known along with the voltage (Vs) at the source. The
solution for this network is to perform the “forward” sweep by calculating
the voltage at node 5 (V;) under a no-load condition. With no load currents,
there are no line currents; so the computed voltage at node 5 will equal that
of the specified voltage at the source. The “backward” sweep commences by
computing the load current at node 5. The load current I; is:

= VS
ZLs

I (10.1)

For this “end-node” case, the line current I 5 is equal to the load current Is.
The “backward” sweep continues by applying Kirchhoff’s Voltage Law (KVL)
to calculate the voltage at node 4:

Vi=Vs+Zy5-1ss (10.2)

The load current I, can be determined and then Kirchhoff’s Current Law
(KCL) can be applied to determine the line current I,.

Iy=1I5+1, (10.3)

FIGURE 10.1
Linear ladder network.
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KVL is applied to determine the node voltage V;. The backward sweep
continues until a voltage (V;) has been computed at the source. The com-
puted voltage V; is compared to the specified voltage Vs. There will be a dif-
ference between these two voltages. The ratio of the specified voltage to the
computed voltage can be determined as:

Ratio = Vs (10.4)
V

1

Because the network is linear, all of the line and load currents and node volt-
ages in the network can be multiplied by the ratio for the final solution to the
network.

10.1.1.2 Nonlinear Network

The linear network in Figure 10.1 is modified to a nonlinear network by
replacing all of the constant load impedances by constant complex power
loads as shown in Figure 10.2.

As with the linear network, the “forward” sweep computes the voltage at
node 5 assuming no load. As before, the node 5 (end-node) voltage will equal
that of the specified source voltage. In general, the load current at each node
is computed by:

I, = (S) (10.5)

The “backward” sweep will determine a computed source voltage V;. As in
the linear case, this first “iteration” will produce a voltage that is not equal
to the specified source voltage Vs. Because the network is nonlinear, mul-
tiplying currents and voltages by the ratio of the specified voltage to the
computed voltage will not give the solution. The most direct modification
using the ladder network theory is to perform a “forward” sweep. The for-
ward sweep commences by using the specified source voltage and the line

FIGURE 10.2
Nonlinear ladder network.
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currents from the previous “backward” sweep. KVL is used to compute the
voltage at node 2 by:

Vo=Vs—Zy -1 (10.6)

This procedure is repeated for each line segment until a “new” voltage is
determined at node 5. Using the “new” voltage at node 5, a second backward
sweep is started that will lead to a “new” computed voltage at the source. In
this modified version of the ladder technique, convergence is determined by
computing the ratio of difference between the voltages at the n—1 and n itera-
tions and the nominal line-to-neutral voltage. Convergence is achieved when
all of the phase voltages at all nodes satisfy:

WVl Vol
———— < specified tolerance

Vnominal

Example 10.1

A single-phase lateral is shown in Figure 10.3.
The line impedance is:

2=0.3+j0.6 Q/mile
The impedance of the line segment 1-2 is:

Z1y=(0.3+0.6). % =0.1705+ j0.3409 Q

The impedance of the line segment 2--3 is:

. 4000 .
Zy=(0.3+/0.6)- ———=0.2273+j0.4545 Q
1 2 3
| 3000’ 4000
SZ 53

FIGURE 10.3
Single-phase lateral.
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The loads are:

S, =1500+ ;750

S, =900+ j500 (kW + var)

The source voltage at node 1 is 7200V.

Use the modified ladder method to compute the load voltage after the
second forward sweep.
Set initial conditions:

I, =I3=0 V,y=0 Tol=0.0001
The first forward sweep:
Vo=V, —Z1 - 11, =7200/0
Vs =V,o —Zy - 13 =7200/0

[Va| = Vi
7200

Error = =1 (greater than Tol, start backward sweep)
Vs =Vou

The first backward sweep:

(900+ j500)-1000
L=|————"——| =143.0/-29.0A
7200/0 —

The current flowing in the line section 2-3 is:
I5=1;=143.0/-29.0A

The load current at node 2 is:

=2329/-275A

L (1500+ 750)-1000
t 7200/0
The current in line segment 1-2 is:

I]2 2123 +Iz :3738/—275A

The second forward sweep:
VZ = V5 —le ‘I]z = 70845/—07
‘/3 = Vz —223 '123 = 70251/— 10

V3|~ Vau|  7084.5-7200
7200 7200

Error

=0.0243 (greater than tolerance, continue)

Vold = V3



386 Distribution System Modeling and Analysis

At this point, the second backward sweep is used to compute the new
line currents. This is followed by the third forward sweep. After four
iterations, the voltages have converged to an error of 0.000017 with the
final voltages and currents of:

[V,]=7081.0/-.68

[V4]=7019.3/-1.02

[I2]=383.4/-28.33

[I5] =146.7/-30.07

10.1.2 General Feeder

A typical distribution feeder will consist of the “primary main” with later-
als tapped off the primary main and sublaterals tapped off the laterals, etc.
Figure 10.4 shows an example of a typical feeder.

In Figure 10.4, no distinction is made as to what type of element is con-
nected between nodes. However, the phasing is shown, and this is a must.
All series elements (lines, transformers, regulators) can be represented by
the circuit in Figure 10.5. Note in Figure 10.4 that the lines between nodes 3
and 4 and between nodes 4 and 5 have “distributed” loads modeled at the
middle of the lines. The model for the distributed loads was developed in
Chapter 3. Connecting the loads at the center was only one of the three
ways to model the load. A second method is to place one-half of the load at

] == Source node

FIGURE 10.4
Typical distribution feeder.
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Node n Node m

Series feeder

component ¥

[IABC]n abc]m

[ Vabc] n [Vabc]m

FIGURE 10.5
Standard feeder series component model.

each end of the line. The third method is to place two-thirds of the load 25%
of the way down the line from the source end. The remaining one-third of
the load is connected at the receiving-end node. This “exact” model gives
the correct voltage drop down the line in addition to the correct power-line
power loss.

In previous chapters, the forward and backward sweep models have been
developed for the series elements. With reference to Figure 10.5, the forward
and backward sweep equations are:

Forward sweep: [VLN ] =[A]-[VLNpc], —[B]-[Labc ],
(10.7)
Backward sweep: [Lapc ] =[c]- [VLN ] +[d]-[Lapc],

In most cases, the [c] matrix will be zero. Long underground lines will be the
exception. It was also shown that for the grounded wye—delta transformer
bank, the backward sweep equation is:

[Iabc]n =[Xf]'[VLNabc]n+[d]'[Iabc]m (108)

The reason for this is that the currents flowing in the secondary delta wind-
ings are a function of the primary line-to-ground voltages.

Referring to Figure 10.4, nodes 4, 10, 5, and 7 are referred to as “junction
nodes.” In both the forward and backward sweeps, the junction nodes must
be recognized. In the forward sweep, the voltages at all nodes down the lines
from the junction nodes must be computed. In the backward sweeps, the
currents at the junction nodes must be summed before proceeding toward
the source. In developing a program to apply the modified ladder method, it
is necessary for the ordering of the lines and nodes to be such that all node
voltages in the forward sweep are computed and all currents in the back-
ward sweep are computed.

10.1.3 The Unbalanced Three-Phase Distribution Feeder

The previous section outlined the general procedure for performing the
modified ladder iterative technique. This section will address how that pro-
cedure can be used for an unbalanced three-phase feeder.
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Source node

FIGURE 10.6
Unbalanced three-phase distribution feeder.

Figure 10.6 is the one-line diagram of an unbalanced three-phase feeder as
shown in Figure 10.5.

The topology of the feeder in Figure 10.6 is the same as the feeder in
Figure 10.5. Figure 10.6 shows more details of the feeder with step regulators
at the source and a transformer bank at node 12. The feeder in Figure 10.6 can
be broken into the “series” components and the “shunt” components. The
series components have been shown in Section 10.1.2.

10.1.3.1 Shunt Components

The shunt components of a distribution feeder are:

* Spot static loads
® Spot induction machines
e Capacitor banks

Spot static loads are located at a node and can be three-phase, two-phase,
or single-phase, and connected in either a wye or a delta connection. The
loads can be modeled as constant complex power, constant current, constant
impedance, or a combination of the three.

A spotinduction machine is modeled using the shunt admittance matrix as
defined in Chapter 9. The machine can be modeled as a motor with a positive
slip or as an induction generator with a negative slip. The input power (posi-
tive for a motor, negative for a generator) can be specified, and the required
slip is computed using the iterative process described in Chapter 9.
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Capacitor banks are located at a node and can be three-phase, two-phase,
or single-phase, and can be connected in a wye or delta. Capacitor banks are
modeled as constant admittances.

In Figure 10.6, the solid line segments represent overhead lines, while the
dashed lines represent underground lines. Note that the phasing is shown
for all of the line segments. In Chapter 4, the application of Carson’s equa-
tions for computing the line impedances for overhead and underground
lines was presented. In that chapter, it is pointed out that two-phase and
single-phase lines are represented by a 3 x 3 matrix with zeros set in the rows
and columns of the missing phases.

In Chapter 5, the method for the computation of the shunt capacitive sus-
ceptance for overhead and underground lines was presented. Most of the
times, the shunt capacitance of the line segment can be ignored; however, for
long underground line segments, the shunt capacitance should be included.

The “node” currents may be three-phase, two-phase, or single-phase and
consist of the sum of the spot load currents and one-half of the distributed
load currents (if any) at the node plus the capacitor current (if any) at the
node. It is possible that at a given node, the distributed load can be one-half
of the distributed load in the “from” segment plus one-half of the distributed
load connected to the “to” segment. In some cases, a “dummy” node is cre-
ated in the center of the line, and the total distributed load is connected to
this node.

10.1.4 Applying the Ladder Iterative Technique

Section 10.1.2 outlined the steps required for the application of the ladder
iterative technique. Forward and backward sweep matrices have been devel-
oped in Chapters 6, 7, and 8 for the series devices. By applying these matri-
ces, the computation of the voltage drops along a segment will always be the
same regardless of whether the segment represents a line, voltage regulator,
or transformer.

In the preparation of data for a power-flow study, it is extremely impor-
tant that the impedances and admittances of the line segments are computed
using the exact spacings and phasing. Because of the unbalanced loading
and resulting unbalanced line currents, the voltage drops due to the mutual
coupling of the lines become very important. It is not unusual to observe a
voltage rise on a lightly loaded phase of a line segment that has an extreme
current unbalance.

The real power loss in a device can be computed in two ways. The first
method is to compute the power loss in each phase by taking the phase
current squared times the total resistance of the phase. Care must be taken
to not use the resistance value from the phase impedance matrix. The
actual phase resistance that was used in Carson’s equations must be used.
Developing a computer program calculating power loss this way requires
that the conductor resistance is stored in the active database for each line
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segment. Unfortunately, this method does not give the total power loss in
a line segment, since the power losses in the neutral conductor and ground
are not included. In order to determine the losses in the neutral and ground,
the method outlined in Chapter 4 must be used to compute the neutral and
ground currents and then the power losses.

A second, and preferred, method is to compute the power loss as the dif-
ference of real power into a line segment minus the real power output of
the line segment. Because the effects of the neutral conductor and ground
are included in the phase impedance matrix, the total power loss in this
method will give the same results as mentioned earlier, where the neutral
and ground power losses are computed separately. This method can lead
to some interesting numbers for very unbalanced line flows in that it is
possible to compute what appears to be a negative phase power loss. This
is a direct result of the accurate modeling of the mutual coupling between
phases. Remember that the effects of the neutral conductor and the ground
resistance are included in Carson’s equations. In reality, there cannot be
a negative phase power loss. Using this method, the algebraic sum of the
line power losses will equal the total three-phase power loss that was com-
puted using the current squared times resistance for the phase and neutral
conductors along with the ground current.

10.1.5 Let’s Put It All Together

At this point, the models for all components of a distribution feeder have
been developed. The ladder iterative technique has also been developed. It
is time to put them all together and demonstrate the power-flow analysis
of a very simple system. Example 10.2 will demonstrate how the models of
the components work together in applying the ladder technique to achieve a
final solution of the operating characteristics of an unbalanced feeder.

Example 10.2

A very simple distribution feeder is shown in Figure 10.7. This system is

the IEEE 4 Node Test Feeder that can be found on the IEEE website [3].
For the system in Figure 10.7, the infinite bus voltages are balanced

three-phase of 12.47kV line-to-line. The “source” line segment from

lI)rlllf;mite Liscl (L]
I — | 3% | — I
| [Zeqs] | 3 E | (Zegy) | Load
1 2 A \% 3 4
FIGURE 10.7

Example 10.2 feeder.
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node 1 to node 2 is a three-wire delta 2000 ft long line and is constructed
on the pole configuration in Figure 4.7 without the neutral. The “load”
line segment from node 3 to node 4 is 2500 ft long and is also constructed
on the pole configuration in Figure 4.7 but is a four-wire wye; so the neu-
tral is included. Both line segments use 336,400 26/7 ACSR phase con-
ductors, and the neutral conductor on the four-wire wye line is 4/0 6/1
ACSR. Because the lines are short, the shunt admittance will be neglected.
The 25°C resistance is used for the phase and neutral conductors:

336,400 26/7 ACSR: resistance at 25°C = 0.278 Q/mile
4/0 6/1 ACSR: resistance at 25°C = 0.445 Q/mile

The phase impedance matrices for the two line segments are:

0.1414+;0.5353  0.0361+;0.3225  0.0361+ ;0.2752
[Zegs]=| 0.0361+;0.3225 0.1414+0.5353  0.0361+ j0.2955
0.0361+;0.2752  0.0361+0.2955  0.1414+ j0.5353
0.1907+0.5035  0.0607+;0.2302  0.0598+;0.1751
[Zeq ]=| 0.0607+;0.2302 0.1939+;0.4885 0.0614+ j0.1931
0.0598+;0.1751  0.0614+;0.1931  0.1921+;0.4970

The transformer bank is connected delta-grounded wye and the three-
phase ratings are:

kVA=6000, kVLLs =12.47, kVLL, =4.16, Z,, =0.01+ j0.06

The feeder serves an unbalanced three-phase wye-connected constant
PQ load of:

S,=750kVA at 0.85 lagging power factor
S, =900kVA at 0.90 lagging power factor
S.=1100kVA at 0.95 lagging power factor

Before starting the iterative solution, the forward and backward sweep
matrices must be computed for each series element. The ladder method
is going to be employed; therefore, only the [A], [B], and [d] matrices
need to be computed.

Source line segment with shunt admittance neglected:

1 0 0
Wl=l o 1 o
0 0 1 |
1 0 0
[A]=[U]=| 0 1
L0 0 1 |

391
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0.1414+;70.5353  0.0361+0.3225  0.0361+ j0.2752
[Bi]=[Zeqs]=| 0.0361+;0.3225 0.1414+;0.5353  0.0361+ j0.2955
0.0361+;0.2752  0.0361+;0.2955 0.1414+ ;0.5353

1 0 O
[di]=[U]=| 0 1 o0
0 0 1
Load line segment:
1 0 O
[A]=[U]=| 0 1 0
0 0 1

0.1907+;0.5035  0.0607+;0.2302  0.0598+ ;0.1751
[B:]=[Zeq:]| 0.0607+;0.2302 0.1939+;0.4885  0.0614+ j0.1931
0.0598+;0.1751  0.0614+;0.1931  0.1921+ j0.4970

1 0 O
[d:]=[U]= 0 1 o0
0 0 1

Transformer:

The transformer impedance must be converted to actual value in ohms
referenced to the low-voltage windings.

2
Zbase = kVLLL 10700 =2.88Q
kVA

Ztiow = (0.01+j0.06) -2.88=0.0288+;j0.1728 Q

The transformer phase impedance matrix is:

0.0288+0.1728 0 0
[Ztanc]= 0 0.0288+0.1728 0 Q
0 0 0.0288+;0.1728
The “turns” ratio: n, = kVLLs =5.1958
kVLN;

The ladder sweep matrices are:

1 1 0o - 0.1925 0 -0.1925
[A]= P -1 1 0 [=| -0.1925 0.1925 0
! 0o -1 1 0 -0.1925  0.1925
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0.0288+j0.1728 0 0
[B:]=[Ztase | = 0 0.0288+j0.1728 0
0 0 0.0288+ j0.1728
1 1 -1 0 0.1925  —0.1925 0
[de]l=—-] 0 1 -1 [= 0 0.1925  -0.1925
ol o0 1 ~0.1925 0 0.1925
Define the node 4 loads:
750/acos(0.85) 750/31.79 637.5+ j395.1
[S,] =| 900/acos(0.90) |[=| 900/25.84 |=| 810.0+/392.3 |kVA
1100/acos(0.95) 1100/18.19 1045.0+ j343.5

Define infinite bus line-to-line and line-to-neutral voltages:

12,470/30
[ELL;]=| 12,470/-90 |V
12,470/150
7199.6/0
[ELN;]=| 7199.6/-120 |V
7199.6/120
The initial conditions are:
0
Start=| 0 Tol =0.00001 VM =7199.6
0

A Mathcad program is shown in Figure 10.8.
The Mathcad program is used to analyze the system, and after seven
iterations, the load voltages on a 120-V base are:

1134
[V |=| 1115 |V
112.0

The voltages at node 4 are below the desired 120V. These low voltages
can be corrected with the installation of three step-voltage regulators
connected in wye on the secondary bus (node 3) of the transformer. The
new configuration of the feeder is shown in Figure 10.9.
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X:= I, < start

Ippc < start

Vg < start

for ne 1..200

VLN, <= A;-E; —By-Ixpc
VLN; < A;-VLN, =Bl
VLN, <= Ay -VLN3 — By Iy
for iel.3

‘ ‘VLN4i -

Vo, H
Error; <
VM
break if max(Error) < Tol
for ie 1.3
SL;- 1000

Iabc,
1

VLN,

Voa < VLN,

Lype < diLape

Out; < VLN,
Out,y < Izpc
Outy « VLN;
Out4 <« Iabc
Out; < VLN,
FIGURE 10.8
Mathcad program.
Infinite
bus [45cl 1 (Zape)
S I I
| [Zeqs] | 3 E : | [Zeq,] | Load
1 2 3r 3 4
FIGURE 10.9

Voltage regulator added to the system.
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For the regulator, the potential transformer ratio will be 2400-120V
(N, = 20), and the CT ratio is selected to carry the rated current of the
transformer bank. The rated current is:

6000

Lo = -832.7
= [3.24

The CT ratio is selected to be 1000:5 = CT = 200.

The potential transformer ratio is: N, = VIN rea _ 2400 20
120 120

The equivalent phase impedance between nodes 3 and 4 is computed
using the converged voltages at the two nodes. This is done so that the R
and X settings of the compensator can be determined.

0.1563+ j0.2184
Zeq;=V3=V4i | 01837+ j0.2860 |Q
13,
0.0919+ j0.3695

The three regulators are to have the same R and X compensator settings.
The average value of the computed impedances will be used.

3
Zg = %.ZZeqk =0.1440+ j0.2913Q

k=1
The value of the compensator impedance in volts is given by Equation 7.78:

R+ jX'=(0.144O+j0.2913)-1g% =72+j14.6V

The value of the compensator settings in ohms is:

7.2+ j14.6

chmp = RQ +jXQ = = 144"1‘]2929

With the regulator in the neutral position, the voltages being input to the
compensator circuit for the given conditions are:

117.5/-31.2
117.4/-1515 |V
117.2/88.0

V3, _

Vreg; =
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The compensator currents are:

1.6535/—63.8
Icomp; = Iacf’TCf =| 2.0174/-179.1 |A
2.4560/64.9

With the input voltages and compensator currents, the voltages across
the voltage relays in the compensator circuit are computed to be:

113.0/-32.6
[V,elay ] = [Vreg]— [Zcomp]~[lcomp] =| 112.2/-1535 |V
111.4/85.3

Notice how close these compare to the actual voltages on a 120-V base
atnode 4.

Assume that the voltage level has been set at 121 V with a bandwidth of
2V. This means that the relay voltages must lie between 120 and 122 V. In
order to model this system, the Mathcad routine in Figure 10.8 is slightly
modified in the forward and backward sweeps. The initial matrices for
the regulator are computed with the regulator taps set at zero.

Forward sweep

[VLN, |=[A ][ Es]=[Bi]-[1asc]
[VLN3, ]=[A]-[VLN, |-[B ][ L]
[VLN;]=[ Awg |[VLN3 ][ Bueg |[Lavc ]

[VLN,]=[A;]-[VLN;|~[B: ][ Lo |

Backward sweep
[V ] =[VLN,]
[Tin]={ dreg | [Tane ]
[Lasc]=[d ] [1n]

After the analysis routine has converged, a new routine will compute
whether or not tap changes need to be made. The Mathcad routine for
computing the new taps is shown in Figure 10.10. Recall that in Chapter 7
it was shown that each tap changes the relay voltages by 0.75V.

The computational sequence for the determination of the final tap
settings and convergence of the system is shown in the flowchart in
Figure 10.11.
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Tap := start
XY:= | foriel..3
VLN3,

N,

Vreg; <

I

abc;

CT

Icomp; <
Vrelay; < Vreg; — Zcomp; ;+ lcomp;
TaPoldi <« Tap;

120 - |Vrelayi|
dTap; <
75

Tap; < Tapq, + dTap;

Tap; < Round(Tapi, 1)

ag, < 1-0.00625 Tap;
Out; < Vrelay

Out, < Tap

Outj < ag

Out

FIGURE 10.10
Tap-changing routine.

The tap-changing routine changes individual regulators, so that the
relay voltages lie within the voltage bandwidth. For this simple system,
the initial change in taps becomes the final tap settings of:

9
[Tap] =[ 10
11

The final relay voltages are:

120.3
[View ]=| 1205
120.6

The final voltages on a 120-V base at the load center (node 4) are:
120.6

[VLN4120 ] = 119.8
121.2
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p Set taps

A 4

Compute regulator
A and d matrices

N

Analysis program

All V1, inside
bandwith?

Tap changing
routine

A

FIGURE 10.11
Computational sequence.

The compensator relay voltages and the actual load center voltages are
very close to each other.

10.1.6 Load Allocation

Many times, the input complex power (kW and kvar) to a feeder is known
because of the metering at the substation. This information can be either for
the total three-phase or for each individual phase. In some cases, the metered
data may be the current and power factor in each phase.

It is desirable to force the computed input complex power to the feeder to
match the metered input. This can be accomplished (following a converged
iterative solution) by computing the ratio of the metered input to the com-
puted input. The phase loads can now be modified by multiplying the loads
by this ratio. Because the losses of the feeder will change when the loads are
changed, it is necessary to go through the ladder iterative process to deter-
mine a new computed input to the feeder. This new computed input will
be closer to the metered input but most likely not within a specified toler-
ance. Following another ladder iteration, a ratio can be determined, and the
loads modified followed. This process is repeated until the computed input
is within a specified tolerance of the metered input.

Load allocation does not have to be limited to match metered readings just
at the substation. The same process can be performed at any point on the
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feeder where metered data are available. The only difference is that now the
“downstream” nodes from the metered point will be modified.

10.1.7 Loop Flow

The ladder interactive technique has proven to be a fast and efficient method for
performing power-flow studies on radial distribution feeders. The shortcoming
for this method is that there are cases where a feeder is not completely radial,
and therefore a different method must be applied. Many times, the feeder may
have just a few loops, in which case the ladder method can be modified to take
into account the small looped feeder. A method called “loop flow” will be devel-
oped that will allow for loops in a predominately radial feeder [5].

10.1.7.1 Single-Phase Feeder

Figure 10.12 shows two small single-phase systems operating independently
but with a switch between the two that once closed the two small systems
become one looped system. When the switch is closed, the difference voltage
(dVs4 ) will be zero. Something has to be done to the system in order to force
the difference voltage to be zero.

A way to simulate the closed switch is illustrated in Figure 10.13.

To simulate the closed switch in Figure 10.13, it is necessary to determine
the correct value of IT to be injected into node 3 and the negative of IT to
be injected into node 4 that will force the voltage d V3, to be zero. The circuit
in Figure 10.12 is modified to include the injected currents at nodes 3 and 4.

FIGURE 10.12
Single-phase system with a loop.

FIGURE 10.13
Simulation of closed switch.
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FIGURE 10.14
Modified circuit.

In Figure 10.14, the voltages at nodes 3 and 4 are given by:
Vs=E\—Zyp-(IL+IT)-Zy - IT
Va=E1=Zyp 1L, —(Z1p+Zy)-IT
Define:
Vav=E1—Z1 - 1L,
Var=—(Z1n+Zx)-IT
Therefore:
Vs =Vay + V3 (10.9)
In a similar manner, the voltage at node 4 is computed as:
Vi=E,—Zsq-(ILs—IT)—Zy5-(—IT)

V4 =E2 —Z56 'IL5+(Z56+Z45)’IT

Define:

V4V :EZ _Z56 ! IL5

V4I :+(Z56+Z45) . IT
Therefore:

V4 = V4V +V4[ (1010)

The voltage drop between nodes 3 and 4 consists of a component due to the
source voltages and a component due to the injected currents. Using the final
form of the node voltages, the difference voltage between nodes 3 and 4 is
given by:



Distribution Feeder Analysis 401

Vi =Viy + V3,

V=V +Vy
(10.17)
dVa =V;-V,=V3y =V, +(V31 —V41)

AdVay =d Vi +d Vg

Applying Equations 10.9 and 10.10, the difference voltage resulting from the
application of the injection currents is given by:

AV =V3 =V = —(le + 2y + Zs +Z45)'IT
dVy =-ThevZ - IT (10.12)
where

ThevZ = Zy + Zys + Zse + Z 45

For this simple system, Thev.Z is the sum of the line impedances around
the closed loop. This impedance is referred to as the Thevenin equivalent
impedance. For a general system, the impedance is computed by the prin-
ciple of superposition, where the voltage sources are set to zero, the loads
neglected, and only the injected currents are applied to the system. For this
simple system, such a circuit is shown in Figure 10.15.

Equation 10.12 applies KVL around the looped system in Figure 10.15.
With the voltage drop d Vs, computed, the Thevenin equivalent impedance
is computed as:

ThevZ = ~dVsu

(10.13)
With ThevZ computed, the final goal is to determine the value of IT that will
force the difference voltage to be zero as shown in Equation 10.14.
0=dVsy +d Vi
d Vs =—d Vs
where:
dVsy =-ThevZ - IT
Therefore:
—dVyy =-ThevZ - IT

_ dVay

IT =
ThevZ

(10.14)
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FIGURE 10.15
Thevenin equivalent impedance circuit.

Because the loads on a distribution system are nonlinear, an iterative routine
is used to compute the needed injection currents. Figure 10.16 shows a simple
flowchart of an iterative routine used to compute the injected currents.

It is noted in Figure 10.16 that the initial injection currents are set to zero.
During the first iteration, the difference voltage will be a function of only the
source voltages and the load currents. With this difference voltage computed,
the first value of the injection currents is computed according to Equation 10.14
and then added to the initial value of IT =0. With the new value of injection
currents, the circuit in Figure 10.14 is evaluated to compute the new differ-
ence voltage, which now includes the effect of the injection currents. The new
difference voltage is checked to see whether it is within a specified tolerance
of the desired zero. If it is not, an additional injection current is computed
and added to the most recent value of the injection currents.

Define loads

Y

Set: IT=0
Y

In Figure 10.14 compute V3 and V, using
a radial distribution analysis program

Y

IT=IT + 1T,y AV =V3=V,

I

IT ;= ThevZ™1-dVsy,

\4

No
Yes

FIGURE 10.16
Flowchart for solution with injected currents.
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This simple single-phase circuit was used to demonstrate a method of
simulating a looped system. To demonstrate how this approach is used in a
larger system, the IEEE 13 Bus Test Feeder will be studied [4].

Example 10.3

Determine the values of the injected currents for the system in Figure 10.14
to simulate loop flow between the two sources.
For the system, the following data are given:

E,=7200V, E,=1.05-E;=7560V
Impedance of the lines: Z1=0.5152+ j1.1359 Q/mile
Length of lines: L12 = 5, L23 = 2, L45 = 3, L56 =4 miles

Z1, =0.2576+ j0.5679

L Z,3=1.0304+2.2718
Line impedances: . Q

Z45=1.5456+ j3.4077

Zss =2.0608+ j4.5436

8L, =1500+ ;1250

Loads:
SLs =1000+ j750

kW + jkvar

Step 1: Set the voltage sources to zero, and apply the positive and
negative injection currents.
The base values are:

kVAbase = 1000, kVLNbase =72

Ly = < VAme 135
k VLN, base

The injected current magnitude is set to the base current:
IT, = Ipase =138.9
IT, =-IT, =-138.9

The analysis of the system with the two injected currents gives:

Vi =433.1/-114.4

Vi, =1212.6/65.6
AV =Vs =V =1645.7/-114.4

The Thevenin equivalent impedance is:

_—dVy, _16457/-1144
IT 138.9/0

Zun =4.8944+ j10.7911
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Step 2: Set the injected currents to zero and compute dVs, :
With the injected currents equal to zero, a Mathcad routine
computes the voltages as:

Vay =7043.97 /-0.6

Vi =6734.96/-3.4

dV34V = V3V —V4V = 45486/452

With the equivalent Thevenin impedance computed, the first
value of the required injected current is:

V34V

th

IT =IT +1IT,44 =0+38.39/-20.4=38.39/-20.4

IT,4q = =38.39/-20.4

The difference voltage is now computed with the voltage sources
and injected currents. After this first iteration, the difference
voltage is computed to be:

Vs = 6958.3/—£
V,= 7007.5&1
dVs, =50.6/164.9
The added injection current and new total injected current is:

50.6/164.9

——————=4.28/99.27
11.85/65.60 —

IT,qq =

IT =IT +IT,44 = 38.39/-20.4+4.28/99.27 = 36.46/—14.52

The difference voltage is again computed using the new value of
injected current. This process continues until after the fifth iter-
ation when the difference voltage is:

V3 =6970.42./-1.33

V,=6970.42./-1.33

dV34 =V3 —V4 =0
The line currents flowing with injected currents are:

I,; =36.8842/-14.65

I,5=36.8842/-14.65

Because these two currents are identical, the two systems are now oper-
ating as one system, with system 1 providing current to system 2 just as
though the switch between nodes 3 and 4 was closed.
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10.1.7.2 IEEE 13 Bus Test Feeder

The IEEE 13 Bus Test Feeder was developed to allow distribution analysis
programs to be tested with the results compared to the published results.
This feeder will be used to demonstrate the simulation of a looped system
using the method presented in the previous section. A one-line diagram of
the IEEE 13 Bus Test Feeder is shown in Figure 10.17 [3].

Example 10.4

The system in Figure 10.17 was created in WindMil. With the original
data, partial results are shown in Table 10.1. The currents are in amps,
and the voltages are line-to-neutral on a 120-V base.

As seen in Table 10.1, the voltages are very unbalanced at Bus 11. This
unbalance was purposely created so that distribution analysis programs
could be tested for convergence in a very unbalanced feeder. No effort
will be made in this text to balance the voltages. Even though the voltages

[ ]
[
A

[ e

© @——@ I

FIGURE 10.17
IEEE 13 Bus Test Feeder.

TABLE 10.1
Original Feeder Results

Phase a Phase b Phase ¢

Regulator taps 9 6 9

11-2 553.9 416.0 584.6
13-4 0 64.9 64.9
110-11 203.1 68.6 123.4
V Bus 6 115.9

V Bus 11 117.9 125.3 116.1
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are unbalanced, they are still within the ANSI standard [5] of all voltages
being between 114 and 126 V.

Rather than balance the voltages, two new loads are going to be added
to the existing feeder, which will lead to the need for the looped feeder.
The following loads are added to the system:

Bus 6: Phase c: 200+100 kW +jkvar
Bus 11: Three-phase load: 750+ 7525 kW +jkvar

With the new loads and the voltage regulator operating, the partial
results are shown in Table 10.2.

The voltage at Bus 6 has gone below the ANSI minimum of 114 V. The
voltage at Bus 11 Phase c is also below the ANSI standard. The actual
problem with Bus 11 is that the current capacity of 260 A on the under-
ground concentric neutral cable between Bus 10 and Bus 11 is exceeded.
In order to solve these problems and to demonstrate the looped feeder
simulation, two new lines will be added to the system. The one-line dia-
gram of the modified IEEE 13 feeder is shown in Figure 10.18.

TABLE 10.2
New Loads Added

Phase a Phase b Phase ¢
Regulator taps 11 8 14
112 685.9 536.8 824.7
17-6 163.6
I110-11 319.9 127.9 253.1
V Bus 6 112.8
V Bus 11 117.9 124.7 113.6

o w
)
=
ANANAL
=
Im

SW-3

o=
ol
no

SW-1 11

o &——O@ I
[

16

FIGURE 10.18
Modified IEEE 13 Bus Test Feeder.
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The new line from Bus 4 to Bus 5 consists of 1/0 ACSR 6/1 constructed
on a single pole as shown in Figure 10.19. The length of the line is 600 ft.

The three-phase line from Bus 14 to Bus 13 consists of 4/0 ACSR 6/1
phase and neutral conductors with a pole configuration as shown in
Figure 10.20. The length of the line is 800 ft.

In order to simulate the loop flow, currents must be injected into Buses
5, 6,13, and 11 as shown in Figure 10.21.
The line from Bus 2 to bus 9 has a distributed load, which is modeled
as two-thirds of the distributed load at Bus 2a, which is one-third the
length of the line, and the remaining distributed load is connected at

X
ML

25.07

FIGURE 10.19
Single-phase line.

4.5 >

N

X
LS

FIGURE 10.20
Three-phase line.
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FIGURE 10.21

Injected currents.

the end of the line at the new Bus 9a. In Figure 10.21, SW-1 is a three-
phase switch that can only be modeled as open or closed. SW-2 is a
three-phase switch that can be modeled as open, closed, or looped.
SW-3 is a single-phase switch on phase ¢ and can only be modeled as
open or looped.

The first step in simulating loop flow is to compute the Thevenin
equivalent impedance at each looped switch for each phase. The currents
injected into Bus 13 (IT1) will be in phases a, b, and c. The injected cur-
rents at Bus 11 (IT'3) will be the negative of IT1. Switch SW-3 is a single-
phase switch on Phase c. Therefore, the injected current at Bus 5 (IT2)
will only be a Phase c current. The injected current at Bus 6 (IT4) will
be the negative of IT2. There will be a Thevenin equivalent impedance
computed at each switch for each phase injected at each of the injection
nodes. This will lead to a 4 x 4 Thevenin equivalent matrix (Thev.Z). For
this process, the value of the injected current is assumed to be the base
current of the system 694.4 A.

For the computation of ThevZ, the source voltages and all loads are
set to zero. Refer to Figure 10.21 with SW-1 closed. The line-to-neutral
voltages at Buses 13, 11, 5, and 6 are computed with only the Phase a cur-
rents being injected at Buses 13 and 12. A Mathcad program is used to
compute the voltages. With only the Phase a currents, the vectors for the
injected currents at the switch buses are:

694.4 —694.4
[(IT1]=| o0 [IT3]=| 0 (10.15)
0 0

The bus voltages with just the Phase a-injected current at Bus 13 are com-
puted to be:
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239.5/-122.5
77.3/-110.5

89.8/-107.3

330.0/64.2
147.8/65.2
125.9/61.4

[Vis]= Via]= (10.16)

[Vsc]=0 [V ]=118.9/-110.5

The difference voltages are:

568.6/-118.6
2249/-113.3
214.7/-113.9

[dVian] = (10.17)

dVse. =118.93/-110.5

Equation 10.17 is used to compute the first column elements of the Thev.Z
matrix.

TheVZL]

TheVZLl =- i .
T

TheVZ'_;,]

dViziza
d Visizp =
dViziae

0.3921+ j0.7187
0.1282+j0.2974

0.1252+;0.2826 | @  (10.18)

TheVZ 41 =

L‘;f“ =0.0598 + j0.1605

This process is repeated with the injected currents in Phase b at Buses 13
and 12, followed by the injected currents in Phase c at Buses 13 and 12.
The last step is to have the Phase c currents injected at Buses 5 and 6. The
final ThevZ matrix in ohms is:

0.3921+;0.7178
0.1282+0.2974
0.1252+j0.2826
0.0598 + j0.1605

[ThevZ]=

0.1282+;0.2974
0.3866 + j0.7302
0.1262 + j0.2437
0.0581+ 70.1458

0.1252 +j0.2826
0.1262+ j0.2437
0.3880+ j0.7324
0.1293 + j0.3920

0.0598 + j0.1605
0.0581+ j0.1458
0.1293 + j0.3920
0.6328 + j0.9023

(10.19)

With ThevZ computed, the values of the needed injection currents must
be determined with the loads and capacitors included. The method is to
apply Equation 10.18 in matrix form for the IEEE 13 bus feeder and solve
for the [IT] array. The equation is:

IT1,
IT1,
IT1.
T2,

dV1311a

d‘/1311b
d‘/l3llc
dVSec

= [ThevzZ]™" - (10.20)
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In order to determine the injection currents, the power-flow program
must be run where all of the loads and capacitor along with the injection
currents are modeled. The tap settings for the regulator are set at the
same taps as in Table 10.2. As was done with the single-phase system,
initially all of the injection currents are set to zero, and the difference
voltages in Equation 10.20 are computed. Equation 10.20 is used to com-
pute the initial change in injection currents. The computed difference
voltages for this first iteration are:

dVisia, 181.2/50.8
39.4/-17.4

Vs | _ — |v (10.21)

AVisie 206.2/151.8

dVsec 228.7/153.6

With the difference voltages computed, Equation 10.20 is used to com-
pute the injection currents that will force the difference voltages to
zero. During the first iteration, the injection currents were set to zero.
Applying Equation 10.14 will give the “added” injection currents needed.
After the first iteration, the computed injection currents are:

IT,, 304.6/-22.0
IT, 145.5/-122.4
Y= — |A (10.22)
IT;. 261.7/102.8
IT>. 147.4/99.0

With the currents in Equation 10.22 injected into the buses, the power-flow
program is run again. Because the current flows on the lines will now be
different, the bus voltages will also change. Because many of the loads are
modeled as constant PQ, those load currents are subject to change. The
second iteration is necessary to recalculate the bus voltages and deter-
mine whether additional injection currents are needed. After the second
iteration, the difference voltages across the looped switches are:

dVias 8.2/-165.1
dVis |_ 44/-108.2 v (10.23)
dVisie 17.1/-76.8
dVissc 18.1/-76.3

Because the difference voltages are not close to zero, additional injection
currents are needed. The additional currents are:

15.1/97.9

12/-85
18.6/-129.3
11.0/-132.5

[IT] = (10.249)
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The total injection currents for the next iteration are:

IT, 304.6/-22.0 15.1/97.9 297.4/-19.4
ITy, _ 145.5/-122.4 . 1.2/-85 _ 145.0/-122.0 (10.25)
1T, 261.7/102.8 18.6/-129.3 250.7/106.2
IT, 147.4/99.0 11.0/-132.5 140.8/102.5

Following this procedure, after the fourth iteration, the difference volt-
ages are very small, and the process stops. The injected currents and
difference voltages are:

[ 1T, 298.0/-19.5
Ty, 145.0/-121.9
. || 2517/1060
Ty, 141.4/102.4
i T (10.26)
[ AV, 0.0276/-121.2
dVisn, | | 0.0343/-939 v
dVisie 0.0931/-62.4
| dVsec 0.0963/ —62.2

In Table 10.2, it was shown that when the new loads were added at
Buses 6 and 11, the bus voltage at Bus 6 was below the ANSI standard.
Moreover, the concentric neutral line was overloaded. By adding the
looped switches, Table 10.3 shows the results.

A comparison of Tables 10.2 and 10.3 shows the following;:

® The voltage at Bus 6 is now above the minimum ANSI standard of 114 V.

* The current flowing in the concentric neutral cable from Bus 10 to
Bus 11 is much lower than the cable current rating.

TABLE 10.3
Looped Switches

Phasea  Phaseb  Phasec
Regulator taps 1 8 14
112 675.1 536.2 798.8
17-6 17.2
110-11 20.6 19.6 41.1
V Bus 6 119.3

V Bus 11 120.5 123.8 119.4
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® The voltages at Bus 11 are not as unbalanced and are somewhat
higher.

e The current out of the substation is basically the same, since the net
injection currents are zero; so the slight change in this current is
because of the change in load currents for the constant PQ loads.

¢ The regulator tap positions have not changed, since the current into
the line drop compensator is basically the same as that before the
looped switches were closed.

10.1.7.3 Summary of Loop Flow

A method of simulating a looped distribution system has been presented.
The loop is simulated by the installation of a switch between two existing
buses in the feeder. To simulate the loop flow, the voltage at buses on the two
sides of the switch must be equal. This is accomplished by the injection of
a positive current at one of the buses and a negative value on the other bus.
A method of calculating the necessary injection currents to force the differ-
ence voltage across the loop switch to be zero has been presented. Initially,
a simple single-phase system was used to develop the technique. Following
that, the IEEE 13 Bus Test Feeder was used to demonstrate the closing of a
three-phase loop switch and a single-phase loop switch.

10.1.8 Summary of Power-Flow Studies

This section has developed a method for performing power-flow studies on
a distribution feeder. Models for the various components of the feeder have
been developed in previous chapters. The purpose of this section has been
to develop and demonstrate the modified ladder iterative technique using
the forward and backward sweep matrices for the series elements. It should
be obvious that a study of a large feeder with many laterals and sublaterals
cannot be performed without the aid of a complex computer program. In
addition to the ladder iterative technique, a method of modeling a feeder
with closed loops was presented under the name “loop flow.”

The development of the models and examples in this text use actual values
of voltage, current, impedance, and complex power. When per-unit values
are used, it is imperative that all values be converted to per-unit using a com-
mon set of base values. In the usual application of per-unit, there will be a
base line-to-line voltage and a base line-to-neutral voltage; in addition, there
will be a base line current and a base delta current. For both the voltage and
current, there is a square root of three relationships between the two base
values. In all of the derivations of the models, and in particular those for the
three-phase transformers, the square root of three has been used to relate
the difference in magnitudes between line-to-line and line-to-neutral volt-
ages and between the line and delta currents. Because of this, when using
the per-unit system, there should be only one base voltage, and that should
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be the base line-to-neutral voltage. When this is done, for example, the per-
unit positive and negative sequence voltages will be the square root of three
times the per-unit positive and negative sequence line-to-neutral voltages.
Similarly, the positive and negative sequence per-unit line currents will be
the square of three times the positive and negative sequence per-unit delta
currents. By using just one base voltage and one base current, the per-unit
generalized matrices for all system models can be determined.

10.2 Short-Circuit Studies

The computation of short-circuit currents for unbalanced faults in a nor-
mally balanced three-phase system has traditionally been accomplished
by the application of symmetrical components. However, this method is
not well suited to a distribution feeder that is inherently unbalanced. The
unequal mutual coupling between phases leads to mutual coupling between
sequence networks. When this happens, there is no advantage of using sym-
metrical components. Another reason for not using symmetrical components
is that the phases between which faults occur are limited. For example, using
symmetrical components line-to-ground faults are limited to phase a to the
ground. What happens if a single-phase lateral is connected to Phase b or ¢
and the short-circuit current is needed? This section will develop a method
for short-circuit analysis of an unbalanced three-phase distribution feeder
using the phase frame [4].

10.2.1 General Short-Circuit Theory

Figure 10.22 shows the unbalanced feeder as modeled for short-circuit
calculations.

Short circuits can occur at any one of the five points shown in Figure 10.22.
Point 1 is the high-voltage bus of the distribution substation transformer.
The values of the short-circuit currents at point 1 are normally determined
from a transmission system short-circuit study. The results of these studies

1 2 3 4 5
®_{ (Zsysapcl |"‘ (Zsubypc] "‘I (ZeqSapcl |"‘ (Zxfim ] "‘I [ZeqL ] |"_
System Equivalent Substation Total primary  In-line feeder  Total secondary
voltage system transformer line segment transformer line segment
source impedance impedance impedance

FIGURE 10.22
Unbalanced feeder short-circuit analysis model.
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are supplied in terms of the three-phase and single-phase short-circuit Mega-
Volt-Amperes (MVAs). Using the short-circuit MVAs, the positive and zero
sequence impedances of the equivalent system can be determined. These val-
ues are needed for the short-circuit studies at the other four points in Figure 10.22.

Given the three-phase short-circuit MVA magnitude and angle, the posi-
tive sequence equivalent system impedance in ohms is determined by:

2
7 KVIL

= Q (10.27)

(M VAS-phase )
Given the single-phase short-circuit MVA magnitude and angle, the zero
sequence equivalent system impedance in ohms is determined by:

3-kVLL
Zo=— 522, Q (10.28)

(MVAphase )

In Equations 10.27 and 10.28, kVLL is the nominal line-to-line voltage in kV of
the transmission system.

The computed positive and zero sequence impedances need to be con-
verted into the phase impedance matrix using the symmetrical component
transformation matrix defined in Equation 4.63 in Chapter 4.

Zy 0 0
[Z 012 ] = 0 V4 1 0
o 0 Zz (10.29)

[ZabC] = [AS] : [2012] : [As ]_l

For short circuits at points 2, 3, 4, and 5, it is necessary to compute the
Thevenin equivalent three-phase circuit at the short-circuit point. The
Thevenin equivalent voltages will be the nominal line-to-ground voltages
with the appropriate angles. For example, assume the equivalent system
line-to-ground voltages are balanced three-phase of nominal voltages with
the Phase a voltage at zero degrees. The Thevenin equivalent voltages at
points 2 and 3 will be computed by multiplying the system voltages by the
generalized transformer matrix [A;] of the substation transformer. Carrying
this further, the Thevenin equivalent voltages at points 4 and 5 will be the
voltages at node 3 multiplied by the generalized matrix [A/] for the in-line
transformer.

The Thevenin equivalent phase impedance matrices will be the sum of
the Thevenin phase impedance matrices of each device between the system
voltage source and the point of fault. Step-voltage regulators are assumed to
be set in the neutral position, so that they do not enter into the short-circuit
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calculations. Anytime that a three-phase transformer is encountered, the
total phase impedance matrix on the primary side of the transformer must
be referred to the secondary side using Equation 8.160.

Figure 10.23 illustrates the Thevenin equivalent circuit at the faulted
node [3].

In Figure 10.23, the voltage sources E,, E,, and E, represent the Thevenin
equivalent line-to-ground voltages at the faulted node. The matrix [ZTOT]
represents the Thevenin equivalent phase impedance matrix at the faulted
node. The fault impedance is represented by Z; in Figure 10.23.

KVL in matrix form can be applied to the circuit in Figure 10.23.

E, L L  Za If, Z; 0 0 If,
E, |=| Zva Zw Zp || I, || O Z; 0 || Ify
E, Za ZLa Lo If, 0 0 Z If.
Vax Vig
H Voo [H Vi (10.30)
Vex Vi

Equation 10.30 can be written in compressed form as:
[Base] = [ZTOT |- [T ]+ [ ZF ) [Tuc ]+ Va1 Vis ] (10.31)
Combine terms in Equation 10.31.
[Eave 1= [ZEQ] - [Tfsoe ]+ [Vaen 1+[Vig ] (10.32)
where
[ZEQ]|=[ZTOT|+|ZF] (10.33)
Solve Equation 10.15 for the fault currents:

[T ] =[Y ] [Base] = [Y]- [Var 1= [Y1-{ Vi ] (10.34)

where

[Y]=[ZEQ]" (10.35)
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Zf a
+
If;l Vax
%
[ZTOT) ’\/\/\/\/—N‘f*f\—o + Ve — o x
Ifb +
V,
Zf c X
+
—> I
Faulted V,
+ + + xg
node
® ® ®
FIGURE 10.23
Thevenin equivalent circuit.
Since the matrices [Y'] and [ E . | are known, define:
[I-Pabc] = [Y] : [Eabc] (1036)

Substituting Equation 10.19 into Equation 10.17 and rearranging results in:
[II::?bC] = [Ifabc ] + [ abcx [ ] (1037)

Expanding Equation 10.37:

Il)a If;i Yaa Yab Yac V:ax
IP, |=| Ify |+| Yo Yoo Yo Vix
L -PC If c Yca ch YCC VCX
h (10.38)
Yaa Yab Yac ng
H Yoo Yoo Yee || Vi
Yca ch ch ng
Performing the matrix operations in Equation 10.38:
IP, = If, +(Yaa Vax Yo Vi +Yoc - ch)+YSa ’ ng
IP, = Ifb + (Yba Vo +Yor Vi + Yoo - ‘/CX)‘FYSb . ng (1039)

IP. = Ifa +(Yca Vax +Yop - Vi + Y - ch)+YSc : ng
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where

Ysa = Yaa + Yab + Yac
YSb = Yba + Ybb + ch
YSC = Yca + ch + YCC (1040)

3
or: Ys; = E Yk
k=1

Equations 10.39 become the general equations that are used to simulate
all types of short circuits. Basically, there are three equations and seven
unknowns (If,, If,, If., Vi, Vix, Vi, and V). The other three variables in
the equations (IP,, IP,, and IP.) are functions of the total impedance and the
Thevenin voltages and are therefore known. In order to solve Equations 10.22,
it will be necessary to specify four additional independent equations. These
equations are functions of the type of fault being simulated. The additional
four equations required for various types of faults are given below. These
values are determined by placing short circuits in Figure 10.13 to simulate
the particular type of fault. For example, a three-phase fault is simulated by
placing a short circuit from node a to x, node b to x, and node c to x. That gives
three voltage equations. The fourth equation comes from applying KCL at
node x, which gives the sum of the fault currents to be zero.

10.2.2 Specific Short Circuits
Three-Phase Faults

Vax =Vix =V =0

(10.41)
I,+I,+1.=0
Three-phase-to-ground Faults
‘/ax = Vbx = ch = ng =0 (1042)
Line-to-line Faults (assume i—j fault with phase k unfaulted)
Vi =V, =0
If, =0 (10.43)

If,+1f=0
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Line-to-line-to-ground Faults (assume i—j—g fault with phase k unfaulted)

Vi =V =0
Vg =0 (10.44)
Ik = O

Line-to-ground Faults (assume phase k fault with phases i and j unfaulted)

ka = ng = O
(10.45)
If; =1f; =0

Notice that Equations 10.43, 10.44, and 10.45 will allow the simulation of line-
to-line faults, line-to-line-to-ground, and line-to-ground faults for all phases.
There is no limitation to b—c faults for line-to-line and a—g for line-to-ground
as is the case when the method of symmetrical components is employed.

A good way to solve the seven equations is to set them up in matrix form.

i 1P, ] 1 0 0 Yin Yo Yiz Y It,

IPb 0 1 0 Yz 1 Yz 2 YZ 3 Ys 2 Ifb

IP, 0 0 1 Ysr Ysy Yas Y It
o |= A1 v, (10.46)

0 _ _ _ _ _ _ _ Vbx

0 _ _ _ _ _ _ _ ch

L 0 | L _ _ _ _ _ _ _ ] L VXg |
Equation 10.29 in condensed form:

2] = [C]-[X] (1047)

Equation 10.47 can be solved for the unknowns in matrix [X]:
[X]=[C]"[IP.] (10.48)

The blanks in the last four rows of the coefficient matrix in Equation 10.46
are filled in with the known variables depending upon what type of fault
is to be simulated. For example, the elements in the [C] matrix simulating a
three-phase fault would be:

C4,4 = C5,5 = C6,6 =1
C7,1 = C7,2 = C7,3 =1

All of the other elements in the last four rows will be set to zero.
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Example 10.5

Use the system in Example 10.2, and compute the short-circuit currents
for a bolted (Z;= 0) line-to-line fault between Phases a and b at node 4.

The infinite bus balanced line-to-line voltages are 12.47kV, which leads
to balanced line-to-neutral voltages at 7.2kV.

12,470/30
[ELL,]=| 12,470/-90 |V
12,470/150

7199.6/0
[ELN,]=[W]-[ELL,]| 7199.6/-120 |V

7199.6/120

The line-to-neutral Thevenin circuit voltages at node 4 are determined

using Equation 8.165.
2400/-30
[Eth,]=[A.]-[ELN,]=| 2400/-150 |V
2400/150

The Thevenin equivalent impedance at the secondary terminals
(node 3) of the transformer consists of the primary line impedances
referred across the transformer plus the transformer impedances. Using
Equation 8.165:

[Zths] =[A¢]-[ZeqS asc | [de ]+ [ Ztanc ]

0.0366+;0.1921  -0.0039-;0.0086  —0.0039- ;0.0106
[Zth;]=| —-0.0039-;0.0086  0.0366+;0.1886  —0.0039-;0.0071 (Q
-0.0039-;0.0106  —0.0039-;0.0071  0.0366+ j0.1906

Note that the Thevenin impedance matrix is not symmetrical. This is a
result, once again, of the unequal mutual coupling between the phases
of the primary line segment.

The total Thevenin impedance at node 4 is:

[Zth,|=[ZTOT | = Zths |+ [ ZeqLup |

0.2273+;0.6955 0.0568+0.2216  0.0559+ j0.1645
[ZTOT] =| 0.0568+;0.2216  0.2305+;0.6771  0.0575+;0.1860 |Q
0.0559+;0.1645 0.0575+;0.1860  0.2287+ j0.6876
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The equivalent admittance matrix at node 4 is:
[Yeqs]=[ZTOT]"

0.5031-;1.4771  -0.1763+;0.3907 -0.0688+ j0.2510
[Yeqs]=| -0.1763+0.3907  0.5501-;1.5280  —0.1148+j0.3133 |S
—-0.0688+0.2510 —0.1148+;0.3133  0.4843—j1.4532

Using Equation 10.36, the equivalent injected currents at the point of
fault are:

4466.8/-96.3
[IP]=[Yeq,]-[Eth,]=| 4878.9/138.0 |A
4440.9/16.4

The sums of each row of the equivalent admittance matrix are computed
according to Equation 10.40.

, 0.2580— j0.8354
Ys; =Zyeqi,k =| 02590-;0.8240 |s
= 0.3008 - j0.8889

For the a-b fault at node 4, according to Equation 10.43:

V=0
Vi =0
If. =0
If,+1f,=0

The coefficient matrix [C] using Equation 10.46:

1 0 0 05031-j14771 —0.1763+j0.3907 —0.0688+0.2510 0.2580— /.8354
0 1 0 -01763+/3907 05501- j15280 —0.1148+ /3133 0.2590 j.8240
0 0 1 -00688+,2510 ~—0.1148+/.3133 0484314532  0.3008- j.8890
[€1=] 0 o o 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
11 0 0 0 0 0



Distribution Feeder Analysis 421

The injected current matrix is:

4466.8/-96.3
4878.9/138.0
4440.9/16.4

[IP]= .

0
0
0

The unknowns are computed by:

4193.7/-69.7
4193.7/110.3

0
[X]=[C]"-[IR]= 0

0
3646.7/88.1

1220.2/-91.6

The interpretation of the results are:

If, = X, =4193.7/-69.7

If, = X, =4193.7/110.3
If.=X;=0

Vax =X4=0

Vi = X5 =0

Voo = X, =3646.7/88.1
Vi =X;=12202/-91.6

Using the line-to-ground voltages at node 4 and the short-circuit cur-

rents and working back to the source using the generalized matrices will
check the validity of these results.

The line-to-ground voltages at node 4 are:

Vax +Vig 1220.2/-91.6
[VLGy]=| V+Vy |=| 12202/-91.6 |V
Va+Vig 2426.5/88.0
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The short-circuit currents in matrix form are:

4193.7/-69.7
[L,]=[L]=| 4193.7/1103 |A
0

The line-to-ground voltages at node 3 are:

1814.0/-47.3
[VLG;]=[a]- [VLGs]+[b1]-[I.] =| 1642.1/-139.2 |V
2405.1/89.7

The equivalent line-to-neutral voltages and line currents at the primary
terminals (node 2) of the transformer are:

6784.3/0.2
[VLN,]=[a] [VLGs] +[b]-[Is]=| 71388/-1187 |v
7080.6/118.3

1614.3/-69.7
[L]=[d]-[I5]=| 807.1/1103 |A
807.1/110.3

Finally, the equivalent line-to-neutral voltages at the infinite bus can be

computed.
7201.2/0
[VLN;]=[a]-[VLN, | +[b]-[I.]=| 7198.2/-120 |V
7199.3/120
The source line-to-line voltages are:
12,470/30
[VLL,]=[Dv]-[VLN,]=| 12,470/-90
12,470/150

These are the same line-to-line voltages that were used to start the short-
circuit analysis.

10.2.3 Backfeed Ground Fault Currents

The wye—delta transformer bank is the most common transformer con-
nection used to serve three-phase loads or a combination of a single-phase
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lighting load and a three-phase load. With this connection, a decision has to
be made as to whether or not to ground the neutral of the primary wye con-
nection. The neutral can be directly connected to the ground or grounded
through a resistor or left floating (ungrounded wye—delta). When the neutral
is grounded, the transformer bank becomes a grounding bank that provides
a path for zero sequence fault currents. In particular, the grounded connec-
tion will provide a path for a line-to-ground fault current (backfeed current)
for a fault upstream from the transformer bank. A method for the analysis of
the upstream fault currents will be presented [6].

10.2.3.1 One Downstream Transformer Bank

A simple system consisting of one downstream grounded wye—delta trans-
former bank is shown in Figure 10.24.

In Figure 10.24, the substation transformer is connected to a high-voltage
equivalent source consisting of a three-phase voltage source and an equiva-
lent impedance matrix. The equivalent source and substation transformer
bank combination can be represented as shown in Figure 10.25.

In Chapter 8, it was shown that the combination of the equivalent source
and substation transformer could be reduced to a Thevenin equivalent cir-
cuit as shown in Figure 10.26.

Substation XFMR Distribution XFMR

g 1 2.0 miles 2 1mile 3 % 4
° (v
hd Za
E Fault point
AYg A

3
i

FIGURE 10.24
Simple system.

FIGURE 10.25
Equivalent source and substation transformer.

% [Iabc]

1
@) |

FIGURE 10.26
Thevenin equivalent circuit.
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The Thevenin equivalent voltages and impedance matrix are given by:

[Eth]=[A/]-[ELG1x]
(1049)
[Zthapc | = [At ] . [Zsysm ] [d: ]+[B:]

where for the delta-grounded wye transformer:

o KVLL primary
= primary
kVLNsecondary
1 1 0 -1
[A]l=—1] -1 1 o0
e O R R
Zt, 0 0 |
[B:]=| 0 zt, ©
0 0 Zt
I B B 1
[di]=— 0 1 -1
‘11 0 1 |

211,1 ZI1,2 Z]1,3
[ZSyslzs ] = ZIZ,l Z]2,2 Z]2,3
Zlg’l Z]3/2 Z]3/3

Applying the Thevenin equivalent circuit, Figure 10.24 is modified to that of
Figure 10.27.

In Figure 10.27, the equivalent impedance matrix is:

[Zeq| = Zthse |+ [Z12 asc ] (10.50)

A question that comes up when a wye-delta transformer bank is to be
installed is whether the neutral should be grounded. If the neutral is to be

1 2
@ [Zeq] [Z23 A BC)
Fault node

E—
[Zagcl [ItABC

FIGURE 10.27
Modified simple system.



Distribution Feeder Analysis 425

grounded, it can either be a direct ground or be grounded through a resis-
tance. The other option is to just leave the neutral floating. Figure 10.28 shows
the three-phase circuit for the modified simple system in Figure 10.27 when a
line-to-ground fault has occurred at node 2 in Figure 10.27. Note the question
mark on grounding of the neutral.

For future reference, the source voltages are [ ESapc | =[Ew]. When the neu-
tral is left floating in Figure 10.28, there is no path for the currents to flow
from the transformer back to the fault. In this case, the only short-circuit
current will be from the substation to the faulted node.

Figure 10.29 represents the transformer bank grounded neutral through a
resistance.

Before getting into the derivation of the computation of the short-circuit
currents in Figure 10.29, it is important to do a visual analysis of the circuit.
The most important observation is that there is a path for the current It , to
flow from the phase A transformer through the fault and back to the neutral
through the grounding resistance (Z,). Note that this resistance can be set to
zero for the direct grounding of the neutral. Because It 4 flows, there must be
a current in the delta transformer secondary. This current is given by:

Iab =1 - ItA (1051)

FIGURE 10.28
Three-phase circuit with floating transformer neutral.

FIGURE 10.29
Three-phase circuit with grounded transformer neutral.
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Because the line currents out of the delta are zero, then all of the currents
flowing in the delta must be equal.

Lp=Ipc=1ca=n;Its (10.52)
Because the delta currents are equal, define the currents out of the transformer:
Ity=Itg=1Itc =1t (10.53)

The sum of the line-to-line secondary voltages must add to zero:

Vab + Ve +Vea =0 (10.54)

10.2.3.2 Complete Three-Phase Circuit Analysis

A method to calculate the short-circuit currents is to apply basic circuit and
transformer analysis to determine all voltages and currents. A three-phase
circuit showing an A-G fault at node 2 is shown in Figure 10.29. There are
28 unknowns, which will require 28 independent equations. Without going
into detail, the 28 equations are:

e 13KVL

® 6 basic transformer primary/secondary
* 5KCL

* 4 unique to type of fault

The 28 independent equations will be reduced to 8 independent equations
that will compute the voltages and currents in the fault and the backfeed cur-
rent from the transformer bank. All other system voltages and currents can
be computed by knowing these eight variables.

In Figure 10.30, a node X has been installed to represent the fault at node 2.
With the node X, there are four voltages defined as Vfax, Vix, Vicx, Vxe

FIGURE 10.30
Three-phase circuit with AG fault.
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and three fault currents defined as If4, Ifs, If-. The different types of faults
are modeled by setting the appropriate voltages and currents to zero. For
example, for an A-G fault, the following conditions are set:

VfAX =O
VfXG = 0
(10.55)
IfB = 0
IfC =0

In Figure 10.30, three loop equations can be written between the source and
the faulted node.

ESA :VfAX +VfXG +Zeq1,1 . IlA +Zeq1,2 . IlB +Zeq1,3 . IlC
ESB = VfBX +VfXG +Zeq2l1 . IlA +Z€q2l2 . IlB +Z€‘q2'3 . Ilc (1056)

ESC = VfCX +VfXG +Zeq3,1 . IlA +Zeq3,2 . IlB +Zeq3,3 . IlC

KCL can be applied at the faulted node point:

IlA = IfA —It
Ip=1Ifz It (10.57)
IlC = IfC - It

Substitute Equation 10.57 into Equation 10.56:
Esy =Viax +Vixg +Zeqiy - Ifa+ Zeq, - Ifg + Zeq, 5 - Ifc — Zxy - It
Esp = Vigx + Vg + Zeqyy - Ifs + Zeqa, - Ifs + Zeqys - Ife — Zx, - It (10.58)
Esc =Vicx +Vixc +Zeqsy - If s+ Zeqs, - I+ Zeqs 5 - Ifc — Zx; - It

where for
3
121,23 Zx= ) Zeq,,
k=1

The line-to-ground voltages at the transformer primary terminals are:

Vac =Viax +Vixg +(Z2311+ 2231, + Z2343) - It

Vg =Vigx +Vixg +(Z230+ 2230+ Z23,3) - It

Vg =Viex +Vixg +(Z2331+ 2235, + Z2333) - It
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VAG =VfAX +VfXG +ZY1 It
VBG = VfBX + VfXG +ZY2 - It (1059)
VCG = VfCX +VfXG +Zy2 It

where

3
Zy,= .73,
k=1

also:
Z_YSum = ZY1 + ZyZ + Z3

The line-to-neutral ideal transformer voltages are:

VN ZVAG+3'Zg'It
VAN ZVBG +3'Zg It (1060)
VAN=VCG+3'Zg It

Substitute Equation 10.59 into Equation 10.60:

VN ZVAG+3’Zg'ItZVfAX+foc+(Zy1+3’Zg)'It
VBN =VBG +3'Zg 'It=Vfgx+VfXG +(ZyZ+BZg)It (1061)

VCN :VCG +3'Zg It :VfCX +VfXG +(ZY3+3'Zg)' It
From the currents flowing in the delta secondary are:

Iab = Ibc = Ica =1 - ItA
Ly=In=1,=n It (10.62)

since: It, =1t
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The line-to-line secondary voltages are:
Vb =Vt + Ztap - I
Ve =Vitpe + Ztpe - Ipe (1063)

‘/Ca = Vtca + Ztca : Ica

In Equation 10.63:

Vtpe=—Van
n (10.64)

t

Lp=Ipc=1,=nIt

Substitute Equation 10.64 into Equation 10.63:

Vip = L Vin + Ztp -1y - It

I

1
Vbc =—- VBN + thc sy - It (1065)

n;

Vca =i'VCN "I'Ztca N - It

I
but:
Vb + Ve +V =0
therefore:
O=ni~(VAN +Vin +Ven )+ 1y - Ztgun - It
t
where

Ztsum = Ztab + thc + Ztca
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Substitute Equation 10.61 into Equation 10.65:

Ozi'(VAN +VBN +VCN)+nt Ztsum It

t
VAN :VfAX +VfXG +(Zyl+3Zg)It
VBN :VfBX +VfXG +(ZyZ+3Zg)It

Von = Viex + Vg +(Zys+3- 2, )- It (10.66)

0=i~((Vfo + VEsy + Vex +3-VEG )+ ZV aum + 9+ Zg ) Tt + 1y - Ztgun - It

t

0=i~(VfAX + Vg + Viex +3~VfXG)+i-(Zy5um +07 Ztam +9-Z, ) It
1, n;

0= i(‘/fAX +VfBX +VfCX +3'foc)+thal It
n,

Wl ere
Z = 71 ZV +n 2 Zt +9.-Z
total n, : ( sum t sum : g )

Combining Equations 10.58 and 10.66 gives four equations with eight
unknowns:

ESA = VfAX + VfXG + ZeqM . IfA + Zequ . IfB + Z€q1,3 . IfC - ZXl It
ESB = VfBX + VfXG + Zeq2,1 . IfA + Zeqzlz . IfB + Zeqzlg . IfC — ZXZ It
ESC = VfCX + VfXG + Zeq3,1 . IfA + Zeq3,2 : IfB + Zeq3,3 . IfC - ZX3 It (1067)

0= i(‘/ICAX +VfBX +VfCX +3'VfXG)+ZtotaI It
n;

where
1
Ztotal = (Zysum + Ztsum +9- Zg)
n;
LY sum = Zy1+ 2y, + 2y
Ztsum = Ztab + thc + Ztca
Equation 10.67 gives four independent equations. The final four independent

equations are unique for the type of fault to be modeled. The four equations that
model each of the various types of faults are defined in Equations 10.41 to 10.45.
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A general matrix equation for modeling a B—-C-G fault is shown in the forth-
coming. The first four rows in the coefficient matrix [C] come from Equation
10.69, and the last four rows are for the B—C-G fault as specified in Section 10.2.2.

r B Z€q1,1 Zequ Zeq1,3 —ZX1 1 0 0 1 r 1
ESA IfA
Es Zeqm Zeqzlz Z€q2,3 —ZXZ 0 1 0 1 IfB
Esi Zeqs, Zeqs, Zeqss —Zxs (; (1) 1 ; It
0 = 0 0 0 Z total 7 7 7 7 1t
0 n; n; ny n; VEax
0 1 0 0 0o 0 0 0 0 Vi
0 0 0 0 0o 0 1 0 0 Vi
0 0 0 0 0 0 0 1 0 VEe
o 0 0 o o o o 1 L .
[Ex]=[C]-[X] (10.68)

Example 10.6

The system in Figure 10.29 is to be analyzed for a B-C-G fault at node 2.
The given information for the system is as follows:

Equivalent system:

230,000/60 132,790.6/30
[ELLy, |=| 230,000/=60 | [ELN,,|=[W][ELLy,|=| 132,790.6/-90 |V
230,000/180 132,790.6/150

Line length = 200 miles

88.1693+;226.9581  25.6647 + j90.9260 25.6647+ j71.3971
[Zsysis]=| 25.6647+j90.9260  87.7213+j235.6914  24.5213+;78.2847 (Q
25.6647 + j71.3971 24.5213+;78.2847  85.7213+ j235.6814

Substation transformer:

kVA=2500 KkVLL,;=230 KkVLL, =1247 Zg; =0.005+ j0.06 per-uni

2
Zbase... = kVLL,.~ -1000
kVA

Zt = Zt gy, - Zbasege. = 0.311+ j3.732

=62.2004

0.311+ j3.732 0 0
[Zsubasc | = 0 0.311+ j3.732 0
0 0 0.311+ j3.732
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Compute substation transformer matrices:

Compute substation transformer Thevenin equivalent circuit relative to

kVLL,
KVLN,, = ——= =7.1996
‘ N&)
kVLL,,
no=— P = 319464
kVLN,.
. 1 0 -1
[A]=—-] -1 1 0
e 0 -1 1
[B, ] = [ZSUbAgc]
1 1 -1 o0
[d]=—-] 0 1 =
el o001

secondary (Chapter 8, Section 8.12):

7199.5579/0
[En]=[A]{ELN,.]=| 7199.5579/-120
7199.5579/120

[Zthasc | =[Ar]-[Zsysi]-[di]+[B:]

[Zthapc | =

Given distribution line impedance matrices as follows:

[ZlZABC] =

[ZZ3ABC] =

0.4311+ j4.40454
-0.0601— j0.1400
-0.0600- j0.1734

09151+ j2.1561
0.3119+ j1.0033
0.3070+ j0.7699

0.4576+ j1.0780
0.1559+0.5017
0.1535+;0.3849

-0.0601~j0.1400
0.4311+j4.0071
-0.0600-;0.1351

03119+ j1.0033
0.9333+ j2.0963
0.3160+ j0.8473

0.1559+;0.5017
0.4666+ j1.0482
0.1580+ ;0.4236

~0.0600— j0.1734
-0.0600— j0.1351

0.4309+ j4.0405

0.3070+;0.7699
0.3160+;0.8473
0.9229+;2.1301

0.1535+;0.3849
0.1580+ ;0.4236
0.4615+ j1.0651
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Grounded wye—delta transformer data:

kVA, =50 kVA, =100 kVA; =50

Ztpu, =0.011+ j0.018  Ztpu, =0.01+ j0.021  Ztpus = 0.011+ j0.018
KVLN,; =72  KVLL. =048

_ kVLN,,

= =15
= VI

2 4.608
Fori=1,2,3 ZDbase; = w =| 2.304
i 4.608

0.0507 + j0.0829

Ztdel; = Ztpu; - ZDbase; =| 0.0230+ j0.0484

0.0507 + j0.0829

Ztab = theh thc = thelz Ztca = the];;

Grounding resistance: Z, =5Q
Compute impedance terms for Equation 10.50:

[Zeq] = [ZthABC ] +[Z12 4pc |

13462+ j6.2015  0.2518+ j0.8633  0.2470+ j0.5965
[Zeq]=| 0.2518+0.8633 1.3643+/6.1035 0.2560+ j0.7122
02470+ j0.5965  0.2560+ j0.7122  1.3539+ j6.1706

Fori=1,23
, 1.8450+ j76613
[Zxi]= ) Zeqii=| 18722+7.6790
k=1 1.8569+ j7.4793
, 0.7670+ j1.9646
[2y:]-= z Z2345c,, =| 07806+ j1.9735
k1 0.7730+ j1.8736

3
2y m= ) Zyi =23205+ 58118

k=1

Ltsum = Ztap + Lty + Zt, =0.1244+ j0.2143

Zow =+ (2 sum + 1 Zt o +9- Z; ) =5.0209 + j3.6015
n;
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Using the Thevenin source voltages and the numerical values from
above, create the Equation 10.68 matrices for the B-C-G fault at node 2.
Remember that the last four rows of the [C] matrix represent the type of
fault as specified in Section 10.2.2.

7199.5579/0
7199.5579/-120
7199.5579/120

[Ex]= 0

O O O O

1.3462 + j6.2015  0.2518 + j0.8633  0.2470+ j0.5965  —1.8450 —7.6613 1
0.2518 +j0.8633  1.3643 + j6.1035  0.2560 + j0.7122  —1.8722 - j7.6790 0
0.2470 + j0.5965 02560+ j0.7122  1.3539 + j6.1706  —1.8569 — j7.4793 0

61

o = o
= o o
-

[c]= 0 0 0 50209+ 36015 00667 00667 00667 0.2
1 0 0 0 0 0 00
0 0 0 0 0 1 0 0
0 0 0 0 0 0 10
0 0 0 0 0 0 o 1
Solve for the unknown matrix [X]:
-1
[(X]=[C]-[Ex]
The computed short-circuit currents are:
If, Xi 0
If; |=| Xx, |=| 1342.2/165.84
Ifc X; 1194.6/40.15
It =X,=815/143.53
Fori=1,2,3
I1, If, It 81.5/-36.46
Iz |=| Ify |-| Ir |=| 1267.2/167.24
I1c If- It 1216.09/36.41

Note from above that each of the distribution transformer primary
windings has a short-circuit current of 81.5 A flowing. The rated currents
for the three transformers are:

6.94
Irated; =I<I€/‘L/7ﬁ= 13.89 |A
hi 6.94
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The percentage overrated current for the transformers are:

It 1173.6
Iover, = Thi -100=| 586.8 [%
i 1173.6

Obviously, the fuses on the distribution transformers are going to blow
because of the backfeed current.

This method of analysis for a grounded wye—delta bank with a ground
resistance can be used to simulate an ungrounded wye—delta bank by
setting the grounding resistance to a very large value. For example, use
a grounding resistance of 99,999.

Z,=99,999

0
[Ifasc]=| 1257.4/1675
1217.0/36.1

1t=0

0
[Lasc]=| 1257.4/167.5
1217.0/36.1

Note that for this case, the backfeed current from the transformer bank
is zero.

10.2.3.3 Backfeed Currents Summary

When a wye—delta transformer connection is used, the basic question is
whether the neutral should be grounded. In this section, a method of ana-
lyzing a simple system was developed for analysis and then demonstrated
with an example. It can be concluded that there is a very significant backfeed
current when the neutral is grounded. The backfeed current is in the range
of 1000% of the rated transformer currents; so the transformer fuses will
blow for the upstream fault. It was also demonstrated that if the grounding
resistance is set to a very large value, the backfeed current will be zero, thus
simulating an ungrounded wye—delta transformer bank connection. The
final conclusion is that the neutral should never be grounded either directly
or through a grounding resistance.

10.3 Summary

This chapter has demonstrated the application of the element models that are
used in the power-flow analysis and short-circuit analysis of a distribution
feeder. The modified ladder iterative technique was used for the power-flow
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analysis. For a simple radial feeder with no laterals, the examples demonstrated
that only the forward and backward sweeps were changed by adding the
sweep equations for the new elements. A feeder with laterals and sublaterals
will require the ladder forward and backward sweep for each lateral and sub-
lateral. In some cases, there is a need to model a feeder with a limited number
of loops. A loop-flow method of modifying the ladder technique was devel-
oped, and an example was developed to demonstrate the loop-flow method.

For the short-circuit analysis of a feeder, using the symmetrical component
analysis will not work because not all possible short circuits can be modeled.
Rather, a method in the phase domain for the computation of any type of
short circuit was developed and demonstrated.

The backfeed short-circuit currents due to a grounded wye—delta trans-
former bank were developed and demonstrated by way of an example. The
final idea is to demonstrate that a grounded wye—delta transformer bank
should never be used.

The examples in this chapter have been very long and should be used as
a learning tool. Many of the interesting operating characteristics of a feeder
can only be demonstrated through numerical examples. The examples were
designed to illustrate some of these characteristics.

Armed with a computer program using the models and techniques of this
text provides the engineer with a powerful tool for solving present-day prob-
lems and long-range planning studies.

Problems

The power-flow problems in this set require the application of the modified
ladder technique. Students are encouraged to write their own computer pro-
grams to solve the problems.

The first six problems of this set will be based upon the system in
Figure 10.31.

1 2

LA -
§%Q¢| —

Infinite A
bus

Y
A

FIGURE 10.31
Wye homework system.
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The substation transformer is connected to an infinite bus with balanced
three-phase voltages of 69kV. The substation transformer is rated:

5000kVA, 69kV delta—4.16 grounded wye, Z=15+;8.0%

The phase impedance matrix for a four-wire wye line is:

04576+ j1.0780  0.1560+ j0.5017  0.1535+ j0.3849
[Ziwie]=| 0.1560+j0.5017  0.4666+j1.0482  0.1580+ j0.4236 | Q/mile
0.1535+ j0.3849  0.1580+ j0.4236  0.4615+ j1.0651

The secondary voltages of the infinite bus are balanced and being held at
69kV for all power-flow problems.

The four-wire wye feeder is 0.75 miles long. An unbalanced wye-connected
load is located at node 3 and has the following values:

Phase a: 750kVA at 0.85 lagging power factor
Phase b: 500kVA at 0.90 lagging power factor
Phase c: 850kVA at 0.95 lagging power factor

The load at node 4 is zero initially.

10.1 For the system as described earlier and assuming that the regulators are
in the neutral position:

a. Determine the forward and backward sweep matrices for the sub-
station transformer and the line segment.

b. Use the modified ladder technique to determine the line-to-ground
voltages at node 3. Use a tolerance of 0.0001 per-unit. Give the volt-
ages in actual values in volts and on a 120-V base.

10.2 Three Type B step-voltage regulators are installed in a wye connection
at the substation in order to hold the load voltages (node 3) at a voltage level
of 121V and a bandwidth of 2'V.

a. Compute the actual equivalent line impedance between nodes 2 and 3.

b. Use a potential transformer ratio of 2400-120V and a current trans-
former ratio of 500:5 A. Determine the R and X compensator settings
calibrated in volts and ohms. The settings must be the same for all
three regulators.

c. For the load conditions in Problem 10.1 and with the regulators in
the neutral position, compute the voltages across the voltage relays
in the compensator circuits.



438 Distribution System Modeling and Analysis

d. Determine the appropriate tap settings for the three regulators to
hold the node 3 voltages at 121V in a bandwidth of 2'V.

e. With the regulator taps set, compute the actual load voltages on a
120-V base.

10.3 A wye-connected three-phase shunt capacitor bank of 300kvar per
phase is installed at node 3. With the regulator compensator settings from
Problem 10.2, determine:

a. The new tap settings for the three regulators
b. The voltages at the load on a 120-V base
c. The voltages across the relays in the compensator circuits

10.4 The load at node 4 is served through an ungrounded wye-delta
transformer bank. The load is connected in delta with the following
values:

Phase a-b: 400kVA at 0.9 factor power factor
Phase b—c: 150kVA at 0.8 lagging power factor
Phase c—a: 150kVA at 0.8 lagging power factor

The three single-phase transformers are rated as:

“Lighting transformer”: 500 kVA, 2400-240V, Z = 0.9+j3.0%
“Power transformers”: 167 kVA, 2400-240V, Z = 1.0+j1.6%

Use the original loads and the shunt capacitor bank at node 3 and this new
load at node 4 and determine:

a. The voltages on 120V base at node 3 assuming the regulators are in
the neutral position

b. The voltages on 120V base at node 4 assuming the regulators are in
the neutral position

c. The new tap settings for the three regulators

d. The node 3 and node 4 voltages on 120V base after the regulators
have changed tap positions

10.5 Under short-circuit conditions, the infinite bus voltage is the only volt-
age that is constant. The voltage regulators in the substation are in the neu-
tral position. Determine the short-circuit currents and voltages at nodes 1, 2,
and 3 for the following short circuits at node 3.
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a. Three-phase to ground
b. Phase b to ground
c. Line-to-line fault on Phases a—c

10.6 A line-to-line fault occurs at node 4. Determine the currents in the fault
and on the line segment between nodes 2 and 3. Determine the voltages at
nodes 1, 2, 3, and 4.

10.7 A three-wire delta line of length 0.75 miles is serving an unbalanced
delta load of:

Phase a-b: 600kVA, 09 lagging power factor
Phase b—c: 800kVA, 0.8 lagging power factor
Phase c—a: 500kVA, 0.95 lagging power factor

The phase impedance matrix for the line is:

0.4013+;1.4133 0.0953+;0.8515  0.0953 + j0.7802
[Z3wire |]=| 0.0953+ j0.8515 0.4013+ j1.4133  0.0953+ j0.7266 | Q/mile
0.0953+;0.7802  0.0953+;0.7266  0.4013 + j1.4133

The line is connected to a constant balanced voltage source of 4.8kV line-to-
line. Determine the load voltages on a-120V base.

10.8 Add two Type B step-voltage regulators in an open-delta connection
using phases A-B and B-C to the system in Problem 10.7. The regulator
should be set to hold 121+1 V. Determine the R and X settings and the final
tap settings. For the open-delta connection, the R and X settings will be dif-
ferent on the two regulators.

10.9 The three-wire line of Problem 10.7 is connected to a substation trans-
former connected delta—delta. The substation transformer is connected to a
69-kV infinite bus and is rated:

10,000kVA, 69kV delta—4.8kV delta, Z=1.6+j7.8%

Determine the short-circuit currents and substation transformer secondary
voltages for the following short circuits at the end of the line:

a. Three-phase
b. Line-to-line between Phases a—b

10.10 Two three-phase systems are shown in Figure 10.32.
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Sub-1 I Sub-2
Iy S~ _— 25
127\A \7 6/ A/I%
SW-2
IT, T,
T, Ty
FIGURE 10.32

Loop-flow system.

In Figure 10.32, the solid lines represent three-phase lines, while the
dashed lines represent phase C single-phase lines. The phase conductors are
336,400 26/7 ACSR, and the neutral conductor is 1/0 ACSR. The impedance
matrices are:

Three-phase lines:

0.5396+;1.0978  0.1916+j0.5475 0.1942+ j0.4705
[z3]=| 0.1916+;0.5475 0.5279+;1.1233  0.1884+ j0.4296
0.1942+;0.4705 0.1884+;0.4296 0.5330+ j1.1122

Single-phase C line:

0 0 0
[z1]=| 0 0 0 Q/mile
0 0 05328+,1.1126

The two sources are 12.47kV substations operating at rated line-to-line voltages.
The line lengths in feet are:

L, =2000, Ly =2500, L,y =1000, L4 =6000, Ls¢ =750, Lsg=5000

The loads are:
S;3,=500 kW at 90% PF  S,, =500 kW at 80% PF
S3p =600 kW at 85% PF Sy, =400 kW at 85% PF
S3. =400 kW at 95% PF S, =600 kW at 90% PF
S;. =500 kW at 80% PF  S4. =450 kW at 90% PF
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The base kVA = 5000, and the base line-to-line kV = 12.470.
The two switches are open.

a. Determine the node voltages.
b. Determine the line currents.

The two switches are closed.

c. Determine the values of the injected currents at nodes 3, 4, 6, and 7.

d. With the injected currents operating, determine the node voltages
and the line currents.

10.11 The system in Figure 10.33 is to be studied for steady-state and short-
circuit analyses.

In Figure 10.33, the system is served from an equivalent source with bal-
anced line-to-line voltages of 12.47kV. The equivalent source impedance
matrix is:

04311+ j4.0454  —0.0601- j0.1400  —0.0600 — j0.1734
[Ze]=| —0.0601-;0.1400  0.4311+ 4.0071  —-0.0600- ;0.1351
-0.0600— j0.1734  —0.0600 - j0.1351  0.4309 + j4.0405

The three-phase four-wire line impedance matrix in ohms/mile is:

04576+ j1.0780  0.1560+ j0.5017  0.1535+ j0.3849
[Ziwre]=| 01560+ j0.5017  0.4666+ j1.0482  0.1580+ j0.4236
0.1535+ j0.3849  0.1580+ j0.4236  0.4615+ j1.0651

The primary line is 5 miles long.

Equivalent
source

| r —> |
Orf 2 T 38 1 @ | @
1 4

FIGURE 10.33
Small system.
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The three-phase three-wire open-wire secondary line impedance matrix
in Q/mile is:

1.0653 + j1.5088  0.0953 + j1.0468  0.0953 + j0.9627
[Zeo]=| 0.0953+;1.0468 1.0653+ j1.5088  0.0953 + j1.0468
0.0953+;0.9627  0.0953+;j1.0468 1.0653 + j1.5088

The secondary is 500 ft long.
The transformer bank is connected grounded wye—delta composed of
three single-phase transformers each rated:

kVA=10, kVLNy=72, kVLL,=0.24, Zpu=0.016+;0.014

The wye-connected primary windings are connected directly to the ground.
A three-phase induction motor has the following data:

150 Hp, 480 V

Z;=0.059+;0.127 pu
Z,=0.046+;0.112 pu
Zm=4.447 pu

The motor is operating with a slip of 0.035 with balanced three-phase source
voltages of 12,470V line-to-line. Determine the following:

a. The primary and secondary line currents
b. The line-to-line voltages at the motor

c. The three-phase complex power at the source

The switch to the induction motor is open when a phase line-to-ground fault
occurs on Phase c at the fault node (F), which is 2 miles from node 1.

d. Determine the fault currents from the source and from the trans-
former bank.

WindMil Assignment
Figure 10.34 shows the one-line diagram of an unbalanced three-phase feeder.

The nonline data for the feeder are:

1. Equivalent source
a. Balanced 115kV line-to-line
b. Z,,=148+j11.6Q
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Source node
L a

FIGURE 10.34
Unbalanced three-phase feeder.

C Z,,=473+j211Q
d. Bus voltage =120
2. Substation transformer
a. 115kV D-1247kV grd. Y
b. kVA =10,000
c. Z=8.026%,X/R=8
3. Regulator
a. CT rating =600

b. % boost=10
c. Step size =0.625
d. Number of steps = 16
e. Nodes: 1-2
f. Voltage level =?
g R+jX="?

4. Single-phase transformer
a. Connection: Y-D one
b. kVA =100
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c. Voltages: 7200 Y-240 D V
d. Z=2.326%, X/R=21
e. Nodes: 12-13

The line data are:

5. Three-phase OH lines
a. Phase: 336,400 26/7 ACSR
b. Neutral: 4/0 6/1 ACSR
c. Phasing: a-b—c
d. Spacings:
i. Position 1: 0+;29
ii. Position 2: 2.5+j29
i. Position 3: 7+j29
iv. Neutral: 4 + ;25
OH 1: Nodes 2-3, 2500 ft.
OH 2: Nodes 3—4, 3000 ft.
OH 3: Nodes 4-5, 2500 ft.
. OH 4: Nodes 5-6, 1000ft.
6. Two-phase OH line
a. Phase: 336,400 26/7 ACSR
b. Neutral: 4/0 6/1 ACSR
c. Phasing: a—c
d

=

i

70 o0

Spacings:
i. Position 1: 0+j29
ii. Position 2: 7+j29
iii. Neutral: 4+/25
e. OH 5: Nodes 5-7, 1500 ft.

7. Three-phase concentric neutral UG
a. CN cable: 1/0 AA, 1/3 neutral
b. No extra neutral
c. Phasing: c-b-a
d. Spacings:

i. Position 1: 0 - j40in.
ii. Position 2: 6 —j40in.
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8. Two-phase concentric neutral UG
CN cable: 1/0 AA, Full neutral

10.

11.

e.
a.

b
C.
d

e.
a.
b
C.
d

e.

iii. Position 3: 12 — j40in.
UG 1: Nodes 4-10, 1500 ft.

No extra neutral

Phasing: c—b

Spacings:

i. Position 1: 0 — j40in.

ii. Position 2: 6 —j40in.
UG 2: Nodes 10-11, 1000 ft.

. Single-phase concentric neutral UG
CN cable: 1/0 AA, Full neutral

No extra neutral
Phase: ¢
Spacings:
i. Position 1: 0 — j40in.
UG 3: Nodes 10-12, 500 ft.

Single-phase tape shield cable

a.

b
C.
d

e.

1/0 AA Tape Shield UG
Neutral: 1/0 7 Strand AA
Phase c-a
Spacings:

i. Position 1: 0 —j 40in.
ii. Neutral: 6 —j 40in.
UG 4: Nodes 7-8, 500 ft.

Two-phase tape shield cable

a.

b
C.
d

1/0 AA Tape Shield UG
Neutral: 1/0 7 Strand AA
Phase ¢
Spacings:

i. Position 1: 0 —j40in.
ii. Position 2: 6 —j401in.
iii. Neutral: 12 - j40in.
UG 5: Nodes 7-9, 750 ft.

445
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The load data are:
Distributed loads:

NodeA NodeB P, PF% P, PF% P, PF% Model

a c

2 3 100 90 150 90 200 90 Y-PQ
3 4 200 90 100 90 150 90 Y-Z

Wye-connected spot loads:

Node P, PE% P, PFE% P, PF% Model
3 500 85 300 95 400 90 Y-Z
4 500 80 500 80 500 90 Y-I
6 1000 80 800 90 950 95 Y-PQ
8 200 95 Y-Z

Delta-connected loads:

Node P, PF,% P, PF% P PF,%  Model

ca

9 350 90 D-1
11 350 90 D-PQ
13 100 95 D-1

1. Create this system in WindMil.

2. Run voltage drop with the regulator set to “none.” Do this in the
Voltage Drop Analysis Manager.

3. Compute the R and X and voltage level for the voltage regulator.
a. Hand calculation
b. WindMil “Regulation Set”
c. Compare settings
4. Run voltage drop with the regulators set to “step”
a. What are the final tap positions?
b. Are these appropriate?

5. Add shunt capacitors so that the source power factor is no lower
than 95% lag. Specify capacitors in multiples of 100 kvar.

6. Run voltage with the final capacitors.
a. What is the power factor by phase at the source?
b. What are the final tap positions for the regulators?



Distribution Feeder Analysis 447

References

1.

Trevino, C., Cases of difficult convergence in load-flow problems, IEEE Paper
n.71-62-PWR, Presented at the IEEE Summer Power Meeting, Los Angeles,
1970.

. Kersting, W. H. and Mendive, D. L., An application of ladder network theory

to the solution of three-phase radial load-flow problems, IEEE Conference Paper,
Presented at the IEEE Winter Power Meeting, New York, 1976.

. Radial Test Feeders, IEEE Distribution System Analysis Subcommittee, http://

ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html.

. Kersting, W.H. and Phillips, W. H., Distribution system short-circuit analysis,

25" Intersociety Energy Conversion Engineering Conference, Reno, NV, 1990.

. Kersting, W.H., The simulation of loop flow in radial distribution analysis

programs, IEEE Conference Paper, Presented at the IEEE Rural Electric Power
Conference, 2014.

. Kersting, W. H. and Carr, W., Grounded wye—delta transformer backfeed short-

circuit currents, IEEE Conference Paper, Presented at the IEEE Rural Electric
Power Conference, 2016.


http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html
http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://www.taylorandfrancis.com

11

Center-Tapped Transformers and Secondaries

The standard method of providing three-wire service to a customer is from
a center-tapped single-phase transformer. This type of service provides the
customer with two 120-V circuits and one 240-V circuit. Two types of trans-
formers are available for providing this service. The first is where the sec-
ondary consists of one winding that is center-tapped as shown in Figure 11.1.

The secondary voltage rating of the transformer in Figure 11.1 would be
specified as 240/120V. This specifies that the full winding voltage rating is
240V, with the center tap providing two 120-V circuits.

A second type of transformer used to provide three-wire service is shown
in Figure 11.2.

The transformer in Figure 11.2 is a three-winding transformer with the
two secondary windings connected in series. The secondary on this trans-
former is specified as 120/240V. The secondary windings can be connected
in series to provide the three-wire 240- and 120-V service, or they may be
connected in parallel to provide only 120 V. When connected in parallel, the
transformer will typically be used in a three-phase connection. The second-
ary will be connected in wye and will provide three 120-V circuits.

For both connections, the ideal transformer equations are:

— kVLNrated
" KVLLpea
(11.1)
example: n, = 7200 30
240
Viimo =21, - Vixixo
1 (11.2)
Iy = (-1
0=7. n (I-I,)

11.1 Center-Tapped Single-Phase Transformer Model

The model of the center-tapped transformer in Figures 11.1 and 11.2 is shown
in Figure 11.3.

449
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FIGURE 11.1
Center-tapped secondary winding.

H,
+ —>
Iy
Vin-m
H, o

FIGURE 11.2
Three-winding transformer with secondary windings in series.

FIGURE 11.3
Center tap transformer model.

The model in Figure 11.3 can represent either the center-tapped secondary
winding (Figure 11.1) or the two secondary windings connected in series
(Figure 11.2). The impedances Z,, Z;, and Z, represent the individual
winding impedances.

The first step in developing the model is to determine the impedances
Zy, Zy, and Z, . These impedances can be determined with open-circuit
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and short-circuit tests on the transformer. However, that is usually not
practical. The per-unit impedance based upon the transformer rating is
typically known on a transformer. Unfortunately, that usually does not
include the angle. When that is the case, an approximation must be made
for the angle, or a typical impedance value can be used. Typical values
of transformer impedances in per-unit can be found in the text Electric
Power Distribution System Engineering, by Turan Gonen [1]. Empirical
equations commonly used to convert the per-unit transformer impedance
to the per-unit winding impedances of an interlaced design are given in
Equation 11.3.

Zy=05-R4+j0.8- X4
Z1=Rs+j04-X,4 per-unit (11.3)
Zz =RA+].0'4'XA

The equations for the noninterlaced design are:
Zy=025-R,—j0.6- X4
Z1=15-Rp+j33-X, per-unit (11.4)
Z,=15-Rs+j31 X4

The interlaced design is the most common, and it should be used when in
doubt. Note for this design that:

R+ jX4 =ZO+%-(Zl+Zz)
R+ jX4 :O.S-RA+j0.8~XA+i-(RA+j0.4~XA+RA+jO.4-XA)

Ry+jX4=05-Ry+j0.8-X4 +%-(2'RA +70.8-X4) (11.5)

Ro+jX, =05 Ry+j0.8 X4+0.5-Ry+j0.2- X4
RA+jXA =RA+jXA

The per-unit impedances of the three windings must be converted to
ohms based upon the transformer rating. The base impedance for (Zo)
of the primary is based upon the rated primary voltage of the transformer
(KVLNp; or kVL). The center-tapped transformer secondary is modeled as
two 120-V windings (kVLN). The two windings in series result in the rated
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line-to-line voltage (kVLL,,). The base impedances for the primary winding
connected line-to-neutral are:

2. .
Zbasey; = w (116)

kVAtated
For the primary winding connected line-to-line:

2A .
Zbasey; = w (117)

k VAra ted

The base impedance for the two secondary windings is based upon the rated
line-to-line voltage of the secondary:

2
kvéLfo ) -1000

Zbase, = Zbase, = (
k VArated

Zbase, = Zbase, = % - Zbase,, (11.8)

where

2
Zbase, = kVLLj, -1000
kVAIated

Example 11.1

A single-phase center-tapped transformeris connected to the line-to-neutral
system voltage.
Transformer ratings

kVA =50 kVLN, =72 kVLL,,=0.24
Rpu,=0.011 Xpu, =0.018

Compute primary and secondary per-unit impedances.
Zpuy =0.5- Rpuy + j0.8- Xpu, = 0.0055+ j0.0144
Zpu, = Rpus + j0.4- Xpu, =0.011+ j0.0072
Zpu, = Zpu,
Zpuy = Zpuy+0.25- (Zpu1 +Zpu2) =0.011+;0.018
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Compute the transformer primary and secondary transformer impedances
in ohms.
kVApe =50 kVLN,; =72 kVLL,=0.24

kVLN}; 1000 7.2%-1000
kVAbase

Zy =Zpu, - Zbasep; =5.7024+ j14.9299 Q

Zbase; = =1036.8

2 .
Zbase,, = kVLLi, 1000 1.152
k VAbase

2
(kvéLf] -1000

Zbase, =
k VAbase

=0.288

Zbase),

Note: Zbase, = =0.288

Zbase,

Zy=2,=Zpu - =0.0032+;0.0021 Q

11.1.1 Matrix Equations

Referring to Figure 11.3, the ideal secondary voltages of the transformer are:

o He e s ]

[Vt ]| =[Vi2|+[Zt12] - [112]

(119)

The ideal primary voltage as a function of the secondary ideal voltages is:

(11.10)

where
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The primary transformer current as a function of the secondary winding
currents is given in Equation 11.11. The negative sign is due to the selected

direction of the current I,.

IO= '(Il—Iz)

2-n

BB

[{oo] =[ai] [I1o]

where

Substitute Equation 11.9 into Equation 11.10:

[Ew]=[av]-([Vi2]+[Z12]-[11])

[Eoo]=[av]-[Vi2]+[av]-[Z12]-[]12]

The source voltage as a function of the ideal primary voltage is:

Vo lL| Bo || 20 0 || o
V. || E 0 Z I,

[Vss]=[Eoo]+[Zoo] [Lno]

Substitute Equation 11.12 into Equation 11.13:
[Vis]=[av]-[Vi2]+[av] [Z12]- [T2]+[Z0o] - [Loo]
Substitute Equation 11.11 into Equation 11.14:
[Vis]=[av]-[Vi2]+[av] - [Z2]- [T12]+[Zw] - [ai] - [112]
[Ves]=[av] - [Vi2]+([av] [ Z12]+[Zoo] - [ai]) - []12]

VesI=[a]- [Vl +[be] - [1n2]

(11.11)

(11.12)

(11.13)

(11.14)

(11.15)
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where
_ _ 1 0
[at]—[av]—z-nt-|: 0 1 ]
[b:]=[av]-[Zi2]+[Zoo]- [ai]

1 1

Zi+——-Z -7
[b] 5 ' (z'nt)2 ’ (Z’Ht)2 ’
e | =41 -
1 1
2-20 - Zz+72'ZO
(2-n,) (2-n;)

Equation 11.15 is the backward sweep voltage equation for the single-phase
center-tapped transformer when the secondary voltages and currents are
known. The primary current as a function of the secondary voltages and
currents is given by the backward sweep current equation as:

[Too]=[c:] - [Vi]+[di]- [112] (11.16)

where

Equation 11.15 is used to compute the primary source voltage when the
secondary terminal voltages and the secondary currents are known. It is also
important to be able to compute the secondary terminal voltages when the
primary source voltage and secondary currents are known (forward sweep).
The forward sweep equation is derived from Equation 11.15.

Viel=[a]" - ([Vis]=[be] - [12])
Vial=[a] " [Vel-[a]" [b]-[Ix] (11.17)

[Via]=[Ae]- [Vis]=[Be ] [ 1n2]
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where
- -1 1 ] 1 0
[Ad=la] 2.n, |: 0 1 ]
[Zl+ 1 . O) 1 -z,

[Bil=[a]" [b]=5— b = 2-n) 2 m)

-n, . (. 1

@n) ™ ( T 2on)y O]
(11.18)

Example 11.2

The 50-kVA center-tapped transformer in Example 11.1 serves constant
impedance loads as shown in Figure 11.4.

Transformer Rating: 50kVA, 7200-240/120V, R, =0.011 pu, X , =0.018 pu
Loads:

S, =10kVA at 95% lagging power factor
S, =15kVA at 90% lagging power factor
S;=25kVA at 85% lagging power factor

Source voltage: 7200/0V
Determine:

1. [A¢], [B:],and [d;] matrices

2. Load voltages, secondary currents, and load currents
3. Primary current

FIGURE 11.4

Center-tapped transformer serving constant impedance loads.
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The winding impedances from Example 11.1 are:

Z,=5.7024+j14.9299
Z,=2,=0.0032+;0.0021

Q

Compute the turn’s ratio: n, = 7200 _ 30
240
Compute the matrices:
1 10 0.0167 0
[A]= ’ =
2-n, [ 01 0 0.0167
Zi+ Zo 2 - 2
. (2-m) (2-n) l 0.0048+ j0.0062
t = =
o 2 - 42t : 2
(2-n;) (2-n;)
[d] 1 11 -1 _| 0.0167 -0.0167
“To2on, |1 -1 ]| 00167 -0.0167

|

—0.0016—;0.0041

0.0016+;0.0041 —0.0048- j0.0062

|

The first forward sweep is computed by setting the secondary line

current to zero.

[Vi2]=[A¢].[Vss]=[B:]- [112] :l
where
| 7200/0
[Vss]= 7200/0

0
0

[Ilz]z{

The three load voltages are:

|

174 120/0
Vul=| v, |5 1200
Vi+V, 240/0

120/0
120/0

|

457

|
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The load currents are:
i=1to 3

. 83.3/-18.2
) =| 125.0/-25.8
104.2/-31.8

d, - SL; -1000
Vid;

The secondary line currents are given by:

1 0 1 IL, 186.2/—-25.8

[I] = | m, = Loe?
0o -1 -1 228.9/151.5

1L, E—

Define:
1 0 1
DI =
pi1-| | }

The current in the neutral is:

I,=(Id, ~Id,)=43.8/-405

The backward sweep computes the primary current:
I, 6.9156/-27.3
{ I, } (] [ 1] l 6.9156/-27.3

Using the computed secondary line currents, the second forward sweep is:

117.9/-0.64 ]

Vi2|=[A¢] - [Vss]-[B:] [ 112] =
[Vie]=[A4]. Vs [B.- [ Fx] [ 8063
The calculations above demonstrate the first and second forward sweeps
and the first backward sweep. This process can continue, but it is much
easier to write a Mathcad program to compute the final load voltages.
The program is shown in Figure 11.5. The initial values are:

[Start]z[ 8 ] Tol = 0.00001

The Mathcad program follows the same general steps that all programs
will follow.

1. Initialize

2. Set loop

3. Forward sweep

4. Check for convergence
a. If converged, output results
b. If not converged, continue



Center-Tapped Transformers and Secondaries

FIGURE 11.5

0
start :=
0 Tol :=.00001
= |}, < start
Vog € start
for n €1..20

Out

Vi,
Via < Via,
Vip, + Via,
for iel.2
‘ Viy Voug;
Error; <«
120

break if max(Error) < Tol

for iel.3

SL; - 1000

IL;, <

i

Vig,
I, < DIIL
Ipp < dilip

Vold <« V12

Out; < Vi
Out, <« IL
Outy; < I},
Outy, < n

Out; <« I,

Mathcad program for Example 11.2.

459
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5. Compute new load and line currents
6. Backward sweep
7. End of loop

After four iterations, the final load voltages are:

117.88/-0.64
[Via]=| 117.71/-0.63
235.60/ —0.64

11.1.2 Center-Tapped Transformer Serving Loads
through a Triplex Secondary

Shown in Figure 11.6 is a center-tapped transformer serving a load through
a triplex secondary.

Before the system in Figure 11.6 can be modeled, the impedance matrix for
the triplex secondary must be determined. The impedances of the triplex are
computed using Carson’s equations and the Kron reduction as described in
Chapter 4. Applying Carson’s equations will result in a 3x3 matrix. Kron reduc-
tion method is used to “fold” the impedance of the neutral conductor into that
of the two-phase conductors. A triplex secondary consisting of two insulated
conductors and one uninsulated neutral conductor is shown in Figure 11.7,

The spacings between conductors that are applied in Carson’s equations
are given by:

dia+2-T
D, =daTe L
12
dia+T
Dy = ’12 ft (11.19)
dia+T
D3 = 12

where

dia = diameter of conductor in inches
T = thickness of insulation in inches

Applying Carson’s equations:

2Py = 1,+0.09530+ j0.12134-{ In — - +7.93402
GMR,
(11.20)
2p; =0.09530+ j0.12134-[1n ! +7.934on
ij

where
1; = conductor resistance in ©/mile
GMR; = conductor geometric mean radius in ft
D; = distance in ft between conductors i and j
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ZO
+ - 10
Vs
FIGURE 11.6

Center-tapped transformer with secondary.

FIGURE 11.7
Triplex secondary.

The secondary voltage equation in matrix form is:

Vi Vig VLg zpll  zpl2  2pl3 I,
vo |=| Vag |-| Vipg |=| 2zp21 2zp22 zp23 || I, (11.21)
Vn Vig VL;, zp31 zp32  zp33 I,

When the neutral is grounded at the transformer and the load, then:
Vn=Vng=VL,, =0 (11.22)

This leads to the Kron reduction equation in partitioned form:

[vio] [zpi]  [zPin] [112]

= . (11.23)
[0] [2py]  [2Pmn] [1.]
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Solving Equation 11.22 for the neutral current:

[In]==[2Pum] " - [2Pu] [T12]

(11.24)
[Ia]=[ta] [12]
where
[ta]==[2Pm]" - [7Pn]
The Kron reduction gives the 2x2 phase impedance matrix:
[zs] :[Zp,j]— [2Pin ] [2Pn ]_1 -[zpnj] (11.25)
For a secondary of length L:
Zsy Zsin
Zs]= ‘L= 11.26
(25] = zs] { o ] (1126

Referring to Figure 11.6, the voltage backward sweep for the secondary is

given by:
Vi _ VL " Zsn Zs1, I
V2 - VL, 78y Zsy I,
(11.27)
[‘/12] = [asec ] [VLIZ ] + [bsec ] ' [112 ]
where

[bsec]=|: Zsy  Zsp :|

ZSZ] ZSzz
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Because of the short length of the secondary, the line currents leaving the
transformer are equal to the line currents at the load; so no current backward
sweep is needed for the secondary. In order to remain consistent for the gen-

eral analysis of a feeder, the matrix [diec] is defined as:
[T12]=[deec]-[112] (11.28)

where

The voltage forward sweep equation for the secondary is determined by
solving for the load voltages in Equation 11.27.

[VLi2]=[Acec ] [Vi2] = [ Beee |- [ 112 ] (11.29)

where

[AseC] = [asec ]71

[Bsec ] = [asec ]71 ) [bseC]

Example 11.3

The secondary in Figure 11.7 is 100ft of 1/0 AA triplex. Determine the
phase impedance matrix for the triplex secondary.

From the table for 1/0 AA: GMR = 0.111ft. Diameter = 0.368”, r =
0.973 Q/mile

The insulation thickness of the phase conductors is 80 mil = 0.081in.

The distance matrix with the diagonal terms equal to the GMR is com-
puted to be:

0.0111  0.0440 0.0373
[D]=| 0.0440 0.0111 0.0373 |ft
0.0373 0.0373 0.0111

Applying Carson’s equations, the primitive impedance matrix is:

1.0683+;1.5088 0.0953+1.3417 0.0953+;1.3617
[zp]=| 0.0953+;1.3417 1.0683+;1.5088 0.0953+;1.3617 |Q/mile
0.0953+;1.3617 0.0953+ j1.3617 1.0683+ j1.5088
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Define:

: 1.0683+/1.5088  0.0953+ j1.3417
ZPil=l 0.0053+j1.3417  1.0683+ j1.5088

0.0953+ j1.3617
[zpin] = .
0.0953+ j1.3617

[zpm]:[ 0.0953+j1.3617  0.0953+ j1.3617 ]
[2Pmn ] =[1.0683+ j1.5088]

The Kron reduction is:

[z5]=[2pi]~[2Pin] [2Pmn] " [2P0i]

1.5304+;0.6132  0.5574+ j0.4461
0.5574+j0.4461  1.5304+ ;0.6132

The secondary impedance matrix for a length of 100 ft is:

(25] - 0.0290+70.0116 ~ 0.0106+ j0.0084
*I7| 0.0106+;0.0084  0.0290+j0.0116

The forward and backward sweep equations for the secondary are:

[Awe]=[U]

(B ][] 0.0290 + j0.0116  0.0106 + j0.0084
=251 0.0106 + j0.0084  0.0290 + j0.0116

[deee]=[U]

The Mathcad program of Example 11.2 is modified so that:
Forward Sweep:

[Vi2 | =[Ac] [Vss |- [ B ][ Iz ]
[VLi2 | = [Asec | [Viz | = [Beee |- [ 1]
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In the program, the load voltages are:
VL,
[Vzd] = VL,
VL, +VL,

The remainder of the program stays the same. After five iterations, the

final voltages are:
Vi 117.89/-0.64
v, | | 117.75/-0.62

VL, 114.98/-0.19
VL, |=| 122.30/-1.31
VL 237.27/-0.77

Note that the voltage VL, is greater than V,, indicating a voltage rise
on that phase. This is not uncommon when the line currents are very
unbalanced.

The secondary line currents are:

I 190.9/-26.2
I, | | 227.8/1504
The primary line current is:

I,=6.97/-28.1

Using the neutral current transform matrix of Equation 11.23, the current
flowing in the neutral conductor is:

In :[fn][l12]:288/—158

The current flowing in the ground is:
I,=—(I,+1,+1,)=20.8/-93.1

It is always good to check the validity of the results. This is particularly
true because there should be some question about the voltage rise on
phase 2. The check can be done by using basic circuit and transformer
theory to compute the source voltage using the load voltages and line
currents output from the program.
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UL (| 11789064
Vel = VLl +[Z: ] (ha] =) 705, "0 6
ety Lz | 1186177059
[Vt] = [Vio] + [Ztia]-[112] = 118.61/-0.59

This is the first indication that the solution is correct, since the two ideal
voltages on the secondary are equal. That is a must. Knowing the ideal
voltages and the secondary line currents, the primary voltage and line
current can be computed.

Ey=2-n,-Vt; =7116.3/-0.59

IOZ

L (-1)=697/-281
2.1 =

V. =Eo+Zy- Iy =7200/0

Because the original source voltage has been computed, the results
of the program have been shown to be correct. Whenever there is
a question about the validity of a program solution, it is good to use
basic circuit and transformer theory to prove that the results are correct.
Never assume that the results are correct just because they came from a
computer program.

11.2 Ungrounded Wye-Delta Transformer Bank
with Center-Tapped Transformer

The most common transformer connection for providing service to a combi-
nation of three-phase and single-phase loads is the ungrounded wye—delta.
In order to provide the usual three-wire service for the single-phase loads,
one of the three transformers, the “lighting” transformer, will have a center
tap. The other two transformers are referred to as the “power” transformers.
The connection diagram for the standard 30° ungrounded wye—delta center
tap transformer on phase A connection is shown in Figure 11.8. The derivations
will be in terms of primary phases A-B—C and secondary phases a—b—c—.

11.2.1 Basic Transformer Equations

The turn’s ratios for all transformers are given by:

_ kVLN rated primary
k VLLrated secondary

(11.30)

n;
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FIGURE 11.8
Ungrounded wye-delta transformer center-tapped connection.

The basic transformer equations for the center tap transformer are:

Vit = Vi = L VIan
-1y
VT =210 - Vion (11.31)
1
IA = '(Ina+Ibn)
2'1’1t

For the transformer bank, the basic “ideal” transformer voltage equations as
a function of the turn’s ratio are:

VT Vtan
AN 2 0 0 0 Vi
VTBN =n; - 0 0 1 0 vVt
VT 0 0 0 1 thc (11.32)

[VILN apc] = [AV] " [Vtannc]

where
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Vtan 0.5

0 0
VT,
Vew |11 05 0 0 || p
Vi n 0 1 0 v:rBN (11.33)
Vt.. 0 0 1 N

[Vtamwe|=[BV]-[VILN apc]

where

05 0 0

[BV] = 1 105 0 0
n 0 1 0

0o 0 1

The basic “ideal” transformer current equations as a function of the turn’s
ratio are:

I na
I
A , 05 05 0 0 I
Iy |=— 0 0 1 0 I
Ic ! 0 0 0 1 Id’

(11.34)
[Lasc]=[All-[ID,,.]

where

Forward sweep:
Refer to Figure 11.8. In the forward sweep, the line-to-ground voltages at
the terminals of the transformer bank will be known.

VAG
[VLGasc]=| Vi (11.35)
VCG
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In order to determine the voltages across the transformer, it is necessary to
first determine the “ideal” primary voltages defined as:

VTan
[VILN apc]=| VTan (11.36)
VIen

The first step is to determine the voltages of the “ideal” transformer to the
ground.

[VTLGAgc] = [VLGAgc] - [ZTo] . [IABC] (1137)

where

VT
[VTLG ABC ] = VTBG
VTCG

N
s
Il
o
o
=

The line-to-line “ideal” voltages are:
[VTLLAgc] = [DV] . [VTLGAgc] (1138)

where

VTAB
[VTLL 'ABC ] = VTBC
VIca
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With reference to Figure 11.8, the primary “ideal” voltages to ground as a
function of the primary line-to-ground voltages are:
VIan =VTac —Vne
VIsn =VTse — Ve
(11.39)
VTCN = VTCG - VNG

[VILN asc ] = [VILG asc ]~ [VNG]

where

[VNG] =| Vie

The primary line-to-line voltages across the “ideal” transformer windings are:
Substitute Equation 11.39 into Equation 11.39:

[VTLLasc] = [Dv]-[VILGasc] - [Dv]-[VNG]

however: [Dv]-[VNG] = [0]

therefore: [VILLasc] = [Dv]-[VILGasc]  (1141)

In Equation 11.41, the “ideal” line-to-line voltages are known. The “ideal”
line-to-neutral voltages are needed to continue the forward sweep. In
Equation 1140, it appears that the line-to-neutral voltages can be com-
puted by using the inverse of the matrix [Dv]. Unfortunately, that matrix
is singular. Two of the equations in Equation 11.40 can be used, but a third
independent equation is needed. The two equations from 11.40 that will be
used are:

VTBC =V - VTCN

(1142)
VIca =Vieny —VTan
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The third independent equation comes from writing Kirchhoff’s Voltage
Law (KVL) around the delta secondary. The sum of the secondary voltages
around the delta must be equal to zero. With reference to Figure 11.8:

‘/ran+vnb+vbc+vca =0
Voo =21 1pg+ Vit =2y Iy +Vitpe —Zp Iy +Vtpe—Z - 1, =0
Vtan+ Vit +Vitpe + Vit =21 1+ Zy Ipn+ Zp I+ Zo - 1, (1143)

Vtan + thb + thc + Vtca = [ZDanbc ] ' [IDanbc]

where
(2D | =121, 22, Zb, Z ]
L
Ipn
[Darcl=| "
I
but:
Vtan + Vit +Vitpe + Vi, = n% : [VT;N + VTZAN +VTpn +VTen ]
nl (5-VTan +.5-VTan +VTpn + VT ) = [ ZDanbe | [ ID e |
¢
VIan +VTIgn +VTIeny =1y - [ ZDsnbe |- [IDanbe | = X
where

X= g - [ZDanbc] ) [IDaan]

It is important to know that in Equation 1143 the secondary transformer

currents will be set to zero during the first forward sweep. After that, the

most recent secondary currents from the backward sweep will be used.
Equations 11.42 and 11.43 are combined in matrix form as:

X 1 1 1 VTN
VTBC = 0 1 -1 . VTBN

[VXLLpc | =[DX]-[VTLN apc ]
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The ideal primary voltages are computed by taking the inverse of [DX]:

[VILN pc] = [Dx] - [VXLLagc ] (11.45)
where
) 1 1 -1 =2
[Dx]=[DX]" = | 1 2 1
1 -1 1

With the “ideal” line-to-neutral voltages known, the forward sweep continues
with the computation of the secondary “ideal” voltages:

Vtan
05 0 O VTan
Viw |_ 1 | 05 0 0
- VTN
Vi 0 0 1 N
[Vtanse | =[BV]- [VILN apc]
The secondary transformer terminal voltages are given by:
Van Vit an Zy 0 0 0 I,
Voo | | Vtw 0o 2z 0 0 I,
Vbc thc Zy O ch (1147)
Va VEa 0 2z || L

[Vanbe | = [VEanbe | = [ Ztanve |- [IDanbe |

In the first forward sweep, the secondary delta currents are assumed to be
zero.

On the first backward sweep, the secondary line currents will be known. In
order to determine the currents in the delta as a function of the line currents,
only three Kirchhoff’s Current Law (KCL) equations can be used. The fourth
independent equation comes from recognizing that the sum of the primary
line currents must be equal to zero. The three KCL equations to use are:

Ia :Ina_Iac

Ib :ch _Ibn (1148)
IC =IaC_ICb
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Because the sum of the line currents must equal zero, the fourth equation is
given by:

I,+Ig+I-=0= 1 -(Ina+1b,,)+i-(lcb+lac)
-1 1
I ,+Ig+1c =O=L-(Im+lb,,+2-ld,+2-Iac)
2. (11.49)

Z'Ht (IA +IB +IC):0:Ina+Ibn +2'ch +2'Iac
O0=I,+Ip+2-ITp+2- 1,

Combine Equations 11.48 and 11.49 into matrix form:

I, 1 0 0 -1 Ina
I, || 0 -1 1 0 | Iin
I || o -1 1 I, (11.50)
0 1 1 2 2 I,

[Iach] = [Xl] ' [IDanbc]
The delta currents can now be computed by taking the inverse of [X1]:

[IDanse ] =[X1]™ - [Lubeo ]

[IDmbc] [ ] [Iabco]

Ina 5 1 3 1 Ia
Iy, _1 -1 5 3 1 1, (1L51)
I, 6| -1 1 -3 1 I.
I. -1 1 3 1 0

IDanbc] [Xl] [ach]

where

5 1 3 1
a_ 1] -1 5 3 1

=[x1]"=-
[x1]=[X1] 1 1 3 1
-1 1 3 1
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Note in Equation 11.51 that the fourth column of the inverse is not needed,

because the fourth term in the current vector is zero. Therefore, Equation
11.51 is modified to:

Ina 5 1 3 7
I, | 1| -1 -5 =3 ¥
=_. 1 I,
I, |6 -1 1 =3 ! (11.52)
I, -1 1 3 ¢

[IDanse |=[Dd] - [Labe ]

where

5 1 3

Dd)=1| 1 2 3
6 1 1 3

-1 1 3

Substitute Equation 11.52 into Equation 11.34:

[Lasc | =[AI]- [IDannc ]

(11.53)
[IABC] = [AI] ' [Dd] : [Iabc]

define:
[d]=[AI]-[Dd]
[IABC ] = [dt ] ' [Iabc ]

Equation 11.53 is the necessary equation used in the backward sweep to
compute the primary line currents.

With the primary line currents known, the primary line-to-neutral voltages
are computed as:

[VTLNAgc] = [VLNABC]_ [ZTO] ' [IABC]

but: [Lapc]=[d:]- [Lap] (11.54)
[VILN asc]=[VLN asc]~[ZTo] - [d:]- [Luse ]
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The secondary transformer voltages are computed by:
[Vanbe | = [Vtanse | = [ Ztanse |- [IDanbe |
[Danve ] = [Dd] - [Lapc ] (11.55)
[Vanse | = [VEanse | =[Z s |- [D] - [ Lae ]
Substitute Equation 11.46 into Equation 11.55:
[Vanbe | = [Vtanse | = [ Ztanse |- [DA] - [Lac ]
[Vtanse | =[BV]- [VILN apc] (11.56)
[Vanbe ] =[BV |- [VTLN asc | = [ Zt . ] [Dd] [Luec ]
Substitute Equation 11.54 into Equation 11.56:
Vi 1= [BY ] [VTLN e |~ [ Zt,n |- [ D] [ L]
[VILN apc]=[VLN apc]~[ZTo]-[de] - [Tavc]
Vit 1=[BV]- (IVLN s 1= [ZT0] - [dh]- (Lo ]) = [ Ztun |- [Dl] - [ o
[Vanee ] =[BV ] [VLN apc |~ ([BV]- [ZTo] - [d: ] + [ Ztanec ] [Dd]) - [Lanc] ~ (11.57)

define:
[Ac]=[BV]
[B)=[BV]-[ZTs]-[d ]+ [ Ztuse ] [Dd]
[Vanbe | =[A¢]- [VLN apc | = [Be]- [Lae ]

Backward sweep:
The terminal line-to-neutral voltages are:

[VLN apc ] = [VILN apc ]+[ZT5]- [Lasc]

but:
[VILN aac]=[AV]-[Vearsc]
and:
[IABC ] = [dt ] ’ [Iabc ]
therefore:

[VLN 4sc ] =[AV] [Vtane |+ [ ZTo] - [de]- [Labe ] (11.58)
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The “ideal” secondary voltages as a function of the secondary terminal
voltages are:

[Vt anbe | = [Vanbe |+ [ Zt anbe |- [IDabe |

[(Vtanbe | = [Vanbe |+ [ Ztanve |- [DA] - [ Labe ] (11.59)

Substitute Equation 11.59 into Equation 11.58:
[VLNABC] = [AV] . ([‘/embc] + [Ztanbc] . [Dd] . [Iabc]) + [dt] : [Iabc]
[VEN asc | =[AV]: [Vanse |+ ([AV]- [ Ztanse | [DA]+ [ ZT5]-[de]) - [ Lave]
therefore:
[VLNABC] = [at] : [Vanbc] + [bt] : [Iabc] (1160)

where

[a:]=[AV]

[b:]=[AV] - [Ztawee ] [Dd]+[ZT5] - [d:]
It is important to know that normally on the backward sweep the node
voltages are not computed using Equation 11.60. Only the currents are
calculated back to the source. However, as a check to confirm the final results
of the power-flow program, Equation 11.60 using the computed secondary

voltages and currents is used to confirm that the source voltages are the
same as that which were used in the forward sweep.

Example 11.4

Figure 11.9 shows an ungrounded wye—delta transformer bank servicing
120/240V single-phase loads and a three-phase induction motor.
The single-phase loads are rated:

SL, = 3kVA, 120V, 0.95 lagging power factor
SL, =5kVA, 120V, 0.90 lagging power factor
SL; =8 kVA, 240V, 0.85 lagging power factor

The load vector is:

for i=1to3
2.85+j0.9367
SL,=kVA,/acos(PF,) =| 45+j21794 | kW + jkvar
6.8+ j4.2143
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FIGURE 11.9

Ungrounded wye—-delta bank serving combination loads.

The three-phase induction motor data are:
25HP, 240V, impedances:

Z5=0.0774+;0.1843 Q
Zr=0.0908+;0.1843 Q
Zm=0+;4.8385 Q

The motor is operating at a slip of 0.035.
The transformer data are:
Lighting transformer: 25kVA, 7200-240/120V, ZL,,, = 0.012+ j0.017
Power transformers: 10kVA, 7200240V, ZP,,, = 0.016+ j0.014
Source voltages: Balanced line-to-neutral 7200V
Determine:

Transformer impedances in ohms for the model in Figure 11.9
Transformer forward and backward sweep matrices

Motor phase admittance matrix

. Operating currents

ao o

i. Single-phase loads
ii. Motor

e. Operating voltages

iii. Single-phase loads
iv. Motor

Compute the winding per-unit impedances for the lighting transformer:
Zpuy=0.5-Re(Z, )+ j0.8-Im(Z,)=0.006+ j0.0136

Zpu, = Zpu, =Re(Z, )+ j0.4-Im(Z,) = 0.012+ j0.0068
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Convert the lighting transformer impedances to ohms:

2 . 2 .
Zbasey, = kVLN;(,,VA 1000 _ 7.2 51000 —2073.6

Z,=2073.6-(0.006+j0.0136) = 12.446+ j28.201

2 2
kVLL,," -1000 _0.247-1000 —2304
kVAp 25

Zbase;, =

Z,=Z,= %04 -(0.012+ j0.0068) = 0.0069-+ j0.0039

Convert the per-unit impedances of the power transformers to ohms:

2 .
0.24101000 —576

Z,=Z.=5.76-(0.016+j0.014) = 0.0922+ j0.0806

Zbase;, =

Compute the turn’s ratio:

n = 7200 _ 30
240

Compute the forward sweep matrices:

00167 0 0
0167
(4] =[BV]=| 0016 0 0
0 00333 0
0 0 00333

[B:]=[BV]-[ZT0] - [de] + [Ztanse] - [Dd]

—-0.0012 - j0.0046 0.0035 +;0.002

0.0081+ j0.0085
5= 0.0012+j0.0046  —0.0081— j0.0085  —0.0035 — j0.002
U7 —0.0154-;0.0134  0.0154+ j0.0134  —-0.0461— j0.0403

—0.0154-;0.0134  0.0154+;0.0134 0.0461+ j0.0403

Compute the backward sweep matrices:
where

[a]=[AV]=n-] 0 0 1
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5~Z1+4~£§ 21—4-Z—g 3-Z
n; I I
b
6 -05-Z, 05-Z, -15-2,
-0.5-Z. 0.5-Z. 15-Z.

(D] = [AV]-[Ztan |- [Dd]+[ZT5] - [d: ]

0.4838+;j0.5092  -0.0691-j0.2742  0.2074+ j0.1175
[b:]=| —0.4608-;0.4032 0.4608+;0.4032 -1.3824-;1.2096
-0.4608-;0.4032  0.4608 + j0.4032 1.3824 + j1.2096

0.0111 -0.0111 0
[d:]=[AI]-[Dd]=| -0.0056 0.0056 —0.0167
-0.0056  0.0056  0.0167

Motor admittance matrix:
Define the positive and negative sequence slips:

51 =0.035
Sy = 2—51 =1.965

Compute the sequence load resistances and input sequence impedances:

for k=1and2
RL, = 1-si R = 2.5035
Sk —0.0446

. 1.9778+j1.3434
ZMkzZs+Zm (Zr+RLk)_[ ] 1

Zm+Zr+RL, | 0.1203+0.3622

Compute the input sequence admittances:

YR

ZM 0.8256— j2.4865

0.3460- j0.2350 ]

The sequence admittance matrix is:

1 0 0 1 0 0
[YMu2]=| 0 £ YM, 0 =| 0 0.1052-;0.2174 0
0 0 t-YM, 0 0 1.1306 - j1.0049
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where
1
t=—=/30
3
The phase admittance matrix is:

0.7453+ j0.4074 -0.1000- j0.0923 0.3347 + j0.4997
[YMop] = [A] - [YMo] - [A]" =| 0.3547+0.4997 0.7453- j0.4074 —0.1000- j0.0923
-0.1000-70.0923  0.3547+0.4997  0.7453— j0.4074

where
a=1/120
1 1 1
[A]l=] 1 & a
1 a a

Set the source voltage vector:

7200/0
[VLGasc]=| 7200/-120
7200/120

The Mathcad program to compute the voltages and currents is shown
in Figure 11.10. The starting matrices and the KCL current matrix and
tolerance are defined as:

0
[istart] = 0 [Vstart] =
0

Tol =0.00001

o O O O

Note in this program that at the start of each iteration, the transformer
bank line-to-neutral voltages must first be computed. This is necessary
because the primary of the wye connection is open and not grounded.
The program in Figure 11.10 only shows the secondary voltages being
output. That is done here to conserve space. The output can be increased
by adding the other voltages and currents of interest to the list at the end
of the program.
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FIGURE 11.10

Iab c < istart

1D

anbe < DA Iapc

I ABC € istart
Vold € Vstart

for ne1..10

XX

VXLLApc <

for j €1..4

Errorj <« Vanb Cj

Vanbe 1

Vid < Vanbc2

Vi
ld,

VM « Vanbc3

Vanbc 4

for iel.3

IL, «
! Vid.

1
IM < YM,p, VM
Iibe < DFIL+ IM

1D,

anbe <~ Dd'1gpe

IABc < dilabe

Vold < Vanbc

Out1 < Vanbc

Out

Mathcad program for Example 11.4.

VTLGypc < VLGypc — ZTyIapc
VTLLypc ¢ DvVTLGypc

XX« n¢ZDyppe IDypbe

VTLgc,
VTlapc,
VTLNygc ¢ Dx VXLLypc

VLNgpc < VILNyge + ZTgIppc

Vanbe < Ar VENapc — Byl

break if max(Error) < Tol

Vanbc1 + Vanbc2

SLi~ 1000

481
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After four iterations, the results are:

Currents:

Voltages:

[VLNAgc] =

25.6/-18.6

42.6/-26.2
34.1/-32.2

56.3/—65.6
56.1/176.6
58.1/54.6

108.8/-45.5

129.6/161.9
58.1/54.6

2.57/-30.6
1.66/-175.0
1.56/111.1

7140.8/-0.02
7231.7/-1204
7227.8/120.4

117.4/-0.39

[Vanbc =

117.3/-0.38

235.1/-120.1
236.1/119.7

117.4/-0.39

[Via]=

117.3/-0.38

234.7/-0.39

[vM] =

234.7/-0.39
235.1/-120.1
236.1/119.7
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For a check of the accuracy of the results, the backward sweep, using
the computed secondary voltages and currents, is used to compute the

primary terminal line-to-neutral voltages.

[VLN asc|=[a: ] [Vanbe | +[Be ] [Lae ]

7140.8/-0.02
[VLN apc]=| 7231.7/-120.4
7227.8/120.4

It is noted that these voltages exactly match the initially computed termi-

nal line-to-neutral voltages.

The motor voltage and current unbalances are computed to be:

Vinbatance = 0.3382%
Lunbatance = 2.2205%

11.2.2 Summary

It is important to note that the turn’s ratio is given by:

kVLN
n=——_"
kVLL,

483

(11.61)

In the derivation of the forward and backward matrices, it was found that
all of the matrices can be defined by the combination of matrices based upon

basic circuit theory. The definitions are as follows:

la]=[AV]

[bc]=[AV] [ Ztamec |- [Dd]+[2T5] - [d]
[d]=[Al]-[Dd]

[A]=[BV]
[B:]=[BV]-[2To]-[d: ]+ [ Ztanse |- [ Dd]

(11.62)

The individual matrices in Equation 11.62 define the relationship between

parameters by:
[IDaan] = [Dd] : [Iabc]
[VTLN apc | =[AV]-[Vtanpe ]
[IABC] = [AI] : [IDanbc]

[Vtanbe | =[BV] [VTasc]

(11.63)
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The definitions of Equations 11.62 and 11.63 will be used to develop the
models for the open wye-open delta connections.

11.3 Open Wye—-Open Delta Transformer Connections

Often, an open wye—open delta transformer consisting of one lighting trans-
former and one power transformer will be used to serve a combination
single-phase and three-phase loads. For this connection, the neutral of the
primary wye-connected windings must be grounded.

11.3.1 The Leading Open Wye—-Open Delta Connection

In the “leading” connection, the voltage applied to the lighting transformer
will lead the voltage applied to the power transformer by 120°. The leading
open wye—open delta connection is shown in Figure 11.11.

The voltage phasors at no-load for the leading connection in Figure 11.11
are shown in Figure 11.12.

[~
=
&N

LI

FIGURE 11.11
Leading open wye—open delta connection.

Vi Vi

Ve Vi,

FIGURE 11.12
Leading open wye—open delta voltage phasors.
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Notice in Figure 11.12 that there are three line-to-line voltages. Two of those
voltages come directly from the primary voltages applied to the lighting and
power transformers. The third voltage is a result of the three line-to-line
voltages and must be equal to zero.

11.3.2 The Lagging Open Wye—Open Delta Connection

In the “lagging” connection, the voltage applied to the lighting transformer
will lag the voltage applied to the power transformer by 120°. The lagging
open wye—open delta connection is shown in Figure 11.13.

The voltage phasors at no-load for the lagging connection in Figure 11.13
are shown in Figure 11.14.

It is very important to note that for both connections, the phase sequence
on the secondary is a—b—c. That will always be the assumption, but great care
must be taken to ensure that the labeling of the phases results in the correct
a—b—c sequence. Note for both connections the primary neutral is grounded
through an impedance Z,.

C e

FIGURE 11.13
Lagging open wye—open delta connection.

Vee Vea

FIGURE 11.14
Lagging open wye—open delta voltage phasors.
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11.3.3 Forward Sweep

There will be a slight difference in the matrices for the leading and lagging
connections. In order to define the matrices, the subscript L will be used on
various matrices.

L =1 leading connection

(11.64)
L =2 lagging connection
The “ideal” primary transformer voltages for both connections are:
VTan Vi Zoy+tZ, Z, Zg I,
VTN = Vi - Zg Z g Z g : I
Vien Ve Zg Ze Zg Ic
(11.65)
[VTLNAgc] = [VTLGABC] - [ZOG] . [IABC]
where
Zoy+Z, Zg; Z,
[Z0G]= Zg Zy, Zg
Zg Zg Zg
The “ideal” secondary transformer voltages are:
[Vtanve ], =[BV], - [VILN pc]
Leading Connection
Vtan 1 05 0 O
[Vtawc ], =| Vtw [BV],=—:| 05 0 (11.66)
Vi Tl o 1 0
Lagging Connection
Vtan 05 0 0
1
[Vtanbc]z = thb [B‘/]2 = ; : 0.5 0 0
t

Vit 0 0 1
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Substitute Equation 11.65 into Equation 11.66:

[Vtanee ], =[BV], - ([VLGABC] -[Z0G]- [IABC])

(11.67)
[Vtase], =[BV], -[VLGasc]=[BV], - [Z0G]- [ a5c]
The transformer secondary currents are defined as:
Ina
Leading connection: [IDauc ], =| Ipn
I cb
- - (11.68)
Ina
Lagging connection: [IDaupc |, =|  Ipn
IﬁC

The primary line currents as a function of the secondary open delta
currents are:

[Tasc]|=[AIl, - [IDanse |, (11.69)
where

1 05 05 0

n;
- 0 0 -

1 05 05 0

[AI]2 = 0 0

n;

| O 0 1 |

The secondary open delta currents as a function of the secondary line
currents are:

[IDanbc]L = [Dd]L : [Iabcn] (1170)



488 Distribution System Modeling and Analysis

where

[Iabcn] =

[Dd],=| 0 -1 -1 o0

1 0 1 0
[Dd],=| 0 -1 0 0
0 0 1 0

Substitute Equations 11.69 and 11.70 into Equation 11.67:

[IDane ], = [Dd], - [Lapen]

[Lapc]=[AI], - [IDansc ],

[Lapc]=[AI], - [Dd], - [Laben] (11.71)
[Vtanse ], =[BV], - [VLGasc]=[BV], - [Z0G]-[Lasc ]

[Vtwse], =[BV], - [VLGasc]-[BV], - [Z0G]-[AI], - [Dd], - [Luben]

The transformer bank secondary voltages are:

[‘/abc ]L = [Vtanbc ]L _[Ztsec]'[IDanbc ]L (1172)
where:
Van Van
[Vabc ]1 = an [‘/abc ]2 = an
Vbc Vca
but:

[IDanic ], =[Dd], [ Lapen]
[Vase ], = [Vtanse ], =[Ztocc]-[DA], [ Laben]

Substitute Equation 11.71 into Equation 11.72:
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[Vtase], =[BV], - [VLGasc |- [BV], -[Z0G] - [AI], [Dd], - [Laen]

[Vabe ], = [Vtanse |, =[Ztanse |- [DA], [ Laben]

[Vasel, =([BV], - [VLGasc1-[BV], - [Z0G]-[AI], - [Dd], - [Lapen ]) (11.73)
~[Zt e ]-[Dd], -[Ten]

[Vare ], =[BV], - [VLG apc] —([BV]L [Z0G]-[AI], + [thmbc]) [Ddy ] [Taben ]

The secondary line voltages are:

Van
Vi (11.74)
Vbc = [‘/anbc] = [CV]L . [Vabc]L :
Vca
where
1 0 0
0 1 0
CV] =
[ ]1 0 0 1
-1 -1 -1
1 0 0
0 1 0
CV] =
[ ]2 -1 -1 -1
0 0 1

Substitute Equation 11.73 into Equation 11.74:

[Vae], =[BV], " [VLGasc]-([BV], -[Z0G]-[AI], +[Ztanc])- [Der ] [Taocn]
[Vanbe | =[CV], - [Vae ],

[Vanoe |=[CV] - [BV], - [VLG asc ]

—[CV],([BV], -[Z0G]-[AI], +[Ztanne])-[DdL] [Lapen]
Define:
[Ad, =[CV], - [BV],
(B, =[CV], ((BV], -[Z0G]-[AI], +[Ztumc])- [Dd]

therefore:

[Vanbe | =[A¢], - [VLG apc ] = [Be],  [Laben ] (11.75)
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11.3.4 Backward Sweep
Substitute Equation 11.70 into Equation 11.71.

[IDanbc]L = [Dd]L ' [Iabcn]
(Lasc 1= [AT], - [[Duec],
[Lasc]=[AI], -[Dd], - [Lapen]

[IABC] = [dt]L . [Iabcn]

(11.76)

where
[df]L = [AI]L : [Dd]L

Example 11.5

For the system in Example 11.4, the transformer bank is changed to open
wye—open delta. Analyze the system using the leading and lagging
connections. The Mathcad program for the analyses of the leading and
lagging connections are shown in Figure 11.15.

Leading Connection with L = 1

Appling Equations 11.75 and 11.76, the forward and backward sweep
matrices are:

0.0167 0o 0
0167

(4] =| 0016 0o 0

0 0.0333 0

-0.0333  -0.0333 0

0.0118+;0.0118  —-0.0048-j0.0078  —-0.0076— j0.0078
-0.0048-;0.0078 -0.0118-,0.0118  -0.145-;0.0118

0.0028 -0.0028 -0.1005 - j0.0806
—0.0194-0.0196 0.0194+ j0.0196 0.1227 +;0.1002

[B:] =

o O O O

0.0167 -0.0167 -0.0167 O
[di]= 0 0 —0.0333 0
0 0 0 0
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FIGURE 11.15

Laben

ID, b < Dd

< vstart

L Laiben

I ABC < istart
Vold <« vstart

for n €1..20

Vanbe < At VLGygc ~ Brlaben
for j €1..4

Errorj <« - Voldj ‘ ‘

Vanbcj

break if max(Error) < Tol

Vanbe 1

Viq < Vanb(:2
V, +V,
anbc1 anbc2
Vi
ld3

VM « vanbc3

Vanbc4
for iel..3

SLi- 1000

IL, «
b Vg
1

IM <YM, -VM

Liben < AIM-IM+ AIL -IL

IDanbc <« DdL'Iabcn

IABC < dt' Laben

Out1 « Vg,

Vold < Vanbe

nbc

Out <

Mathcad program for the leading and lagging connections.

The secondary load voltages are:

[ anbc | =

117.1/-0.13
117.0/-0.12
2342/-121.1
230.8/119.4

491
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[B:] =

Distribution System Modeling and Analysis

The secondary line currents are:

110.6/-43.3
133.4/160.9
[Iabcn] =
53.2/53.7
17.7/-37.1
The primary line currents are:
3.98/-429
[apcl=| 1.77/-1263
0

The motor voltage unbalance is computed to be 0.96%.
The motor current unbalance is computed to be 5.47%.
The operating kVA of the lighting and power transformers are:

for i=1to3
. 28.7
kva, = VEGasc Lave, | 1y g
1000 0

Lagging connections L = 2:
Appling Equations 11.75 and 11.76, the forward and backward sweep
matrices are:

00167 0 0
0.0167 0 0
[Al=| _
0.0333 0 —0.0333
0 0 00333

0.0118+;0.0118 -0.0048-;0.0078 —-0.0145-;0.0118
0.0048+70.0078 -0.0118-;0.0118  0.0076+ j0.0078
—0.0194-0.0196 0.0194+0.0196 -0.1227 - j0.1002

0.0028 —0.0028 0.1005+ j0.0806

o O © O

0.0167 -0.0167 0.0167 0
[d] = 0 0 0 0
0 0 0.0333 0
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The secondary load voltages are:

117.4/-0.82
117.3/-0.81
[Vanbc =
228.9/-120.3
233.8/120.7
The secondary line currents are:
112.9/-47.1
126.0/159.5
[Iabcn =
56.3/61.2
17.6/-37.8
The primary line currents are:
3.92/-19.2
[Iapc]= 0
1.88/61.2

The motor voltage unbalance is computed to be 1.52%.
The motor current unbalance is computed to be 8.32%.
The operating kVA of the lighting and power transformers are:

for i=1to3
% 28.2
kva, = VEGme Lae |
13.5

Note that the voltage and current unbalances for the lagging connection

are greater than the voltage and current unbalances for the leading
connection.

11.4 Four-Wire Secondary

Typically, the combination single-phase and three-phase loads will not be
directly connected to the transformer but rather will be connected through
a length of open four-wire secondary or a quadraplex cable secondary

(Figure 11.16).
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[Zs,,]

a

A .._/\/\/\_rm
> +
—e | e/ V,, 1 1Zs,,] .. VI IL, i
" __l-_ ab +/m' l I,
Transformer —> IL
B bank Vui_ I b, 2 ’ ¢
e (2s,) P >
Ve [Zs,,] [Zs,] Vi,
c M,
— o ®H, 1Zs,] e /
.._/\/\/\_KW\
@ :
FIGURE 11.16

Four-wire secondary serving combination loads.

The first step in modeling the open four-wire or quadraplex cable secondary
is to compute the self- and mutual impedances. As always, Carson’s equations
are used to compute the 4x4 primitive impedance matrix. Because the
secondary neutral is grounded at both ends, the Kron reduction method is
used to eliminate the fourth row and column, which results in the 3x3 phase
impedance matrix. Chapter 4 gives the details on the application of Carson’s
equations and the Kron reduction.

The 3x3 phase impedance matrix gives the self-impedance of the three
line conductors and the mutual impedance between those conductors. The
voltage drops on the three line conductors are:

Va=LSpa I+ 28, I+ 28, - 1.
Vp=ZSpa- 1+ Zspy - I+ ZSpe - 1. (1177)
Ve=LSey 1,+ 254 I+ 25 - I.

The model of the four-wire secondary will again be in terms of the abcd and
AB generalized matrices. The first step in developing the model is to write
KVL around the three “window” loops and the outside loop in Figure 11.16.

‘/an = VLan tV,
Vb =VLpp = vy
(11.78)
Vie =VLpe +Vvp — V.
Vea=VLa+v.—vV,

Substitute Equation 11.77 into Equation 11.78.
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‘/an VLan Zsaa Zsab Zsac

I,
Vab _ VL, n —ZSpa —ZSpp —ZShe I
Vbc - VLbc Zsba - Zsca Zsbb - Zscb ZSbc - Zscc Ib
Vca VLca Zsca - Zsaa ZScb - Zsab Zscc - Zsac ¢
(11.79)
[Vanbc] = [VLanbc] + [Zsabc ] : [Iabc ]
Equation 11.79 is in the form of:
[Vanbc] = [35] " [VLzmbC] + [bs] " [Iabc] (1180)

where

1 0 0 O
0O 1 0 O
la]=
0O 0 1 0
0O 0 0 1
Zsaa Zsab Zsac
—ZSpa ~ZSpp ~ZSpe

b,] =
[ ] Zsba - Zsca Zsbb - Zscb ZSbc - ZSC‘C

LSeqa—2LSsq LSy — LS  LSee — LSac

Because there are no shunt devices between the transformer and the loads,
the currents leaving the transformers are equal to the line currents serving
the loads. Therefore:

1 0 0
[ds]=| 0 1 0 (11.81)
0 0 1

The matrices for the forward sweep are:

[As]=[as]
[B:]=1[b]

(11.82)
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Example 11.6

The configuration of a quadraplex secondary cable is shown in
Figure 11.17.

The phase conductors for the quadraplex cable are 1/0 AA, and the
grounded neutral conductor is 1/0 ACSR. The insulation thickness of the
conductors is 80 mil.

Determine the phase impedance matrix and the a, b, d, and A and B
matrices for the quadraplex cable where the length L is 100 ft.

From Appendix A:

1/0 AA: GMR = 0.0111 ft, Diameter = 0.368in., Resistance = 0.97 Q/mile

1/0 ACSR: GMR = 0.00446 ft, Diameter = 0.398in., Resistance = 1.12Q/mile

The spacing matrix for this configuration with the GMRs on the
diagonal is:

0.0111 0.0440 0.0440 0.0386
0.0440 0.0111 0.0440 0.0698
0.0440 0.0440 0.0111 0.0386
0.0386 0.0698 0.0386  0.0045

[D] =
Plugging these spacings into Carson’s equations yields the primitive
impedance matrix:

1.0653+j1.5088  0.0953+1.3417  0.0953+;1.3417  0.0953+ j1.3577
0.0953+;1.3417 1.0653+;1.5088  0.0953+ ;1.3417  0.0953+ j1.2857

[ZP] - 0.0953+;1.3417 0.0953+;1.3417 1.0653+j1.5088  0.0953+ j1.3577
0.0953+;1.3577  0.0953+;1.2857  0.0953+ j1.3577  1.2153+;1.6195
The Kron reduction yields the phase impedance matrix:
FIGURE 11.17

1/0 quadraplex.
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1.5068+j0.7076 ~ 0.5106+j0.5811  0.5368+ j0.5405
[zanc] =| 0.5106+;0.5811 1.4558+;0.7868  0.5106+ j0.5811
0.5368+;0.5405 0.5106+;0.5811 1.5068+ j0.7076
The matrices for 100 ft of this quadraplex are:
0.0258+;0.0134  0.0097+;0.0110  0.0102+ ;0.0102
Z5=Zape 5280 0.0097+;0.0110  0.0276+;0.0149  0.0097 + j0.0110
0.0102+;0.0102  0.0097+;0.0110  0.0285+ j0.0134
1 0 0 0
_ | 0 1 0 o0
[a]=[a]-[ 0 1 0 0
0 0 0 1
0.0285+0.01314  0.0097+0.0110  0.0102+ ;0.0102
[b ]—[B ] | -0.0097-;0.0110 -0.0276-;0.0149  —0.0097 - 0.0110
4TS 20,0005+ j0.0008  0.0179+j0.0039  —0.0189 - j0.0024
-0.0184-;0.0032 0 0.0184+ ;0.0032
1 0 0
ld]=| 0 1 0
0 0 1
I

11.5 Putting It All Together

Shown in Figure 11.18 is the IEEE 4 Node Test Feeder [2], which will be used
to study each of the three-phase wye-delta (closed and open) transformer
connections developed in this chapter.

11.5.1 Ungrounded Wye-Delta Connection

The IEEE 4 Node Text Feeder consists of an infinite 12.47kV source con-
nected to a 5-mile long primary overhead line serving a three-phase trans-
former bank. The secondary is 100 ft long and is a four-wire quadraplex cable
serving single-phase 120 and 240V loads and a three-phase induction motor.
With the known source voltage, a complete analysis of the feeder is desired.
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Single-phase loads
g | 100 ft —>

1/0 quadraplex O

Induction motor

12,470 V |

O

Infinite bus

5 mile |

‘ Four-wire, gr. wye ‘ 3
Y=

FIGURE 11.18
IEEE 4 Node Test Feeder.

This will include the voltages at all nodes and the currents flowing on the
primary and secondary lines.

Based upon the techniques presented in this text, the steps in the analysis
are as follows:

1. Determine the forward and backward sweep matrices [A],
[B], and [d]for the primary and secondary lines and the transformer
bank.

2. The induction motor is to be modeled using the equivalent motor
admittance matrix. The matrix [YM,. | should be computed based
upon the slip.

The matrices for the overhead line are developed in Chapter 4. The matri-
ces for the transformer bank and quadraplex cable have been developed in
this chapter.

Example 11.7

The system in Figure 11.18 is to be analyzed with the following data.

A 5-mile long overhead three-phase line is between nodes 1 and 2. This
overhead line is the same as the line that is described in Problem 4.1. The
generalized matrices for the primary line are computed to be:

1.0 0 0 0 0
lap)=[d, <[4, )< 0 1 0 | [c,]<] 0 0 o
0 0 1 0 0 0

1.6873+j5.2391  0.7674+j1.9247  0.7797+ j2.5084
(b, |=[B,]=| 0.7674+j1.9247 17069+ 51742  0.7900+ j2.1182
0.7797+j2.5084  0.7900+2.1182  1.7326+ j5.0897

The transformer bank between nodes 2 and 3 is an ungrounded wye—
delta and is the same as in Example 11.4 where the parameter matrices
are computed as:
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0.0167 0 0
0.0167
A= o
0 0.0333 0
0 0 0.0333

0.0081+;0.0085  -0.0012-;0.0046 0.0035+ ;0.002
0.0012+;0.0046  —0.0081-;0.0085  —0.0035- j0.002
—0.0154-;0.0134  0.0154+;0.0134  -0.0461-0.0403
—-0.0154-;0.0134  0.0154+;0.0134 0.0461+;0.0403

[B:]=

0.0111  -0.0111 0
[d:]=| -0.0056 0.0056 —0.0167
-0.0056 0.0056  0.0167

The 100-ft quadraplex secondary is the same as in Example 11.6 where
the parameter matrices are computed as:

[4,]=

S O O =
O O = O
o= O O
_ o O O

0.0285+;0.01314  0.0097 +;0.0110 0.0102+;0.0102
[B ]_ -0.0097-;0.0110 -0.0276-;0.0149  -0.0097 - ;0.0110
4 —-0.0005+0.0008  0.0179+;0.0039  -0.0189-;0.0024

—0.0184 - ;0.0032 0 0.01840+ j0.0032
1 0 O
[d,Js] 0 1 o
0o 0 1

The single-phase loads at node 4 are:
5:=3.0kVA, 0.951ag, 120V
S, =5.0kVA, 0.90lag, 120 V
S;=8.0kVA, 0.85lag, 240 V

The three-phase induction motor is the same as in Example 11.4. With a
slip of 0.035, the shunt admittance matrix was computed to be:

0.7543-j0.4074  —0.1000—j0.0923  0.3347+ j0.4997
[YMue]=| 0.3547+j0.4997  0.7453—j0.4074  —0.1000— j0.0923
~0.1000— j0.0923  0.3547+0.4997  0.7453— j0.4074
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The Mathcad program to perform the analysis is shown in Figure 11.19.
The source at node 1 is an ideal source of 12.47kV line-to-line. The
specified source line-to-ground voltages are:

7200/0
[ELGAgc] = 7200/ - 120
7200/120

After the forward and backward sweep matrices are computed for each
of the components, a Mathcad program is used to analyze the system.
The Mathcad program of Example 11.4 is modified to include the pri-
mary line and the secondary quadraplex secondary voltage drops. After
eight iterations, the voltage errors are less than the desired tolerance of
0.00001. The final motor and load voltages are:

230.5/-0.1
VM. ]=| 232.8/-119.5
233.6/119.7

115.9/0.2
(Vi]=| 1145/-04
230.5/-0.1

The final motor and load currents are:

53.8/-66.0
[IM.]=| 55.8/178.8
58.7/54.7

25.9/-18.0

[ILc|=| 43.7/-262
34.7/-319

The final transformer terminal line-to-neutral voltages and currents are:

7135.6/-0.1
[VLN spc]=| 7226.6/-120.4
7224.5/120.4

2.5643/-29.7
[IAgc] = 16869/ —1744
1.5355/110.9
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X = |I,pc < istart

ID

anbe < DAL gpe

L Apc ¢ istart
Vold € vstart

for ne1..10

VTLLppc ¢ DVVTLG ppc
XX 0 ¢ ZD appe D anbe

XX

VTLL
‘ABC
VXLL ApC < 2

VILLABC,

VTLN)pc < DxVXLLApc

VL,

anbc < A‘q'v

for j e1.4

Errorj “«—

V.anbcj

break if max(Error) < Tol

VL‘anbc1

VL « VL.aanZ

VL.a\nbc1 + VL.a\nbc2
vy

VM « VL.anb(:3
VL‘anbc4

for iel.3
SLi-IOOO

IL. «
1 VL

1

IM < YM p VM
I pe < DFHIL+IM

D, be < DALy

.anbc

LaBc < dylabe

Vold < V.anbc

Out1 < Vanbe

Out

FIGURE 11.19
Mathcad program for ungrounded wye-delta connection.

VLGapc < A pELGapc ~ B laBC
VILGppc < VLGapc ~ ZTglABC

VLNppc < VILNppc + ZT gl ABC

Vanbe < A ¢ VENAC ~Blape

.anbc B.q‘ Labe

- V‘old.| ‘
)
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The percent motor voltage unbalance is:

3
Vig = ) [VM,|=2323

k=1
1.8345
dV =|VM;|- V| =| 05258
1.3087

_ max(dV) 100 = 1.8345

Vunbalance - -100=0.7897%
Vavg 232.3

The percent motor current unbalance is:

3
Lus = Y VM| =56.1305
k=1

23035
dl = “IMI‘ - Iavg = 0.2867
25902
Tonpone = XD g 25902 400 4 61469
I 56.1305

avg

The operating kVA of each of the transformers is:

for: i=1,2,3

. [ 183/296
v VENase (Lasei) | 155500 [eva

1000
11.1/9.5

If the input or output power of the motor had been specified instead of
the slip, after each convergence of the modified ladder method a new
value of slip would have to be computed for the motor. This is a double
iterative process that works. The first step would be to use the initial
motor voltages after the first forward sweep to compute the necessary
slip. Once the slip has been determined, the backward sweep begins.
The forward/backward sweeps would continue until convergence. The
converged motor voltages would be used to compute the new required
slip. Again, the forward/backward sweeps are used. This process
continues until both the specified motor power and the specified source
voltages are matched.

Example 11.7 is intended to demonstrate how the ladder forward/
backward sweep iterative method works. The example used an
ungrounded wye—delta transformer bank.
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11.5.2 Open Wye-Delta Connections

The same routine used in Example 11.7 can be used for the leading and
lagging open wye—open delta connections by using the A, B, and 4 matri-
ces for each connection. In addition, the terminal line-to-neutral voltages
are computed directly from the transformer bank terminal line-to-ground
voltages. That eliminates the method of computing the line-to-neutral volt-
ages in Example 11.7.

The modified Mathcad program is shown in Figure 11.20.

Note in Figure 11.20 that L =1 for the leading connection and L =2 for the
lagging connection.

The only matrix changes from the closed wye—delta connection are the
matrices associated with the transformer connection.

Example 11.8

Compute the node voltages and line currents for the leading and lagging
open wye—delta connections. The grounding impedance is 5Q.
Leading connection L = 1:

0.0167 0 0
0.0167 0 0
[A]=
0 0.0333 0
-0.0333 -0.0333 0

0.0118+;0.0118 —-0.0048-;0.0078 —-0.0076— j0.0078
0.0048+;0.0078 —-0.0118-;0.0118 -0.0145-;0.0118

0.0028 -0.0028 -0.1005
—-0.0194-0.0196  0.0194+ ;0.0196 0.1227 + j0.1002

[B:]=

o o O O

0.0167 -0.0167 -0.0167 0
[di]= 0 0 -0.0333 0
0 0 0 0

After six iterations, the voltage errors are less than the desired tolerance
of 0.00001. The final motor and load voltages are:

229.3/0.1
VM, ]=| 2342/-121.2
230.5/119.2

115.4/0.4
[V.]=| 113.8/-0.1
229.3/0.1
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Iabcn <« vstart

1D

anbc abcn

“— DdL~I
Ippc < istart
Vold < Vstart
for n €1..20
VLGypc < Ap'ELGABC - Bp'IABC
VLNppc ¢ VLGy\pc — Z0GI ppc

Vanbe < ArVLGABC ~ Bt laben
Vlanbe € Aq'vanbc - Bq'Iabcn
for j € 1.4

Errorj “— Vanbcj - Voldj‘ ‘

break if max(Error) < Tol

VLanbc1
VL « VLanbcz
vLanbc1 + VLanbc2
v,
VM « Vanbc3

Vanbe 4

for iel.3

SLi~ 1000
IL < —
! VL

1

IM « YM,_};,.-VM

Liben < AIMIM + AIL, -IL

ID,

anbc < DdL.I

abcn

IaBC ¢ dt'Iabcn

Vold < Vanbc

Outl «— Vanbc

Out

FIGURE 11.20
Mathcad program for open wye—open delta connections.
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The final motor and load currents are:

52.4/-62.4
[IMuc]=| 61.4/175.3
53.9/52.7

26.0/-17.8
[ILac]=| 43.9/-26.0
34.9/-31.7

The final transformer terminal line-to-neutral voltages and currents are:

7059.2/-0.3

[VLN asc]=| 7189.7/-120.3
7226.1/120.1

3.9488/-41.9

[Tasc]=| 1.7965/-12733
0

The percent motor voltage unbalance is:
3
Vig = ) [VM,|=2313
k=1

2.0688
=| 2.9048
0.8371

dV =|VM;| -V,

max(dV) 1o _ 29048 o0 ooz,

Vunba]ancc =
- 2313

The percent motor current unbalance is:

3
1
Log =5 ;\IMk\ =559

3.4737
=| 5.4682
1.9945

dl; =|IM[~ Iy,

max(dl) 40— 97840%

avg

I unbal =

505
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The operating kVA of each of the transformers is:

for i=1,2,3
* 27.9/41.6
VLN asc; (Lasc; )
kVA=—""27 0 o kVA
1000 12.9/730
0
Lagging connection L = 2:
0.0167 0 0
| 00167 0 0
(A= -0.0333 0 —0.0333
0 0 0.0333

0.0118+j0.0118  -0.0048—-j0.0078  0.0145+0.0188 0
p1-| 00048+;0.0078 —0.0118-;0.0118  0.0076+;0.0078 0
[BJ= 00194200196  0.0194+ j0.0196  -0.1227-;0.1002 0
0.0028 -0.0028 0.1005+70.0806 0

0.0167 -0.0167 -0.0167 0

[di]= 0 0 0 0

0 0 00333 0

After six iterations, the voltage errors are less than the desired tolerance
of 0.00001. The final motor and load voltages are:

230.4/-0.6
[VM_pe |=| 227.7/-120.4

233.3/120.7

115.9/-0.3
[VL]=| 114.5/-0.9
230.4/-0.6

The final motor and load currents are:

58.0/—68.2
[IM.]=| 52.8/173.7
56.6/61.6

25.9/-18,5

[ILa]=| 437/-267
347/-324
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The final transformer terminal line-to-neutral voltages and currents are:

7086.9/-0.9
[VLN apc]=| 7222.7/-120.1
7195.7/120.2

3.9237/-18.6

[Tapc]= 0
1.8851/61.6

The percent motor unbalance is:

3
Vi = VM| =2304
k=1

0.0550
dV =|VM;|-Va|=| 27646
2.8196
Vo= max(@dV) og_ 28196 00 4 50360
Vi 230.4

The percent motor unbalance is:

3
1
I==) |IM;=558
s=3 2

22390
dl; =|IM/|- Ly|=| 29952
0.7562

Lonponee = 226D 500 _ 5 36809

avg

The operating kVA of each of the transformers is:

for: i=1,2,3

* 27.8/17.7
VLN ape, (Ianc,) _ 0 liva

1000 13.5645/58.6

kVA=
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TABLE 11.1

Voltage and Current Motor Unbalances

Connection Voltage Unbalance (%) Current Unbalance (%)
Closed wye-delta 0.3382 2.2205
Leading open wye-delta 1.2557 9.7840
Lagging open wye-delta 1.2236 5.3684

TABLE 11.2

Voltage and Current Motor Unbalances

Connection Voltage Unbalance (%) Current Unbalance (%)
Closed wye-delta 0.3382 2.2205

Leading open wye-delta 1.3132 9.4592

Lagging open wye-delta 1.2559 3.5248

11.5.3 Comparisons of Voltage and Current Unbalances

It is interesting to compare the induction motor voltage and current
unbalances for the closed and open wye—delta connections where, for
all connections, the lighting transformer is rated 25kVA and the power
transformer is rated 10kVA.

Table 11.1 demonstrates why the Lagging connection should be selected
if an open connection is going to be used. It has also been shown that the
25-kVA lighting transformer and the 10-kVA power transformer in the open
connection leads to overloading for both connections. If the open connec-
tion is changed to the lighting transformer being 37.5kVA and the power
transformer, 15kVA, the overloading is avoided, but the voltage and current
unbalances increase. The comparison is shown in Table 11.2.

11.6 Summary

This chapter has developed the models for the single-phase center-tapped
transformer and for the three-phase banks using the center-tapped trans-
former. Examples have demonstrated how the models can be analyzed. The
most important feature is demonstrated in Example 11.7 where not only is
the transformer bank modeled but also the primary and secondary lines
along with the admittance matrix model of the induction motor.

The primary purpose of this chapter is to bring the total concept of
distribution analysis to the forefront. Every element of a distribution feeder
can be modeled using the generalized matrices. When all of the matrices
are known, the modified ladder forward/backward sweep iterative routine
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is used to compute all node voltages and line currents in the system. As
demonstrated in the examples, a Mathcad program can be developed to do
the analyses of a simple radial feeder with no laterals. For complex systems,
the commercial program, such as Windmil, should be used.

Problems
11.1 A 25kVA, center-tapped single-phase transformer is rated:

25kVA, 7200-240/120, R , = 0.012pu, X, = 0.017 pu

The transformer serves the following constant PQ loads:
5kVA, 0.95PF lag at nominal 120V

8KkVA, 0.90PF lag at nominal 120V

10kVA, 0.85PF lag at nominal 120V

Determine the following when the primary transformer voltage is 6900 V:

a. The forward and backward matrices [A;], [B;], and [d;]
b. Load voltages, secondary transformer currents, and load currents

c. Primary current

11.2 The transformer in Problem 11.1 is connected to the same loads through
200ft of three-wire open-wire secondary. The conductors are 1/0 AA, and
the spacings between conductors are:

Dy, = 6in., Dy, = 6in.,, D, = 13in.

a. Determine the secondary impedances and matrices.
b. The primary source voltage is 7350 V; determine the load voltages.
c. Determine the primary, secondary, and load currents.

11.3 Combination single-phase loads and a three-phase induction motor
are served from an ungrounded wye—-delta transformer bank as shown
in Figure 11.9. The single-phase loads are to be modeled as constant
impedance:

S, =15kVA, 095lag, S, =10kVA, 0.90lag, S; =25kVA, 0.85lag
The three-phase induction motor has the following parameters:

25kVA, 240V
R,=0.035pu, R, =0.0375pu, X, =X,=010pu, X,,=3.0pu
Slip =0.035
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The transformers are rated:

Lighting transformer: 50kVA, 7200-240/120V, Z = 0.011+;0.018 pu
Power transformers: 25kVA, 7200-240V, Z = 0.012+;0.017 pu

The loads are served through 100 ft of quadraplex consisting of three 2/0 AA
insulated conductors and one 2/0 ACSR conductor. The insulation thickness
is 80 mil.
The transformer bank is connected to a balanced 12.47kV (line-to-line) source.
Determine the following:

a. The forward and backward sweep matrices for the transformer
connection

b. The forward and backward sweep matrices for the quadraplex
c. The constant impedance values of the three-phase loads

d. The single-phase load voltages

e. The line-to-line motor voltages

f. The primary and secondary line currents

11.4 Repeat Problem 11.3 if the loads are being served from a “leading” open
wye—open delta transformer bank. The transformers are rated:

Lighting transformer: 75kVA, 7200-240.120V, Z = 0.010+;0.021 pu
Power transformer: 37.5kVA, 7200-240V, Z = 0.013+;0.019 pu

11.5 Repeat Problem 11.3 only rather than specifying the slip; the input real
power to the motor is to be 20 kW. This will require a double iterative process.

a. Determine the slip.
b. Determine the same voltages and currents as in Problem 11.4.

¢. Determine the input kVA and power factor of the motor.

WindMil Homework Assignment
Use the system that was developed in Chapter 10.

1. Add the single-phase center tap transformer of Example 11.1 to node
8. The transformer serves single-phase loads through 100 ft of triplex
as defined in Example 11.2. The loads are:

a. 5;: 10kW at 95% power factor lagging
b. S,: 15kW at 90% power factor lagging
c. Sp: 25kW at 85% power factor lagging
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2. Add the transformer, secondary, single-phase, and motor loads of
Example 5 to node 9.

a. Specify a slip of 3.5% for the motor.

3. Add an open wye-open delta transformer bank to node 11. The
transformers are:

a. Lighting: 50kVA, 7200-120/240 center tap, Z =2.11, X/R = 1.6364
b. Power: 25kVA, 7200, 240, Z = 2.08, X/R = 1.4167

c. The lighting transformer is connected to phase b.

d. The power transformer is connected to phase c.
e

The loads are served by 150ft of 1/0 quadraplex as defined in
part 1.

f. The motor is the same as part 2. The motor is to operate at 20 kW.
4. Atnode 10, add a three-phase delta—delta transformer.
a. kVA =500
b. Voltage = 12.47kV line-to-line—0.480kV line-to-line
c. Z=128%,X/R=1818
d. Connect a “swing” generator to the transformer
i. Supply 350kW
ii. Hold voltage at 1.02 per-unit

5. Make whatever changes are necessary to satisfy all of the following
conditions:

a. Phase power factor at the source to be not less than 95% lagging
b. The load voltages must not be less than:
i. Node: 120V
ii. Transformer secondary terminal: 114V
c. The voltage unbalance at either of the motors to not exceed 3%

Regulator must not be at tap 16 on any phase
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Appendix A: Conductor Data

DIAM GMR RES Capacity
Size Stranding Material (in.) (ft) (Q/mile) (A)
1 ACSR 0.355 0.00418 1.38 200
1 7 STRD Copper 0.328 0.00992 0.765 270
1 CLASS A AA 0.328 0.00991 1.224 177
2 6/1 ACSR 0.316 0.00418 1.69 180
2 7 STRD Copper 0.292 0.00883 0.964 230
2 7/1 ACSR 0.325 0.00504 1.65 180
2 AWG SLD Copper 0.258 0.00836 0.945 220
2 CLASS A AA 0.292 0.00883 1.541 156
3 6/1 ACSR 0.281 0.0043 2.07 160
3 AWG SLD Copper 0.229 0.00745 1.192 190
4 6/1 ACSR 0.25 0.00437 2.57 140
4 7/1 ACSR 0.257 0.00452 2.55 140
4 AWG SLD Copper 0.204 0.00663 1.503 170
4 CLASS A AA 0.232 0.007 2.453 90
5 6/1 ACSR 0.223 0.00416 3.18 120
5 AWG SLD Copper 0.1819 0.0059 1.895 140
6 6/1 ACSR 0.198 0.00394 3.98 100
6 AWG SLD Copper 0.162 0.00526 2.39 120
6 CLASS A AA 0.184 0.00555 3.903 65
7 AWG SLD Copper 0.1443 0.00468 3.01 110
8 AWG SLD Copper 0.1285 0.00416 3.8 90
9 AWG SLD Copper 0.1144 0.00371 4.6758 80
10 AWG SLD Copper 0.1019 0.00330 5.9026 75
12 AWG SLD Copper 0.0808 0.00262 9.3747 40
14 AWG SLD Copper 0.0641 0.00208 14.8722 20
16 AWG SLD Copper 0.0508 0.00164 23.7262 10
18 AWG SLD Copper 0.0403 0.00130 37.6726 5
19 AWG SLD Copper 0.0359 0.00116 47.5103 4
20 AWG SLD Copper 0.032 0.00103 59.684 3
22 AWG SLD Copper 0.0253 0.00082 95.4835 2
24 AWG SLD Copper 0.0201 0.00065 151.616 1
1/0 ACSR 0.398 0.00446 112 230
1/0 7 STRD Copper 0.368 0.01113 0.607 310
1/0 CLASS A AA 0.368 0.0111 0.97 202
2/0 ACSR 0.447 0.0051 0.895 270
2/0 7 STRD Copper 0.414 0.01252 0.481 360
2/0 CLASS A AA 0.414 0.0125 0.769 230
(Continued)
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DIAM GMR RES Capacity
Size Stranding Material (in.) (ft) (Q/mile) (A)
3/0 12 STRD Copper 0.492 0.01559 0.382 420
3/0 6/1 ACSR 0.502 0.006 0.723 300
3/0 7 STRD Copper 0.464 0.01404 0.382 420
3/0 CLASS A AA 0.464 0.014 0.611 263
3/8 INCH STE Steel 0.375 0.00001 43 150
4/0 12 STRD Copper 0.552 0.0175 0.303 490
4/0 19 STRD Copper 0.528 0.01668 0.303 480
4/0 6/1 ACSR 0.563 0.00814 0.592 340
4/0 7 STRD Copper 0.522 0.01579 0.303 480
4/0 CLASS A AA 0.522 0.0158 0.484 299
250,000 12 STRD Copper 0.6 0.01902 0.257 540
250,000 19 STRD Copper 0.574 0.01813 0.257 540
250,000 CON LAY AA 0.567 0.0171 0.41 329
266,800 26/7 ACSR 0.642 0.0217 0.385 460
266,800 CLASS A AA 0.586 0.0177 0.384 320
300,000 12 STRD Copper 0.657 0.0208 0.215 610
300,000 19 STRD Copper 0.629 0.01987 0.215 610
300,000 26/7 ACSR 0.68 0.023 0.342 490
300,000 30/7 ACSR 0.7 0.0241 0.342 500
300,000 CON LAY AA 0.629 0.0198 0.342 350
336,400 26/7 ACSR 0.721 0.0244 0.306 530
336,400 30/7 ACSR 0.741 0.0255 0.306 530
336,400 CLASS A AA 0.666 0.021 0.305 410
350,000 12 STRD Copper 0.71 0.0225 0.1845 670
350,000 19 STRD Copper 0.679 0.0214 0.1845 670
350,000 CON LAY AA 0.679 0.0214 0.294 399
397,500 26/7 ACSR 0.783 0.0265 0.259 590
397,500 30/7 ACSR 0.806 0.0278 0.259 600
397,500 CLASS A AA 0.724 0.0228 0.258 440
400,000 19 STRD Copper 0.726 0.0229 0.1619 730
450,000 19 STRD Copper 0.77 0.0243 0.1443 780
450,000 CON LAG AA 0.77 0.0243 0.229 450
477,000 26/7 ACSR 0.858 0.029 0.216 670
477,000 30/7 ACSR 0.883 0.0304 0.216 670
477,000 CLASS A AA 0.795 0.0254 0.216 510
500,000 19 STRD Copper 0.811 0.0256 0.1303 840
500,000 37 STRD Copper 0.814 0.026 0.1303 840
500,000 CON LAY AA 0.813 0.026 0.206 483
556,500 26/7 ACSR 0.927 0.0313 0.1859 730
556,500 30/7 ACSR 0.953 0.0328 0.1859 730
556,500 CLASS A AA 0.858 0.0275 0.186 560
600,000 37 STRD Copper 0.891 0.0285 0.1095 940

(Continued)
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DIAM GMR RES Capacity
Size Stranding Material (in.) (ft) (Q/mile) (A)
600,000 CON LAY AA 0.891 0.0285 0.172 520
605,000 26/7 ACSR 0.966 0.0327 0.172 760
605,000 54/7 ACSR 0.953 0.0321 0.1775 750
636,000 27/7 ACSR 0.99 0.0335 0.1618 780
636,000 30/19 ACSR 1.019 0.0351 0.1618 780
636,000 54/7 ACSR 0.977 0.0329 0.1688 770
636,000 CLASS A AA 0.918 0.0294 0.163 620
666,600 54/7 ACSR 1 0.0337 0.1601 800
700,000 37 STRD Copper 0.963 0.0308 0.0947 1040
700,000 CON LAY AA 0.963 0.0308 0.148 580
715,500 26/7 ACSR 1.051 0.0355 0.1442 840
715,500 30/19 ACSR 1.081 0.0372 0.1442 840
715,500 54/7 ACSR 1.036 0.0349 0.1482 830
715,500 CLASS A AA 0.974 0.0312 0.145 680
750,000 37 STRD AA 0.997 0.0319 0.0888 1090
750,000 CON LAY AA 0.997 0.0319 0.139 602
795,000 26/7 ACSR 1.108 0.0375 0.1288 900
795,000 30/19 ACSR 1.14 0.0393 0.1288 910
795,000 54/7 ACSR 1.093 0.0368 0.1378 900
795,000 CLASS A AA 1.026 0.0328 0.131 720




Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://www.taylorandfrancis.com

Appendix B: Underground Cable Data

Concentric Neutral 15kV Cable

Conductor Diameter over Diameter Outside Copper Ampacity
Size (AWG Insulation over Diameter Neutral in UG
or kemil) (in.) Screen (in.) (in.) (No. x AWG) Duct (A)
Full Neutral

2(7x) 0.78 0.85 0.98 10x 14 120
1(19%) 0.81 0.89 1.02 13x14 135
1/0(19x) 0.85 0.93 1.06 16 x 14 155
2/0(19x) 0.90 0.97 1.13 13x12 175
3/0(19x) 0.95 1.02 1.18 16 x12 200
4/0(19x) 1.01 1.08 1.28 13 x 10 230
250(37x) 1.06 1.16 1.37 16 x10 255
350(37x%) 1.17 1.27 1.47 20x 10 300
1/3 Neutral

2(7%) 0.78 0.85 0.98 6x14 135
1(19%) 0.81 0.89 1.02 6x14 155
1/0(19%) 0.85 0.93 1.06 6x14 175
2/0(19x) 0.90 0.97 1.10 7x14 200
3/0(19x) 0.95 1.02 1.15 9x 14 230
4/0(19x) 1.01 1.08 1.21 11x14 240
250(37x) 1.06 1.16 1.29 13x 14 260
350(37x) 1.17 1.27 1.39 18 x 14 320
500(37x) 1.29 1.39 1.56 16 x12 385
750(61x) 1.49 1.59 1.79 15x10 470
1000(61x) 1.64 1.77 1.98 20x 10 550

517



518 Appendix B: Underground Cable Data

Tape-Shielded 15kV Cable

Tape thickness = 5 mils

Conductor Diameter over Diameter Jacket Outside Ampacity
Size (AWG Insulation over Thickness Diameter in UG
or kcmil) (in.) Screen (in.) (mils) (in.) Duct (A)
1/0 0.82 0.88 80 1.06 165
2/0 0.87 0.93 80 1.10 190
3/0 0.91 0.97 80 1.16 215
4/0 0.96 1.02 80 1.21 245
250 1.01 1.08 80 1.27 270
350 1.11 1.18 80 1.37 330
500 1.22 1.30 80 1.49 400
750 1.40 1.48 110 1.73 490

1000 1.56 1.66 110 1.91 565




Index

A

Allocation factor (AF), 26
Approximate line segment model,
155-160
Approximate method of analysis
“K” factors
Kyrop factor, 43-45
K. factor, 45-47
line impedance, 41-42
lumping loads, geometric
configurations
rectangle, 55-60
trapezoid, 65-71
triangle, 60-65
uniformly distributed loads
exact lumped load model, 52-55
power loss, 50-52
voltage drop, 47-50
voltage drop, 39-41
Average demand, 12

B

Backfeed ground fault currents
complete three-phase circuit
analysis, 426-435

one downstream transformer bank,

423-426

C

Carson’s equations, see also Modified
Carson’s equations
concentric neutral cable, 100
overhead lines, 81-83
parallel distribution lines, 97
triplex secondary, 460
Center-tapped transformers

backward sweep, 490-493
forward sweep, 486-489
four-wire secondary, 493-497
IEEE 4 Node Text Feeder, 497-498
lagging open wye—open delta
connection, 485
leading open wye—open delta
transformer connection, 484
open wye—delta connections,
503-507
secondary winding, 449-450
serving constant impedance
loads, 456
single-phase transformer model
diagram, 450
matrix equations, 453—460
transformer impedances, 451-453
triplex secondary, 460-466
three-winding, 449-450
ungrounded wye-delta connection,
497-502
ungrounded wye—delta transformer
bank with
basic transformer equations,
466-483
transformer connection
diagram, 467
voltage and current unbalances,
comparisons of, 508

Closed delta—connected regulators,

226-229

Concentric neutral 15 kV cable, 517
Concentric neutral cable, 100-106
Conductors, 513-515

Delta-connected capacitor bank,

335-336
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Delta-connected loads
combination loads, 334
constant current loads, 333
constant impedance loads, 333
constant real and reactive power
loads, 332
diagram, 332
line currents serving, 334
specified complex powers and
voltages, 332
Delta—delta connection, three-phase
transformer models, 299-309
Delta—grounded wye step-down
connection
currents, 256258
voltages, 251-256
Delta—grounded wye step-up
connection
diagram for, 267
generalized matrices, 267-269
Demand, 11
Demand factor, 12, 19
Distribution feeder analysis
power-flow analysis
application, 381
general feeder, 386-387
ladder iterative technique, 382-386
load allocation, 398-399
loop flow, 399-412
modified ladder iterative
technique, 389-390
unbalanced three-phase
distribution feeder, 387-389
short-circuit studies
backfeed ground fault currents,
422-435
general theory, 413-417
specific, 417-422
Distribution feeder map, 6-8
Distribution substations
layout, 4
major components, 2—-4
one-line diagram, 2
Distribution system
distribution feeder map, 6-8
distribution substations
layout, 4
major components, 2-4
one-line diagram, 2

Index

feeder electrical characteristics, 8-9
line models
approximate line segment model,
155-160
electrically parallel lines, 172-177
equivalent Pi circuits, 163
exact line segment model, 141-149
modified “ladder” iterative
technique, 160-162
modified line model, 150-155
neutral and ground currents,
computation of, 152-155
parallel lines, general matrices
for, 163-177
parallel three-phase lines,
163-166
physically parallel lines, 166172
three-wire delta line, 150-151
power system components, 1-2
radial feeders, 5-6
Distribution transformer loading
demand factor, 19
diversified demand, 16
diversity factor, 18-19
individual customer load
characteristics, 16
load curves, 15-16
load diversity, 20
load duration curve, 17-18
maximum diversified demand,
16-17
maximum noncoincident
demand, 18
utilization factor, 20
Diversified demand, 12, 16
Diversity factor, 12, 18-19

E

Electrically parallel lines, 172-177

Equivalent T circuit, three-phase
induction machine, 354-360

Exact line segment model, 141-149

F

Feeder
demand curve, 20-21
electrical characteristics, 8-9
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load allocation, 20-27
voltage drop calculations, 28-33

G

General voltage drop equation, 121-122
Grounded wye—delta step-down
connection
diagram, 283
line-to-line voltages, 285-289
line-to-neutral voltages, 285
turn’s ratio, 284
Grounded wye-grounded wye
connection, 296298

H
High-side and low-side switching, 2

I

IEEE 13 Bus Test Feeder, 405-412

IEEE 4 Node Text Feeder, 497-498

Induction generator, 362-364

Induction machine Thevenin equivalent
circuit, 365-368

Induction motor, phase analysis of,
346-352

K

Kirop factor
application of, 44-45
definition, 43
determination of, 43
voltage drop computation, 44
K. factor, 45-47

L

Ladder iterative technique, 382-386
linear network, 382-383
modified, 389-390
nonlinear network, 383-386
Lagging open wye—open delta
connection, 485
Leading open wye—open delta
transformer connection, 484
Line drop compensator
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analog circuit of, 209
current transformer turns ratio, 210
purpose of, 210
table of base values, 210-211
Line impedance, 41-42
Load diversity, 12, 20
Load factor, 12
Load models
delta-connected loads
combination loads, 334
complex powers and voltages, 332
constant current loads, 333
constant impedance loads, 333
constant real and reactive power
loads, 332
diagram, 332
line currents serving, 334
shunt capacitors
delta-connected capacitor bank,
335-336
wye-connected capacitor bank,
334-335
three-phase induction machine
equivalent T circuit, 354-360
induction generator, 362-364
induction machine model,
337-340
induction machine Thevenin
equivalent circuit, 365-368
motor starting current, 354
phase analysis of induction motor,
346-352
slip computation, 361-362
symmetrical component analysis
of motor, 340-345
ungrounded wye—delta
transformer bank with
induction motor, 368-375
voltage and current unbalance,
353-354
two-phase and single-phase loads,
334
wye-connected loads
combination loads, 328-331
constant current loads, 327
constant impedance loads, 327
constant real and reactive power
loads, 326
diagram, 326
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Loads
definitions, 11-12
distribution transformer loading
demand factor, 19
diversified demand, 16
diversity factor, 18-19
individual customer load
characteristics, 16
load curves, 15-16
load diversity, 20
load duration curve, 17-18
maximum diversified demand,
16-17
maximum noncoincident
demand, 18
utilization factor, 20
feeder
demand curve, 20-21
load allocation, 20-27
voltage drop calculations, 28-33
individual customer, 13-14
lumping, in geometric
configurations
rectangle, 55-60
trapezoid, 65-71
triangle, 60-65
uniformly distributed
exact lumped load model, 52-55
power loss, 50-52
voltage drop, 47-50
Lumping loads, geometric
configurations
rectangle, 55-60
trapezoid, 65-71
triangle, 60-65

M

Maximum demand, 11
Maximum diversified demand, 12
Maximum noncoincident demand, 12
Maximum system voltage, 185
Metered feeder maximum demand,
26-27
Metering, distribution substation, 3—4
Modified Carson’s equations
in grounded wye systems, 88
parallel overhead distribution
lines, 97

Index

series impedance of overhead lines,
83-85
tape-shielded cables, 106
Modified “ladder” iterative technique,
160-162
Modified line model
neutral and ground currents,
computation of, 152-155
three-wire delta line, 150-151
Motor starting current, 354

N

Neutral and ground currents,
computation of, 152-155

Node test feeder, 7

Nominal system voltage, 185

Nominal utilization voltage, 185

o

Open delta-connected
regulators, 229-241
Open delta—open delta, three-phase
transformer models, 309-314
Open wye—-open delta, three-phase
transformer models,
290-296
Overhead lines
series impedance of
Carson’s equations, 81-83
magnetic fields, 77-78
modified Carson’s equations,
83-85
mutual inductance, 78
parallel overhead distribution
lines, 96-99
phase impedance matrix, 86—-89
primitive impedance matrix, 86
self-inductance, 78
sequence impedances, 89-96
transposed three-phase lines,
78-79
untransposed distribution
lines, 79-81
shunt admittance of
conductors and images, 123
general voltage drop equation,
123
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of overhead parallel lines,
127-130

primitive potential coefficient
matrix, 124-125

relative permittivity, 124

P

Parallel lines, general matrices for
electrically parallel lines, 172-177
equivalent Pi circuits, 163
parallel three-phase lines, 163-166
physically parallel lines, 166-172
Parallel overhead distribution lines,
96-99

Parallel underground distribution lines,
109-113

Phase analysis of induction motor,
three-phase induction
machine, 346-352

Phase frame admittance matrix, 349

Phase impedance matrix, for overhead
lines, 86—89

Physically parallel lines, 166172

Power-flow analysis
application, 381
general feeder, 386-387
ladder iterative technique

linear network, 382-383
nonlinear network, 383-386
load allocation, 398-399
loop flow
IEEE 13 Bus Test Feeder,
405-412
single-phase feeder, 399-404
modified ladder iterative technique,
389-390
unbalanced three-phase
distribution feeder
one-line diagram, 388
shunt components, 388-389
Power system components, 1-2
Primitive impedance matrix, for
overhead lines, 86
Protection, distribution substation, 3

R
Radial feeders, 5-6
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S

Sequence admittance, three-phase line,
136
Series impedance
overhead lines
Carson’s equations, 81-83
magnetic fields, 77-78
modified Carson’s equations,
83-85
mutual inductance, 78
parallel overhead distribution
lines, 96-99
phase impedance matrix, 86—-89
primitive impedance matrix, 86
self-inductance, 78
sequence impedances, 89-96
transposed three-phase lines,
78-79
untransposed distribution lines,
79-81
underground lines
concentric neutral cable, 100-106
parallel underground distribution
lines, 109-113
tape-shielded cables, 106-109
three-phase underground cables,
99-100
Service voltage, 185
Shunt admittance
of overhead lines
conductors and images, 123
general voltage drop equation, 123
of overhead parallel lines, 127-130
primitive potential coefficient
matrix, 124-125
relative permittivity, 124
of underground lines
concentric neutral cable
underground lines, 130-134
of parallel underground lines,
137-138
tape-shielded cable underground
lines, 134-136
Shunt capacitors
delta-connected capacitor bank,
335-336
wye-connected capacitor bank,
334-335
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Single-phase step-voltage regulators
generalized constants, 208209
line drop compensator, 209-216
type A step-voltage regulator,

204-205
type B step-voltage regulator,
206-208

Single-phase transformer model
diagram, 450
matrix equations, 453-460
transformer impedances, 451-453
triplex secondary, 460-466

Slip computation, three-phase induction

machine, 361-362

Standard voltage ratings, 185-187

Step-voltage regulators
control circuit, 202, 203
settings, 202-204
single-phase

generalized constants, 208-209
line drop compensator, 209-216
type A step-voltage regulator,
204-205
type B step-voltage regulator,
206-208
three-phase
closed delta—connected
regulators, 226-229
connections, 216
open delta—connected regulators,
229-241
wye-connected regulators,
216-226
type B, 202, 203
types, 187,202
System voltage, 185

T

Tape-shielded 15 kV cable, 518
Tape-shielded cables, 106-109
Thevenin equivalent circuit
short-circuit currents, balanced
three-phase system, 414-415
three-phase transformer models,
314-317
Three-phase induction machine
equivalent T circuit, 354-360
induction generator, 362-364
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induction machine model, 337-340
induction machine Thevenin
equivalent circuit, 365-368
motor starting current, 354
phase analysis of induction motor,
346-352
slip computation, 361-362
symmetrical component analysis of
motor, 340-345
ungrounded wye—-delta transformer
bank with induction motor,
368-375
voltage and current unbalance,
353-354
Three-phase line
configuration, 41
line-to-neutral equivalent circuit,
39, 40
phasor diagram, 39, 40
segment model, 142
Three-phase step-voltage regulators
closed delta—connected regulators,
226-229
connections, 216
open delta—connected regulators,
229-241
wye-connected regulators, 216-226
Three-phase transformer models
delta—delta connection, 299-309
delta—grounded wye step-down
connection
currents, 256258
voltages, 251-256
delta—grounded wye step-up
connection
diagram for, 267
generalized matrices, 267-269
generalized matrices, 250-251
general three-phase transformer
bank, 249-250
grounded wye—delta step-down
connection
diagram, 283
line-to-line voltages, 285-289
line-to-neutral voltages, 285
turn’s ratio, 284
grounded wye-grounded wye
connection, 296298
open delta—open delta, 309-314



Index

open wye—open delta, 290-296
Thevenin equivalent circuit, 314-317
ungrounded wye—delta step-down
connection
characterization, 269
generalized constant matrix,
273-274
line currents, 272
line-to-line voltages, 271
positive sequence current phasor
diagrams, 270
standard diagram, 270
voltage phasor diagrams, 270
ungrounded wye—delta step-up
connection
diagram, 281
turn’s ratio, 281
Three-phase underground cables,
99-100
Three-wire delta line, 150-151
Transformer load management
program, 25-26
Transposed three-phase lines, 78-79
Two-phase and single-phase loads, 334
Two transformer substation, 4
Two-winding autotransformer
autotransformer ratings, 196-199
per-unit impedance, 199202
step-down autotransformer, 194-196
step-up autotransformer, 192-193
Two-winding transformer theory
approximate equivalent circuit, 188
exact equivalent circuit, 187
input voltage and current, 189
total “leakage” impedance, 187
Type A step-voltage regulator,
204-205
Type B step-voltage regulator, 206208

U

Unbalanced three-phase distribution
feeder, 387-389

Underground cables

concentric neutral 15 kV cable, 517

tape-shielded 15 kV cable, 518
Underground lines

series impedance of

concentric neutral cable, 100-106
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parallel underground distribution
lines, 109-113
tape-shielded cables, 106-109
three-phase underground cables,
99-100
shunt admittance of
concentric neutral cable
underground lines, 130-134
of parallel underground lines,
137-138
tape-shielded cable underground
lines, 134-136
Ungrounded wye—delta step-down
connection
characterization, 269
generalized constant matrix, 273274
line currents, 272
line-to-line voltages, 271
positive sequence current phasor
diagrams, 270
standard diagram, 270
voltage phasor diagrams, 270
Ungrounded wye—delta step-up
connection
diagram, 281
turn’s ratio, 281
Ungrounded wye—delta transformer
bank
basic transformer equations, 466—483
with induction motor, 368-375
transformer connection diagram, 467
Uniformly distributed loads
exact lumped load model, 52-55
power loss, 50-52
voltage drop, 47-50
Untransposed distribution lines, 79-81
Utilization factor, 12, 20
Utilization voltage, 185

v

Voltage drop, 39-41
Voltage regulation, 2-3
standard voltage ratings
ANSI standards, 185-186
step-voltage regulators, 187
step-voltage regulators
control circuit, 202, 203
settings, 202-204
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single-phase, 204-216
three-phase, 216241
types, 202
two-winding autotransformer
autotransformer ratings, 196-199
per-unit impedance, 199202
step-down autotransformer,
194-196
step-up autotransformer, 192-193
two-winding transformer theory,
187-191
Voltage transformation, 2
Voltage unbalance, 146, 186, 353-354,
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Wye-connected capacitor bank, 334-335
Wye-connected loads
combination loads, 328-331
complex powers and voltage, 326
constant current loads, 327
constant impedance loads, 327
constant real and reactive power
loads, 326
diagram, 326
Wye-connected regulators, 216-226
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