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Preface

One of the “hot” topics today is the “smart grid.” At the very start, I want 
to emphasize that this text is intended to only develop and demonstrate 
the computer models of all of the physical components of a distribution 
system. As the text develops the component models, it will become clear 
that what we called “load” is the weak link in the overall analysis of a dis-
tribution system. At present, the only true information available for every 
customer is the energy, in kilowatt hours, consumed during a specified 
period. This topic is addressed in Chapter 2. The problem with load is that 
it is constantly changing. Computer programs can be and have been devel-
oped that will very accurately model the components; but without real load 
data the results of the studies are only as good as the load data used. As 
the smart grid is developed, more accurate load data will become available, 
which will provide for a much more accurate analysis of the operating con-
ditions of the distribution system. What needs to be emphasized is that the 
smart grid must have computer programs that will very accurately model 
all of the physical components of the system. The purpose of this text is to 
develop the very accurate models of the physical components of a distribu-
tion system.

In the model developments, it is very important to accurately model the 
unbalanced nature of the components. Programs used in the modeling of 
a transmission system make the assumption that the system is a balanced 
three-phase system. This makes it possible to model only one phase. That is 
not the case in the modeling of a distribution system. The unbalanced nature 
of the distribution system has to be modeled. This requirement is made pos-
sible by modeling all three phases of every component of the distribution 
system.

The distribution system computer program for power-flow studies can be 
run to simulate present loading conditions and for long-range planning of 
new facilities. For example, the tools provide an opportunity for the distri-
bution engineer to optimize capacitor placement to minimize power losses. 
Different switching scenarios for normal and emergency conditions can be 
simulated. Short-circuit studies provide the necessary data for the develop-
ment of a reliable coordinated protection plan for fuses and recloser and 
relay/circuit breakers.

So what is the problem? Garbage in, garbage out is the answer. Armed 
with a commercially available computer program, it is possible for the user 
to prepare incorrect data, and as a result, the program outputs are not cor-
rect. Without an understanding of the models and a general “feel” for the 
operating characteristics of a distribution system, serious design errors and 
operational procedures may result. The user must fully understand the 
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models and analysis techniques of the program. Without this knowledge, 
the garbage in, garbage out problem becomes very real.

The purpose of this text is to present the reader a general overall feeling 
for the operating characteristics of a distribution system and the modeling of 
each component. Before using the computer program, it is extremely impor-
tant for the student/engineer to have a “feel” for what the answers should 
be. When I was still teaching, I would bring up how my generation used a 
slide rule as our computational tool. The advantage of using a slide rule was 
you were forced to know what the “ballpark” answer should be. We have lost 
that ability owing to hand calculators and computers, but understanding the 
ballpark answer is still a necessity.

It has been very interesting to receive many questions and comments 
about previous editions of the text from undergraduate and graduate stu-
dents in addition to practicing engineers from around the world. That gets 
back to the need for the “feel” of the correct answer. New students need to 
study the early chapters of the book in order to develop this “feel.” Practicing 
engineers will already have the “feel” and perhaps will not need the early 
chapters (1, 2, and 3). In developing the fourth edition of the book, I have 
retained most of the contents of the first three editions and have added 
“advanced” topics in the final four chapters. The advanced topics should be 
of interest to the practicing engineers.

This textbook assumes that the reader has a basic understanding of trans-
formers, electric machines, transmission lines, and symmetrical components. 
In many universities, all of these topics are crammed into a one-semester 
course. For that reason, a quick review of the needed theory is presented as 
required.

There are many example problems throughout the text. These examples 
are intended to not only demonstrate the application of the models but 
also teach the “feel” of what the answers should be. The example prob-
lems should be studied very carefully since they demonstrate the applica-
tion of the theory just presented. Each chapter has a series of homework 
problems that will assist the student in applying the models and devel-
oping a better understanding of the operating characteristics of the com-
ponent being modeled. Most of the example and homework problems are 
very number-intensive. All of the example problems have used a software 
package called “Mathcad” [1]. I have found this software to be a wonderful 
number-crunching tool used to apply the models and perform the analysis 
of a feeder. Many simple Mathcad routines are displayed in some of the more 
intensive example problems. The students are urged to learn how to use this 
powerful tool. The students are also encouraged to write their own com-
puter programs for many of the homework problems. These programs can 
use Mathcad or the more popular MATLAB® [2].

As more components are developed and the feeder becomes more 
complicated, it becomes necessary to use a sophisticated distribution 
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analysis program. Milsoft Utility Solutions has made a student version of 
“WindMil”  [3] available along with a user’s manual. The user’s manual 
includes instructions and illustration on how to get started using the pro-
gram. Starting in Chapter 4, there is a WindMil assignment at the end of the 
homework problems. A very simple system utilizing all of the major com-
ponents of the system will evolve as each chapter assignment is completed. 
In Chapter 10, the data for a small system are given that will allow the stu-
dent/engineer to match operating criteria. The student version of WindMil 
and the user’s manual can be downloaded from the Milsoft Utility Solutions 
website homepage. The address is:

Milsoft Utility Solutions
P.O. Box 7526
Abilene, TX 79608
E-mail: support@milsoft.com
Homepage: www.milsoft.com

Unfortunately, there is a tendency on the part of the student/engineer to 
believe the results of a computer program. Although computer programs are 
a wonderful tool, it is still the responsibility of the users to study the results 
and confirm whether or not the results make sense. That is a major concern 
and one that is addressed throughout the text.

Chapter 1 presents a quick overview of the major components of a dis-
tribution system. This is the only section in the text that will present the 
components inside a substation along with two connection schemes. The 
importance of the distribution feeder map and the data required is presented.

Chapter 2 addresses the important question—what is the “load” on the 
system? This chapter defines the common terms associated with the load. In 
the past, there was limited knowledge of the load, and many assumptions 
had to be made. With the coming of the smart grid, there will be ample real-
time data to assist in defining the load for a given study. Even with better 
load data, there will still be a concern on whether or not the computer results 
make sense.

Chapter 3 may seem to be old fashioned and of not much use because it 
develops some approximate methods that help in developing a feel for ball-
park answers. It is important that the new students study this chapter in 
detail; in the process, they will discover ways of evaluating the correctness 
of computer program results.

The major requirement of a distribution system is to supply safe and 
reliable energy to every customer at a voltage within the ANSI standard is 
addressed in Chapters 4 and 5. The major goal of planning is to simulate 
the distribution system under different conditions now and into the future 
and ensure that all customer voltages are within the acceptable ANSI range. 
Because voltage drop is a major concern, it is extremely important that the 

mailto:support@milsoft.com
http://www.milsoft.com
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impedances of the system components be as accurate as possible. In par-
ticular, the impedances of the overhead and underground distribution lines 
must be computed as accurately as possible. The importance of a detailed 
feeder map that includes the phase positions for both overhead and under-
ground line is emphasized.

Chapter 6 develops the models for overhead and underground lines using 
the impedances and admittance computed in earlier chapters. The “exact” 
model along with an approximate model is included. The “ladder” (forward/
backward sweep) iterative method used by many commercial programs and 
the matrices required for the application of the ladder analysis method are 
introduced. Methods of modeling parallel distribution lines are included in 
this chapter.

Chapter 7 addresses the important concept of voltage regulation: How is it 
possible to maintain every customer’s voltage within ANSI standards when 
the load is varying all of the time? The step-voltage regulator is presented as 
an answer to the question. A model is developed for the application in the 
ladder technique.

Chapter 8 is one of the most important chapters in the text. Models for 
most three-phase (closed and open) transformer connections in use today 
are developed. Again, the models use matrices that are used in the ladder 
iterative technique. The importance of phasing is emphasized once again.

Chapter 9 develops the models for all types of loads on the system. A 
new term is introduced that helps define the types of static load models. 
The term is “ZIP.” Most static models in a distribution system can be mod-
eled as constant impedance (Z), constant current (I), or constant complex 
power (P), or a combination of the three. These models are developed for 
wye and delta connections. A very important model developed is that of 
an induction machine. The induction motor is the workhorse of the power 
system and needs, once again, to be modeled as accurately as possible. 
Several new sections have been included in this chapter that develop 
models of the induction machine and associated transformer connection 
that are useful for power-flow and short-circuit studies. Induction gen-
erators are becoming a major source of distributed generation. Chapter 9 
shows that an induction machine can be modeled either as a motor or as 
a generator.

Chapter 10 puts everything in the text together for steady-state power-flow 
and short-circuit studies. The “ladder” iterative technique is introduced in 
Chapter 4. This chapter goes into detail on the development of the ladder 
technique starting with the analysis of a linear ladder network that is intro-
duced in most early circuit analysis courses. This moves onto the nonlinear 
nature of the three-phase unbalanced distribution feeder. The ladder tech-
nique is used for power-flow studies. A method for the analysis of short-
circuit conditions on a feeder is introduced in this chapter.

Chapter 11 introduces the center-tapped transformer that is used for provid-
ing the three-wire service to customers. Models for the various connections 
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are introduced that are used in the ladder iterative technique and short-
circuit analysis. The WindMil assignments at the end of Chapters  10 and 
11 allow the student/engineer to build and to study and fix the operating 
characteristics of a small distribution feeder.
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1

1
Introduction to Distribution Systems

The major components of an electric power system are shown in Figure 1.1. 
Of these components, the distribution system has traditionally been char-
acterized as the most unglamorous component. In the latter half of the 
20th century, the design and operation of the generation and transmission 
components presented many challenges to the practicing engineers and 
researchers. Power plants became larger, and transmission lines crisscrossed 
the land, forming large interconnected networks. The operation of the large 
interconnected networks required the development of new analysis and 
operational techniques. Meanwhile, the distribution systems continued to 
deliver power to the ultimate user’s meter with little or no analysis. As a 
direct result, distribution systems were typically over-designed.

Nowadays, it has become very important and necessary to operate a dis-
tribution system at its maximum capacity. Some of the questions that need to 
be answered are as follows:

	 1.	What is the maximum capacity?
	 2.	How do we determine this capacity?
	 3.	What are the operating limits that must be satisfied?
	 4.	What can be done to operate the distribution system within the 

operating limits?
	 5.	What can be done to make the distribution system operate more 

efficiently?

All of these questions can be answered only if the distribution system is 
modeled very accurately.

The purpose of this text is to develop accurate models for all of the major com-
ponents of a distribution system. Once the models have been developed, analy-
sis techniques for steady-state and short-circuit conditions will be developed.

1.1  �The Distribution System

The distribution system typically starts with the distribution substation that 
is fed by one or more subtransmission lines. In some cases, the distribution 
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substation is fed directly from a high-voltage transmission line in which case, 
most likely, there is no subtransmission system. This varies from company to 
company. Each distribution substation will serve one or more primary feed-
ers. With a rare exception, the feeders are radial, which means that there is 
only one path for power to flow from the distribution substation to the user.

1.2  �Distribution Substations

A one-line diagram of a very simple distribution substation is shown in 
Figure 1.2.

Although Figure 1.2 displays the simplest of distribution substations, it 
does illustrate the major components that will be found in all substations.

	 1.	High-side and low-side switching: In Figure 1.2, the high-voltage 
switching is done with a simple switch. Substations that are more 
extensive may use high-voltage circuit breakers (CBs) in a variety of 
high-voltage bus designs. The low-voltage switching in Figure 1.2 
is accomplished with relay-controlled CBs. In many cases, reclosers 
will be used in place of the relay–CB combination. Some substation 
designs include a low-voltage bus CB in addition to the CBs for each 
feeder. As is the case with the high-voltage bus, the low-voltage bus 
can take on a variety of designs.

	 2.	Voltage transformation: The primary function of a distribution substa-
tion is to reduce the voltage down to the distribution voltage level. In 
Figure 1.2, only one transformer is shown. Other substation designs 
will call for two or more three-phase transformers. The substation 
transformers can be three-phase units or three single-phase units 
connected in a standard connection. There are many “standard” dis-
tribution voltage levels. Some of the common ones are 34.5, 23.9, 14.4, 
13.2, 12.47 kV, and, in older systems, 4.16 kV.

	 3.	Voltage regulation: Because the load on the feeders vary, the voltage 
drop between the substation and the user will vary. In order to 
maintain the user’s voltages within an acceptable range, the voltage 

Generation

Interconnected

transmission

system

Bulk power

substation

Distribution

substation

Primary

feeders

Subtransmission

network

FIGURE 1.1
Major power system components.
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at the substation needs to vary as the load varies. In Figure 1.2, the 
voltage is regulated by a “step-type” regulator that will vary the 
voltage plus or minus 10% on the low-side bus. Sometimes this func-
tion is accomplished with a “load tap changing” (LTC) transformer. 
The LTC changes the taps on the low-voltage windings of the trans-
former as the load varies. Many substation transformers will have 
“fixed taps” on the high-voltage winding. These are used when the 
source voltage is always either above or below the nominal voltage. 
The fixed tap settings can vary the voltage plus or minus 5%. Mostly, 
instead of a bus regulator, each feeder will have its own regulator. 
This can be in the form of a three-phase gang-operated regulator or 
individual phase regulators that operate independently.

	 4.	Protection: The substation must be protected against the occurrence 
of short circuits. In the simple design in Figure 1.2, the only auto-
matic protection against short circuits inside the substation is by way 
of the high-side fuses on the transformer. As the substation designs 
become more complex, more extensive protective schemes will be 
employed to protect the transformer, the high- and low-voltage 
buses, and any other piece of equipment. Individual feeder CBs or 
reclosers are used to provide interruption of short circuits that occur 
outside the substation.

	 5.	Metering: Every substation has some form of metering. This may be 
as simple as an analog ammeter displaying the present value of sub-
station current as well as the minimum and maximum currents that 
have occurred over a specific time period. Digital recording meters 

Subtransmission line

Disconnect switch

Fuse

Transformer

Voltage regulator

Circuit breakers

Meters

Primary feeders

FIGURE 1.2
Simple distribution substation.
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are becoming very common. These meters record the minimum, 
average, and maximum values of current, voltage, power, power 
factor, etc., over a specified time range. Typical time ranges are 
15 min, 30 min, and 1 h. The digital meters may monitor the output 
of each substation transformer and/or the output of each feeder.

A more comprehensive substation layout is shown in Figure 1.3.
The substation in Figure 1.3 has two LTC transformers, serves four distri-

bution feeders, and is fed from two substransmission lines. Under normal 
conditions, the CBs are in the following positions:

Circuit breakers closed: X, Y, 1, 3, 4, 6
Circuit breakers open: Z, 2, 5

With the breakers in their normal positions, each transformer is served from 
a different subtransmission line and serves two feeders. If one of the sub-
transmission lines goes out of service, then breaker X or Y is opened and 
breaker Z is closed. Now both transformers are served from the same sub-
transmission line. The transformers are sized such that each transformer 
can supply all four feeders under an emergency operating condition. For 
example, if transformer T-1 is out of service, then breakers X, 1, and 4 are 
opened and breakers 2 and 5 are closed. With that breaker arrangement, all 
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YN.C.
N.O.

T-2

N.C.N.O.

N.O. FD-3

T-1

N.C.X

N.C.

1 2 3

N.C.

5 6

FD-4FD-2

4
N.C. FD-1

Line 2

Z

FIGURE 1.3
Two-transformer substation with breaker and a half scheme.
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four feeders are served by transformer T-2. The low-voltage bus arrangement 
is referred to as a “breaker and a half scheme,” because three breakers are 
required to serve two feeders.

There is an unlimited number of substation configurations possible. It is 
up to the substation design engineer to create a design that provides the five 
basic functions and provides the most reliable service economically possible.

1.3  �Radial Feeders

Radial distribution feeders are characterized by the presence of only one 
path for power to flow from the source (“distribution substation”) to each 
customer. A typical distribution system consists of one or more distribution 
substations consisting of one or more “feeders.” Components of the feeder 
may consist of the following:

	 1.	Three-phase primary “main” feeder
	 2.	Three-phase, two-phase (“V” phase), and single-phase laterals
	 3.	Step-type voltage regulators
	 4.	 In-line transformers
	 5.	Shunt capacitor banks
	 6.	Distribution transformers
	 7.	Secondaries
	 8.	Three-phase, two-phase, and single-phase loads

The loading of a distribution feeder is inherently unbalanced because of the 
large number of unequal single-phase loads that must be served. An addi-
tional unbalance is introduced by the nonequilateral conductor spacings of 
the three-phase overhead and underground line segments.

Because of the nature of the distribution system, conventional power-flow 
and short-circuit programs used for transmission system studies are not 
adequate. Such programs display poor convergence characteristics for radial 
systems. The programs also assume a perfectly balanced system so that a 
single-phase equivalent system is used.

If a distribution engineer is to be able to perform accurate power-flow and 
short-circuit studies, it is imperative that the distribution feeder be modeled 
as accurately as possible. This means that three-phase models of the major 
components must be utilized. Three-phase models for the major compo-
nents will be developed in the following chapters. The models will be devel-
oped in the “phase frame” rather than applying the method of symmetrical 
components.

Figure 1.4 shows a simple “one-line” diagram of a three-phase feeder.
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Figure 1.4 illustrates the major components of a distribution system. The 
connecting points of the components will be referred to as “nodes.” Note in 
the figure that the phasing of the line segments is shown. This is important 
if the most accurate models are to be developed.

1.4  �Distribution Feeder Map

The analysis of a distribution feeder is important to an engineer in order to 
determine the existing operating conditions of a feeder and to be able to play 
the “what if” scenarios of future changes to the feeder. Before the engineer 
can perform the analysis of a feeder, a detailed map of the feeder must be 
available. A sample of such a map is shown in Figure 1.5.

The map in Figure 1.5 contains most of the following information:

	 1.	Lines (overhead and underground)
	 a.	 Where
	 b.	 Distances

Fuse

Transformer

Voltage regulator
Circuit breaker

Single-phase lateral

“V” phase lateral

Fuse

Node

Substation

b

b

b

b

b

b

c

c
c

c

c

a

a

a

Customers

Secondary

Distribution
transformer

In-line transformer

Underground cables

b c
a

�ree-phase lateral
Capacitor bank

FIGURE 1.4
Simple distribution feeder.



7Introduction to Distribution Systems

25

25

25

25

25

25

25

25

25

25

25

25

25

50

50

50

50

50

50

50

50

50

50

50

25

50

50

50
50

50 25

50

25

50

25

50

25

50

50

50

50

50

50

50

50

50

50

50

50

25

50

50

50

25 25

25

25

25

25

25

50
50

100

100

M

50

50

abc

b

400′

250′

325′

250′
200′

300′

300′

25
200′

225′
50

250′

250′

c

a

b

b
a

225′

425′

175′

150′
100′

375′

c

200′

50

400′

b

b

350′

250′

250′
b

a
c

b

825′

b 250′

325′

300′

b

525′

250′

c

550′

275′

350′

275′

500′

a

25

300′

225′

c

50

50

200 ′
350′

c

b

a

3–100

3–50

250′

150′

3–50
250′

200′

250′

250′

300′

200'
a

25

500′

b

325′

650′

375′

b
250′

325′

a

300′
250′

1000′

450′

50

300′

575′

525′

325′

a

b

225′

575′

25

c
225′

325′

700′

275′

b c a

550'

300′

800′

a

200′

275′

325′

275′

325′

275′

250′

250′

275′
200′

50

400′

350′

275′

c

100′

225′
a
c
b

475′
175′

c

475 ′
675′

250 ′
250 ′

a c

b

a

b

700′

25

50

450′

b

b

a

225′

200′ b

300′
650′

275′ a

c300′

225′
b250′

275′175′

275′

b

b

275′

a
c
b

200′

300′
c a

350′

3–100400′

a c b

c

a

250′

c b a

c b a

800′

c c
b
a

3–50

325′

25

350 ′
175 ′ 250′

425′

b a

Substation

3-Phase OH
3-Phase UG
2-Phase OH
1-Phase OH

b c a

c
a
b

3–50

a

b

c

a
c

b

a c b

125′
350′

750′

550 ′

1-Phase transformer kVA50

3-Phase transformer bank
3–50

Voltage regulator

FIGURE 1.5
IEEE 123 node test feeder.



8 Distribution System Modeling and Analysis

	 c.	 Details
	 i.	 Conductor sizes (not on this map)
	 ii.	 Phasing
	 2.	Distribution transformers
	 a.	 Location
	 b.	 kVA rating
	 c.	 Phase connection
	 3.	 In-line transformers
	 a.	 Location
	 b.	 kVA rating
	 c.	 Connection
	 4.	Shunt capacitors
	 a.	 Location
	 b.	 kvar rating
	 c.	 Phase connection
	 5.	Voltage regulators
	 a.	 Location
	 b.	 Phase connection
	 c.	 Type (not shown on this map)
	 i.	 Single-phase
	 ii.	 Three-phase
	 6.	Switches
	 a.	 Location
	 b.	 Normal open/close status

1.5  �Distribution Feeder Electrical Characteristics

Information from the map will define the physical location of the vari-
ous devices. Electrical characteristics for each device will have to be 
determined before the analysis of the feeder can commence. In order 
to determine the electrical characteristics, the following data must be 
available:

	 1.	Overhead and underground spacings
	 2.	Conductor tables
	 a.	 Geometric mean radius (GMR) (ft)
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	 b.	 Diameter (in.)
	 c.	 Resistance (Ω/mile)
	 3.	Voltage regulators
	 a.	 Potential transformer ratios
	 b.	 Current transformer ratios
	 c.	 Compensator settings
	 i.	 Voltage level
	 ii.	 Bandwidth
	 iii.	 R and X settings in volts
	 4.	Transformers
	 a.	 kVA rating
	 b.	 Voltage ratings
	 c.	 Impedance (R and X)
	 d.	 No-load power loss

1.6  �Summary

As the smart grid [1] becomes a reality, it becomes increasingly more important 
to be able to accurately model and analyze each component of a distribution 
system. There are many different substation designs possible; however, for the 
most part, the substation serves one or more radial feeders. Each component of 
a feeder must be modeled as accurately as possible in order for the analysis to 
have meaning. Sometimes the most difficult task for the engineer is to acquire 
all of the necessary data. Feeder maps will contain most of the needed data. 
Additional data such as standard pole configurations, specific conductors used 
on each line segment, phasing, three-phase transformer connections, and volt-
age regulator settings must come from stored records. The remaining bits of 
information are the values of the loads. Chapter 2 will address the loads in a 
general sense. Again, when the smart grid, along with smart meters, becomes 
a reality, the load values will become much more accurate, which in turn will 
make the analysis more accurate. Once all of the data have been acquired, the 
analysis can commence by utilizing system models of the various devices that 
will be developed in later chapters.

Reference

	 1.	 Thomas, M. S. and McDonald, J. D., Power System SCADA and Smart Grids, CRC 
Press, Boca Raton, FL, 2015.
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2
The Nature of Loads

The modeling and analysis of a power system depend upon the “load.” What 
is load? The answer to that question depends upon the type of the analysis 
that is desired. For example, the steady-state analysis (power-flow study) of 
an interconnected transmission system will require a different definition 
of load than that is used in the secondary analysis in a distribution feeder. 
The problem is that the “load” on a power system is constantly changing. 
The closer you are to the customer, the more pronounced will be the ever-
changing load. There is no such thing as a “steady-state” load. To come to 
grips with a load, it is first necessary to look at the “load” of an individual 
customer.

2.1 � Definitions

The load that an individual customer or a group of customers presents to 
the distribution system is constantly changing. Every time a light bulb or 
an electrical appliance is switched on or off, the load seen by the distribu-
tion feeder changes. To describe the changing load, the following terms are 
defined:

	 1.	Demand
•	 Load averaged over a specific period of time
•	 Load can be kW, kvar, kVA, and A
•	 Must include the time interval
•	 Example: The 15-min kW demand is 100 kW

	 2.	Maximum demand
•	 Greatest of all demands that occur during a specific time
•	 Must include demand interval, period, and units
•	 Example: The 15-min maximum kW demand for the week was 

150 kW
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	 3.	Average demand
•	 The average of the demands over a specified period (day, week, 

month, etc.)
•	 Must include demand interval, period, and units
•	 Example: The 15-min average kW demand for the month was 

350 kW
	 4.	Diversified demand

•	 Sum of demands imposed by a group of loads over a particular 
period

•	 Must include demand interval, period, and units
•	 Example: The 15-min diversified kW demand in the period 

between 9:15 and 9:30 was 200 kW
	 5.	Maximum diversified demand

•	 Maximum of the sum of the demands imposed by a group of 
loads over a particular period

•	 Must include demand interval, period, and units
•	 Example: The 15-min maximum diversified kW demand for the 

week was 500 kW
	 6.	Maximum noncoincident demand

•	 For a group of loads, the sum of the individual maximum 
demands without any restriction that they occur at the same time

•	 Must include demand interval, period, and units
•	 Example: The maximum noncoincident 15-min kW demand for 

the week was 700 kW
	 7.	Demand factor

•	 Ratio of maximum demand to connected load
	 8.	Utilization factor

•	 Ratio of the maximum demand to rated capacity
	 9.	Load factor

•	 Ratio of the average demand of any individual customer or a 
group of customers over a period to the maximum demand over 
the same period

	 10.	Diversity factor
•	 Ratio of the “maximum noncoincident demand” to the “maximum 

diversified demand”
	 11.	Load diversity

•	 Difference between “maximum noncoincident demand” and the 
“maximum diversified demand”



13The Nature of Loads

2.2 � Individual Customer Load

Figure 2.1 illustrates how the instantaneous kW load of a customer changes 
during two 15-min intervals.

2.2.1 � Demand

To define the load, the demand curve is broken into equal time intervals. In 
Figure 2.1, the selected time interval is 15 min. In each interval, the average 
value of the demand is determined. In Figure 2.1, the straight lines represent 
the average load in a time interval. The shorter the time interval, the more 
accurate will be the value of the load. This process is very similar to numeri-
cal integration. The average value of the load in an interval is defined as the 
“15-min kW demand.”

The 24-h 15-min kW demand curve for a customer is shown in Figure 2.2. 
This curve is developed from a spreadsheet that gives the 15-min kW demand 
for a period of 24 h.

2.2.2 � Maximum Demand

The demand curve shown in Figure 2.2 represents a typical residential cus-
tomer. Each bar represents the “15-min kW demand.” Note that during the 
24-h period, there is a great variation in the demand. This particular cus-
tomer has three periods in which the kW demand exceeds 6.0 kW. The great-
est of these is the “15-min maximum kW demand.” For this customer, the 
“15-min maximum kW demand” occurs at 13:15 and has a value of 6.18 kW.
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FIGURE 2.1
Customer demand curve.
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2.2.3 � Average Demand

During the 24-h period, energy (kWh) will be consumed. The energy in kWh 
used during each 15-min time interval is computed by:

	
kWh kW demand= 15 min

1
4

h( ) ⋅ ⋅
	

(2.1)

The total energy consumed during the day is then the summation of all of 
the 15-min interval consumptions. From the spreadsheet, the total energy 
consumed during the period by Customer #1 is 58.96 kWh. The “15-min aver-
age kW demand” is computed by:

	
kW

Total energy
Hours

= =
58.96

24
= 2.46 kWaverage

	
(2.2)

2.2.4 � Load Factor

“Load factor” is a term that is often referred to when describing a load. It 
is defined as the ratio of the average demand to the maximum demand. In 
many ways, load factor gives an indication of how well the utility’s facili-
ties are being utilized. From the utility’s standpoint, the optimal load factor 
would be 1.00, because the system has to be designed to handle the maximum 
demand. Sometimes, utility companies will encourage industrial customers 
to improve their load factor. One method of encouragement is to penalize the 
customer on the electric bill for having a low load factor.

For Customer #1 in Figure 2.2, the load factor is computed to be:

	
Load factor

kW
kW

=
2.46
6.18

0.40average

maximum
= =

	
(2.3)
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2.3 � Distribution Transformer Loading

A distribution transformer will provide service to one or more customers. 
Each customer will have a demand curve similar to that shown in Figure 2.2. 
However, the peaks, valleys, and maximum demands will be different for 
each customer. Figures 2.3, 2.4, and 2.5 give the demand curves for the three 
additional customers connected to the same distribution transformer.  

The load curves for the four customers show that each customer has a 
unique loading characteristic. The customers’ individual maximum kW 
demand occurs at different times of the day. Customer #3 is the only cus-
tomer who will have a high load factor. A summary of individual loads is 
given in Table 2.1.

These four customers demonstrate that there is great diversity between 
their loads.
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2.3.1 � Diversified Demand

It is assumed that the same distribution transformer serves the four cus-
tomers discussed previously. The sum of the four 15 kW demands for each 
time interval is the “diversified demand” for the group in that time interval, 
and in this case, the distribution transformer. The 15-min diversified kW 
demand of the transformer for the day is shown in Figure 2.6. Figure 2.6 
shows how the demand curve is beginning to smooth out. There are not 
as many significant changes as seen by some of the individual customer 
curves.

2.3.2 � Maximum Diversified Demand

The transformer demand curve of Figure 2.6 demonstrates how the com-
bined customer loads begin to smooth out the extreme changes of the indi-
vidual loads. For the transformer, the 15-min kW demand exceeds 16 kW 
twice. The greater of these is the “15-min maximum diversified kW demand” 
of the transformer. It occurs at 17:30 and has a value of 16.16 kW. Note that 
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TABLE 2.1

Individual Customer Load Characteristics

Customer #1 Customer #2 Customer #3 Customer #4

Energy usage (kWh) 58.57 36.46 95.64 42.75
Maximum kW demand 6.18 6.82 4.93 7.05
Time of maximum kW 
demand

13:15 11:30 6:45 20:30

Average kW demand 2.44 1.52 3.98 1.78
Load factor 0.40 0.22 0.81 0.25
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this maximum demand does not occur at the same time as any one of the 
individual demands nor is this maximum demand the sum of the individual 
maximum demands.

2.3.3 � Load Duration Curve

A “load duration curve” can be developed for the transformer serving the 
four customers. Sorting the kW demand of the transformer in a descending 
order develops the load duration curve shown in Figure 2.7.

The load duration curve plots the 15-min kW demand vs. the percent 
of time the transformer operates at or above the specific kW demand. For 
example, the load duration curve shows that the transformer operates with 
a 15-min kW demand of 12 kW or greater 22% of the time. This curve can be 
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used to determine whether or not a transformer needs to be replaced as a 
result of an overloading condition.

2.3.4 � Maximum Noncoincident Demand

The “15-min maximum noncoincident kW demand” for the day is the sum 
of the individual customer 15-min maximum kW demands. For the trans-
former in question, the sum of the individual maximums is:

	 = + + + =kW 6.18 6.82 4.93 7.05 24.98 kWmaximum noncoincident demand 	 (2.4)

2.3.5 � Diversity Factor

By definition, diversity factor is the ratio of the maximum noncoincident 
demand of a group of customers to the maximum diversified demand of the 
group. With reference to the transformer serving four customers, the diver-
sity factor for the four customers would be:

	
=Diversity factor

kW
kW

=
24.98
16.15

= 1.5458maximum noncoincident demand

maximum diversified demand 	
(2.5)

The idea behind the diversity factor is that when the maximum demands 
of the customers are known, then the maximum diversified demand of a 
group of customers can be computed. There will be a different value of the 
diversity factor for different numbers of customers. The value computed in 
Equation 2.5 would apply for four customers. If there were five customers, 
then a load survey would have to be set up to determine the diversity factor 
for five customers. This process would have to be repeated for all practical 
number of customers. Table 2.2 is an example of the diversity factors for the 

TABLE 2.2

Diversity Factors

N DF N DF N DF N DF N DF N DF N DF

1 1.0 11 2.67 21 2.90 31 3.05 41 3.13 51 3.15 61 3.18
2 1.60 12 2.70 22 2.92 32 3.06 42 3.13 52 3.15 62 3.18
3 1.80 13 2.74 23 2.94 33 3.08 43 3.14 53 3.16 63 3.18
4 2.10 14 2.78 24 2.96 34 3.09 44 3.14 54 3.16 64 3.19
5 2.20 15 2.80 25 2.98 35 3.10 45 3.14 55 3.16 65 3.19
6 2.30 16 2.82 26 3.00 36 3.10 46 3.14 56 3.17 66 3.19
7 2.40 17 2.84 27 3.01 37 3.11 47 3.15 57 3.17 67 3.19
8 2.55 18 2.86 28 3.02 38 3.12 48 3.15 58 3.17 68 3.19
9 2.60 19 2.88 29 3.04 39 3.12 49 3.15 59 3.18 69 3.20
10 2.65 20 2.90 30 3.05 40 3.13 50 3.15 60 3.18 70 3.20
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number of customers ranging from 1 up to 70. The table was developed from 
a database that is different from the four customers that have been discussed 
previously.

A graph of the diversity factors is shown in Figure 2.8.
Note in Table 2.2 and Figure 2.8 that the value of the diversity factor has 

basically leveled out when the number of customers has reached 70. This 
is an important observation because it means, at least for the system from 
which these diversity factors were determined, that the diversity factor will 
remain constant at 3.20 from 70 or more customers. In other words, as viewed 
from the substation, the maximum diversified demand of a feeder can be 
predicted by computing the total noncoincident maximum demand of all of 
the customers served by the feeder and dividing by 3.2.

2.3.6 � Demand Factor

The demand factor can be defined for an individual customer. For example, 
the 15-min maximum kW demand of Customer #1 was found to be 6.18 kW. 
To determine the demand factor, the total connected load of the customer 
needs to be known. The total connected load will be the sum of the ratings 
of all of the electrical devices at the customer’s location. Assuming that this 
total comes to 35 kW, the demand factor is computed to be:

	
=Demand factor

kW
kW

=
6.18
35

= 0.1766maximum demand

total connected load 	
(2.6)

The demand factor gives an indication of the percentage of electrical devices 
that are on when the maximum demand occurs. The demand factor can be 
computed for an individual customer but not for a distribution transformer 
or the total feeder.
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2.3.7 � Utilization Factor

The utilization factor gives an indication of how well the capacity of an elec-
trical device is being utilized. For example, the transformer serving the four 
loads is rated 15 kVA. Using the 16.16 kW maximum diversified demand and 
assuming a power factor of 0.9, the 15-min maximum kVA demand on the 
transformer is computed by dividing the 16.16 kW maximum kW demand by 
the power factor and would be 17.96 kVA. The utilization factor is computed 
to be:

	
= =Utilization factor

kVA
kVA

=
17.96

15
1.197maximum demand

transformer rating 	
(2.7)

2.3.8 � Load Diversity

Load diversity is defined as the difference between the noncoincident maxi-
mum demand and the maximum diversified demand. For the transformer in 
question, the load diversity is computed to be:

	
Load diversity = 24.97 – 16.16 = 8.81kW kVA

	
(2.8)

2.4 � Feeder Load

The load that a feeder serves will display a smoothed-out demand curve as 
shown in Figure 2.9.
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The feeder demand curve does not display any of the abrupt changes 
in demand of an individual customer demand curve or the semi-abrupt 
changes in the demand curve of a transformer. The simple explanation for 
this is that with several hundred customers served by the feeder, the odds 
are good that as one customer is turning off a light bulb, another customer 
will be turning a light bulb on. The feeder load, therefore, does not experi-
ence a jump as would be seen in the individual customer’s demand curve.

2.4.1 � Load Allocation

In the analysis of a distribution feeder, “load” data will have to be speci-
fied. The data provided will depend upon how detailed the feeder is to 
be modeled and the availability of customer load data. The most compre-
hensive model of a feeder will represent every distribution transformer. 
When this is the case, the load allocated to each transformer needs to be 
determined.

2.4.1.1 � Application of Diversity Factors

The definition of the diversity factor (DF) is the ratio of the maximum 
noncoincident demand to the maximum diversified demand. A table of 
diversity factors is shown in Table 2.2. When such a table is available, it is 
possible to determine the maximum diversified demand of a group of cus-
tomers such as those served by a distribution transformer. That is, the maxi-
mum diversified demand can be computed by:

	
=kW

kW
DFmaximum diversified demand

maximum noncoincident demand

number of customers 	
(2.9)

This maximum diversified demand becomes the allocated “load” for the 
transformer.

2.4.1.2 � Load Survey

Many times, the maximum demand of individual customers will be known 
either from metering or from a knowledge of the energy (kWh) consumed by 
the customer. Some utility companies will perform a load survey of similar 
customers to determine the relationship between the energy consumption in 
kWh and the maximum kW demand. Such a load survey requires the instal-
lation of a demand meter at each customer’s location. The meter can be the 
same type as is used to develop the demand curves previously discussed, or 
it can be a simple meter that only records the maximum demand during the 
period. At the end of the survey period, the maximum demand vs. kWh for 
each customer can be plotted on a common graph. Linear regression is used 
to determine the equation of a straight line that gives the kW demand as a 
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function of kWh. The plot of points for 15 customers along with the resulting 
equation derived from a linear regression algorithm is shown in Figure 2.10.

The straight-line equation derived is:

	 = ⋅kW 0.1058 + 0.005014 kWhmaximum demand 	 (2.10)

Knowing the maximum demand for each customer is the first step in develop-
ing a table of diversity factors as shown in Table 2.2. The next step is to perform a 
load survey where the maximum diversified demand of groups of customers is 
metered. This will involve selecting a series of locations where demand meters 
can be placed that will record the maximum demand for groups of customers 
ranging from at least 2–70. At each meter location, the maximum demand of all 
downstream customers must also be known. With that data, the diversity fac-
tor can be computed for the given number of downstream customers.

Example 2.1

A single-phase lateral provides service to three distribution transform-
ers as shown in Figure 2.11.

The energy in kWh consumed by each customer during a month is 
known. A load survey has been conducted for customers in this class, 
and it has been found that the customer 15-min maximum kW demand 
is given by the equation:

	 = + ⋅kW kWh0.2 0.008 kWdemand
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The kWh consumed by Customer #1 is 1523 kWh. The 15-min maximum 
kW demand for Customer #1 is then computed as:

	 = + ⋅ =kW 0.2 0.008 1523 12.4 kW1

The results of this calculation for the remainder of the customers are 
summarized in the following table by transformer.

Transformer T1:

Transformer T2:

Transformer T3:

	 1.	 Determine for each transformer the 15-min noncoincident 
maximum kW demand, and using the Table of Diversity Factors 
in Table 2.2, determine the 15-min maximum diversified kW 
demand.

	

= + + + + =

= =

kW

kW
kW

DF
T1 :

12.4 13.4 16.1 12.9 11.9 66.6 kW

30.3 kW

maximum noncoincident demand

maximum diversified demand
maximum nonconcident demand

5

1 2 3 4 5 6

T1

N1 N2 N3 N4

T2 T3

7 8 9 10 11 12 13 14 15 16 17 18

FIGURE 2.11
Single-phase lateral.

Customer #1 #2 #3 #4 #5

kWh 1523 1645 1984 1590 1456
kW 12.4 13.4 16.1 12.9 11.9

Customer #6 #7 #8 #9 #10 #11

kWh 1235 1587 1698 1745 2015 1765
kW 10.1 12.9 13.8 14.2 16.3 14.3

Customer #12 #13 #14 #15 #16 #17 #18

kWh 2098 1856 2058 2265 2135 1985 2103
kW 17.0 15.1 16.7 18.3 17.3 16.1 17.0
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= + + + + + =

= =

kW

kW kW
DF

T2 :

10.1 12.9 13.8 14.2 16.3 14.3 81.6 kW

35.4 kW

maximum noncoincident demand

maximum diversified demand
maximum nonconcident demand

6

	

= + + + + + + =

= =

kW

kW kW
DF

T3:

17.0 15.1 16.7 18.3 17.3 16.1 17.0 117.4 kW

48.9 kW

maximum noncoincident demand

maximum diversified demand
maximum nonconcident demand

7

Based upon the 15-min maximum kW diversified demand on each trans-
former and an assumed power factor of 0.9, the 15-min maximum kVA 
diversified demand on each transformer would be:

	

= =

= =

= =

kVA

kVA

kVA

30.2
0.9

33.6 kVA

35.5
0.9

39.4 kVA

48.9
0.9

54.4 kVA

T maximum diversified demand

T maximum diversified demand

T maximum diversified demand

1-

2-

3-

The kVA ratings selected for the three transformers would be 25, 37.5, 
and 50 kVA, respectively. With those selections, only transformer T1 
would experience a significant maximum kVA demand greater than its 
rating (135%).

	 2.	 Determine the 15-min noncoincident maximum kW demand 
and 15-min maximum diversified kW demand for each of the 
line segments.

Segment N1 to N2: The maximum noncoincident kW demand is the 
sum of the maximum demands of all 18 customers.

	
= + + =kW 66.6 81.6 117.4 265.6 kWmaximum noncoincident demand

The maximum diversified kW demand is computed by using the 
diversity factor for 18 customers.

	
= =kW

265.5
2.86

92.8 kWmaximum diversified demand

Segment N2 to N3: This line segment “sees” 13 customers. The 
noncoincident maximum demand is the sum of customers’ number 
6 through 18. The diversity factor for 13 (2.74) is used to compute the 
maximum diversified kW demand.

	

= + =

= =

kW

kW

81.6 117.4 199.0 kW

199.0
2.74

72.6 kW

maximum noncoincident deman

maximum diversified demand

d
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Segment N3 to N4: This line segment “sees” the same noncoincident 
demand and diversified demand as that of transformer T3.

	

= =

= =

kW

kW

117.4 117.4 kW

199.0
2.4

48.9 kW

maximum noncoincident demand

maximum diversified demand

Example 2.1 demonstrates that Kirchhoff’s Current Law (KCL) is not obeyed 
when the maximum diversified demands are used as the “load” flowing 
through the line segments and through the transformers. For example, at 
node N1, the maximum diversified demand flowing down the line segment 
N1–N2 is 92.8 kW and the maximum diversified demand flowing through 
transformer T1 is 30.3 kW. KCL would then predict that the maximum diver-
sified demand flowing down line segment N2–N3 would be the difference 
of these or 62.5 kW. However, the calculations for the maximum diversified 
demand in that segment was computed to be 72.6 kW. The explanation for 
this is that the maximum diversified demands for the line segments and 
transformers do not necessarily occur at the same time. At the time that the 
line segment N2–N3 is experiencing its maximum diversified demand, line 
segment N1–N2 and transformer T1 are not at their maximum values. All 
that can be said is that at the time segment that N2–N3 is experiencing its 
maximum diversified demand, the difference between the actual demand on 
the line segment N1–N2 and the demand of transformer T1 will be 72.6 kW. 
There will be an infinite amount of combinations of line flow down N1–N2 
and through transformer T1, which will produce the maximum diversified 
demand of 72.6 kW on line N2–N3.

2.4.1.3 � Transformer Load Management

A transformer load management program is used by utilities to determine 
the loading on distribution transformers based upon a knowledge of the 
kWh supplied by the transformer during a peak loading month. The pro-
gram is primarily used to determine when a distribution transformer needs 
to be changed out owing to a projected overloading condition. The results 
of the program can also be used to allocate loads to transformers for feeder 
analysis purposes.

The transformer load management program relates the maximum diversi-
fied demand of a distribution transformer to the total kWh supplied by the 
transformer during a specific month. The usual relationship is the equation 
of a straight line. Such an equation is determined from a load survey. This 
type of load survey meters the maximum demand on the transformer in 
addition to the total energy in kWh of all of the customers connected to the 
transformer. With the information available from several sample transform-
ers, a curve similar to that shown in Figure 2.10 can be developed, and the 
constants of the straight-line equation can then be computed. This method 
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has the advantage because the utility will have the kWh consumed by each 
customer every month in the billing database. As long as the utility knows 
as to which customers are connected to each transformer, by using the devel-
oped equation the maximum diversified demand (allocated load) on each 
transformer on a feeder can be determined for each billing period.

2.4.1.4 � Metered Feeder Maximum Demand

The major disadvantage of allocating load using the diversity factors is that 
most utilities would not have a table of diversity factors. The process of devel-
oping such a table is generally not cost beneficial. The major disadvantage of 
the transformer load management method is that a database is required that 
specifies which transformers serve which customers. Again, this database is 
not always available.

Allocating load based upon the metered readings in the substation requires 
the least amount of data. Most feeders will have metering in the substation 
that will, at a minimum, give either the total three-phase maximum diversi-
fied kW or kVA demand and/or the maximum current per phase during a 
month. The kVA ratings of all distribution transformers is always known for 
a feeder. The metered readings can be allocated to each transformer based 
upon the transformer rating. An “allocation factor” (AF) can be determined 
based upon the metered three-phase kW or kVA demand and the total con-
nected distribution transformer kVA.

	
AF

kVA
kVA

= metered demand

total kVA rating
	

(2.11)

where kVAtotal kVA rating  = Sum of the kVA ratings of all distribution  trans-
formers.

The allocated load per transformer is then determined by:

	
= ⋅kVA AF kVAtransformer demand transformer rating

	
(2.12)

The transformer demand will be either kW or kVA depending upon the 
metered quantity.

When the kW or kVA is metered by phase, the load can be allocated by 
phase, where it will be necessary to know the phasing of each distribution 
transformer.

When the maximum current per phase is metered, the load allocated to 
each distribution transformer can be done by assuming nominal voltage at 
the substation and then computing the resulting kVA. The load allocation 
will now follow the same procedure as outlined earlier.

If there is no metered information on the reactive power or power factor of 
the feeder, a power factor will have to be assumed for each transformer load.
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Modern substations will have microprocessor-based metering that will 
provide kW, kvar, kVA, power factor, and current per phase. With this data, 
the reactive power can also be allocated. Because the metered data at the 
substation will include losses, an iterative process will have to be followed, 
so that the allocated load plus losses will equal the metered readings.

Example 2.2

Assume that the metered maximum diversified kW demand for the sys-
tem of Example 2.1 is 92.9 kW. Allocate this load according to the kVA 
ratings of the three transformers.

	 = + + =kVA 25 37.5 50 112.5total

	
= =AF 92.9

112.5
0.8258 kW/kVA

The allocated kW for each transformer becomes:

	 = ⋅ =kWT1: 0.8258 25 20.64 kW1

	 = ⋅ =kWT2: 0.8258 37.5 30.97 kW2

	 = ⋅ =kWT3: 0.8258 50 41.29 kW3

2.4.1.5 � What Method to Use?

The following four different methods have been presented for allocating 
load to distribution transformers:

•	 Application of diversity factors
•	 Load survey
•	 Transformer load management
•	 Metered feeder maximum demand

The method to be used depends upon the purpose of the analysis. If the 
purpose of the analysis is to determine as closely as possible the maximum 
demand on a distribution transformer, then either the diversity factor or the 
transformer load management method can be used. Neither of these meth-
ods should be employed when the analysis of the total feeder is to be per-
formed. The problem is that using either of those methods will result in a 
much larger maximum diversified demand at the substation than that actu-
ally exists. When the total feeder is to be analyzed, the only method that 
gives good results is that of allocating load based upon the kVA ratings of 
the transformers.
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2.4.2 � Voltage Drop Calculations Using Allocated Loads

The voltage drops down line segments and through distribution transform-
ers are of interest to the distribution engineer. Four different methods of 
allocating loads have been presented. The various voltage drops can be com-
puted using the loads allocated by the three methods. For these studies, it is 
assumed that the allocated loads will be modeled as constant real power and 
reactive power.

2.4.2.1 � Application of Diversity Factors

The loads allocated to a line segment or a distribution transformer using 
diversity factors are a function of the total number of customers “down-
stream” from the line segment or distribution transformer. The application 
of the diversity factors was demonstrated in Example 2.1. With a knowl-
edge of the allocated loads flowing in the line segments and through the 
transformers and the impedances, the voltage drops can be computed. The 
assumption is that the allocated loads will be constant real power and reac-
tive power. To avoid an iterative solution, the voltage at the source end is 
assumed and the voltage drops are calculated from that point to the last 
transformer. Example 2.3 demonstrates how the method of load allocation 
using diversity factors is applied. The same system and allocated loads from 
Example 2.1 are used in Example 2.3.

Example 2.3

For the system in Example 2.1, assume the voltage at N1 is 2400 V, and 
compute the secondary voltages on the three transformers using the 
diversity factors.

The system in Example 2.1 including segment distances is shown in 
Figure 2.12.

Assume that the power factor of the loads is 0.9 lagging.
The impedance of the lines are: z = 0.3 + j0.6 Ω/mile

1 2 3 4 5 6

T1

N1 N25000′ 500′ 750′N3 N4

T2 T3

7 8 9 10 11 12 13 14 15 16 17 18

FIGURE 2.12
Single-phase lateral with distances.
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The ratings of the transformers are:

T1:  25 kVA, 2400–240 V, Z = 1.8/40%

T2:  37.5 kVA, 2400–240 V, Z = 1.9/45%

T3:  50 kVA, 2400–240 V, Z = 2.0/50%

From Example 2.1, the maximum diversified kW demands were com-
puted. Using the 0.9 lagging power factor, the maximum diversified kW 
and kVA demands for the line segments and transformers are:

Segment N1–N2:  P12 = 92.9 kW  S12 = 92.9 + j45.0 kVA

Segment N2–N3:  P23 = 72.6 kW  S23 = 72.6 + j35.2 kVA

Segment N3–N4:  P34 = 49.0 kW  S34 = 49.0 + j23.7 kVA

Transformer T1:  PT1 = 30.3 kW  ST1 = 30.3 + j14.7 kVA

Transformer T2:  PT2 = 35.5 kW  ST2 = 35.5 + j17.2 kVA

Transformer T3:  PT3 = 49.0 kW  ST3 = 49.0 + j23.7 kVA

Convert transformer impedances to ohms referred to the high-voltage side.

	
Z kV

kVA
T1: 1000 2.4 1000

25
230.4 base1

2

1

2
= ⋅ = ⋅ = Ω

	
Z j0.018/40 230.4 3.18 2.67T 1 ( )= ⋅ = + Ω

	
Z kV

kVA
T2: 1000 2.4 1000

37.5
153.6 base2

2

2

2
= ⋅ = ⋅ = Ω

	
Z j0.019/45 153.6 2.06 2.06T 2 ( )= ⋅ = + Ω

	
Z kV

kVA
T3: 1000 2.4 1000

50
115.2 base3

2

3

2
= ⋅ = ⋅ = Ω

	
Z j0.02/50 115.2 1.48 1.77T 3 ( )= ⋅ = + Ω

Compute the line impedances:

	
( )= + ⋅ = + ΩZ j jN1 – N2 : 0.3 0.6

5000
5280

0.2841 0.568212

	
( )= + ⋅ = + ΩZ j jN2 – N3 : 0.3 0.6

500
5280

0.0284 0.056823

	
( )− = + ⋅ = + ΩZ j jN3 N4 : 0.3 0.6

750
5280

0.0426 0.085234

Calculate the current flowing in segment N1–N2:

	
I

kW jkvar
kV

j92.9 45.0
2.4/0

43.0/ 25.84 A
* *

12 = +





 = +







 = −
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Calculate the voltage at N2:

	 ⋅V V Z I= –2 1 12 12

	 ( )= − + ⋅ − = −V j2400/0 0.2841 0.5682 43.0/ 25.84 2378.4/ 0.4 V2

Calculate the current flowing into T1:

	

I
kW jkvar

kV
j30.3 14.7

2.378/ 0.4
14.16/ 26.24 A

* *

T 1 = +





 = +

−











 = −

Calculate the secondary voltage referred to the high side:

	 V V Z IT T T1 2 2 2= − ⋅

	 V j2378.4/ 0.4 3.18 2.67 14.16/ 26.24 2321.5/ 0.8 VT 1 )(= − − + ⋅ − = −

Compute the secondary voltage by dividing by the turns ratio of 10:

	
=

−
= −V low

2321.5/ 0.8
10

232.15/ 0.8 VT1

Calculate the current flowing in line section N2–N3:

	

I
kW jkvar

kV
j72.6 35.2

2.378/ 0.4
33.9/ 26.24 A

* *

23 = +





 = +

−











 = −

Calculate the voltage at N3:

	 = − ⋅V V Z I3 2 23 23

	 ( )= − − + ⋅ − = −V j2378.4/ 0.4 0.0284 0.0568 33.9/ 26.24 2376.7/ 0.4 V3

Calculate the current flowing into T2:

	

I
kW jkvar

kV
j35.5 17.2

2.3767/ 0.4
16.58/ 26.27 A

* *

T 2 = +





 = +

−











 = −

Calculate the secondary voltage referred to the high side:

	
= − ⋅V V Z IT T T2 3 2 2
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V j2376.7/ 0.4 2.06 2.06 16.58/ 26.27 2331.1/ 0.8 VT 2 ( )= − − + ⋅ − = −

Compute the secondary voltage by dividing by the turns ratio of 10:

	
= − = −V low 2331.1/ 0.8

10
233.1/ 0.8 VT 2

Calculate the current flowing in line section N3–N4:

	

I
kW jkvar

kV
j49.0 23.7

2.3767/ 0.4
22.9/ 26.27 A

* *

34 = +





 = +

−











 = −

Calculate the voltage at N4:

	 = − ⋅V V Z I4 3 34 34

	
( )= − − + ⋅ − = −V 2376.7/ 0.4 0.0426 0.0852 22.9/ 26.27 2375.0/ 0.5 V4

The current flowing into T3 is the same as the current from N3 to N4:

	
= −I 22.91/ 26.30 AT 3

Calculate the secondary voltage referred to the high side:

	 V V Z IT T T3 4 3 3= − ⋅

	 V j2375.0/ 0.5 1.48 1.77 22.9/ 26.27 2326.9/ 1.0 VT 3 ( )= − − + ⋅ − = −

Compute the secondary voltage by dividing by the turns ratio of 10:

	
=

−
= −V low

2326.9/ 1.0
10

232.7/ 1.0 V3T

Calculate the percent voltage drop to the secondary of transformer T3. 
Use the secondary voltage referred to the high side:

	
V

V V
V

100
2400 2326.11

2400
100 3.0789%drop

T1 3

1

=
−

⋅ = − ⋅ =
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2.4.2.2 � Load Allocation Based upon Transformer Ratings

When only the ratings of the distribution transformers are known, the feeder 
can be allocated based upon the metered demand and the transformer kVA 
ratings. This method was discussed in Section 2.3.3. Example 2.4 demon-
strates this method.

Example 2.4

For the system in Example 2.1, assume the voltage at N1 is 2400 V, and 
compute the secondary voltages on the three transformers allocating the 
loads based upon the transformer ratings. Assume that the metered kW 
demand at N1 is 92.9 kW.

The impedances of the line segments and transformers are the same 
as in Example 2.3.

Assume the load power factor is 0.9 lagging, and compute the kVA 
demand at N1 from the metered demand:

	
= = + =−S j92.9

0.9
/cos (0.9) 92.9 45.0 103.2/25.84 kVA12

1

Calculate the allocation factor:

	
=

+ +
=AF

103.2/25.84
25 37.5 50

0.9175/25.84

Allocate the loads to each transformer:

	 S AF kVA j0.9175/25.84 25 20.6 10.0 kVAT T1 1 ( )= ⋅ = ⋅ = +

	 S AF kVA j0.9175/25.84 37.5 31.0 15.0 kVAT T2 2 ( )= ⋅ = ⋅ = +

	 S AF kVA j0.9175/25.84 50 41.3 20.0 kVAT T3 3 ( )= ⋅ = ⋅ = +

Calculate the line flows:

	 = +S S S S j= + + 92.9 45.0 kVAT T T1 1 2 3

	 = + = +S S S j72.3 35 kVAT T23 2 3

	 = = +S S j41.3 20.0 kVAT34 3

Using these values of line flows and flows into transformers, the proce-
dure for computing the transformer secondary voltages is exactly the 
same as in Example 2.3. When this procedure is followed, the node and 
secondary transformer voltages are:

	
= − = −V V low2378.1/ 0.4 V, 234.0/ 0.6 V2 1T
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= − = −V V low2376.4/ 0.4 V, 233.7/ 0.8 VT3 2

	
= − = −V V low2374.9/ 0.5 V, 233.5/ 0.9 VT4 3

The percent voltage drop for this case is:

	
V

V V
V

100
2400 2334.8

2400
100 2.7179%drop

T1 3

1

=
−

⋅ = − ⋅ =

2.5 � Summary

This chapter has demonstrated the nature of the loads on a distribution 
feeder. There is a great diversity between individual customer demands, 
but as the demand is monitored on line segments working back toward the 
substation, the effect of the diversity between demands becomes very light. 
It was shown that the effect of diversity between customer demands must 
be taken into account when the demand on a distribution transformer is 
computed. The effect of diversity for short laterals can be taken into account 
in determining the maximum flow on the lateral. For the diversity factors of 
Table 2.2, it was shown that when the number of customers exceeds 70, the 
effect of diversity has pretty much disappeared. This is evidenced by the fact 
that the diversity factor has become almost constant as the number of cus-
tomers approached 70. It must be understood that the number 70 will apply 
only to the diversity factors of Table 2.2. If a utility is going to use diver-
sity factors, then that utility must perform a comprehensive load survey to 
develop the table of diversity factors that apply to that particular system.

Examples 2.3 and 2.4 show that the final node and transformer voltages are 
approximately the same. There is very little difference between the voltages 
when the loads were allocated using the diversity factors and when the loads 
were allocated based upon the transformer kVA ratings.

Problems

2.1 Shown below are the 15-min kW demands for four customers between 
the hours of 17:00 and 21:00. A 25-kVA single-phase transformer serves the 
four customers.

	 a.	For each of the customers, determine:
	 1.	 Maximum 15-min kW demand
	 2.	 Average 15-min kW demand
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	 3.	 Total kWh usage in the time period
	 4.	 Load factor
	 b.	For the 25-kVA transformer, determine:
	 1.	 Maximum 15-min diversified demand
	 2.	 Maximum 15-min noncoincident demand
	 3.	 Utilization factor (assume unity power factor)
	 4.	 Diversity factor
	 5.	 Load diversity
	 c.	Plot the load duration curve for the transformer

2.2 Two transformers each serving four customers are shown in Figure 2.13:

#1 #2 #3 #4 #5 #6

Tap

#7 #8

FIGURE 2.13
System for Problem 2.2.

Customer #1 Customer #2 Customer #3 Customer #4

Time kW kW kW kW

17:00 8.81 4.96 11.04 1.44
17:15 2.12 3.16 7.04 1.62
17:30 9.48 7.08 7.68 2.46
17:45 7.16 5.08 6.08 0.84
18:00 6.04 3.12 4.32 1.12
18:15 9.88 6.56 5.12 2.24
18:30 4.68 6.88 6.56 1.12
18:45 5.12 3.84 8.48 2.24
19:00 10.44 4.44 4.12 1.12
19:15 3.72 8.52 3.68 0.96
19:30 8.72 4.52 0.32 2.56
19:45 10.84 2.92 3.04 1.28
20:00 6.96 2.08 2.72 1.92
20:15 6.62 1.48 3.24 1.12
20:30 7.04 2.33 4.16 1.76
20:45 6.69 1.89 4.96 2.72
21:00 1.88 1.64 4.32 2.41
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The following table gives the time interval and kVA demand of the four 
customer demands during the peak load period of the year. Assume a power 
factor of 0.9 lagging.

	 a.	For each transformer, determine the following:
	 1.	 30-min maximum kVA demand
	 2.	 Noncoincident maximum kVA demand
	 3.	 Load factor
	 4.	 Diversity factor
	 5.	 Suggested transformer rating (50, 75, 100, 167)
	 6.	 Utilization factor
	 7.	 Energy (kWh) during the 4 h period
	 b.	Determine the maximum diversified 30-min kVA demand at the “Tap”

2.3 Two single-phase transformers serving 12 customers are shown in 
Figure 2.14.

The 15-min kW demands for the 12 customers between the hours of 5:00 pm 
and 9:00 pm are given in the following tables. Assume a load power factor 

Time #1 #2 #3 #4 #5 #6 #7 #8

3:00–3:30 10 0 10 5 15 10 50 30
3:30–4:00 20 25 15 20 25 20 30 40
4:00–4:30 5 30 30 15 10 30 10 10
4:30–5:00 0 10 20 10 13 40 25 50
5:00–5:30 15 5 5 25 30 30 15 5
5:30–6:00 15 15 10 10 5 20 30 25
6:00–6:30 5 25 25 15 10 10 30 25
6:30–7:00 10 50 15 30 15 5 10 30

1 2 3 4 5 6

T1

N1 N3N2 2500′5000′

T2

7 8 9 10 11 12

FIGURE 2.14
Circuit for Problem 2.3.
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of 0.95 lagging. The impedance of the lines are z = 0.306 + j0.6272 Ω/mile. The 
voltage at node N1 is 2500/0 V.

Transformer ratings:

	 a.	Determine the maximum kW demand for each customer
	 b.	Determine the average kW demand for each customer
	 c.	Determine the kWH consumed by each customer in this time period
	 d.	Determine the load factor for each customer
	 e.	Determine the maximum diversified demand for each transformer
	 f.	Determine the maximum noncoincident demand for each 

transformer
	 g.	Determine the utilization factor (assume 1.0 power factor) for each 

transformer
	 h.	Determine the diversity factor of the load for each transformer
	 i.	Determine the maximum diversified demand at Node N1
	 j.	Compute the secondary voltage for each transformer taking diver-

sity into account

Transformer #1—25 kVA

#1 #2 #3 #4 #5

Time kW kW kW kW kW

05:00 2.13 0.19 4.11 8.68 0.39
05:15 2.09 0.52 4.11 9.26 0.36
05:30 2.15 0.24 4.24 8.55 0.43
05:45 2.52 1.80 4.04 9.09 0.33
06:00 3.25 0.69 4.22 9.34 0.46
06:15 3.26 0.24 4.27 8.22 0.34
06:30 3.22 0.54 4.29 9.57 0.44
06:45 2.27 5.34 4.93 8.45 0.36
07:00 2.24 5.81 3.72 10.29 0.38
07:15 2.20 5.22 3.64 11.26 0.39
07:30 2.08 2.12 3.35 9.25 5.66
07:45 2.13 0.86 2.89 10.21 6.37
08:00 2.12 0.39 2.55 10.41 4.17
08:15 2.08 0.29 3.00 8.31 0.85
08:30 2.10 2.57 2.76 9.09 1.67
08:45 3.81 0.37 2.53 9.58 1.30
09:00 2.04 0.21 2.40 7.88 2.70

T1: 25 kVA 2400–240 V Zpu = 0.018/40
T2: 37.5 kVA 2400–240 V Zpu = 0.020/50
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Transformer #2—37.5 kVA

2.4 On a different day, the metered 15-min kW demand at node N1 for the 
system of Problem 2.3 is 72.43 kW. Assume a power factor of 0.95 lagging. 
Allocate the metered demand to each transformer based upon the trans-
former kVA rating. Assume the loads are constant current, and compute the 
secondary voltage for each transformer.

2.5 A single-phase lateral serves four transformers as shown in Figure 2.15.
Assume that each customer’s maximum demand is 15.5 kW + j7.5 kvar. The 

impedance of the single-phase lateral is z = 0.4421 + j0.3213 Ω/1000 ft. The 
four transformers are rated as:

T1 and T2: 37.5 kVA, 2400–240 V, Z = 0.01 + j0.03 per unit
T3 and T4: 50 kVA, 2400–240 V, Z = 0.015 + j0.035 per unit

#6 #7 #8 #9 #10 #11 #12

Time kW kW kW kW kW kW kW

05:00 0.87 2.75 0.63 8.73 0.48 9.62 2.55 
05:15 0.91 5.35 1.62 0.19 0.40 7.98 1.72 
05:30 1.56 13.39 0.19 5.72 0.70 8.72 2.25 
05:45 0.97 13.38 0.05 3.28 0.42 8.82 2.38 
06:00 0.76 13.23 1.51 1.26 3.01 7.47 1.73 
06:15 1.10 13.48 0.05 7.99 4.92 11.60 2.42 
06:30 0.79 2.94 0.66 0.22 3.58 11.78 2.24 
06:45 0.60 2.78 0.52 8.97 6.58 8.83 1.74 
07:00 0.60 2.89 1.80 0.11 7.96 9.21 2.18 
07:15 0.87 2.75 0.07 7.93 6.80 7.65 1.98 
07:30 0.47 2.60 0.16 1.07 7.42 7.78 2.19 
07:45 0.72 2.71 0.12 1.35 8.99 6.27 2.63 
08:00 1.00 3.04 1.39 6.51 8.98 10.92 1.59 
08:15 0.47 1.65 0.46 0.18 7.99 5.60 1.81 
08:30 0.44 2.16 0.53 2.24 8.01 7.74 2.13 
08:45 0.95 0.88 0.56 0.11 7.75 11.72 1.63 
09:00 0.79 1.58 1.36 0.95 8.19 12.23 1.68 

3

1 2 4 6 8820′750′470′380′

T1 T2 T3 T4

975

FIGURE 2.15
System for Problem 2.5.
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Use the diversity factors found in Table 2.2 and determine:

	 a.	The 15-min maximum diversified kW and kvar demands on each 
transformer

	 b.	The 15-min maximum diversified kW and kvar demands for each 
line section

	 c.	 If the voltage at Node 1 is 2600/0 V, determine the voltage at nodes 
2, 3, 4, 5, 6, 7, 8, and 9. In calculating the voltages, take into account 
diversity using the answers from (1) and (b) above.

	 d.	Use the 15-min maximum diversified demands at the lateral tap 
(section 1–2) from part (b). Divide these maximum demands by 18 
(number of customers), and assign that as the “instantaneous load” 
for each customer. Now calculate the voltages at all of the nodes 
listed in part (c) using the instantaneous loads.

	 e.	Repeat part (d) above except assuming that the loads are “constant 
current”. To do this, take the current flowing from node 1 to node 
2 from part (d) and divide by 18 (number of customers) and assign 
that as the “instantaneous constant current load” for each customer. 
Again, calculate all of the voltages.

	 f.	Take the maximum diversified demand from node 1 to node 2, and 
“allocate” that out to each of the four transformers based upon their 
kVA ratings. To do this, take the maximum diversified demand and 
divide by 175 (total kVA of the four transformers). Now multiply 
each transformer kVA rating by that number to obtain the amount 
of the total diversified demand is being served by each transformer. 
Again, calculate all of the voltages.

	 g.	Compute the percent differences in the voltages for parts (d), (e), and 
(f) at each of the nodes using part (c) answer as the base.
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3
Approximate Method of Analysis

A distribution feeder provides service to unbalanced three-phase, two-
phase, and single-phase loads over untransposed three-phase, two-phase, 
and single-phase line segments. This combination leads to the three-phase 
line currents and the line voltages being unbalanced. To analyze these condi-
tions as precisely as possible, it will be necessary to model all three phases 
of the feeder as accurately as possible. However, many times, only a “ball-
park” answer is needed. When this is the case, some approximate methods 
of modeling and analysis can be employed. This chapter focuses on develop-
ing some of the approximate methods. Later chapters discuss the develop-
ment of the exact models and analysis. By knowing the “ballpark” answer, 
the results of a computer exact analysis must be in the same “ballpark.” It is 
necessary that the engineer running a computer analysis will know whether 
the computer result is correct.

All of the approximate methods of modeling and analysis will assume per-
fectly balanced three-phase systems. It will be assumed that all loads are bal-
anced three-phase and all line segments will be three-phase and perfectly 
transposed. With these assumptions, a single line-to-neutral equivalent cir-
cuit for the feeder will be used.

3.1 � Voltage Drop

A line-to-neutral equivalent circuit of a three-phase line segment serving a 
balanced three-phase load is shown in Figure 3.1.

Kirchhoff’s Voltage Law applied to the circuit in Figure 3.1 gives:

	 V V R jX I V R I jX I( )S L L= + + ⋅ = + ⋅ + ⋅ 	 (3.1)

The phasor diagram for Equation 3.1 is shown in Figure 3.2.
In Figure 3.2, the phasor for the voltage drop through the line resistance 

(RI) is shown in phase with the current phasor, and the phasor for the volt-
age drop through the reactance is shown leading the current phasor by 90°. 
The dashed lines in Figure 3.2 represent the real and imaginary parts of the 
impedance (ZI) drop. The voltage drop down the line is defined as the differ-
ence between the magnitudes of the source and the load voltages.
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= −V V Vdrop S L 	 (3.2)

The angle between the source voltage and the load voltage (δ) is very small. 
Because of that, the voltage drop between the source and load voltage is 
approximately equal to the real part of the impedance drop. That is:

	
V Z IRe( )drop ≅ ⋅ 	 (3.3)

For the purposes of this chapter, Equation 3.3 will be used as the definition 
of voltage drop.

Example 3.1

In Example 2.3, the impedance of the first line segment is:

	 = + ΩZ j0.2841 0.568212

The current flowing through the line segment is:

	 = −I 42.985/ 25.8419 A12

The voltage at node N1 is:

	 =V 2400/0.0 V1

The exact voltage at node N2 is computed to be:

= − + ⋅ − = −V j2400/0.0 (0.2841 0.5682) 43.0093/ 25.8419 2378.4098/ 0.4015 V2

Vs

Im(Z ·I)

Re(Z ·I )
jX ·IR ·I

VL

Z ·I

I

θ

δ

FIGURE 3.2
Phasor diagram.

VS VL

R jX

I +

–

+

–
Load

FIGURE 3.1
Line-to-neutral equivalent circuit.
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The voltage drop between the nodes is then:

	 = − =V 2400.0000 2378.4098 21.5902 Vdrop

Computing the voltage drop according to Equation 3.3 gives:

	 V jRe 0.2841 0.5682 43.0093/ 25.8419 21.6486 Vdrop ( )= + ⋅ −  =

	
Error 21.5902 21.6486

21.5902
100 0.27%= − ⋅ = −

This example demonstrates the very small error in computing voltage 
drop when using the approximate equation (Equation 3.3).

3.2 � Line Impedance

For the approximate modeling of a line segment, it will be assumed that 
the line segment is transposed. With this assumption, only the positive 
sequence impedance of the line segment needs to be determined. A typical 
three-phase line configuration is shown in Figure 3.3.

Dca

DbcDab
b ca

n

FIGURE 3.3
Three-phase line configuration.
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The equation for the positive sequence impedance for the configuration 
shown in Figure 3.3 is given by Glover and Sarma [1]:

	

z r j
D

GMR
0.12134 ln /milepositive

eq= + ⋅






 Ω 	 (3.4)

where
r = conductor resistance (from tables) Ω/mile

	
D D D D fteq ab bc ca

3 ( )= ⋅ ⋅
	

(3.5)

GMR = conductor geometric mean radius (from tables) (ft)

Example 3.2

A three-phase line segment has the configuration as shown in Figure 3.3. 
The spacings between conductors are:

Dab = 2.5 ft,	 Dbc = 4.5 ft,	 Dca = 7.0 ft

The conductors of the line are 336,400 26/7 ACSR.
Determine the positive sequence impedance of the line in Ω/mile:

Solution: From the table of conductor data in Appendix A:

	 r = 0.306 Ω/mile

	 GMR = 0.0244 ft

Compute the equivalent spacing:

	
D 2.5 4.5 7.0 4.2863 fteq

3= ⋅ ⋅ =

Using Equation 3.4:

	
z j j0.306 0.12134 ln

4.2863
0.0244

0.306 0.6276 /milepositive = + ⋅






 = + Ω

3.3 � “K” Factors

A first approximation for calculating the voltage drop along a line segment 
is given by Equation 3.3. Another approximation is made by employing a 
“K” factor. There will be two types of K factors: one for voltage drop and the 
other for voltage rise calculations.
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3.3.1  �Kdrop Factor

The Kdrop factor is defined as:

	
K Vdrop

kVA miledrop
%=

− 	 (3.6)

	 where V drop
V drop
V LN

volts

nomina
%

l
=

The Kdrop factor is determined by computing the percent voltage drop down a 
line that is one mile long and serving a balanced three-phase load of 1 kVA. 
The percent voltage drop is referenced to the nominal voltage of the line. To 
calculate this factor, the power factor of the load must be assumed.

Example 3.3

For the line in Example 3.2, compute the Kdrop factor assuming a load 
power factor of 0.9 lagging and a nominal voltage of 12.47 kV (line-to-line).

Solution: The impedance of 1 mile of line was computed to be:

	 Z = 0.306 + j0.6276 Ω

The current taken by 1 kVA at 0.9 lagging power factor is given by:

	

kVA

I kVA
kV

PF

1.0

3
/ cos ( )

1
3 12.47

/ cos (0.9) 0.0463/ 25.84 A
LL

1 1

=

=
⋅

− =
⋅

− = −− −

The voltage drop is computed to be:

	
( )[ ]= ⋅ = + ⋅ −  =V Z I jRe Re 0.306 0.6276 0.0463/ 25.84 0.0254 Vdrop

The nominal line-to-neutral voltage is:

	
V 12,470

3
7199.5579 VLN = =

The Kdrop factor is then:

	
K 0.0254

7199.5579
100 0.00035304% drop/kVA-miledrop = ⋅ =

The Kdrop factor computed in Example 3.3 is for the 336,400 26/7 ACSR 
conductor with the conductor spacings defined in Example 3.2, a nominal 
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voltage of 12.47 kV, and a load power factor of 0.9 lagging. Unique Kdrop 
factors can be determined for all standard conductors, spacings, and 
voltages. Fortunately, most utilities will have a set of standard conduc-
tors, standard conductor spacings, and one or two standard distribution 
voltages. Because of this, a simple spreadsheet program can be written 
that will compute the Kdrop factors for the standard configurations. The 
assumed power factor of 0.9 lagging is a good approximation of the 
power factor for a feeder serving a predominately residential load.

The Kdrop factor can be used to quickly compute the approximate 
voltage drop down a line section. For example, assume that a load of 
7500 kVA is to be served at a point 1.5 miles from the substation. Using 
the Kdrop factor computed in Example 3.3, the percent voltage drop down 
the line segment is computed to be:

	 V K kVA mile 0.00035291 7500 1.5 3.9717%drop drop= ⋅ ⋅ = ⋅ ⋅ =

This example demonstrates that a load of 7500 kVA can be served 1.5 
miles from the substation, with a resulting voltage drop of 3.9717%. 
Suppose now that the utility has a maximum allowable voltage drop of 
3.0%. How much load can be served 1.5 miles from the substation?

	
kVA 3.0%

0.00035304 1.5
5665.14 kVAload =

⋅
=

The application of the Kdrop factor is not limited to computing the per-
cent voltage drop down just one line segment. When line segments 
are in cascade, the total percent voltage drop from the source to the 
end of the last line segment is the sum of the percent drops in each 
line segment. This seems logical, but it must be understood that in all 
cases the percent drop is in reference to the nominal line-to-neutral 
voltage. That is, the percent voltage drop in a line segment is not refer-
enced to the source end voltage but rather the nominal line-to-neutral 
voltage, as would be the usual case. Example 3.4 will demonstrate this 
application.

Example 3.4

A three-segment feeder is shown in Figure 3.4.

300 kVA

N0

1.5 mile 0.75 mile 0.5 mile

N1 N2 N3

750 kVA 500 kVA

FIGURE 3.4
Three line segment feeder.
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The Kdrop factor for the line segments is:

	 K 0.00035304% drop/kVA-miledrop =

Determine the percent voltage drop from N0 to N3.

Solution: The total kVA flowing in segment N0 to N1 is:

	 kVA 300 750 500 1550 kVA01 = + + =

The percent voltage drop from N0 to N1 is:

	 Vdrop 0.00035291 1550 1.5 0.8208%01 = ⋅ ⋅ =

The total kVA flowing in segment N1 to N2 is:

	 kVA 750 500 1250 kVA12 = + =

The percent voltage drop from N1 to N2 is:

	 Vdrop 0.00035291 1250 0.75 0.3310%12 = ⋅ ⋅ =

The kVA flowing in segment N2 to N3 is:

	 kVA 50023 =

The percent voltage drop in the last line segment is:

	 Vdrop 0.00035291 500 0.5 0.0883%23 = ⋅ ⋅ =

The total percent voltage drop from N0 to N3 is:

	 Vdrop 0.8208 0.3310 0.0883 1.2401%total = + + =

The application of the Kdrop factor provides an easy way of computing 
the approximate percent voltage drop from a source to a load. It should 
be kept in mind that the assumption has been a perfectly balanced 
three-phase load, an assumed load power factor, and transposed line 
segments. Even with these assumptions, the results will always provide 
a “ballpark” result that can be used to verify the results of more sophis-
ticated methods of computing voltage drop.

3.3.2  �Krise Factor

The Krise factor is similar to the Kdrop factor except that now the “load” is a 
shunt capacitor. When a leading current flows through an inductive reac-
tance, there will be a voltage rise across the reactance rather than a voltage 
drop. This is illustrated by the phasor diagram (Figure 3.5).



46 Distribution System Modeling and Analysis

Referring to Figure 3.5, the voltage rise is defined as:

	

V Z I jX I

Vrise V
VLN

Re

100

rise cap cap cap cap

rise

nominal
%

( )= ⋅ ≈ ⋅

= ⋅ 	 (3.7)

In Equation 3.7, it is necessary to take the magnitude of the real part of 
Z Icap cap⋅ , so that the voltage rise is a positive number. The Krise factor is 
defined exactly the same as the Kdrop factor.

	
K Vrise

kvar mile
rise

%=
−

	 (3.8)

Example 3.5

	 1.	 Calculate the Krise factor for the line in Example 3.2.
	 2.	 Determine the rating of a three-phase capacitor bank to limit 

the voltage drop in Example 3.3 to 2.5%.

Solution:

	 1.	 The impedance of 1 mile of line was computed to be:

	 Z = 0.306 + j0.6276 Ω

	 The current taken by a 1-kvar three-phase capacitor bank is 
given by:

	
I

kV
1kvar
3

/90
1

3 12.47
/90 0.04630/90 Acap

LL

=
⋅

=
⋅

=

	 The voltage rise per kvar mile is computed to be:

	 V Z I jRe Re 0.306 0.6276 0.04630/90 0.0291 Vrise cap ( )= ⋅  = + ⋅  =

VL

Icap
VS

jXcap · Icap

Rcap· IcapZcap· Icapδ

FIGURE 3.5
Voltage rise phasor diagram.
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	 The nominal line-to-neutral voltage is:

	
= =V

12, 470
3

7199.6 VLN

	 The Krise factor is then:

	
K 0.029037

7199.6
100 0.00040361% rise/kvar milerise = ⋅ =

	 2.	 The percent voltage drop in Example 3.3 was computed to be 
3.9717%. To limit the total voltage drop to 2.5%, the required 
voltage rise due to a shunt capacitor bank is:

	
V 3.9702 2.5 1.4717%rise = − =

	 The required rating of the shunt capacitor is:

	

kvar V
K mile

1.4702
0.00040331 1.5

2430.9 kvarrise

rise
=

⋅
=

⋅
=

In reality, the value of the three-phase capacitor bank would be 
800 kvar/phase.

3.4 � Uniformly Distributed Loads

Many times, it can be assumed that loads are uniformly distributed along 
a line that can be a three-phase, two-phase, or single-phase feeder or 
lateral. This is certainly the case in single-phase laterals, where the same 
rating transformers are spaced uniformly over the length of the lateral. 
When the loads are uniformly distributed, it is not necessary to model 
each load to determine the total voltage drop from the source end to the 
last load. Figure 3.6 shows a generalized line with n uniformly distributed 
loads.

3.4.1 � Voltage Drop

Figure 3.6 shows n uniformly spaced loads dx miles apart. All the loads are 
equal and will be treated as constant current loads with a value of di. The 
total current into the feeder is IT. It is desired to determine the total voltage 
drop from the source node (S) to the last node n.
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Let: l = length of the feeder
z = r + jx = impedance of the line in Ω/mile
dx = length of each line section
di = load currents at each node
n = number of nodes and number of line sections
IT = total current into the feeder

The load currents are given by:

	
di I

n
T= 	 (3.9)

The voltage drop in the first line segment is given by:

	 Vdrop z dx n diRe1 { }( )= ⋅ ⋅ ⋅ 	 (3.10)

The voltage drop in the second line segment is given by:

	 Vdrop z dx n diRe ( 1)2 { }[ ]= ⋅ ⋅ − ⋅ 	 (3.11)

The total voltage drop from the source node to the last node is then given by:

	 { }

= + + ⋅⋅⋅+

= ⋅ ⋅ ⋅ + − + − + ⋅⋅⋅+

Vdrop Vdrop Vdrop Vdrop

Vdrop z dx di n n nRe [ ( 1) ( 2) (1)]

total n

total

1 2

	 (3.12)

Equation 3.12 can be reduced by recognizing the series expansion:

	
n

n n
1 2 3

1
2

( )+ + + ⋅ ⋅ ⋅ + =
+

	 (3.13)

Length

dx 1 dx 2 dx 3 dx 4 dx 5

di di di di di di

n
S

IT

FIGURE 3.6
Uniformly distributed loads.
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Using the expansion, Equation 3.12 becomes:

	
Vdrop z dx di

n n
Re

1
2

total
( )= ⋅ ⋅ ⋅

⋅ +



















 	
(3.14)

The incremental distance is:

	
dx l

n
=

	
(3.15)

The incremental current is:

	
di I

n
T=

	
(3.16)

Substituting Equations 3.15 and 3.16 into Equation 3.14 results in:

	

Vdrop z l
n

I
n

n n

Vdrop z l I n
n

Vdrop Z I
n

Re
1

2

Re
1
2

1

Re
1
2

1
1

total
T

total T

total T

( )= ⋅ ⋅ ⋅
⋅ +





















= ⋅ ⋅ ⋅ ⋅ +















= ⋅ ⋅ ⋅ +














 	

(3.17)

where Z z l= ⋅ .
Equation 3.17 gives the general equation for computing the total voltage 

drop from the source to the last node n for a line of length l. In the limiting 
case where n goes to infinity, the final equation becomes:

	
Vdrop Z IRe

1
2

total T{ }= ⋅ ⋅ 	 (3.18)

In Equation 3.18, Z represents the total impedance from the source to the end 
of the line. The voltage drop is the total from the source to the end of the line. 
The equation can be interpreted in two ways. The first is to recognize that 
the total line-distributed load can be lumped at the midpoint of the lateral 
(Figure 3.7).

A second interpretation of Equation 3.18 is to lump one-half of the total 
line load at the end of the line (node n; Figure 3.8).
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Figures 3.7 and 3.8 give two different models that can be used to calculate 
the total voltage drop from the source to the end of a line with uniformly 
distributed loads.

3.4.2 � Power Loss

Of equal importance in the analysis of a distribution feeder is the power loss. 
If the model of Figure 3.7 is used to compute the total three-phase power loss 
down the line, the result is:

	
P I R I R3

2
3
2

loss T T
2 2= ⋅ ⋅ = ⋅ ⋅ 	 (3.19)

When the model in Figure 3.8 is used to compute the total three-phase power 
loss, the result is:

	
P I R I R3

2
3
4

loss
T

T

2
2= ⋅ ⋅ = ⋅ ⋅ 	 (3.20)

It is obvious that the two models give different results for the power loss. The 
question arises as to which one is correct. The answer is neither one.

Length

n

IT/2

S

IT

FIGURE 3.8
One-half load lumped at the end.

Length

Length/2
IT

IT

S
n

FIGURE 3.7
Load lumped at the midpoint.
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To derive the correct model for power loss, reference is made to Figure 3.6 
and the definitions for the parameters in that figure. The total three-phase 
power loss down the line will be the sum of the power losses in each short 
segment of the line. For example, the three-phase power loss in the first 
segment is:

	 Ploss r dx n di31
2( ) ( )= ⋅ ⋅ ⋅ ⋅ 	 (3.21)

The power loss in the second segment is given by:

	
Ploss r dx n di3 |( 1) |2

2[ ]( )= ⋅ ⋅ ⋅ − ⋅ 	 (3.22)

The total power loss of over the length of the line is then given by:

	
Ploss r dx di n n n3 1 2 1total

2 2 2 2 2( ) ( ) ( )= ⋅ ⋅ ⋅ + − + − + ⋅ ⋅ ⋅ +  	 (3.23)

The series inside the bracket of Equation 3.23 is the sum of the squares of n 
numbers and is equal to:

	
n

n n n
1 2 3

1 2 1
6

2 2 2 2 ( ) ( )+ + + ⋅ ⋅ ⋅ + =
⋅ + ⋅ +

	 (3.24)

Substituting Equations 3.15, 3.16, and 3.24 into Equation 3.23 gives:

	
Ploss r l

n
I
n

n n n
3

1 2 1
6

total
T

2 ( ) ( )= ⋅ ⋅






 ⋅







 ⋅

⋅ + ⋅ +







 	 (3.25)

Simplifying Equation 3.25:

	

Ploss R I
n n

n

Ploss R I n n
n

Ploss R I
n n

3
1 2 1
6

3
2 3 1

6

3
1
3

1
2

1
6

total T

total T

total T

2
2

2
2

2

2
2

( ) ( )= ⋅ ⋅ ⋅
+ ⋅ +

⋅










= ⋅ ⋅ ⋅ ⋅ + ⋅ +
⋅











= ⋅ ⋅ ⋅ +
⋅

+
⋅







	

(3.26)

where R r l= ⋅  the total resistance per phase of the line segment.



52 Distribution System Modeling and Analysis

Equation 3.26 gives the total three-phase power loss for a discrete number of 
nodes and line segments. For a truly uniformly distributed load, the number 
of nodes goes to infinity. When that limiting case is taken in Equation 3.26, 
the final equation for computing the total three-phase power loss down the 
line is given by:

	
Ploss R I3

1
3

total T
2= ⋅ ⋅ ⋅







	 (3.27)

A circuit model for Equation 3.27 is given in Figure 3.9.
Comparing Figures 3.7 and 3.8, used for voltage drop calculations, with 

Figure 3.9, used for power loss calculations, it is obvious that the same model 
cannot be used for both voltage drop and power loss calculations.

3.4.3 � The Exact Lumped Load Model

In the previous sections, lumped load models were developed. The first 
models developed in Section 3.4.1 can be used for the computation of the 
total voltage drop down the line. It was shown that the same models can-
not be used for the computation of the total power loss down the line. 
Section 3.4.2 developed a model that will give the correct power loss of the 
line. A model that will work for both voltage drop and power loss calcula-
tions is needed.

Figure 3.10 shows the general configuration of the “exact” model that will 
give correct results for voltage drop and power loss.

In Figure 3.10, a portion (Ix) of the total line current (IT) will be modeled kl 
miles from the source end, and the remaining current (cIT) will be modeled 
at the end of the line. The values of k and c need to be derived.

In Figure 3.10, the total voltage drop down the line is given by:

	 Vdrop k Z I k Z c IRe 1total T T( )= ⋅ ⋅ + − ⋅ ⋅ ⋅  	 (3.28)

where
Z = Total line impedance in Ω
k = �factor of the total line length where the first part of the load current is 

modeled
c = �factor of the total current to place at the end of the line such that 

I I c IT x T= + ⋅

In Section 3.4.1, it was shown that the total voltage drop down the line is 
given by:

	
Vdrop Z IRe

1
2

total T= ⋅ ⋅






	 (3.29)
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Set Equation 3.18 equal to Equation 3.28:

	
Vdrop Z I k Z I k Z c IRe

1
2

Re 1total T T T( )= ⋅ ⋅






= ⋅ ⋅ + − ⋅ ⋅ ⋅ 
	 (3.30)

Equation 3.30 shows that the terms inside the brackets on both sides of the 
equal side need to be set equal, that is:

	
Z I k Z I k Z c I1

2
1T T T( )⋅ ⋅







= ⋅ ⋅ + − ⋅ ⋅ ⋅  	 (3.31)

Simplify Equation 3.31 by dividing both sides of the equation by ZIT:

	
k k c1

2
1( )





= + − ⋅  	 (3.32)

Solve Equation 3.32 for k:

	
k c

c
0.5
1

= −
−

	 (3.33)

Length

IT

IT

n
Length/3

S

FIGURE 3.9
Power loss model.

S

IT

n

l

k .l (1– k) . l 

Ix c . IT

FIGURE 3.10
General exact lumped load model.
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The same procedure can be followed for the power loss model. The total 
three-phase power loss in Figure 3.10 is given by:

	
Ploss k R I k R c I3 1total T T

2 2( )( )= ⋅ ⋅ ⋅ + − ⋅ ⋅ ⋅



 	 (3.34)

The model for the power loss in Figure 3.9 gives the total three-phase power 
loss as:

	
Ploss R I3

1
3

total T
2= ⋅ ⋅ ⋅







	 (3.35)

Equate the terms inside the brackets of Equations 3.34 and 3.35 and simplify:

	

R I k R I k R c I

k k c

k c k c k c c

1
3

1

1
3

1

1
3

1

T T T
2 2 2

2

2 2 2 2( )

( )( )

( ) ( )

⋅ ⋅






= ⋅ ⋅ + − ⋅ ⋅ ⋅











= + − ⋅











= + − ⋅  = ⋅ − +  	

(3.36)

Substitute Equation 3.33 into Equation 3.36:

	

c
c

c c1
3

0.5
1

1 2 2( )





= −
−

⋅ − +






	 (3.37)

Solving Equation 3.37 for c results in:

	
c 1

3
= 	 (3.38)

Substitute Equation 3.38 into Equation 3.33 and solve for k:

	
k 1

4
= 	 (3.39)

The interpretation of Equations 3.38 and 3.39 is that one-third of the load 
should be placed at the end of the line and two-thirds of the load placed 
one-fourth of the way from the source end. Figure 3.11 gives the final exact 
lumped load model.



55Approximate Method of Analysis

3.5  �Lumping Loads in Geometric Configurations

Many times, feeder areas can be represented by geometric configurations 
such as rectangles, triangles, and trapezoids. By assuming a constant 
load density in the configurations, approximate calculations can be made 
for computing the voltage drop and total power losses. The approximate 
calculations can aid in the determination of the maximum load that can 
be served in a specified area at a given voltage level and conductor size. 
For all of the geographical areas to be evaluated, the following definitions 
will apply:

	
D kVA

mile
load density in 2=

PF = assumed lagging power factor
z = line impedance in Ω/mile
l = length of the area
w = width of the area
kVLL = nominal line-to-line voltage in kV

It will also be assumed that the loads are modeled as constant current loads.

3.5.1 � The Rectangle

A rectangular area of length l and width w is to be served by a primary 
main feeder. The feeder area is assumed to have a constant load density with 
three-phase laterals uniformly tapped off of the primary main. Figure 3.12 is 
a model for the rectangular area.

Figure 3.12 represents a rectangular area of constant load density being 
served by a three-phase main running from node n to node m. It is desired to 

S

IT

n
4
1 l

l

l4
3

T3
1IT3

2

FIGURE 3.11
Exact lumped load model.
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determine the total voltage drop and the total three-phase power loss down 
the primary main from node n to node m.

The total current entering the area is given by:

	
I D l w

kV
PF

3
/ cosT

LL

1 ( )= ⋅ ⋅
⋅

− − 	 (3.40)

An incremental segment is located x miles from node n. The incremental 
current serving the load in the incremental segment is given by:

	
di I

l
A/mileT= 	 (3.41)

The current in the incremental segment is given by:

	
i I x di I x I

l
I x

l
1T T

T
T= − ⋅ = − ⋅ = ⋅ −







 	 (3.42)

The voltage drop in the incremental segment is:

	
dV z i dx z I x

l
dxRe( ) Re 1T= ⋅ ⋅ = ⋅ ⋅ −







 ⋅







	 (3.43)

The total voltage drop down the primary main feeder is:

	

V dV z I x
l

dxRe 1drop

l

T

l

0 0

∫ ∫= = ⋅ ⋅ −






 ⋅













dx

i mn

x

l

IT
w

0.5di

0.5di

FIGURE 3.12
Constant load density rectangular area.
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Evaluating the integral and simplifying:

	
V z I l Z IRe

1
2

Re
1
2

drop T T= ⋅ ⋅ ⋅






 = ⋅ ⋅







	 (3.44)

where Z z l= ⋅ .
Equation 3.44 gives the same result as that of Equation 3.18, which was 

derived for loads uniformly distributed along a feeder. The only difference 
here is the manner in which the total current (IT) is determined. The bottom 
line is that the total load of a rectangular area can be modeled at the centroid 
of the rectangle (Figure 3.13).

It must be understood that in Figure 3.13 with the load modeled at the 
centroid, the voltage drop computed to the load point will represent the total 
voltage drop from node n to node m.

A similar derivation can be done to determine the total three-phase power 
loss down the feeder main. The power loss in the incremental length is:

	
dp i r dx I x

l
r dx r I x

l
x
l

dx3 3 1 3 1 2T T
2 2

2
2

2

2= ⋅ ⋅ ⋅ = ⋅ ⋅ −






 ⋅ ⋅













= ⋅ ⋅ ⋅ − ⋅ +








 ⋅

	
(3.45)

The total three-phase power loss down the primary main is:

	

P dp r I x
l

x
l

dx3 1 2loss

l

T

l

0

2
2

2

0

∫ ∫= = ⋅ ⋅ ⋅ − ⋅ +








 ⋅ 	 (3.46)

Evaluating the integral and simplifying:

	
P r l I R I3

1
3

3
1
3

loss T T
2 2= ⋅ ⋅ ⋅ ⋅







= ⋅ ⋅ ⋅






	 (3.47)

where R r l= ⋅ .

mn
w

l

IT

IT

l2
1

FIGURE 3.13
Rectangle voltage drop model.
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Equation 3.47 gives the same result as that of Equation 3.27. The only 
difference, again, is the manner in which the total current IT is determined. 
The model for computing the total three-phase power loss of the primary 
main feeder is shown in Figure 3.14. Once again, it must be understood that 
the power loss computed using the model of Figure 3.14 represents the total 
power loss from node n to node m.

Example 3.6

It is proposed to serve a rectangular area of length 10,000 ft and width 
of 6000 ft. The load density of the area is 2500 kVA/mile2 with a power 
factor of 0.9 lagging. The primary main feeder uses 336,400 26/7 ACSR 
on a pole configured as shown in Example 3.2 (Figure 3.3). The question 
is what minimum standard nominal voltage level can be used to serve 
this area without exceeding a voltage drop of 3% down the primary 
main? The choices of nominal voltages are 4.16 and 12.47 kV. Compute 
also the total three-phase power loss.

The area to be served is shown in Figure 3.15:
From Example 3.2, the impedance of the line was computed to be:

	 z = 0.306 + j0.6276 Ω/mile

mn
w

l

IT

IT

l3
1

FIGURE 3.14
Rectangle power loss model.

6000′

10,000′

IT

FIGURE 3.15
Example 3.6 rectangular area.
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The length and width of the area in miles are:

	
= = = =l w10,000

5280
1.8939 miles and

6000
5280

1.1364 miles

The total area of the rectangular area is:

	 = ⋅ =A l w 2.1522 miles2

The total load of the area is:

	 = ⋅ = ⋅ =kVA D A 2500 2.1522 5380.6 kVA

The total impedance of the line segment is:

	 ( )= ⋅ = + ⋅ = + ΩZ z l j j0.306 0.6272 1.8939 0.5795 1.1887

For a nominal voltage of 4.16 kV, the total area current is:

	
( )=

⋅
=

⋅
− = −−I kVA

kV3
5380.6
3 4.16

/ cos 0.9 746.7/ 25.84 AT
LL

1

The total voltage drop down the primary main is:

	
V Z I jRe

1
2

1
2

0.5795 1.1887 746.7/ 25.85 388.1Vdrop ( )= ⋅ ⋅






 = ⋅ + ⋅ −







 =

The nominal line-to-neutral voltage is:

	
= =V 4160

3
2401.8 VLN

The percent voltage drop is:

	
V

V
V

100%
388.1

2401.8
100% 16.16%drop

LN
% = ⋅ = ⋅ =

It is clear that the nominal voltage of 4.16 kV will not meet the criteria of 
a voltage drop less than 3.0%.

For a nominal voltage of 12.47 kV, the total area current is:

	
( )=

⋅
=

⋅
− = −−I kVA

kV3
5380.6
3 12.47

/ cos 0.9 249.1/ 25.84 AT
LL

1

The total voltage drop down the primary main is:

	
V Z I jRe

1
2

1
2

0.5795 1.1887 249.1/ 25.84 129.5 Vdrop T ( )= ⋅ ⋅






 = ⋅ + ⋅ −







 =
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The nominal line-to-neutral voltage is:

	
= =V 12, 470

3
7199.6 VLN

The percent voltage drop is:

	
V

V
V

100%
129.5
7199.6

100% 1.80%drop

LN
% = ⋅ = ⋅ =

The nominal voltage of 12.47 kV is more than adequate to serve this load. 
It would be possible at this point to determine how much larger the area 
could be and still satisfy the 3.0% voltage drop constraint.

For the 12.47 kV, the total three-phase power loss down the primary 
main is:

	

P
R I

3

1
3

1000
3

1
3

0.5795 249.1

1000
35.965 kWloss

T
2 2

= ⋅
⋅ ⋅

















= ⋅
⋅ ⋅

















=

3.5.2 � The Triangle

A triangular area with a constant load density is being served by a three-phase 
primary main feeder (Figure 3.16).

Figure 3.16 represents a triangular area of constant load density being 
served by a three-phase main running from node n to node m. It is desired to 
determine the total voltage drop and the total three-phase power loss down 
the primary main from node n to node m.

The area of the triangle is:

n

x

l

m
w

0.5di

0.5di

dx

w1IT

FIGURE 3.16
Constant load density triangular area.
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Area l w1

2
= ⋅ ⋅ 	 (3.48)

The total current entering the area is given by:

	
I D Area

kV
PF

3
/ cos ( ) AT

LL

1= ⋅
⋅

− − 	 (3.49)

	

Let:
 di I

Area
I

l w

I
l w1

2

2
A/mileT T T 2= =

⋅ ⋅
= ⋅

⋅
	 (3.50)

The current entering the incremental line segment is:

	 i I A diT 1= − ⋅ 	 (3.51)

where A1 = area of triangle up to the incremental line segment.
By similar triangles:

	
w x w

l
1 = ⋅ 	 (3.52)

The area of the small triangle up to the incremental line segment is:

	
A x w x x w

l
w
l
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2

1
2

1
2

1 1
2= ⋅ ⋅ = ⋅ ⋅ ⋅







 = ⋅ ⋅ 	 (3.53)

Substitute Equations 3.50 and 3.53 into Equation 3.51:
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
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
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
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 	 (3.54)

The voltage drop in the incremental line segment is given by:

	
[ ]= ⋅ ⋅ = ⋅ ⋅ −
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
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
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
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dxRe Re 1T

2

2 	 (3.55)

The total voltage drop from node n to node m is:

	

V dv z I x
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dxRe 1drop

l

T

l
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





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 ⋅











 	 (3.56)
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Evaluating the integral and simplifying:

	
V z I l Z IRe

2
3

Re
2
3

drop T T T= ⋅ ⋅ ⋅






= ⋅ ⋅






	 (3.57)

where Z z lT = ⋅ .
Equation 3.58 shows that the total voltage drop from the vertex to the base 

of the triangular area can be computed by modeling the total triangle load 
two-thirds of the distance between the vertex and the base of the triangle. 
The model for the voltage drop calculation is shown in Figure 3.17.

A similar derivation can be made for the power loss model. The power loss 
in the incremental line segment is:

	
dp r i dx3 2= ⋅ ⋅ ⋅



 	 (3.58)

Substitute Equation 3.54 into Equation 3.58:
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The total three-phase power loss from node n to node m becomes:

	

P dp r I x
l
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dx3 1 2loss
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2
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0

∫ ∫⋅= = ⋅ ⋅ − ⋅ +

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 ⋅ 	 (3.60)

Evaluating the integral and simplifying:

	
P R I3

8
15

loss T
2= ⋅ ⋅ ⋅







	 (3.61)
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l
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FIGURE 3.17
Triangle voltage drop model.
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Equation 3.61 gives the total three-phase power loss down the primary 
main from node n to node m. The model for the power loss is given in 
Figure 3.18.

Example 3.7 

The triangular area shown in Figure 3.19 is to be served by a feeder of 
nominal voltage 12.47 kV.

The load density of the area is 3500 kVA/mile2 at a power factor of 0.9 
lagging. The conductor on the primary main is 336,400 26/7 ACSR, and 
the configuration of the pole is that of Example 3.2 in Figure 3.3.

Use the Kdrop factor from the line of Example 3.2 and determine the 
percent voltage drop from node n to node m.

n

1.5
8

IT

IT

l

l

w
m

FIGURE 3.18
Triangle power loss model.

nIT

15,000′

6000′m

FIGURE 3.19
Example 3.7 triangular area.
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From Example 3.3, the Kdrop factor was computed to be:

	 K 0.00035304% drop/kVA-miledrop =

The length and width of the triangle in miles is:

	
= = = =l w

15, 000
5280

2.8409 miles and
6000
5280

1.1364 miles

The area of the triangle is:

	
Area 1

2
2.8509 1.1364 1.6142 miles2= ⋅ ⋅ =

The total load of the triangular area is:

	 = ⋅ =kVA 3500 1.6142 5649.5 kVA

The total complex power of the triangular area is:

	
= − = − = +−S kVA PF j jkvar/ cos ( ) 5649.5/ 25.84 5084.6 2462.6 kW +1

Using the Kdrop factor and lumping the total load at the two-thirds point, 
the percent drop to node m is:

	
V K kVA2

3
miles 3.7775%drop drop= ⋅ ⋅ ⋅ =

Suppose now that a shunt capacitor bank is to be installed somewhere 
along the primary main to limit the percent voltage drop to node m to 
3.0%. Two decisions must be made.

	 1.	 Three-phase rating of the capacitor bank
	 2.	 Location of the capacitor bank

The total reactive power of the area was computed to be 2462.6 kvar. 
That means that a capacitor bank rated up to 2462.6 can be used without 
causing the feeder to go into a leading power factor condition. Because 
this is assumed to be the peak load, a capacitor bank rated at 2400 kvar 
(three-phase) will be used to prevent a leading power factor condition 
for a smaller load. Depending upon the load curve during the day, this 
bank may or may not have to be switched.

Use the Krise factor from Example 3.5 and determine how far from node 
n the capacitor bank should be installed to limit the voltage drop to 3.0%. 
From Example 3.5:

	 K 0.00040361% rise/kvar-milerise =
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The needed voltage rise due to the capacitor is:

	
V V 3.0 3.7775 3.0 0.7775rise drop= − = − =

The distance from node n is determined by:

	

V
K kvar

dist
0.7775

0.00040361 2400
0.8026 milesrise

rise
=

⋅
=

⋅
=

The total three-phase power loss down the primary main before the 
shunt capacitor is added is computed by lumping the total triangular 
load at:

	
l l n8

15
1.5152 miles from nodeLoad = ⋅ =

The total load current is:

	
)(=

⋅
=

⋅
− = −−I

kVA
kV

PF
3

5649.5
3 12.47

/ cos 261.6/ 25.84 AT
LL

1

The total resistance of the primary main is:

	 = ⋅ = ⋅ = ΩR r l 0.306 2.8409 0.8693

The total three-phase power loss down the primary main is:

	
P R I

3
1000

8
15

3
1000

8
15

0.8693 261.6 95.16 kWloss T
2 2= ⋅ ⋅ ⋅





= ⋅ ⋅ ⋅





=

3.5.3 � The Trapezoid

The final geometric configuration to consider is the trapezoid. It is assumed 
that the load density is constant throughout the trapezoid. The general model 
of the trapezoid is shown in Figure 3.20.

Figure 3.20 represents a trapezoidal area of constant load density being 
served by a three-phase primary running from node n to node m. It is 
desired to determine the total voltage drop and the total three-phase power 
loss down the primary main from node n to node m.

It is necessary to determine the value of the current entering the incremen-
tal line segment as a function of the total current and the known dimensions 
of the trapezoid. The known dimensions will be the length (l) and the widths 
w1 and w2.
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The total current entering the trapezoid is:

	
I D Area

kV3
T

T

LL

= ⋅
⋅

	 (3.62)

where AreaT = total area of the trapezoid

	
Area w w l1

2
T 2 1( )= ⋅ + ⋅ 	 (3.63)

The current that is delivered to the trapezoid a–b–e–f is:

	
I D Area

kV3
x

x

LL

= ⋅
⋅

	 (3.64)

where Areax = area of the trapezoid a–b–e–f.

	
Area w w x1

2
x x 1( )= ⋅ + ⋅ 	 (3.65)

Solve Equation 3.62 for D:

	
D kV I

Area
3 LL T

T
= ⋅ ⋅ 	 (3.66)

Substitute Equation 3.66 into Equation 3.64:
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 = ⋅ 	 (3.67)

n
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b
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d

i
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m
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FIGURE 3.20
General trapezoid.
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The current entering the incremental line segment is:

	
i I I I Area

Area
1T x T

x

T
= − = ⋅ −







 	 (3.68)

The only problem at this point is that the area of the small trapezoid cannot be 
determined since the width wx is not known. Figure 3.21 will be used to estab-
lish the relationship between the unknown width and the known dimensions.

Referring to Figure 3.21:

	 w w y2x x1= + ⋅ 	 (3.69)

From similar triangles:

	
y x

l
yx 2= ⋅ 	 (3.70)

But:

	
y w w1

2
2 2 1( )= ⋅ − 	 (3.71)

Substitute Equation 3.71 into Equation 3.70:

	
y x

l
w w1

2
x 2 1( )= ⋅ ⋅ − 	 (3.72)

Substitute Equation 3.72 into Equation 3.68:
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 + ⋅ 	 (3.73)
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FIGURE 3.21
Trapezoid dimensions.
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Substitute Equation 3.68 into Equation 3.60:
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Substitute Equations 3.63 and 3.74 into Equation 3.68:
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(3.75)

The current entering the incremental line segment of Figure 3.20 is given in 
Equation 3.70 and will be used to compute the voltage drop and power loss 
in the incremental line segment. The voltage drop in the incremental line 
segment is given by:

	 dv z i dxRe [ ]= ⋅ ⋅ 	 (3.76)

Substitute Equation 3.70 into Equation 3.71:
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The total voltage drop down the primary from node n to node m is given by:
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Evaluating the integral and simplifying results in:
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Equation 3.78 is very general and can be used to determine the models for 
the rectangular and triangular areas.

The Rectangle

For a rectangular area, the two widths w1 and w2 will be equal.
Let:

	 w w w1 2= = 	 (3.79)

Substitute Equation 3.79 into Equation 3.78:
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(3.80)

Equation 3.80 is the same as that which was initially derived for the 
rectangular area.

The Triangle

For a triangular area, the width w1 will be zero.
Let:

	 w 01 = 	 (3.81)

Substitute Equation 3.81 into Equation 3.78:
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	 (3.82)

Equation 3.82 is the same as that which was derived for the triangular 
area.

The total three-phase power loss down the line segment can be devel-
oped by starting with the derived current in the incremental segment as 
given by Equation 3.75. The three-phase power loss in the incremental 
segment is:

	 dp r i dx3 2= ⋅ ⋅ 	 (3.83)
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The total three-phase power loss down the line segment is then:

	

P r i dx3loss

l
2

0

∫= ⋅ ⋅ 	 (3.84)

Substitute Equation 3.75 into Equation 3.84 and simplify:
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Evaluating the integral and simplifying results in:
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where R r l= ⋅ .
The rectangular and triangular areas are special cases of Equation 3.81.

Rectangle

For the rectangle, the two widths w1 and w2 are equal.
Let:

	 w w w1 2= =

Substitute into Equation 3.86:
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(3.87)

Equation 3.87 is the same as Equation 3.47 that was previously derived for 
the rectangular area.

Triangle

For the triangular area, the width w1 is zero.
Let:

	 w 01 =

Substitute into Equation 3.81:
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Equation 3.88 is the same as Equation 3.65 that was previously derived for 
the total power loss in a triangular area.

3.6 � Summary

This chapter has been devoted to the development of some useful techniques 
for computing the voltage drop and power loss of line segments with uniformly 
distributed loads and for geometric areas with constant load densities. These 
techniques are very useful for making quick calculations that will be “ball-
park” values. Many times, only a ballpark value is needed. More times than 
not, once inside the ballpark, more precise values of voltage drop and power 
loss are needed. This will be especially true when the unbalanced nature of 
a distribution feeder is taken into account. The remainder of this text will be 
devoted to the more precise methods for analyzing a distribution feeder under 
balanced and unbalanced steady-state and short-circuit conditions.

Problems

3.1 Shown in Figure 3.22 is the pole configuration of conductors for a three-
phase primary feeder. The conductors are 250,000 cm, CON Lay, and AA. 
The nominal line-to-line voltage of the feeder is 14.4 kV.

4′

a

b

c

n

2′

2′

2′

25′

FIGURE 3.22
Problem 3.1 configuration.
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	 a.	Determine the series impedance per mile of this line.
	 b.	Determine the Kdrop factor assuming a power factor of 0.88 lag.
	 c.	Determine the Krise factor.

3.2 A 4.16 three-phase primary feeder is shown in Figure 3.23.
The Kdrop = 0.00298639% drop/kVA mile
The Krise = 0.00334353% rise/kvar mile

	 a.	Determine the percent voltage drop to node E4.
	 b.	Determine the rating of a three-phase shunt capacitor bank to be 

placed at E3 to limit the voltage drop to E4 to be 5.0%.

3.3 A 4160 V three-phase feeder is shown in Figure 3.24.
The phase conductors are 4/0 ACSR and are configured on an 8 ft crossarm 

with phase spacings of: Dab = 2.5′, Dbc = 4.5′, and Dca = 7.0′.

	 a.	Determine the series impedance of the line segment in Ω/mile.
	 b.	Determine the Kdrop and Krise factors assuming a load power factor of 

0.9 lagging.
	 c.	Determine the total percent voltage drop to node 6.
	 d.	Determine the three-phase kvar rating of a shunt capacitor to be 

placed at node 4 to limit the total percent voltage drop to node 6 to 
be 3.0%.

500 kVA

E1

0.50 miles 0.65 miles 0.9 miles

E2 E3 E4

1200 kVA 750 kVA

FIGURE 3.23
System for Problem 3.2.

0.15 mile

0 1 2 43 5 6

0. 175 mile 0.2 mile 0.125 mile 0.225 mile 0.125 mile

200 kVA 150 kVA 100 kVA 300 kVA 425 kVA 500 kVA

FIGURE 3.24
System for Problem 3.3.
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3.4 Flash Thunder Bolt, junior engineer for Tortugas Power and Light, has 
been given an assignment to design a new 4.16 kV, three-phase feeder that 
will have the following characteristics:

Total length of feeder = 5000 ft.
Load: 10–500 kVA (three-phase), 0.9 lagging power spaced every 500 ft with 

the first load 500 ft from the substation
Voltage Drop: Not to exceed 5% from the sub to the last load
Figure 3.25 illustrates the new feeder.
Flash has decided that he will use 336,400 26/7 ACSR (Linnet) conductors 

constructed on 45 ft poles with 8 ft crossarms. The spacings of the conductors 
on the crossarms are 2.5, 4.5, and 7.0 ft.

	 a.	Determine the percent voltage drop to the last load point and the 
total three-phase power loss for the feeder as shown in Figure 3.25.

	 b.	Lump the total feeder load at the midpoint of the feeder and compute 
the percent voltage drop to the end of the feeder.

	 c.	Use the “exact lumped load model” in Figure 3.11 and compute the 
percent voltage drop to the end of the line and the total three-phase 
power loss down the line.

3.5 The rectangular area in Figure 3.26 has a uniform load density of 
2000 kVA/mile2 at 0.9 lagging power factor. The nominal voltage of the 

SUB
500′ 500′ 500′ 500′ 500′ 500′ 500′ 500′ 500′ 500′

FIGURE 3.25
System for Problem 3.4.

B

A

Source

12,000′

2500′

2500′

FIGURE 3.26
Rectangular area for Problem 3.5.
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area being served is 4.16 kV. The three-phase primary main conductors are 
556,500 26/7 ACSR, whereas the three-phase lateral conductors are 266,800 
26/7 ACSR. The primary main and the laterals are constructed so that the 
equivalent spacing (Deq) is 3.5 ft.

Determine:

	 a.	The percent voltage drop to the last customer in the first lateral 
(point A).

	 b.	The percent voltage drop to the last customer in the last lateral 
(point B).

	 c.	The total three-phase power loss for the total area.

3.6 Shown in Figure 3.27 is a rectangle-triangle area that is being fed from a 
source at point X. Both areas have a load density of 6000 kVA/mile2 with loads 
being uniformly distributed as denoted by the dashed laterals. In addition 
to the uniformly distributed loads, there is a “spot load” at point Z that is 
2000 kVA. The Kdrop factor for the primary main conductors is 0.00022626% 
drop/kVA-mile, and the Krise factor for the primary main conductors is 
0.00028436% rise/kvar-mile.

	 a.	Determine the percent drop to point Z.
	 b.	Determine the kvar rating (to the nearest 300 kvar/phase) for a 

capacitor bank to be placed at point Y to limit the voltage drop to 
Z to 3%.

	 c.	With the capacitor in place, what is the percent drop now to point Z?

3.7 A square area of 20,000 ft on a side has a load density of 2000 kVA/mile2; 
0.9 lagging power factor is to be served from a 12.47 kV substation that is 
located at the center of the square. Two different plans are being considered 
for serving the area. The two plans are shown in Figure 3.28.

Plan A proposes to break the area into four square areas and serve it as 
shown. The big black line will be the three-phase primary main consisting of 

Y Z

2000  kVA

X
1 mile

1.5 mile 1.5 mile

FIGURE 3.27
Rectangular-triangular area of Problem 3.6.
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336/400 26/7 ACSR conductors, and the dotted lines will be the three-phase 
laterals consisting of 4/0 ACSR conductors. Both the main and laterals are 
constructed such that Deq = 4.3795′. The three-phase laterals will be spaced 
every 500 ft.

Plan B proposes to serve the area with four triangularly shaped feeders. 
Again, the primary main is shown in the dark black line, and the laterals are 
spaced every 500 ft and shown as the dotted lines. The same conductors and 
Deq will be used in this plan.

Determine the percent voltage drop to the “last customer” (points A 
and B) for the two plans.
3.8 Shown in Figure 3.29 are the areas normally served by two feeders.

Plan A

A B

Plan B

FIGURE 3.28
Two plans for Problem 3.7.

S

Ś

a

b
0.75 mile

0.5 mile

1.5 mile

0.5 mile

0.5 mile

0.5 mile

d

e

c

FIGURE 3.29
Areas for Problem 3.8.
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Under an emergency condition, the switch at b is closed so that the feeder 
normally serving the triangle area must now serve both areas. Assume both 
areas have a uniform load density of 2.5 MVA/square mile and 0.9 lagging 
power factor. The primary feeder voltage is 13.8 kV. Laterals are uniformly 
tapped off of the primary main from S to a. No loads are tapped off of the 
feed from a to b to c, and laterals are tapped off from c to d and from c to S′. 
The primary main conductors are 2/0 ACSR and are placed on a pole such 
that Deq = 4.3795 ft.

	 a.	Determine the Kdrop and Krise factors.
	 b.	Determine the voltage drop to point d.
	 c.	Determine the three-phase kvar rating of a shunt capacitor bank 

placed at c to limit the voltage drop to point d to be 3.0%.
	 d.	Determine the voltage drop to e with the capacitor bank at c.
	 e.	Determine the voltage drop to e with the source at S′ and the 

capacitor at c.

Reference

	 1.	 Glover, J. D. and Sarma, M., Power System Analysis and Design, 2nd Edition, PWS 
Publishing Co., Boston, MA, 1994.
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4
Series Impedance of Overhead and 
Underground Lines

The determination of the series impedance for overhead and underground 
lines is a critical step before the analysis of a distribution feeder can begin. 
The series impedance of a single-phase, two-phase (V-phase), or three-phase 
distribution line consists of the resistance of the conductors and the self and 
mutual inductive reactances resulting from the magnetic fields surrounding 
the conductors. The resistance component for the conductors will typically 
come from a table of conductor data such as that found in Appendix A.

4.1 � Series Impedance of Overhead Lines

The inductive reactance (self and mutual) component of the impedance is 
a function of the total magnetic fields surrounding a conductor. Figure 4.1 
shows conductors 1 to n with the magnetic flux lines created by currents 
flowing in each of the conductors.

The currents in all conductors are assumed to be flowing out of the page. 
It is further assumed that the sum of the currents will add to zero. That is:

	 + + ⋅ ⋅ ⋅+ + ⋅ ⋅ ⋅ + =I I I I 0i n1 2 	 (4.1)

The total flux linking conductor i is given by:

I
D

I
D

I
GMR

I
D

2 10 ln
1

ln
1

ln
1

ln
1

W-T/mi
i i

i
i

n
in

7
1

1
2

2
λ = ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ + ⋅





−

	
(4.2)

where
Din = Distance between conductor i and conductor n (ft)
GMRi  = geometric mean radius of conductor i (ft)
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The inductance of conductor i consists of the “self-inductance” of conductor 
i and the “mutual inductance” between conductor i and all of the other n − 1 
conductors. By definition:

	
L

I GMR
Self-inductance: 2 10 ln

1
H/mii

ii

i i

7= λ = ⋅ ⋅−

	
(4.3)

	
= λ = ⋅ ⋅−L

I D
Mutual inductance: 2 10 ln

1
H/min

in

n in

7

	
(4.4)

4.1.1 � Transposed Three-Phase Lines

High-voltage transmission lines are usually assumed to be transposed (each 
phase occupies the same physical position on the structure for one-third of 
the length of the line). In addition to the assumption of transposition, it is 
assumed that the phases are equally loaded (balanced loading). With these 
two assumptions, it is possible to combine the “self” and “mutual” terms into 
one “phase” inductance [1].

	
L

D
GMR

Phase inductance: 2 10 ln H/mi
eq

i

7= ⋅ ⋅−

	
(4.5)

where

	 D D D D fteq ab bc ca
3= ⋅ ⋅ 	 (4.6)

Dab, Dbc, and Dca are the distances between phases.

2

φn

φn

φ1

φ1 φ2

φ2

φi1

n

i

Di2

Di1

Din

FIGURE 4.1
Magnetic fields.
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Assuming a frequency of 60 Hz, the phase inductive reactance is given by:

	
= ω⋅ = ⋅ Ωx L

D
GMR

Phase reactance: 0.12134 ln /milei i
eq

i 	
(4.7)

The series impedance per phase of a transposed three-phase line consisting 
of one conductor per phase is given by:

	
= + ⋅ ⋅ Ωz r j

D
GMR

Series impedance: 0.12134 ln /milei i
eq

i 	
(4.8)

4.1.2 � Untransposed Distribution Lines

Because distribution systems consist of single-phase, two-phase, and untrans-
posed three-phase lines serving unbalanced loads, it is necessary to retain the 
identity of the self- and mutual impedance terms of the conductors in addition 
to taking into account the ground return path for the unbalanced currents. 
The resistance of the conductors is taken directly from a table of conductor 
data. Equations 4.3 and 4.4 are used to compute the self- and mutual inductive 
reactances of the conductors. The inductive reactance will be assumed to be at 
a frequency of 60 Hz, and the length of the conductor will be assumed to be 1 
mile. With those assumptions, the self- and mutual impedances are given by:

	
z r j

GMR
0.12134 ln

1
/mileii i

i
= + ⋅ Ω

	
(4.9)

	
= ⋅ Ωz j

D
0.12134 ln 1 /mileij

ij 	
(4.10)

In 1926, John Carson published a paper in which he developed a set of equa-
tions for computing the self- and mutual impedances of lines, taking into 
account the return path of the current through the ground [2]. Carson’s 
approach was to represent a line with the conductors connected to a source 
at one end and grounded at the remote end. Figure 4.2 illustrates a line 

Ground

+

– –

+Vig

Vjg

zdd

Ii

Ij

Id

zij

zii

zjj

zjd zid

FIGURE 4.2
Two conductors with dirt return path.
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consisting of two conductors (i and j) carrying currents (Ii and Ij) with the 
remote ends of the conductors tied to the ground. A fictitious “dirt” conduc-
tor carrying current Id is used to represent the return path for the currents.

In Figure 4.2, Kirchhoff’s voltage law (KVL) is used to write the equation 
for the voltage between conductor i and the ground.

	 ( )= ⋅ + ⋅ + ⋅ − ⋅ + ⋅ + ⋅V z I z I z I z I z I z Iig ii i ij j id d dd d di i dj j 	 (4.11)

Collect terms in Equation 4.11:

	 V z z I z z I z z Iig ii di i ij dj j id dd d( )( ) ( )= − ⋅ + − ⋅ + − ⋅ 	 (4.12)

From Kirchhoff’s Current Law:

	

I I I

I I I

0i j d

d i j

+ + =

= − − 	
(4.13)

Substitute Equation 4.13 into Equation 4.12 and collect terms:

	 V z z z z I z z z z I( ) ( )ig ii dd di id i ij dd dj id j= + − − ⋅ + + − − ⋅ 	 (4.14)

Equation 4.14 is of the general form:

	 V z I z Iˆ ˆig ii i ij j= ⋅ + ⋅ 	 (4.15)

where

	 z z z z zˆii ii dd di id= + − − 	 (4.16)

	 z z z z zˆij ij dd dj id= + − − 	 (4.17)

In Equations 4.16 and 4.17, the “hat” impedances are given by Equations 4.9 
and 4.10. Note that in these two equations, the effect of the ground return 
path is being “folded” into what will now be referred to as the “primitive” 
self- and mutual impedances of the line. The “equivalent primitive circuit” 
is shown in Figure 4.3.

Ground

Ii

Ij

+

+

–– ––

+

+ V ′ig
Vig

V ′jgVjg

zii
^

zjj
^ zij

^

FIGURE 4.3
Equivalent primitive circuit.
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Substituting Equations 4.9 and 4.10 of the “hat” impedances into Equations 
4.16 and 4.17, the primitive self-impedance is given by:

	

z r jx r jx jx jx

z r r j
GMR GMR D D

z r r j
GMR

D D
GMR

ˆ

ˆ 0.12134 ln
1
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1
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1

ln
1

ˆ 0.12134 ln
1

ln

ii i ii d dd dn nd

ii d i
i d id di

ii d i
i

id dj

d

= + + + − −

= + + ⋅ + − −





= + + ⋅ +
⋅



 	

(4.18)

In a similar manner, the primitive mutual impedance can be expanded:

	

z jx r jx jx jx

z r j
D D D
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D

D D
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ij d
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ij d
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









= + +
⋅









	

(4.19)

The obvious problem in using Equations 4.18 and 4.19 is the fact that we do 
not know the values of the resistance of dirt (rd), the geometric mean radius 
of dirt (GMRd), and the distances from the conductors to dirt (Dnd, Ddn, Dmd, 
Ddm). This is where John Carson’s work bails us out.

4.1.3 � Carson’s Equations

Because a distribution feeder is inherently unbalanced, the most accurate 
analysis should not make any assumptions regarding the spacing between 
conductors, conductor sizes, and transposition. In Carson’s 1926 paper, he 
developed a technique whereby the self- and mutual impedances for ncond 
overhead conductors can be determined. The equations can also be applied to 
underground cables. In 1926, this technique was not met with a lot of enthu-
siasm because of the tedious calculations that would have to be done on the 
slide rule and by hand. With the advent of the digital computer, Carson’s 
equations have now become widely used.

In his paper, Carson assumes the earth as an infinite, uniform solid, with 
a flat uniform upper surface and a constant resistivity. Any “end effects” 
introduced at the neutral grounding points are not large at power frequen-
cies, and therefore are neglected.

Carson made use of conductor images—that is, every conductor at a given 
distance above ground has an image conductor at the same distance below 
ground. This is illustrated in Figure 4.4.
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Referring to Figure 4.4, the original Carson equations are given in 
Equations 4.20 and 4.21.

Self-impedance:

	
z r P G j X G S

RD
Q Gˆ 4 2 ln 4 /mileii i ii i

ii

i
ii= + ω + + ω ⋅ + ω







 Ω

	
(4.20)

Mutual impedance:

	
z P G j G

S
D

Q Gˆ 4 2 ln 4 /mileij ij
ij

ij
ij= ω + ω ⋅ + ω









 Ω

	
(4.21)

where
ẑ ii = self-impedance of conductor i in Ω/mile
ẑ ij = mutual impedance between conductors i and j in Ω/mile
ri = resistance of conductor i in Ω/mile
ω = 2πf = system angular frequency in radians per second
G = 0.1609347 × 10–3 Ω/mile
RDi = radius of conductor i in ft
GMRi = geometric mean radius of conductor i in ft
f = system frequency in Hertz
ρ = resistivity of earth in Ω-meters
Dij = distance between conductors i and j in ft (see Figure 4.4)
Sij = distance between conductor i and image j in ft (see Figure 4.4)
θij = �angle between a pair of lines drawn from conductor i to its own image 

and to the image of conductor j (see Figure 4.4)

Sij

j

j ′

i ′

i
Dij

Sii

θij

FIGURE 4.4
Conductors and images.
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X G

RD
GMR

2 ln /milei
i

i
= ω ⋅ Ω

	
(4.22)
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(4.23)
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3 2
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(4.24)

	
k S f

8.565 10ij ij
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ρ
−

	
(4.25)

4.1.4 � Modified Carson’s Equations

Only two approximations are made in deriving the “Modified Carson 
Equations.” These approximations involve the terms associated with Pij and 
Qij. The approximations use only the first term of the variable Pij and the first 
two terms of Qij.
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(4.26)
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(4.27)

Substitute Xi (Equation 4.22) into Equation 4.20:
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(4.28)

Combine terms and simplify:
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(4.29)

Simplify Equation 4.21:
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(4.30)
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Substitute expressions for P (Equation 4.27) and ω ( f2 ⋅ π ⋅ ):
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S
GMR

Qˆ 4 ln 2ii i
ii

i
ii

2= + π + π +



 	

(4.31)
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(4.32)

Substitute expression for kij (Equation 4.25) into the approximate expression 
for Qij (Equation 4.27):
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(4.33)

Expand:
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(4.34)

Equation 4.34 can be reduced to:
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or:
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Substitute Equation 4.36 into Equation 4.31 and simplify:
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Substitute Equation 4.36 into Equation 4.32 and simplify:
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(4.38)

Substitute in the values of π and G:
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(4.40)

It is now assumed:

f = frequency = 60 Hertz
ρ = earth resistivity = 100 Ω-m

Using these approximations and assumptions, the “Modified Carson’s 
Equations” are:
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(4.41)
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(4.42)

It will be recalled that Equations 4.18 and 4.19 could not be used because the 
resistance of dirt, the GMRd, and the various distances from conductors to dirt 
were not known. A comparison of Equations 4.18 and 4.19 to Equations 4.41 
and 4.42 demonstrates that the Modified Carson’s Equations have defined the 
missing parameters. A comparison of the two sets of equations shows that:

	 r 0.09530 /miled = Ω 	 (4.43)

	

D D
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D D
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ln ln 7.93402id di
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⋅ =
⋅

=
	

(4.44)

The “Modified Carson’s Equations” will be used to compute the primitive 
self- and mutual impedances of overhead and underground lines.
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4.1.5 � Primitive Impedance Matrix for Overhead Lines

Equations 4.41 and 4.42 are used to compute the elements of an ncond × ncond 
“primitive impedance matrix.” An overhead four-wire grounded wye dis-
tribution line segment will result in a 4 × 4 matrix. For an underground-
grounded wye line segment consisting of three concentric neutral cables, the 
resulting matrix will be 6 × 6. The primitive impedance matrix for a three-
phase line consisting of m neutrals will be of the form:
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(4.45)

In partitioned form, Equation 4.45 becomes:
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(4.46)

4.1.6 � Phase Impedance Matrix for Overhead Lines

For most applications, the primitive impedance matrix needs to be reduced 
to a 3 × 3 “phase frame” matrix consisting of the self- and mutual equivalent 
impedances for the three phases. A four-wire grounded neutral line segment 
is shown in Figure 4.5.
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FIGURE 4.5
Four-wire grounded wye line segment.
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One standard method of reduction is the “Kron” reduction [3]. It is assumed 
that the line has a multigrounded neutral (Figure 4.5). The Kron reduction 
method applies KVL to the circuit.

	





















=

′
′
′
′





















+





















⋅





















V

V

V

V

V

V

V

V

z z z z
z z z z
z z z z
z z z z

I
I
I
I

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

ag

bg

cg

ng

ag

bg

cg

ng

aa ab ac an

ba bb bc bn

ca cb cc cn

na nb nc nn

a

b

c

n
	

(4.47)

In partitioned form, Equation 4.47 becomes:

	

[ ][ ] [ ]
[ ] 


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
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′

′ 
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


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
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
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

V
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z z

z z

I

I
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ˆ ˆ
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ng
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ng

ij in

ng nn

abc
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(4.48)

Because the neutral is grounded, the voltages Vng and V′ng are equal to zero. 
Substituting those values into Equation 4.48 and expanding results in:

	
V V z I z Iˆ ˆabc abc ij abc in n[ ][ ] [ ] [ ]= ′ + ⋅ + ⋅

	
(4.49)

	
z I z I0 0 ˆ ˆnj abc nn n[ ] [ ] [ ] [ ]= + ⋅ + ⋅

	
(4.50)

Solve Equation 4.50 for [In]:

	
I z z Iˆ ˆn nn nj abc

1[ ] [ ]= −  ⋅  ⋅−

	
(4.51)

Note in Equation 4.51 that once the line currents have been computed, it is 
possible to determine the current flowing in the neutral conductor. Because 
this will be a useful concept later on, the “neutral transformation matrix” is 
defined as:

	
t z zˆ ˆn nn nj

1[ ] = −  ⋅  
−

	
(4.52)

Such that:

	 I t In n abc[ ] [ ] [ ]= ⋅ 	 (4.53)

Substitute Equation 4.51 into Equation 4.49:

	

( )[ ]

[ ]

[ ] [ ]

[ ] [ ] [ ]

= ′ +  − ⋅  ⋅  ⋅

= ′ + ⋅

−
V V z z z z I

V V z I

ˆ ˆ ˆ ˆabc abc ij in nn nj abc

abc abc abc abc

1

	

(4.54)
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where

	
z z z z zˆ ˆ ˆ ˆabc ij in nn nj

1[ ] =  − ⋅   ⋅  
−

	
(4.55)

Equation 4.55 is the final form of the “Kron” reduction technique. The final 
phase impedance matrix becomes:

	

[ ] =

















Ωz
z z z
z z z
z z z

/mileabc

aa ab ac

ba bb bc

ca cb cc
	

(4.56)

For a distribution line that is not transposed, the diagonal terms of 
Equation 4.56 will not be equal to each other and the off-diagonal terms will 
not be equal to each other. However, the matrix will be symmetrical.

For two-phase (V-phase) and single-phase lines in grounded wye systems, 
the Modified Carson’s Equations can be applied, which will lead to initial 
3 × 3 and 2 × 2 primitive impedance matrices. Kron reduction will reduce the 
matrices to 2 × 2 and a single element. These matrices can be expanded to 
3 × 3 “phase frame” matrices by the addition of rows and columns consist-
ing of zero elements for the missing phases. For example, for a V-phase line 
consisting of phases a and c, the phase impedance matrix would be:

	

z
z z

z z

0
0 0 0

0
/mileabc

aa ac

ca cc

[ ] =

















Ω

	

(4.57)

The phase impedance matrix for a phase b single-phase line would be:

	

z z
0 0 0
0 0
0 0 0

/mileabc bb[ ] =

















Ω

	

(4.58)

The phase impedance matrix for a three-wire delta line is determined by the 
application of Carson’s equations without the Kron reduction step.

The phase impedance matrix can be used to accurately determine the volt-
age drops on the feeder line segments once the currents have been deter-
mined. Because no approximations (transposition, for example) have been 
made regarding the spacing between conductors, the effect of the mutual 
coupling between phases is accurately taken into account. The applica-
tion of the Modified Carson’s Equations and the phase frame matrix leads 
to the most accurate model of a line segment. Figure 4.6 shows the general 
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three-phase model of a line segment. Keep in mind that for V-phase and 
single-phase lines, some of the impedance values will be zero.

The voltage equation in matrix form for the line segment is:

	






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
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

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
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c

	

(4.59)

where = ⋅Z z lengthij ij .
Equation 4.59 can be written in “condensed” form as:

	 [ ] [ ] [ ] [ ]= + ⋅VLG VLG Z Iabc n abc m abc abc 	 (4.60)

4.1.7 � Sequence Impedances

Mostly, the analysis of a feeder will use only the positive and zero sequence 
impedances for the line segments. There are two methods for obtaining these 
impedances. The first method incorporates the application of the Modified 
Carson’s Equations and the Kron reduction to obtain the phase impedance 
matrix.

The definition for line-to-ground phase voltages as a function of the 
line-to-ground sequence voltages is given by Carson [2]:
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(4.61)

where a 1.0/120s = .

Node n Node m

Vagn Vagm

Vbgn Vbgm

Vcgn Vcgm

Ia

Ib

Ic

Zaa

Zbb

Zcc

Zca

Zbc

Zab

+

+

+

– – – – – –

+

+

+

FIGURE 4.6
Three-phase line segment model.
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In condensed form, Equation 4.61 becomes:

	 [ ] [ ] [ ]= ⋅VLG A VLGabc s 012 	 (4.62)

where

	

A a a

a a

1 1 1
1

1
s s s

s s

2

2

[ ] =
















	

(4.63)

The phase line currents are defined in the same manner:

	 I A Iabc s 012[ ] [ ] [ ]= ⋅ 	 (4.64)

Equation 4.62 can be used to solve for the sequence line-to-ground voltages 
as a function of the phase line-to-ground voltages.

	 [ ] [ ] [ ]= ⋅−VLG A VLGs abc012
1

	
(4.65)

where

	

A a a
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1
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−

	

(4.66)

Equation 4.60 can be transformed to the sequence domain by multiplying 
both sides by [As]−1 and also substituting in the definition of the phase cur-
rents as given by Equation 4.62.

	

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]
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= ⋅ + ⋅ ⋅ ⋅
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(4.67)

where
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(4.68)
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Equation 4.67 in expanded form is given by:

	

V

V

V

V

V

V

Z Z Z
Z Z Z
Z Z Z

I
I
I

g

g

g
n

g

g

g
m

0

1

2

0

1

2

00 01 02

10 11 02

20 21 22

0

1

2



















=



















+
















⋅

















	

(4.69)

Equation 4.68 is the defining equation for converting phase impedances to 
sequence impedances. In Equation 4.68, the diagonal terms of the matrix are 
the “sequence impedances” of the line such that:

Z00 = zero sequence impedance
Z11 = positive sequence impedance
Z22 = negative sequence impedance

The off-diagonal terms of Equation 4.68 represent the mutual coupling 
between sequences. In the idealized state, these off-diagonal terms would be 
zero. In order for this to happen, it must be assumed that the line has been 
transposed. For high-voltage transmission lines, this will generally be the 
case. When the lines are transposed, the mutual coupling between phases 
(off-diagonal terms) are equal, and consequently the off-diagonal terms of 
the sequence impedance matrix become zero. Because distribution lines are 
rarely if ever transposed, the mutual coupling between phases is not equal, 
and as a result, the off-diagonal terms of the sequence impedance matrix will 
not be zero. This is the primary reason that distribution system analysis uses 
the phase domain rather than symmetrical components.

If a line is assumed to be transposed, the phase impedance matrix is modi-
fied so that the three diagonal terms are equal and all of the off-diagonal 
terms are equal. A different method to compute the sequence impedances is 
to set the three diagonal terms of the phase impedance matrix equal to the 
average of the diagonal terms of Equation 4.56 and the off-diagonal terms 
equal to the average of the off-diagonal terms of Equation 4.56. When this is 
done, the self- and mutual impedances are defined as:

	
( )= ⋅ + + Ωz z z z1

3
/miles aa bb cc

	
(4.70)

	
( )= + + Ωz z z z1

3
/milem ab bc ca 	 (4.71)

The phase impedance matrix is now defined as:
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m m s 	

(4.72)



92 Distribution System Modeling and Analysis

When Equation 4.68 is used with this phase impedance matrix, the result-
ing sequence matrix is diagonal (off-diagonal terms are zero). The sequence 
impedances can be determined directly as:

	 = + ⋅ Ωz z z2 /miles m00 	 (4.73)

	 = = − Ωz z z z /miles m11 22 	 (4.74)

A second method that is commonly used to determine the sequence imped-
ances directly is to employ the concept of geometric mean distances (GMDs). 
The GMD between phases is defined as:

	
D GMD D D D ftij ij ab bc ca

3= = ⋅ ⋅
	

(4.75)

The GMD between phases and neutral is defined as:

	 D GMD D D D ftin in an bn cn
3= = ⋅ ⋅ 	 (4.76)

The GMDs as defined previously are used in Equations 4.41 and 4.42 to 
determine the various self- and mutual impedances of the line resulting in:

	
= + + ⋅ 
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	 (4.78)
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(4.79)
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(4.80)

Equations 4.77 through 4.80 will define a matrix of order ncond × ncond where 
ncond is the number of conductors (phases plus neutrals) in the line segment. 
Application of the Kron reduction (Equation 4.55) and the sequence imped-
ance transformation (Equation 4.68) leads to the following expressions for 
the zero, positive, and negative sequence impedances:
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(4.81)
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= = −

= = + ⋅ 
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z z z z

z z r j
D
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ˆ ˆ
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ii ij

i
ij

i

11 22

11 22

	
(4.82)

Equations 4.81 and 4.82 are recognized as the standard equations for the 
calculation of the line impedances when a balanced three-phase system and 
transposition are assumed.

Example 4.1

An overhead three-phase distribution line is constructed as shown in 
Figure 4.7. Determine the phase impedance matrix and the positive and 
zero sequence impedance matrices of the line. The phase conductors are 
336,400 26/7 ACSR (Linnet), and the neutral conductor is 4/0 6/1 ACSR.

Solution: From the table of standard conductor data (Appendix A), it is 
found that:

336,400 26/7 ACSR:  GMR = 0.0244 ft

Resistance = 0.306 Ω/mile

4/0 6/1 ACSR:       GMR = 0.00814 ft

Resistance = 0.5920 Ω/mile

An effective way of computing the distance between all conductors 
is to specify each position on the pole in Cartesian coordinates using 
complex number notation. The ordinate will be selected as a point 
on the ground directly below the leftmost position. For the line in 
Figure 4.7, the positions are:

	 d j d j d j d j0 29 2.5 29 7.0 29 4.0 251 2 3 4= + = + = + = +

3.0′

4.0′

n

25.0′

a b c
2.5′ 4.5′

FIGURE 4.7
Three-phase distribution line spacings.
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The distances between the positions can be computed as:

	 = = =D d d D d d D d d– – –12 1 2 23 2 3 31 3 1

	 = = =D d d D d d D d d– – –14 1 4 24 2 4 34 3 4

For this example, phase a is in position 1, phase b is in position 2, phase c 
is in position 3, and the neutral is in position 4.

	 = ′ = ′ = ′D D D2.5 4.5 7.0ab bc ca

	 = ′ = ′ = ′D D D5.6569 4.272 5.0an bn cn

The diagonal terms of the distance matrix are the GMRs of the phase 
and neutral conductors.

	 = = = =D D D D0.0244, 0.00814aa bb cc nn

Applying the Modified Carson’s Equation for self-impedance 
(Equation 4.41), the self-impedance for phase a is:

	

= + + ⋅ +








= + Ω

z j

j

ˆ 0.0953 0.306 0.12134 ln 1
0.0244

7.93402

0.4013 1.4133 /mile

aa

Applying Equation 4.42 for the mutual impedance between phases a and b:

	
z j jˆ 0.0953 0.12134 ln 1

2.5
7.93402 0.0953 0.8515 /mileab = + ⋅ +







 = + Ω

Applying the equations for the other self- and mutual impedance terms 
results in the primitive impedance matrix.

	

  =

+ + + +
+ + + +
+ + + +
+ + + +





















Ωz

j j j j
j j j j
j j j j
j j j j

ˆ

0.4013 1.4133 0.0953 0.8515 0.0953 0.7266 0.0953 0.7524

0.0953 0.8515 0.4013 1.4133 0.0953 0.7802 0.0953 0.7865

0.0953 0.7266 0.0953 0.7802 0.4013 1.4133 0.0953 0.7674

0.0953 0.7524 0.0953 0.7865 0.0953 0.7674 0.6873 1.5465

/mile

The primitive impedance matrix in partitioned form is:

	

  =
+ + +
+ + +
+ + +



















Ωz

j j j

j j j

j j j

ˆ
0.4013 1.4133 0.0953 0.8515 0.0953 0.7266

0.0953 0.8515 0.4013 1.4133 0.0943 0.7865

0.0953 0.7266 0.0953 0.7802 0.4013 1.4133

/mileij
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j

j

ˆ
0.0953 0.7524

0.0953 0.7865

0.0953 0.7674

/milein

	 [ ]  = + Ωz jˆ 0.6873 1.5465 /milenn

	 z j j jˆ 0.0953 0.7524 0.0953 0.7865 0.0953 0.7674 /milenj [ ]  = + + + Ω

The “Kron” reduction of Equation 4.55 results in the “phase impedance 
matrix.”

	 [ ] =  − ⋅  ⋅ 
−

z z z z zˆ ˆ ˆ ˆabc ij in nn nj
1

	

[ ] =
+ + +
+ + +
+ + +



















Ωz

j j j

j j j

j j j

0.4576 1.0780 0.1560 .5017 0.1535 0.3849

0.1560 0.5017 0.4666 1.0482 0.1580 0.4236

0.1535 0.3849 0.1580 0.4236 0.4615 1.0651

/mileabc

The neutral transformation matrix given by Equation 4.52 is:

	

t z z

t j j j

ˆ ˆ

0.4292 0.1291 0.4476 0.1373 0.4373 0.1327

n nn nj

n

1( )
[ ]

[ ]

[ ]

= −   ⋅ 

= − − − − − −

−

The phase impedance matrix can be transformed into the “sequence 
impedance matrix” with the application of Equation 4.66.

[ ] [ ] [ ] [ ]= ⋅ ⋅−z A z As abc s012
1

[ ] =
+ + − +

− + + − −
+ − +



















Ωz

j j j

j j j

j j j

0.7735 1.9373 0.0256 0.0115 0.0321 0.0159

0.0321 0.0159 0.3061 0.6270 0.0723 0.0060

0.0256 0.0115 0.0723 0.0059 0.3061 0.6270

/mile012

In the sequence impedance matrix, the 1,1 term is the zero sequence 
impedance, the 2,2 term is the positive sequence impedance, and the 
3,3 term is the negative sequence impedance. The 2,2 and 3,3 terms are 
equal, which demonstrates that for line segments, the positive and nega-
tive sequence impedances are equal. Note that the off-diagonal terms are 
not zero. This implies that there is mutual coupling between sequences. 
This is a result of the nonsymmetrical spacing between phases. With the 
off-diagonal terms being nonzero, the three sequence networks repre-
senting the line will not be independent. However, it is noted that the 
off-diagonal terms are small relative to the diagonal terms.
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In high-voltage transmission lines, it is usually assumed that the 
lines are transposed and that the phase currents represent a balanced 
three-phase set. The transposition can be simulated in Example 4.1 
by replacing the diagonal terms of the phase impedance matrix with 
the average value of the diagonal terms (0.4619 + j1.0638) and replac-
ing each off-diagonal term with the average of the off-diagonal terms 
(0.1558 + j0.4368). This modified phase impedance matrix becomes:

[ ] =
+ + +
+ + +
+ + +
















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j j j

j j j

0.4619 1.0638 0.1558 0.4368 0.1558 0.4368

0.1558 0.4368 0.4619 1.0638 0.1558 0.4368

0.1558 0.4368 0.1558 0.4368 0.4619 1.0638

/mile1abc

Using this modified phase impedance matrix in the symmetrical compo-
nent transformation equation results in the modified sequence imped-
ance matrix.

[ ] =
+

+
+


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













Ωz

j

j

j

0.7735 1.9373 0 0

0 0.3061 0.6270 0

0 0 0.3061 0.6270

/mile1012

Note now that the off-diagonal terms are all equal to zero, which means 
that there is no mutual coupling between sequence networks. It should 
also be noted that the modified zero, positive, and negative sequence 
impedances are exactly equal to the exact sequence impedances that 
were first computed.

The results of this example should not be interpreted to mean that a 
three-phase distribution line could be assumed to have been transposed. 
The original phase impedance matrix should be used if the correct effect 
of the mutual coupling between phases is to be modeled.

4.1.8 � Parallel Overhead Distribution Lines

It is fairly common in a distribution system to find instances where two 
distribution lines are “physically” parallel. The parallel combination may 
have both distribution lines constructed on the same pole, or the two 
lines may run in parallel on separate poles but on the same right-of-way. 
For example, two different feeders leaving a substation may share a com-
mon pole or right-of-way before they branch out to their own service area. 
It is also possible that two feeders may converge and run in parallel until 
again they branch out into their own service areas. The lines could also 
be underground circuits sharing a common trench. In all of the cases, 
the question arises as to how the parallel lines should be modeled and 
analyzed.

Two parallel overhead lines on one pole are shown in Figure 4.8.
Note in Figure 4.8 the phasing of the two lines.
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The phase impedance matrix for the parallel distribution lines is computed 
by the application of Carson’s equations and the Kron reduction method. The 
first step is to number the phase positions as follows:

With the phases numbered, the 7 × 7 primitive impedance matrix for 1 mile 
can be computed using the Modified Carson’s Equations. It should be 
pointed out that if the two parallel lines are on different poles, most likely 
each pole will have a grounded neutral conductor. In this case, there will be 
8 positions, and position 8 will correspond to the neutral on line 2. An 8 × 8 
primitive impedance matrix will be developed for this case. The Kron reduc-
tion will reduce the matrix to a 6 × 6 phase impedance matrix. With reference 
to Figure 4.8, the voltage drops in the two lines are given by:


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




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






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



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





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

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
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

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
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



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







v
v
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z z z z z z
z z z z z z
z z z z z z
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I
I
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I
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1
1
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2
2
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1
1
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2
2
2

a

b

c
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c
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a

b

c

a

b

c
	

(4.83)

Dnk

D1n

n

Dng

2-c 2-a 2-b

1-a 1-b 1-c
Dij

D12

Djk

Line 1

Line 2

FIGURE 4.8
Parallel overhead lines.

Position 1 2 3 4 5 6 7

Line-Phase 1-a 1-b 1-c 2-a 2-b 2-c Neutral
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Partition Equation 4.83 between the third and fourth rows and columns, so 
that series voltage drops for 1 mile of line are given by:

	

[ ] [ ] [ ]
[ ]

[ ]

[ ] [ ]

[ ] [ ]

[ ]

[ ]
= ⋅ =





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
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
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
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
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


v z I
v

v

z z

z z

I

I

1

2

11 12

21 22

1

2
V

	

(4.84)

Example 4.2

Two parallel distribution lines are on a single pole (Figure 4.9).
The phase conductors are:

Line 1:  336,400 26/7 ACSR:  GMR1 = 0.0244′  r1 =0.306 Ω/mile  d1 = 0.721″
Line 2:  250,000 AA:       GMR2 = 0.0171′  r2 = 0.41 Ω/mile  d2 = 0.567″
Neutral:  4/06/1 ACSR:    GMRn = 0.00814′  rn = 0.592 Ω/mile  dn = 0.563″

Determine the 6 × 6 phase impedance matrix.
Define the conductor positions according to the phasing:

	

= + = + = +

= + = + = +

= +

d j d j d j

d j d j d j

d j

0 35 2.5 35 7 35

2.5 33 7 33 0 33

4 29

1 2 3

4 5 6

7

Using = −D d dij i j , the distances between all conductors can be com-
puted. Using this equation, the diagonal terms of the resulting spacing 
matrix will be zero. It is convenient to define the diagonal terms of the 
spacing matrix as the GMR of the conductors occupying the position. 
Using this approach, the final spacing matrix is:

3.0′

6.0′

n

29′

2-c 2-a 2-b

1-a 1-b 1-c
2.5′

2.0′

4.5′

Line 1

Line 2

FIGURE 4.9
Example parallel OH lines.
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[ ] =



























D

0.0244 2.5 7 3.2016 7.2801 2 7.2111
2.5 0.0244 4.5 2 4.9244 3.2016 6.1847
7 4.5 0.0244 4.9244 2 7.2801 6.7082

3.2016 2 4.9244 0.0171 4.5 2.5 4.2720
7.2801 4.9244 2 4.5 0.0171 7 5

2 3.2016 7.2801 2.5 7 0.0171 5.6869
7.2111 6.1847 6.7082 4.2720 5 5.6569 0.0081

The terms for the primitive impedance matrix can be computed using 
the Modified Carson’s Equations. For this example, the subscripts i and j 
will run from 1 to 7. The 7 × 7 primitive impedance matrix is partitioned 
between rows and columns 6 and 7. The Kron reduction will now give 
the final phase impedance matrix. In partitioned form, the phase imped-
ance matrices are:

	

[ ] =
+ + +
+ + +
+ + +


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









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Ωz

j j j

j j j

j j j

0.4502 1.1028 0.1464 0.5334 0.1452 0.4126

0.1464 0.5334 0.4548 1.0873 0.1475 0.4584

0.1452 0.4126 0.1475 0.4584 0.4523 1.0956

/mileabc11
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+ + +
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0.1545 0.5336 0.1520 0.4323 0.1502 0.4909

0.1531 0.4287 0.1507 0.5460 0.1489 0.3955

/mileabc12

	

[ ]
+ + +
+ + +
+ + +



















Ωz

j j j

j j j
j j j

=

0.1519 0.4848 0.1545 0.5336 0.1531 0.4287

0.1496 0.3931 0.1520 0.4323 0.1507 0.5460

0.1477 0.5560 0.1502 0.4909 0.1489 0.3955

/mileabc21

	

[ ] =
+ + +
+ + +
+ + +
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




Ωz

j j j
j j j
j j j

0.5706 1.0913 0.1580 0.4236 0.1559 0.5017

0.1580 0.4236 0.5655 1.1082 0.1535 0.3849

0.1559 0.5017 0.1535 0.3849 0.5616 1.1212

/mileabc22

4.2 � Series Impedance of Underground Lines

Figure 4.10 shows the general configuration of three underground cables 
(concentric neutral or tape-shielded) with an additional neutral conductor.

The Modified Carson’s Equations can be applied to underground cables 
in much the same manner as for overhead lines. The circuit in Figure 4.10 
will result in a 7 × 7 primitive impedance matrix. For underground circuits 
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that do not have the additional neutral conductor, the primitive impedance 
matrix will be 6 × 6.

Two popular types of underground cables are the “concentric neutral 
cable” and the “tape shield cable.” To apply the Modified Carson’s Equations, 
the resistance and GMR of the phase conductor and the equivalent neutral 
must be known.

4.2.1 � Concentric Neutral Cable

Figure 4.11 shows a simple detail of a concentric neutral cable. The cable con-
sists of a central “phase conductor” covered by a thin layer of nonmetal-
lic semiconducting screen to which is bonded the insulating material. The 
insulation is then covered by a semiconducting insulation screen. The solid 
strands of concentric neutral are spiraled around the semiconducting screen 
with a uniform spacing between strands. Some cables will also have an insu-
lating “jacket” encircling the neutral strands.

In order to apply Carson’s equations to this cable, the following data needs 
to be extracted from a table of underground cables (Appendices A and B).

dc = phase conductor diameter (in.)
dod = nominal diameter over the concentric neutrals of the cable (in.)
ds = diameter of a concentric neutral strand (in.)

D14

D13

D23

a b nc

D34D12

FIGURE 4.10
Three-phase underground with additional neutral.

Phase conductor

Insulation

Jacket

Concentric neutral strand

Insulation screen

ds

dcdod

R

FIGURE 4.11
Concentric neutral cable.
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GMRc = geometric mean radius of the phase conductor (ft)
GMRs = geometric mean radius of a neutral strand (ft)
rc = resistance of the phase conductor (Ω/mile)
rs = resistance of a solid neutral strand (Ω/mile)
k = number of concentric neutral strands
The GMRs of the phase conductor and a neutral strand are obtained from 

a standard table of conductor data (Appendix A). The equivalent GMR of the 
concentric neutral is computed using the equation for the GMR of bundled 
conductors used in high-voltage transmission lines [2].

	 = ⋅ ⋅ −GMR GMR k R ftcn s
kk 1

	 (4.85)

where
R = radius of a circle passing through the center of the concentric neutral 

strands

	
= −

R
d d

24
ftod s

	
(4.86)

The equivalent resistance of the concentric neutral is:

	
r r

k
/milecn

s= Ω
	

(4.87)

The various spacings between a concentric neutral and the phase conductors 
and other concentric neutrals are as follows:

Concentric Neutral to Its Own Phase Conductor
Dij = R (Equation 4.86)

Concentric Neutral to an Adjacent Concentric Neutral
Dij = center-to-center distance of the phase conductors

Concentric Neutral to an Adjacent Phase Conductor

Figure 4.12 shows the relationship between the distance between centers 
of concentric neutral cables and the radius of a circle passing through the 
centers of the neutral strands.

Dnm

R R

FIGURE 4.12
Distances between concentric neutral cables.
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The GMD between a concentric neutral and an adjacent phase conductor 
is given by:

	 D D R ftij nm
k kk= − 	 (4.88)

where Dnm = center-to-center distance between phase conductors.
The distance between cables will be much greater than the radius R; so a 

good approximation of modeling the concentric neutral cables is shown in 
Figure 4.13. In this figure, the concentric neutrals are modeled as one equiva-
lent conductor (shown in black) directly above the phase conductor.

In applying the Modified Carson’s Equations, the numbering of conduc-
tors and neutrals is important. For example, a three-phase underground cir-
cuit with an additional neutral conductor must be numbered as:

1 = phase a Conductor #1
2 = phase b Conductor #2
3 = phase c Conductor #3
4 = neutral of Conductor #1
5 = neutral of Conductor #2
6 = neutral of Conductor #3
7 = additional neutral conductor (if present)

Example 4.3

Three concentric neutral cables are buried in a trench with spacings as 
shown in Figure 4.14.

The concentric neutral cables of Figure 4.14 can be modeled as shown 
in Figure 4.15. Notice the numbering of the phase conductors and the 
equivalent neutrals.

The cables are 15 kV, 250,000 CM stranded all aluminum with k = 13 
strands of #14 annealed coated copper wires (1/3 neutral). The outside 

Dnm

R R

FIGURE 4.13
Equivalent neutral cables.
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diameter of the cable over the neutral strands is 1.29 in. (Appendix B). 
Determine the phase impedance matrix and the sequence impedance 
matrix.

Solution: The data for the phase conductor and neutral strands from a 
conductor data table (Appendix A) are:

250,000 AA phase conductor:

GMRp = 0.0171 ft
Diameter = 0.567 in.
Resistance = 0.4100 Ω/mile

# 14 copper neutral strands:

GMRs = 0.00208 ft
Resistance = 14.87 Ω/mile
Diameter (ds) = 0.0641 in.

The radius of the circle passing through the center of the strands 
(Equation 4.82) is:

	
= − =R

d d
24

0.0511ftod s

6″ 6″

FIGURE 4.14
Three-phase concentric neutral cable spacing.

6˝ 6˝

R

1

4

R

2

5

R

3

6

FIGURE 4.15
Three-phase equivalent concentric neutral cable spacing.
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The equivalent GMR of the concentric neutral is computed by:

	 = ⋅ ⋅ = ⋅ ⋅ =− −GMR GMR k R 0.00208 13 0.0511 0.0486ftcn s
kk 1 13 113

The equivalent resistance of the concentric neutral is:

	
= = = Ωr r

k
14.8722

13
1.1438 /milecn

s

The phase conductors are numbered 1, 2, and 3. The concentric neutrals 
are numbered 4, 5, and 6.

A convenient method of computing the various spacings is to define 
each conductor using Cartesian coordinates. Using this approach, the 
conductor coordinates are:

	

= + = + = +

= + = + = +

d j d j d j

d jR d jR d jR

0 0 0.5 0 1 1 0

0 0.5 1

1 2 3

4 5 6

The spacings of off-diagonal terms of the spacing matrix are computed by:

	

n m

D d d

For: = 1 to 6 and = 1 to 6

| |n m n m, = −

The diagonal terms of the spacing matrix are the GMRs of the phase 
conductors and the equivalent neutral conductors:

	

=

=

i j

D GMR

D GMR

For = 1 to 3 and = 4 to 6

i i p

j j s

,

,

The resulting spacing matrix is:

	

[ ] =

























D

0.0171 0.5 1 0.0511 0.5026 1.0013
0.5 0.0171 0.5 0.5026 0.0511 0.5026
1 0.5 0.0171 1.0013 0.5026 0.0511

0.0511 0.5026 1.0013 0.0486 0.5 1
0.5026 0.0511 0.5026 0.5 0.0486 0.5
1.0013 0.5026 0.0511 1 0.5 0.0486

ft.

The self-impedance for the cable in position 1 is:

	
z j j0.0953 0.41 0.12134 ln 1

0.0171
7.93402 0.5053 1.4564 /mile11 = + + ⋅ +







 = + Ω

The self-impedance for the concentric neutral for Cable #1 is:
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z j j0.0953 1.144 0.12134 ln 1

0.0486
7.93402 1.2391 1.3296 /mile44 = + + ⋅ +







 = + Ω

The mutual impedance between Cable #1 and Cable #2 is:

	
z j j0.0953 0.12134 ln 1

0.5
7.93402 0.0953 1.0468 /mile12 = + ⋅ +







 = + Ω

The mutual impedance between Cable #1 and its concentric neutral is:

	
z j j0.0953 0.12134 ln 1

0.0511
7.93402 0.0953 1.3236 /mile14 = + ⋅ +







 = + Ω

The mutual impedance between the concentric neutral of Cable #1 and 
the concentric neutral of Cable #2 is:

	
z j j0.0953 0.12134 ln 1

0.5
7.93402 0.0953 1.0468 /mile45 = + ⋅ +







 = + Ω

Continuing the application of the Modified Carson’s Equations results 
in  a 6 × 6 primitive impedance matrix. This matrix in partitioned 
(Equation 4.33) form is:
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0.0953 1.0468 0.5053 1.4564 0.0953 1.0468

0.0953 .9627 0.0953 1.0468 0.5053 1.4564

/mileij
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







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

Ωz

j j j

j j j

j j j

ˆ
0.0953 1.3236 0.0953 1.0468 0.0953 .9627

0.0953 1.0462 0.0953 1.3236 0.0953 1.0462

0.0953 .9626 0.0953 1.0462 0.0953 1.3236

/milein

	
  =  z zˆ ˆnj in
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
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ˆ
1.2393 1.3296 0.0953 1.0468 0.0953 .9627

0.0953 1.0468 1.2393 1.3296 0.0953 1.0468

0.0953 .9627 0.0953 1.0468 1.2393 1.3296

/milenn

Using the Kron reduction results in the phase impedance matrix:

	 [ ] =  − ⋅  ⋅ 
−

z z z z zˆ ˆ ˆ ˆabc ij in nn nj
1
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

















Ωz

j j j
j j j
j j j

0.7981 0.4467 0.3188 0.0334 0.2848 0.0138

0.3188 0.0334 0.7890 0.4048 0.3188 0.0334

0.2848 0.0138 0.3188 0.0334 0.7981 0.4467

/mileabc
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The sequence impedance matrix for the concentric neutral three-phase 
line is determined using Equation 4.68.

	 [ ] [ ] [ ] [ ]= ⋅ ⋅−z A z As abc s012
1

	

[ ] =
+ − − − +

− + + − +
− − + +



















Ωz

j j j

j j j

j j j

1.4140 0.4681 0.0026 0.0081 0.0057 0.0063

0.0057 0.0063 0.4876 0.4151 0.0265 0.0450

0.0026 0.0081 0.0523 0.0004 0.4876 0.4151

/mile012

4.2.2 � Tape-Shielded Cables

Figure 4.16 shows a simple detail of a tape-shielded cable. The cable consists 
of a central “phase conductor” covered by a thin layer of nonmetallic semi-
conducting screen to which is bonded the insulating material. The insulation 
is covered by a semiconducting insulation screen. The shield is bare copper 
tape helically applied around the insulation screen. An insulating “jacket” 
encircles the tape shield.

Parameters of the tape-shielded cable are:

dc = diameter of phase conductor (in.): Appendix A
ds = outside diameter of the tape shield (in.): Appendix B
dod = outside diameter over jacket (in.): Appendix B
T = thickness of copper tape shield in mils: Appendix B

Once again, the Modified Carson’s Equations will be applied to calcu-
late the self-impedances of the phase conductor and the tape shield as 
well as the mutual impedance between the phase conductor and the tape 
shield. The resistance and GMR of the phase conductor are found in a stan-
dard table of conductor data (Appendix A).

The resistance of the tape shield is given by:

	
= ⋅ ⋅ ρ

⋅
Ωr

m
d T

1.0636 10 /mileshield
s

9 20

	
(4.89)

AL or CU 
phase conductor

Insulation

CU tape shield

JacketT

dcdod ds

FIGURE 4.16
Tape-shielded cable.
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The resistance of the tape shield given in Equation 4.89 assumes a resistiv-
ity (ρm20) of ⋅ −1.7721 10 8  Ω-m and a temperature of 20°C. The outside diam-
eter of the tape shield ds is given in inches, and the thickness of the tape 
shield T is in mils.

The GMR of the tape shield is the radius of a circle passing through the 
middle of the shield and is given by:

	
=

−
GMR

d T
2 2000

12
ftshield

s

	
(4.90)

The various spacings between a tape shield and the conductors and other 
tape shields are as follows:

Tape Shield to its Own Phase Conductor

	 = =D GMR radius to midpoint of the shield (ft)ij shield 	 (4.91)

Tape Shield to an Adjacent Tape Shield

	 =D Center-to-center distance of the phase conductors (ft)ij 	
(4.92)

Tape Shield to an Adjacent Phase or Neutral Conductor

	 =D D ftij nm 	 (4.93)

where Dnm = center-to-center distance between phase conductors.

Example 4.4

A single-phase circuit consists of a 1/0 AA, 220 mil insulation tape-shielded 
cable and a 1/0 CU neutral conductor (Figure 4.17). The single-phase line is 
connected to phase b. Determine the phase impedance matrix.

Cable data: 1/0 AA
Outside diameter of the tape shield = ds = 0.88 in.
Resistance = 0.97 Ω/mile
GMRp = 0.0111 ft
Tape shield thickness = T = 5 mils
Resistivity = ρ = ⋅ Ω−m 1.7721 10 -m20

8

Neutral data: 1/0 Copper, 7 strand
Resistance = 0.607 Ω/mile
GMRn = 0.01113 ft
Distance between cable and neutral = Dnm = 3 in.
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The resistance of the tape shield is computed according to Equation 4.89:

	
= ⋅ ⋅ρ

⋅
=

⋅
= Ωr

m
d T

1.0636 10 18.8481
0.88 5

4.2836 /mileshield
s

9
20

The GMR of the tape shield is computed according to Equation 4.90:

	
=

−
=

−
=GMR

d T
2 2000

12

0.88
2

5
2000

12
0.0365 ftshield

s

The conductors are numbered such that:
#1 = 1/0 AA conductor
#2 = tape shield
#3 = 1/0 copper ground

The spacings used in the Modified Carson’s Equations are:

	

= =

= =

D GMR

D

0.0365

3
12

0.25

shield12

13

The self-impedance of Conductor #1 is:

	
= + + ⋅ +







 = + Ωz j jˆ 0.0953 0.97 0.12134 ln

1
0.0111

7.93402 1.0653 1.5088 /mile11

The mutual impedance between Conductor #1 and the tape shield 
(Conductor #2) is:

	
= + ⋅ +







 = + Ωz j jˆ 0.0953 0.12134 ln

1
0.0365

7.93402 0.0953 1.3645 /mile12

3″

FIGURE 4.17
Single-phase tape shield with neutral conductor. 
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The self-impedance of the tape shield (Conductor #2) is:

= + + ⋅ +






 = + Ωz j jˆ 0.0953 4.2786 0.12134 ln

1
0.0365

7.93402 4.3739 1.3645 /mile22

Continuing on the final primitive impedance matrix is:

	

  =
+ + +
+ + +
+ + +



















Ωz

j j

j j j
j j j

ˆ
1.0653 1.5088 0.0953 1.3645 0.0953 1.1309

0.0953 1.3645 4.3739 1.3645 0.0953 1.1309

0.0953 1.1309 0.0953 1.1309 0.7023 1.5085

/mile

In partitioned form, the primitive impedance matrix is:

	

z j

z j j

z
j

j

z
j j

j j

ˆ 1.0653 1.5088

ˆ 0.0953 1.3645 0.0953 1.1309

ˆ
0.0953 1.3645

0.0953 1.1309

ˆ
4.3739 1.3645 0.0953 1.1309

0.0953 1.1309 0.7023 1.5085
/mile

ij

in

nj

nn

[ ]

  = +

  = + +

  =
+

+













  =
+ +

+ +













Ω

Applying Kron’s reduction method will result in a single impedance, 
which represents the equivalent single-phase impedance of the tape 
shield cable and the neutral conductor.

	 =  − ⋅  ⋅ 
−

z z z z zˆ ˆ ˆ ˆp ij in nn nj1
1

	 = + Ωz j1.3218 0.6744 /milep1

Because the single-phase line is on phase b, the phase impedance matrix 
for the line is:

	

[ ] = +

















Ωz j
0 0 0
0 1.3218 0.6744 0

0 0 0

/mileabc

4.2.3 � Parallel Underground Distribution Lines

The procedure for computing the phase impedance matrix for two over-
head parallel lines has been presented in Section 4.1.8. Figure 4.18 shows 
two concentric neutral parallel lines each with a separate grounded neutral 
conductor.
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The process for computing the 6 × 6 phase impedance matrix follows 
exactly the same procedure as for the overhead lines. In this case, there are 
a total of 14 conductors (6 phase conductors, 6 equivalent concentric neu-
tral conductors, and 2 grounded neutral conductors). Applying Carson’s 
equations will result in a 14 × 14 primitive impedance matrix. This matrix 
is partitioned between the sixth and seventh rows and columns. The Kron 
reduction is applied to form the final 6 × 6 phase impedance matrix.

Example 4.5

Two concentric neutral three-phase underground parallel lines are 
shown in Figure 4.19.

Cables (both lines): 250 kcmil, 1/3 neutral
Extra neutral: 4/0 Copper
Determine the 6 × 6 phase impedance matrix.

Solution: From Appendix B for the cables:
Outside diameter: = ′′d 1.29od

Neutral strands: =k 13 #14 copper strands
From Appendix A for the conductors:

	 = ′ = Ω = ′′GMR r d250 kcmil Al : 0.0171 , 0.41 /mile, 0.567c c c

	 = ′ = Ω = ′′GMR r d#14 Copper: 0.00208 , 14.8722 /mile, 0.0641s s s

	 = = Ω = ′′GMR r d4/0 Copper : 0.1579', 0.303 /mile, 0.522n n n

654

D1–13
D1–3

D2–3 D3–13

13

98

2 3

D1–2

1

7

Dnm

D2–13

D4–14
D4–6

D5–6 D6–14
12

14

D5–14

10 11
D4–5

FIGURE 4.18
Parallel concentric neutral underground lines.
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The radius of the circle to the center of the strands is:

	
= − = − = ′R

d d
24

1.29 0.0641
24

0.0511b
od s

The equivalent GMR of the concentric neutral strands is computed as:

	 = ⋅ ⋅ = ⋅ ⋅ = ′−GMR GMR k R 0.00208 13 0.05111 0.0486eq s b
kk 1 1213

The positions of the six cables and extra neutral using Cartesian coordi-
nates with the phase a cable in line 1 (top line) as the ordinate are shown 
below. Note the phasing in both lines.

	

= + = +

= +

a d j b d j

c d j

Phase , line 1 : 0 0 Phase , line 1 :
4

12
0

Phase , line 1 :
8

12
0

1 2

3

	

= − = −

= −

a d j b d j

c d j

Phase , line 2 : 4
12

10
12

Phase , line 2 : 0 10
12

Phase , line 2 : 8
12

10
12

4 5

6

4″ 4″ 2″

c

b

a

a

b

c

10″

4″4″
5″

FIGURE 4.19
Parallel concentric neutral three-phase lines.
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Equivalent neutrals:

	

= + = +

= +

a d d jR b d d jR

c d d jR

Phase , line 1 : Phase , line 1 :

Phase , line 1 :

b b

b

7 1 8 2

9 3

	

= + = +

= +

a d d jR b d d jR

c d d jR

Phase , line 2 : Phase , line 2 :

Phase , line 2 :

b b

b

10 4 11 5

12 6

Extra neutral:

	
= −d j10

12
5

12
13

The spacing matrix defining the distances between conductors can be 
computed by:

	

= =

= −

i j

d d

1 to 13 1 to 13

Di j i j,

The diagonal terms of the spacing matrix are defined as the appropriate 
GMR:

	 = = = = = = = ′D D D D D D GMR 0.0171c1,1 2,2 3,3 4,4 5,5 6,6

	 = = = = = = = ′D D D D D D GMR 0.04867,7 8,8 9,9 10,10 11,11 12,12 eq

	 = = ′D GMR 0.01579n13,13

The resistance matrix is defined as:

	 = = = = = = Ωr r r r r r 0.41 /mile1 2 3 4 5 6

	
= = = = = = = = Ωr r r r r r r

k
14.8722

13
1.144 /miles

7 8 9 10 11 12

	 = = Ωr r 0.303 /milen13

The primitive impedance matrix (13 × 13) is computed using Carson’s 
equations:

	

i j

zp j
D

zp r j
D

1 to 13 1 to 13

0.0953 0.12134 ln 1 7.93402

0.0953 0.12134 ln 1 7.93402

i j
i i

i i i
i j

,
,

,
,

= =

= + ⋅








 +











= + + ⋅








 +










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Once the primitive impedance matrix is developed, it is partitioned 
between the sixth and seventh rows and columns, and the Kron reduc-
tion method is applied to develop the 6 × 6 phase impedance matrix. The 
phase impedance matrix in partitioned form is:

	

[ ] =
+ + +
+ + +
+ + +



















Ωz

j j j

j j j

j j j

0.6450 0.4327 0.1805 0.0658 0.1384 0.0034

0.1805 0.0658 0.6275 0.3974 0.1636 0.0552

0.1384 0.0034 0.1636 0.0552 0.6131 0.4081

/mileabc11

	

[ ] =
− + −
− − −
− − −



















Ωz

j j j

j j j
j j j

0.1261 0.0086 0.1389 0.071 0.0782 0.0274

0.1185 0.0165 0.1237 0.0145 0.0720 0.0325

0.1083 0.0194 0.1074 0.0246 0.0725 0.0257

/mileabc12

	

[ ] =
− − −
+ − −
− − −



















Ωz

j j j

j j j

j j j

0.1261 0.0086 0.1185 0.0165 0.1083 0.0195

0.1389 0.0071 0.1237 0.0145 0.1074 0.0246

0.0782 0.0274 0.072 0.0325 0.0725 0.0257

/mileabc21

	

[ ] =
+ + −
+ + −
− − +



















Ωz

j j j

j j j

j j j

0.6324 0.4329 0.1873 0.0915 0.0776 0.0233

0.1873 0.0915 0.6509 0.4508 0.0818 0.0221

0.0776 0.0233 0.0818 0.0221 0.8331 0.6476

/mileabc22

4.3 � Summary

This chapter has been devoted to presenting methods for computing the 
phase impedances and sequence impedances of overhead lines and under-
ground cables. Carson’s equations have been modified to simplify the 
computation of the phase impedances. When using the Modified Carson’s 
Equations, there is no need to make any assumptions, such as transposi-
tion of the lines. By assuming an untransposed line and including the actual 
phasing of the line, the most accurate values of the phase impedances, self 
and mutual, are determined. It is highly recommended that no assumptions 
be made in the computation of the impedances. Because voltage drop is a 
primary concern on a distribution line, the impedances used for the line 
must be as accurate as possible. This chapter also included the process of 
applying Carson’s equations to two distribution lines that are physically par-
allel. This same approach would be taken when there are more than two 
lines physically parallel.
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Problems

4.1 The configuration and conductors of a three-phase overhead line is 
shown in Figure 4.20.

Phase conductors: 	 556,500 26/7 ACSR
Neutral conductor:	 4/0 ACSR

	 1.	Determine the phase impedance matrix  zabc[ ] in Ω/mile.
	 2.	Determine the sequence impedance matrix z012[ ] in Ω/mile.
	 3.	Determine the neutral transformation matrix t n[ ].

4.2 Determine the phase impedance zabc[ ] matrix in Ω/mile for the 
two-phase configuration in Figure 4.21.

Phase conductors: 336,400 26/7 ACSR
Neutral conductor: 4/0 6/1 ACSR

4.3 Determine the phase impedance zabc[ ] matrix in Ω/mile for the 
single-phase configuration shown in Figure 4.22.

Phase and Neutral Conductors: 1/0 6/1 ACSR

4.4 Create the spacings and configurations of Problems 4.1, 4.2, and 4.3 in 
the distribution analysis program WindMil. Compare the phase impedance 
matrices to those computed in the previous problems.

4.5 Determine the phase impedance matrix zabc[ ] and sequence impedance 
matrix z012[ ] in Ω/mile for the three-phase pole configuration in Figure 4.23. 
The phase and neutral conductors are 250,000 all aluminum.

4.5′2.5′
b

3.0′

4.0′

25.0′

n

a c

FIGURE 4.20
Three-phase configuration for Problem 4.1.
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4.6 Compute the positive, negative, and zero sequence impedances in Ω/1000 ft 
using the GMD method for the pole configuration shown in Figure 4.23.

4.7 Determine the zabc[ ] and z012[ ] matrices in Ω/mile for the three-phase 
configuration shown in Figure 4.24. The phase conductors are 350,000 all 
aluminum, and the neutral conductor is 250,000 all aluminum.

4.8 Compute the positive, negative, and zero sequence impedances in 
Ω/1000 ft for the line of Figure 4.24 using the average self- and mutual imped-
ances defined in Equations 4.70 and 4.71.

4.9 A 4/0 aluminum concentric neutral cable is to be used for a single-
phase lateral. The cable has a full neutral (see Appendix B). Determine the 

7.0′
c

3.0′

4.0′

25.0′

n

a

FIGURE 4.21
Two-phase configuration for Problem 4.2.

b

5.0′

0.5′

25.0′

n

FIGURE 4.22
Single-phase pole configuration for Problem 4.3.
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impedance of the cable and the resulting phase impedance matrix in Ω/mile, 
assuming the cable is connected to phase b.

4.10 Three 250,000 CM aluminum concentric cables with one-third neutrals 
are buried in a trench in a horizontal configuration (see Figure 4.14). Determine 
the zabc[ ] and z012[ ] matrices in Ω/1000 ft assuming phasing of c–a–b.

4.11 Create the spacings and configurations of Problems 4.9 and 4.10 in 
Windmil. Compare the values of the phase impedance matrices to those 
computed in the previous problems. In order to check the phase impedance 
matrix, it will be necessary for you to connect the line to a balanced three-
phase source. A source of 12.47 kV works fine.

4.12 A single-phase underground line is composed of a 350,000 CM aluminum 
tape-shielded cable. A 4/0 copper conductor is used as the neutral. The cable 

2′

2′

2′

2′

25′

c

a

b

n

FIGURE 4.24
Three-phase pole configuration for Problem 4.7.

b

a

4′

2′

2′

2′

25′

c

n

FIGURE 4.23
Three-phase pole configuration for Problem 4.5.
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and neutral are separated by 4 in. Determine the phase impedance matrix in 
Ω/mile for this single-phase cable line assuming phase c.

4.13 Three one-third neutral 2/0 aluminum jacketed concentric neutral 
cables are installed in a 6-in. conduit. Assume the cable jacket has a thickness 
of 0.2 in. and the cables lie in a triangular configuration inside the conduit. 
Compute the phase impedance matrix in Ω/mile for this cabled line.

4.14 Create the spacing and configuration of Problem 4.13 in WindMil. 
Connect a 12.47 kV source to the line, and compare results to those of 4.13.

4.15 Two three-phase distribution lines are physically parallel as shown in 
Figure 4.25.

Line # 1 (left side): Phase conductors = 266,800 26/7 ACSR
Neutral conductor = 3/0 6/1 ACSR

Line # 2 (right side): Phase conductors = 300,000 CON LAY Aluminum
   Neutral conductor = 4/0 CLASS A Aluminum

	 a.	Determine the 6 × 6 phase impedance matrix.
	 b.	Determine the neutral transform matrix.

4.16 Two concentric neutral underground three-phase lines are physically 
parallel as shown in Figure 4.26.

Line # 1 (top): Cable = 250 kcmil, 1/3 neutral
Additional neutral: 4/0 6/1 ACSR

Line #2 (bottom): Cable = 2/0 kcmil, 1/3 neutral
      Additional neutral: 2/0 ACSR

	 a.	Determine the 6 × 6 phase impedance matrix.
	 b.	Determine the neutral transform matrix.

b b aa
2.5′ 2.5′4.5′ 4.5′

c c

4.0′ 4.0′
3.0′ 3.0′

25.0′ 25.0′

n

n

18′

FIGURE 4.25
Parallel OH lines.
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WindMil Assignment

Follow the method outlined in the User’s Manual to build a system called 
“System 1” in WindMil that will have the following components:

•	 12.47 kV line-to-line source. The “Bus Voltage” should be set to 120 V
•	 Connect to the node and call it Node 1
•	 A 10,000 ft long overhead three-distribution line as defined in 

Problem 4.1. Call this line OH-1.
•	 Connect a node to the end of the line and call it Node 2.
•	 A wye-connected unbalanced three-phase load is connected to 

Node 2 and is modeled as constant PQ load with values of:
•	 Phase a–g: 1000 kVA, Power factor = 90% lagging
•	 Phase b–g: 800 kVA, Power factor = 85% lagging
•	 Phase c–g: 1200 kVA, Power factor = 95% lagging

Determine the voltages on a 120 V base at Node 2 and the current flowing on 
the OH-1 line.

6″ 6″ 4″

4″

b

a

c

c

24″

6″6″

a

b

FIGURE 4.26
Parallel concentric neutral three-phase lines for Problem 4.16.
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5
Shunt Admittance of Overhead 
and Underground Lines

The shunt admittance of a line consists of the conductance and the capaci-
tive susceptance. The conductance is usually ignored because it is very small 
compared to the capacitive susceptance. The capacitance of a line is the result 
of the potential difference between conductors. A charged conductor cre-
ates an electric field that emanates outward from the center of the conductor. 
Lines of equipotential are created that are concentric to the charged conduc-
tor. This is illustrated in Figure 5.1.

In Figure 5.1, a difference in potential between two points (P1 and P2) is a 
result of the electric field of the charged conductor. When the potential dif-
ference between the two points is known, the capacitance between the two 
points can be computed. If there are other charged conductors nearby, the 
potential difference between the two points will be a function of the distance 
to the other conductors and the charge on each conductor. The principle of 
superposition is used to compute the total voltage drop between two points 
and then the resulting capacitance between the points. Understand that the 
points can be points in space or the surface of two conductors or the surface 
of a conductor and the ground.

5.1 � General Voltage Drop Equation

Figure 5.2 shows an array of N positively charged solid round conductors. 
Each conductor has a unique uniform charge density of q cb/m.

The voltage drop between conductor i and conductor j as a result of all of 
the charged conductors is given by:

	
=

πε
+⋅ ⋅ ⋅+ + ⋅ ⋅ ⋅+ + ⋅ ⋅ ⋅+









V q

D
D

q
D
RD

q
RD
Dij

q
D
D

1
2

ln ln ln lnij
j

i
i

ij

i
j

j
N

Nj

Ni
1

1

1 	
(5.1)
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Equation 5.1 can be written in general form as:

	
∑=

πε
=

V q
D
D

1
2

lnij n
nj

ni
n

N

1 	
(5.2)

where ε = ε0εr = permittivity of the medium
ε0 = permittivity of free space = 8.85·10–12 μF/m
εr = relative permittivity of the medium
qn = charge density on conductor n cb/m
Dni  = distance between conductor n and conductor i (ft)
Dnj  = distance between conductor n and conductor j (ft)
Dnn = radius (RDn) of conductor n (ft)

j

N

1

in

Vij
�+

+
+

+

+

+

FIGURE 5.2
Array of round conductors.

D2

D1

RD

P2
P1

+

+

+

+
+

FIGURE 5.1
Electric field of a charged round conductor.
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5.2 � Overhead Lines

The method of conductors and their images is employed in the calculation 
of the shunt capacitance of overhead lines. This is the same concept that was 
used in Chapter 4 in the general application of Carson’s equations. Figure 5.3 
illustrates the conductors and their images, and it will be used to develop a 
general voltage drop equation for overhead lines.

In Figure 5.3, it is assumed that:

	

q q

q q–

i i

j j

′ = −

′ = 	

(5.3)

Appling Equation 5.2 to Figure 5.3:
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(5.4)

Because of the assumptions of Equation 5.3, Equation 5.4 can be simplified to:
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(5.5)

where Sii = distance from conductor i to its image i′ (ft)
Sij = distance from conductor i to the image of conductor j (ft)
Dij = distance from conductor i to conductor j (ft)
RDi = radius of conductor i in ft.
Equation 5.5 gives the total voltage drop between conductor i and its image. 

The voltage drop between conductor i and the ground will be one-half of 
that given in Equation 5.5.

	
V q S
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(5.6)
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Equation 5.6 can be written in a general form as:

	 V P q P qig ii i ij j= ⋅ + ⋅ 	 (5.7)

where Pii and Pij are the self- and mutual “potential coefficients.”
For overhead lines, the relative permittivity of air is assumed to be 1.0 so 

that:

	 ε = × ×1.0 8.85 10 F/mair
–12

	 ε = ×1.4240 10 mF/mileair
–2

	

(5.8)

Using the value of permittivity in μF/mile, the self- and mutual potential 
coefficients are defined as:

	
= ⋅ µP S

RD
ˆ 11.17689 ln mile/ Fii

ii

i 	
(5.9)

	
= ⋅ µP

S
D

ˆ 11.17689 ln mile/ Fij
ij

ij 	
(5.10)

Note In applying Equations 5.9 and 5.10, the values of RDi, Sii, Sij, and Dij must 
be in the same units. For overhead lines, the distances between conductors 
are typically specified in feet, whereas the value of the conductor diameter 
from a table will typically be in inches. Care must be taken to ensure that the 
radius in feet is used in applying the two equations.

For an overhead line of n-cond conductors, the “primitive potential coeffi-
cient matrix” P̂primitive





 can be constructed. The primitive potential coefficient 

Dij

j ′
q ′j

q j

j
+

+

+
+q ′i

Sij

i ′

Sii

θij

i
qi

FIGURE 5.3
Conductors and images.
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matrix will be an n-cond × n-cond matrix. For a four-wire grounded wye line, 
the primitive coefficient matrix will be of the form:

	

P

P P P P

P P P P

P P P P

P P P P

ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
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aa ab ac an

ba bb bc bn

ca cb cc cn

na nb nc nn


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
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• • • • •
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
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
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
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(5.11)

The dots (• ) in Equation 5.11 are partitioning the matrix between the third 
and fourth rows and columns. In partitioned form, Equation 5.11 becomes:

	

P
P P

P P
ˆ

ˆ ˆ

ˆ ˆ
primitive

ij in

nj nn





 =











































	

(5.12)

Because the neutral conductor is grounded, the matrix can be reduced using 
the “Kron reduction” method to an n-phase × n-phase phase potential coef-
ficient matrix [Pabc].

	
P P P P Pˆ ˆ ˆ ˆ

abc ij in nn jn

1
[ ] = 



−



⋅ 


 ⋅ 





−

	
(5.13)

The inverse of the potential coefficient matrix will give the n-phase × n-phase 
capacitance matrix [Cabc].

	 C P Fabc abc
1[ ] [ ]= µ−

	 (5.14)

For a two-phase line, the capacitance matrix of Equation 5.14 will be 2 × 2. 
A row and column of zeros must be inserted for the missing phase. For a 
single-phase line, Equation 5.14 will result in a single element. Again, rows 
and columns of zero must be inserted for the missing phase. In the case of 
the single-phase line, the only nonzero term will be that of the phase in use.

Neglecting the shunt conductance, the phase shunt admittance matrix is 
given by:

	 y j C0 S/mileabc abc[ ] [ ]= + ⋅ ω ⋅ µ 	 (5.15)

where f2 376.9911.ω = ⋅ π ⋅ =
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Example 5.1

Determine the shunt admittance matrix for the overhead line in 
Example 4.1. Assume that the neutral conductor is 25 ft above the ground.

The diameters of the phase and neutral conductors from the conductor 
table (Appendix A) are:

	

= =

= =

ACSR d RD

ACSR d RD

Conductor : 336, 400 26/7 0.721 in., 0.03004ft

4/0 6/1 : 0.563 in., 0.02346ft

c c

s s

Using the Cartesian coordinates in Example 4.1, the image distance 
matrix is given by:

	 S d d| |*
ij i j= −

d dwhere = the conjugate of .*
j j

For the configuration, the distances between conductors and images 
in matrix form are:

	

[ ] =



















S

58 58.0539 58.4209 54.1479
58.0539 58 58.1743 54.0208
58.4209 58.1743 58 54.0833
54.1479 54.0208 54.0833 50

ft

The self-primitive potential coefficient for phase a and the mutual primi-
tive potential coefficient between phases a and b are:

	
P̂ 11.17689ln

58
0.03004

84.5600 mile/ Faa = = µ

	
P̂ 11.17689ln

58.0539
2.5

35.1522 mile/ Fab = = µ

Using Equations 5.9 and 5.10, the total primitive potential coefficient 
matrix is computed to be:

	

P̂

84.5600 35.1522 23.7147 25.2469
35.1522 84.5600 28.6058 28.3590
23.7147 28.6058 84.5600 26.6131
25.2469 28.3590 26.6131 85.6659

mile/ Fprimitive




 =



















µ

Because the fourth conductor (neutral) is grounded, the Kron reduc-
tion method is used to compute the “phase potential coefficient matrix.” 

Because only one row and column need to be eliminated, the 

P̂nn  term 
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is a single element, so that the Kron reduction equation for this 
case can be modified to:

	
= −

⋅
P P

P P
P

ˆ
ˆ ˆ

ˆij ij
in jn

44

where i = 1, 2, 3 and j = 1, 2, 3.
For example, the value of Pcb is computed to be:

	
= − ⋅ = − ⋅ =P P P P

P
ˆ ˆ ˆ

ˆ 28.6058 26.6131 28.359
85.6659

19.7957cb 32
34 42

44

Following the Kron reduction, the phase potential coefficient matrix is:

	

P
77.1194 26.7944 15.8714
26.7944 75.1720 19.7957
15.8714 19.7957 76.2923

mile/ Fabc[ ] =
















µ

Invert [Pabc] to determine the shunt capacitance matrix:

	

C P
0.015 0.0049 0.0019
0.0049 0.0159 0.0031
0.0019 0.0031 0.0143

F/mileabc
1[ ] [ ]= =

− −
− −
− −

















µ−

Multiply [Cabc] by the radian frequency to determine the final three-
phase shunt admittance matrix.

	

[ ] [ ]= ⋅ ⋅ =
− −

− −
− −



















µy j C

j j j

j j j

j j j
376.9911

5.6711 1.8362 0.7033

1.8362 5.9774 1.169

0.7033 1.169 5.3911

S/mileabc abc

5.2.1 � The Shunt Admittance of Overhead Parallel Lines

The development of the shunt admittance matrix for parallel overhead lines is 
similar to the steps taken to create the phase impedance matrix. The number-
ing of the conductors must be the same as that which was used in develop-
ing the phase impedance matrix. To develop the shunt admittance matrix for 
overhead lines, it is necessary to know the distance from each conductor to the 
ground, and it will be necessary to know the radius in feet for each conductor.

The first step is to create the primitive potential coefficient matrix. This 
will be an n-cond × n-cond matrix, where n-cond is the total number of phase 
and ground conductors. For the lines in Figure 4.8, n-cond will be 7; for two 
lines each with its own grounded neutral, n-cond will be 8.



128 Distribution System Modeling and Analysis

The elements of the primitive potential coefficient matrix are given by:

	

= ⋅

= ⋅
µ

P S
RD

P
S
D

ˆ 11.17689 ln

ˆ 11.17689 ln
mile/ F

ii
ii

i

ij
ij

ij 	

(5.16)

where Sii = distance in ft from a conductor to its image below ground
Sij = distance in ft from a conductor to the image of an adjacent conductor
Dij = distance in ft between two overhead conductors
RDi = radius in ft of conductor i
The last one or two rows and columns of the primitive potential coefficient 

matrix are eliminated by using Kron reduction. The resulting voltage equa-
tion is:





























=



























⋅



























V

V

V

V

V

V

P P P P P P
P P P P P P
P P P P P P
P P P P P P
P P P P P P

P P P P P P

q

q

q

q

q

q

1

1

1

2

2

2

11 11 11 12 12 12
11 11 11 12 12 12
11 11 11 12 12 12
21 21 21 22 22 22
21 21 21 22 22 22

21 21 21 22 22 22

1

1

1

2

2

2

V

ag

bg

cg

ag

bg

cg

aa ab ac aa ab ac

ba bb bc ba bb bc

ca cb cc ca cb cc

aa ab ac aa ab ac

ba bb bc ba bb bc

ca cb cc ca cb cc

a

b

c

a

b

c
	

(5.17)

In short hand form Equation 5.17 is:

	 V P qLG [ ][ ] [ ]= ⋅ 	 (5.18)

The shunt capacitance matrix is determined by:

	 q P V C VLG LG
1[ ] [ ] [ ] [ ] [ ]= ⋅ = ⋅−

	 (5.19)

The resulting capacitance matrix is partitioned between the third and fourth 
rows and columns.

	

[ ] [ ]
[ ] [ ]
[ ] [ ]

= =














−C P
C C

C C

11 12

21 22
1

	

(5.20)
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The shunt admittance matrix is given by:

	

[ ]
[ ] [ ]
[ ] [ ]

[ ]= ω⋅ ⋅ =














−y j C
y y

y y
10

11 12

21 22
S6

	

(5.21)

where 2 frequency.ω = ⋅ π ⋅

Example 5.2

Determine the shunt admittance matrix for the parallel overhead lines 
in Example 4.2.

The position coordinates for the seven conductors and the distance 
matrix are defined in Example 4.2. The diagonal terms of the distance 
matrix (Example 4.2) must be the radius in feet of the individual conduc-
tors. For this example:

	
= = = = = ′D D D d

24
0.721

24
0.03001,1 2,2 3,3

1

	
= = = = = ′D D D d

24
0.567

24
0.02364,4 5,5 6,6

2

	
= = ′D d

24
0.0235n

7,7

The resulting distance matrix is:

	

[ ] =



























D

0.0300 2.5000 7.0000 3.2016 7.2801 2.0000 7.2111
2.5000 0.0300 4.5000 2.0000 4.9244 3.2016 6.1847
7.0000 4.5000 0.0300 4.9244 2.0000 7.2801 6.7082
3.2016 2.0000 4.9244 0.0236 4.5000 2.5000 4.2720
7.2801 4.9244 2.0000 4.5000 0.0236 7.0000 5.0000
2.0000 3.2016 7.2801 2.5000 7.0000 0.0236 5.6569
7.2111 6.1847 6.7082 4.272 5.0000 5.6569 0.0235

ft.

The distances between conductors and conductor images (image matrix) 
can be determined by:

	
S d d*

i j i j, = −

For this example, the image matrix is:

	

[ ] =



























S

70.000 70.045 70.349 68.046 68.359 68.000 64.125
70.045 70.000 70.145 68.000 68.149 68.046 64.018
70.349 70.145 70.000 68.149 68.000 68.359 64.070
68.046 68.000 68.149 66.000 66.153 66.047 62.018
68.359 68.149 68.000 66.153 66.000 66.370 62.073
68.000 68.046 68.359 66.047 66.370 66.000 62.129
64.125 64.018 64.070 62.018 62.073 62.129 60.000

ft.
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The distance and image matrices are used to compute the 7 × 7 potential 
coefficient matrix by:

	
= ⋅









Pp

S
D

11.17689 lni j
i j

i j
,

,

,

The primitive potential coefficient matrix is partitioned between the 
sixth and seventh rows and columns, and the Kron reduction method 
produces the 6 × 6 potential matrix. This matrix is then inverted and 
multiplied by ω = 376.9911 to give the shunt admittance matrix. The 
final shunt admittance matrix in partitioned form is:

	

[ ] =
− −

− −
− −



















µy

j j j

j j j

j j j
11

6.2992 1.3413 0.4135

1.3413 6.5009 0.8038

0.4135 0.8038 6.0257

S/mile

	

[ ] =
− − −
− − −
− − −



















µy

j j j

j j j

j j j
12

0.7889 0.2992 1.6438

1.4440 0.5698 0.7988

0.5553 1.8629 0.2985

S/mile

	

[ ] =
− − −
− − −
− − −



















µy

j j j

j j j

j j j
21

0.7889 1.4440 0.5553

0.2992 0.5698 1.8629

1.6438 0.7988 0.2985

S/mile

	

[ ] =
− −

− −
− −



















µy

j j j

j j j

j j j
22

6.3278 0.6197 1.1276

0.6197 5.9016 0.2950

1.1276 0.2950 6.1051

S/mile

5.3 � Concentric Neutral Cable Underground Lines

Most underground distribution lines consist of one or more concentric neu-
tral cables. Figure 5.4 illustrates a basic concentric neutral cable with the cen-
ter conductor being the phase conductor, and the concentric neutral strands 
displaced equally around a circle of radius Rb.

Referring to Figure 5.4, the following definitions apply:
Rb = Radius of a circle passing through the centers of the neutral strands
dc = Diameter of the phase conductor
ds = Diameter of a neutral strand
k = Total number of neutral strands
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The concentric neutral strands are grounded so that they are all at the same 
potential. Because of the stranding, it is assumed that the electric field created 
by the charge on the phase conductor will be confined to the boundary of the 
concentric neutral strands. In order to compute the capacitance between the 
phase conductor and ground, the general voltage drop of Equation 5.2 will 
be applied. Because all of the neutral strands are at the same potential, it is 
only necessary to determine the potential difference between the phase con-
ductor p and strand 1.

	
=

πε
+ + + + + +







V q R

RD
q RD

R
q D

R
q D

R
q D

R
1

2
ln ln ln ... ln ... lnp p

b

c

s

b b
i

i

b
k

k

b
1 1 2

12 1 1

	
(5.22)

where RD d
2

c
c= 	

	
RD d

2
s

s=
	

It is assumed that each of the neutral strands carries the same charge such 
that:

	
q q q q

q
k

i k
p

1 2= = = = −
	

(5.23)

Equation 5.22 can be simplified:

	
V q R

RD
q
k

RD
R

D
R

D
R

D
R

1
2

ln ln ln ln lnp p
b

c

p

b b

i

b

k

b
1

s 12 1 1=
πε

− + + ⋅ ⋅ ⋅+ + ⋅ ⋅ ⋅ +


















D12

Rb

2

1

3

4

5

ds

θ12

Rb

dc

k

j

i

FIGURE 5.4
Basic concentric neutral cable.
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=

πε
− ⋅ ⋅
















V

q R
RD k

RD D D D
R2

ln 1 ln ,...,
p

p b

c

i k

b
k1

s 12 1 1

	
(5.24)

The numerator of the second ln term in Equation 5.24 needs to be expanded. 
The numerator represents the product of the radius and the distances 
between strand i and all of the other strands. Referring to Figure 5.4, the  
following relations apply:

	

θ = ⋅ π

θ = ⋅θ = ⋅ π

k

k

2

2 4

12

13 12

In general, the angle between strand #1 and any other strand #i is given by:

	
( ) ( )θ = − ⋅θ = − ⋅ π
i

i
k

1
1 2

i1 12
	

(5.25)

The distances between the various strands are given by:

	

= ⋅ ⋅ θ





 = ⋅ ⋅ π








= ⋅ ⋅ θ





 = ⋅ ⋅ π








D R R
k

D R R
k

2 sin
2

2 sin

2 sin
2

2 sin 2

b b

b b

12
12

13
13

	

(5.26)

The distance between strand 1 and any other strand i is given by:

	
D R R

i
k

2 sin
2

2 sin
1

i b
i

b1
1 ( )= ⋅ ⋅ θ






 = ⋅ ⋅

− ⋅ π









	
(5.27)

Equation 5.27 can be used to expand the numerator of the second log term 
of Equation 5.24.

	

( )( )

⋅ = ⋅ π





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

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
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
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(5.28)
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The term inside the bracket in Equation 5.28 is a trigonometric identity that 
is merely equal to the number of strands k [1]. Using that identity, Equation 
5.18 becomes:

	
V

q R
RD k

k RD R
R2

ln
1

lnp
p b

c

s b
k

b
k1

1

=
πε

− ⋅ ⋅
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
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
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

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V

q R
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s

b
1 =

πε
− ⋅


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
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




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


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(5.29)

Equation 5.29 gives the voltage drop from the phase conductor to neutral 
strand #1. Care must be taken such that the units for the various radii are the 
same. Typically, underground spacings are given in inches; so the radii of the 
phase conductor (RDc) and the strand conductor (RDs) should be specified in 
inches.

Because the neutral strands are all grounded, Equation 5.29 gives the volt-
age drop between the phase conductor and ground. Therefore, the capaci-
tance from the phase to ground for a concentric neutral cable is given by:

	

= = πε

− ⋅ µC
q
V R

RD k
k RD

R

2

ln
1

ln
F/milepg

p

p b

c

s

b

1

	

(5.30)

where ε = ε0εr = permittivity of the medium
ε0 = permittivity of free space = 0.01420 μF/mile
εr = relative permittivity of the medium
The electric field of a cable is confined to the insulation material. Various 

types of insulation material are used, and each will have a range of values for 
the relative permittivity. Table 5.1 gives the range of values of relative permit-
tivity for four common insulation materials [2].

TABLE 5.1

Typical Values of Relative Permittivity (εr)

Material Range of Values of Relative Permittivity

Polyvinyl chloride (PVC) 3.4–8.0
Ethylene-propylene rubber (EPR) 2.5–3.5
Polyethylene (PE) 2.5–2.6
Cross-linked polyethlyene (XLPE) 2.3–6.0



134 Distribution System Modeling and Analysis

Cross-linked polyethlyene is a very popular insulation material. If the 
minimum value of relative permittivity is assumed (2.3), the equation for the 
shunt admittance of the concentric neutral cable is given by:

	

= +
− ⋅ µy j R

RD k
k RD

R

0
77.3619

ln
1

ln
S/mileag

b

c

s

b 	

(5.31)

Example 5.3

Determine the three-phase shunt admittance matrix for the concentric 
neutral line in Example 4.3 in Chapter 4.

From Example 4.3:

	 Rb = R = 0.0511 ft = 0.631 in.

Diameter of the 250,000 AA phase conductor = 0.567 in.

	
= =RD 0.567

2
0.2835 in.c

Diameter of the #14 CU concentric neutral strand = 0.0641 in.

	
= =RD 0.0641

2
0.03205 in.s

Substitute into Equation 5.24:

	

=








− ⋅ ⋅









y j
R

RD k
k RD

R

77.3619

ln
1

ln
ag

b

c

s

b

	

y j j77.3619

ln 0.6132
0.2835

1
13

ln 13 0.03205
0.6132

96.6098 S/mileab =






 − ⋅ ⋅








= µ

The phase admittance for this three-phase underground line is:

	

[ ] =



















µy

j

j

j

96.6098 0 0

0 96.6098 0

0 0 96.6098

S/mileabc

5.4 � Tape-Shielded Cable Underground Lines

A tape-shielded cable is shown in Figure 5.5.
Referring to Figure 5.5, Rb is the radius of a circle passing through the center 

of the tape shield. As with the concentric neutral cable, the electric field is con-
fined to the insulation so that the relative permittivity of Table 5.1 will apply.
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The tape-shielded conductor can be visualized as a concentric neutral cable 
where the number of strands k has become infinite. When k in Equation 5.24 
approaches infinity, the second term in the denominator approaches zero. 
Therefore, the equation for the shunt admittance of a tape-shielded conduc-
tor becomes:

	

= + µy j R
RD

0 77.3619

ln
S/mileag

b

c 	

(5.32)

Example 5.4

Determine the shunt admittance of the single-phase tape-shielded cable 
in Example 4.4 in Chapter 4. From Example 4.4, the outside diameter of 
the tape shield is 0.88 in. The thickness of the tape shield (T) is 5 mils. The 
radius of a circle passing through the center of the tape shield is:

	
= =T 5

1000
0.005

	
= − = − =R d T

2
0.88 0.005

2
0.4375in.b

s

The diameter of the 1/0 AA phase conductor = 0.368 in.

	
= = =RD

d
2

0.368
2

0.1840 in.c
p

Substitute into Equation 5.25:

	

=










=








=y j
R

RD

j j77.3619

ln

77.3619

ln
0.4375
0.184

89.3179bg

b

c

AL or CU phase
conductor

Insulation

CU tape shield

Jacket

Rb

FIGURE 5.5
Tape-shielded conductor.
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The line is on phase b so that the phase admittance matrix becomes:

	

[ ] =

















µy j
0 0 0
0 89.3179 0

0 0 0

S/mileabc

5.5 � Sequence Admittance

The sequence admittances of a three-phase line can be determined in 
much the same manner as the sequence impedances were determined in 
Chapter 4. Assume that the 3 × 3 admittance matrix is given in S/mile. Then 
the three-phase capacitance currents as a function of the line-to-ground volt-
ages are given by:
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
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(5.33)

	
Icap y VLGabc abc abc[ ] [ ] [ ]= ⋅

	
(5.34)

Applying the symmetrical component transformations:

	 Icap A Icap A y A VLGs abc s abc s012
1 1

012[ ] [ ] [ ][ ] [ ] [ ] [ ]= ⋅ = ⋅ ⋅ ⋅− −

	 (5.35)

From Equation 5.35, the sequence admittance matrix is given by:

	

y A y A

y y y

y y y

y y y
s abc s012

1
00 01 02

10 11 12

20 21 22

[ ] [ ][ ] [ ]= ⋅ ⋅ =



















−

	

(5.36)

For a three-phase overhead line with unsymmetrical spacing, the sequence 
admittance matrix will be full. That is, the off-diagonal terms will be non-
zero. However, a three-phase underground line with three identical cables 
will only have the diagonal terms since there is no “mutual capacitance” 
between phases. In fact, the sequence admittances will be exactly the same 
as the phase admittances.
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5.6 � The Shunt Admittance of Parallel 
Underground Lines

For underground cable lines using either concentric neutral cables or 
tape-shielded cables, the computation of the shunt admittance matrix is 
quite simple. The electric field created by the charged phase conductor does 
not link to adjacent conductors because of the presence of the concentric neu-
trals or the tape shield. As a result, the shunt admittance matrix for parallel 
underground lines will consist of diagonal terms only.

The diagonal terms for concentric neutral cables are given by:

	

y j R
RD k

k RD
R

0
77.3619

ln
1

ln
10 S/mileii

b

i

s

b

6= +
− ⋅ ⋅ ⋅ −

	

(5.37)

where Rb = radius in ft of circle going through the center of the neutral strands
RDi = radius in ft of the center phase conductor
RDs = radius in ft of the neutral strands
k = number of neutral strands
The diagonal terms for tape-shielded cables are given by:

	

y j R
RD

0
77.3619

ln
10 S/mileii

b

i

6= + ⋅ −

	

(5.38)

where Rb = radius in ft of circle passing through the center of the tape shield
RDi = radius in ft of the center phase conductor

Example 5.5

Compute the shunt admittance matrix (6 × 6) for the concentric neutral 
underground configuration in Example 4.5.

From Example 4.5:
Diameter of the central conductor: = ′′d 0.567c

Diameter of the strands: = ′′d 0.641s

Outside diameters of concentric neutral strands: d 1.29od = ′′

Radius of circle passing through the strands: R
d d

24
0.0511b

od s= − = ′

Radius of central conductor: = = = ′RD d
24

0.567
24

0.236c
c

Radius of the strands: = = = ′RD d
24

0.0641
24

0.0027s
s
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Because all cables are identical, the shunt admittance of a cable is:

	

= + ⋅








− ⋅ ⋅



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= + ⋅
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


= + ⋅ µ

y j
R

RD k
k RD

R

j

y j

0
77.3619

ln
1

ln

0
77.3619

ln
0.0511
0.0236

1
13

ln
13 0.0027

0.0511

0 96.6098 S/mile

c

b

c

s

b

c

The phase admittance matrix is:

[ ] =



























µy

j

j

j

j

j

j

96.6098 0 0 0 0 0

0 96.6098 0 0 0 0

0 0 96.6098 0 0 0

0 0 0 96.6098 0 0

0 0 0 0 96.6098 0

0 0 0 0 0 96.6098

S/mile
abc

5.7 � Summary

Methods for computing the shunt capacitive admittance for overhead and 
underground lines have been presented in this chapter. The development 
of computing the shunt admittance matrix for parallel overhead and under-
ground lines is included.

Distribution lines are typically so short that the shunt admittance can 
be ignored. However, there are cases of long, lightly loaded overhead lines 
where the shunt admittance should be included. Underground cables have 
a much higher shunt admittance per mile than overhead lines. Again, there 
will be cases where the shunt admittance of an underground cable should 
be included in the analysis process. When the analysis is being done using 
a computer, the approach to take is to model the shunt admittance for both 
overhead and underground lines, rather than making a simplifying assump-
tion when it is not necessary.

Problems

5.1 Determine the phase admittance matrix yabc[ ] and sequence admittance 
matrix y 012[ ] in μS/mile for the three-phase overhead line of Problem 4.1.

5.2 Determine the phase admittance matrix in μS/mile for the two-phase line 
of Problem 4.2.
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5.3 Determine the phase admittance matrix in μS/mile for the single-phase 
line of Problem 4.3.

5.4 Verify the results of Problems 5.1, 5.2, and 5.3 using WindMil.

5.5 Determine the phase admittance matrix and sequence admittance matrix 
in μS/mile for the three-phase line of Problem 4.5.

5.6 Determine the phase admittance matrix in μS/mile for the single-phase 
concentric neutral cable of Problem 4.9.

5.7 Determine the phase admittance matrix and sequence admittance matrix 
for the three-phase concentric neutral line of Problem 4.10.

5.8 Verify the results of Problems 5.6 and 5.7 using WindMil.

5.9 Determine the phase admittance matrix in μS/mile for the single-phase 
tape-shielded cable line of Problem 4.12.

5.10 Determine the phase admittance for the three-phase tape-shielded cable 
line of Problem 4.13.

5.11 Verify the results of Problem 5.9 and 5.10 using WindMil.

5.12 Determine the shunt admittance matrix for the parallel overhead lines 
of Problem 4.15.

5.13 Determine the shunt admittance matrix for the underground concentric 
neutral parallel lines of Problem 4.16.

WindMil Assignment

Add to the WindMil System 1 a single-phase line connected to Node 2. Call 
this “System 2.” The single-phase line is on phase b and is defined in Problem 
4.3. Call this line OH-2. At the end of the line, connect a node and call it 
Node 3. The load at Node 3 is 200 kVA at a 90% lagging power factor. The load 
is modeled as a constant impedance load.

Determine the voltages at the nodes on a 120-V base and the currents flow-
ing on the two lines.

References

	 1.	 Glover, J. D. and Sarma, M., Power System Analysis and Design, 2nd Edition, 
PWS-Kent Publishing, Boston, MA, 1995.

	 2.	 T. P. Arnold and Mercier, C. D. (eds), Power Cable Manual, 2nd Edition, Southwire 
Company, Carrollton, GA, 1997.



http://www.taylorandfrancis.com


141

6
Distribution System Line Models

The modeling of distribution overhead and underground line segments is 
a critical step in the analysis of a distribution feeder. It is important in the 
line modeling to include the actual phasing of the line and the correct spac-
ing between conductors. Chapters 4 and 5 developed the method for the 
computation of the phase impedance and phase admittance matrices with 
no simplifying assumptions. Those matrices will be used in the models for 
overhead and underground line segments.

6.1 � Exact Line Segment Model

The model of a three-phase, two-phase, or single-phase overhead or under-
ground line is shown in Figure 6.1.

When a line segment is two-phase (V-phase) or single-phase, some of the 
impedance and admittance values will be zero. Recall that in Chapters 4 
and 5, in all cases the phase impedance and phase admittance matrices were 
3 × 3. Rows and columns of zeros for the missing phases represent two-phase 
and single-phase lines. Therefore, one set of equations can be developed 
to model all overhead and underground line segments. The values of the 
impedances and admittances in Figure 6.1 represent the total impedances 
and admittances for the line. That is, the phase impedance matrix, derived in 
Chapter 4, has been multiplied by the length of the line segment. The phase 
admittance matrix, derived in Chapter 5, has also been multiplied by the 
length of the line segment.

For the line segment in Figure 6.1, the equations relating the input (node n) 
voltages and currents to the output (node m) voltages and currents are devel-
oped as follows.

Kirchhoff’s Current Law applied at node m:
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(6.1)
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In condensed form, Equation 6.1 becomes:

	
I line I Y VLG1

2
abc m abc m abc abc m[ ] [ ] [ ] [ ]= + ⋅

	
(6.2)

Kirchhoff’s Voltage Law applied to the model gives:
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(6.3)

In condensed form, Equation 6.3 becomes:

	 VLG VLG Z I lineabc n abc m abc abc m[ ][ ] [ ] [ ]= + ⋅ 	
(6.4)

Substituting Equation 6.2 into Equation 6.4:

	
{ }[ ] [ ] [ ] [ ] [ ] [ ]= + ⋅ + ⋅VLG VLG Z I Y VLG1

2
abc n abc m abc abc m abc abc m

	
(6.5)

Collecting terms:

	
{ }[ ] [ ] [ ] [ ] [ ] [ ] [ ]= + ⋅ ⋅ ⋅ + ⋅VLG U Z Y VLG Z I1

2
abc n abc abc abc m abc abc m

	
(6.6)
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+

––– –––

+

+

+

+

+

Ian Iam

Ibn

Icn

Ibm

Icm
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1
2 [Yabc]

1
2 [Yabc]

FIGURE 6.1
Three-phase line segment model.
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where

	

[ ] =
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U
1 0 0
0 1 0
0 0 1

	

(6.7)

Equation 6.6 is of the general form:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅VLG a VLG b Iabc n abc m abc m 	 (6.8)

where

	
[ ] [ ] [ ] [ ]= + ⋅ ⋅a U Z Y1

2
abc abc

	
(6.9)

	 [ ] [ ]=b Z abc 	 (6.10)

The input current to the line segment at node n is:
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(6.11)

In condensed form, Equation 6.11 becomes:

	
I I line Y VLG1

2
abc n abc m abc abc n[ ][ ] [ ] [ ]= + ⋅ ⋅

	
(6.12)

Substitute Equation 6.2 into Equation 6.12:

	
[ ] [ ] [ ] [ ] [ ] [ ]= + ⋅ + ⋅ ⋅I I Y VLG Y VLG1

2
1
2

abc n abc m abc abc m abc abc n
	

(6.13)

Substitute Equation 6.6 into Equation 6.13:

{ }
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(6.14)
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Collecting terms in Equation 6.14:
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(6.15)

Equation 6.15 is of the form:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅I c VLG d Iabc n abc m abc m 	 (6.16)

where
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4
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(6.17)

	
[ ] [ ] [ ] [ ]= + ⋅ ⋅d U Y Z1

2
abc abc

	
(6.18)

Equations 6.8 and 6.16 can be set in partitioned matrix form:
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(6.19)

Equation 6.19 is very similar to the equation used in transmission line analy-
sis when the ABCD parameters have been defined [1]. In this case, the abcd 
parameters are 3 × 3 matrices rather than single variables and will be referred 
to as the “generalized line matrices.”

Equation 6.19 can be turned around to solve for the voltages and currents 
at node m in terms of the voltages and currents at node n.
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(6.20)

The inverse of the abcd matrix is simple because the determinant is:

	 [ ] [ ][ ] [ ] [ ]⋅ − ⋅ =a d b c U 	 (6.21)
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Using the relationship in Equation 6.21, Equation 6.20 becomes:
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(6.22)

Because the matrix [ ]a  is equal to the matrix [ ]d , Equation 6.22 in expanded 
form becomes:

	 [ ][ ] [ ] [ ] [ ]= ⋅ − ⋅VLG a VLG b Iabc m abc n abc n 	 (6.23)

	 [ ][ ] [ ] [ ] [ ]= − ⋅ + ⋅I c VLG d Iabc m abc n abc n 	 (6.24)

Sometimes it is necessary to compute the voltages at node m as a function of 
the voltages at node n and the currents entering node m. This is true in the 
iterative technique that is developed in Chapter 10.

Solving Equation 6.8 for the bus m voltages gives:
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(6.25)

Equation 6.25 is of the form:

	 VLG A VLG B Iabc m abc n abc m[ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅ 	 (6.26)

where

	 [ ] [ ]= −A a 1

	 (6.27)

	 [ ][ ] [ ]= ⋅−B a b1

	 (6.28)

The line-to-line voltages are computed by:
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where
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(6.30)

Because the mutual coupling between phases for the line segments is not 
equal, there will be different values of voltage drop on each of the three 
phases. As a result, the voltages on a distribution feeder become unbal-
anced even when the loads are balanced. A common method of describ-
ing the degree of unbalance is to use the National Electrical Manufactures 
Association (NEMA) definition of voltage unbalance as given in Equation 
6.31 [2].

	

V
Maximum deviation of voltages from average

V

V
dV

V

100%

100%

unbalance
average

unbalance
average

= ⋅

= ⋅
	

(6.31)

Example 6.1

A balanced three-phase load of 6000 kVA, 12.47 kV, and 0.9 lagging 
power factor is being served at node m of a 10,000-ft three-phase 
line segment. The load voltages are rated and balanced at 12.47 kV. 
The configuration and conductors of the line segment are those of 
Example 4.1. Determine the generalized line constant matrices [a], [b], 
[c], [d], [A], and [B]. Using the generalized matrices, determine the line-
to-ground voltages and line currents at the source end (node n) of the 
line segment.

Solution: The phase impedance matrix and the shunt admittance matrix 
for the line segment as computed in Examples 4.1 and 5.1 are:
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0.7033 1.169 5.3911

S/mileabc abc

For the 10,000-ft line segment, the total phase impedance matrix and the 
shunt admittance matrix are:
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[ ] =
− −

− −
− −



















µY

j j j

j j j

j j j

10.7409 3.4777 1.3322

3.4777 11.3208 2.2140

1.3322 2.2140 10.2104

Sabc

It should be noted that the elements of the phase admittance matrix are 
very small.

The generalized matrices computed according to Equations 6.9, 6.10, 
6.17, and 6.18 are:

	

[ ] [ ] [ ] [ ]= + ⋅ ⋅ =
















a U Z Y1
2

1.0 0 0
0 1.0 0
0 0 1.0

abc abc

[ ] [ ]= =
+ + +
+ + +
+ + +



















b Z

j j j

j j j

j j j

0.8667 2.0417 0.2955 0.9502 0.2907 0.7290

0.2955 0.9502 0.8837 1.9852 0.2992 0.8023

0.2907 0.7290 0.2992 0.8023 0.8741 2.0172
abc

	

[ ] =
















c
0 0 0
0 0 0
0 0 0

	

[ ] [ ] [ ] [ ]= + ⋅ ⋅ =
















d U Y Z1
2

1.0 0 0
0 1.0 0
0 0 1.0

abc abc

	

[ ] =
















A
1.0 0 0
0 1.0 0
0 0 1.0

[ ][ ] [ ]= ⋅ =
+ + +
+ + +
+ + +



















−B a b

j j j

j j j

j j j

0.8667 2.0417 0.2955 0.9502 0.2907 0.7290

0.2955 0.9502 0.8837 1.9852 0.2992 0.8023

0.2907 0.7290 0.2992 0.8023 0.8741 2.0172

1

Because the elements of the phase admittance matrix are so small, the 
[a], [A], and [d] matrices appear to be the unity matrix. If more significant 
figures are displayed, the 1,1 element of these matrices is:

	 = = +a A j0.99999117 0.000003951,1 1,1
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In addition, the elements of the [c] matrix appear to be zero. Again, if 
more significant figures are displayed, the 1,1 term is:

	 = − +c j0.0000044134 0.00001271441,1

The point here is that for all practical purposes, the phase admittance 
matrix can be neglected.

The magnitude of the line-to-ground voltages at the load is:

	
= =V 12, 470

3
7199.56LG

Selecting the phase a to ground voltage as reference, the line-to-ground 
voltage matrix at the load is:

	



















= −



















V

V

V

7199.56/0

7199.56/ 120

7199.56/120

V
ag

bg

cg
m

The magnitude of the load currents is:

	
=

⋅
=I 6000

3 12.47
277.79

m

For a 0.9 lagging power factor, the load current matrix is:

	

[ ] =

−
−



















I

277.79/ 25.84

277.79/ 145.84

277.79/94.16

Aabc m

The line-to-ground voltages at node n are computed to be:

	

[ ][ ] [ ] [ ] [ ]= ⋅ + ⋅ = −



















VLG a VLG b I

7538.70/1.57

7451.25/ 118.30

7485.11/121.93

Vabc n abc m abc m

It is important to note that the voltages at node n are unbalanced even 
though the voltages and currents at the load (node m) are perfectly bal-
anced. This is a result of the unequal mutual coupling between phases. 
The degree of voltage unbalance is of concern because, for example, 
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the operating characteristics of a three-phase induction motor are very 
sensitive to voltage unbalance. Using the NEMA definition for voltage 
unbalance (Equation 6.29), the voltage unbalance is:

	

V VLG1
3

7491.69average n k
k 1

3

∑= ⋅ =
=

	

i

dV V VLG

for: 1,2,3

47.01
40.44
6.57

i average n i

=

= − =
















	
V dV

V
47.01

7491.70
100% 0.6275 %unbalance

max

average
= = ⋅ =

Although this may not seem like a large unbalance, it does give an indi-
cation of how the unequal mutual coupling can generate an unbalance. 
It is important to know that NEMA standards require that induction 
motors be de-rated when the voltage unbalance exceeds 1.0%.

Selecting rated line-to-ground voltage as base (7199.56), the per-unit 
voltages at node n are:

	

V

V

V

1
7199.56

7538.70/1.577

7451.25/ 118.30

7485.11/121.93

1.0471/1.57

1.0350/ 118.30

1.0397/121.93

per-unit
ag

bg

cg
n



















= −



















= −



















By converting the voltages to per-unit, it is easy to see that the voltage 
drop by phase is 4.71% for phase a, 3.50% for phase b, and 3.97% for 
phase c.

The line currents at node n are computed to be:

	

[ ][ ] [ ] [ ] [ ]= ⋅ + ⋅ =

−

−



















I c VLG d I

277.71/ 25.83

277.73/ 148.82

277.73/94.17

Aabc n abc m abc m

Comparing the computed line currents at node n to the balanced load 
currents at node m, a very slight difference is noted, which is another 
result of the unbalanced voltages at node n and the shunt admittance of 
the line segment.
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6.2 � The Modified Line Model

It was demonstrated in Example 6.1 that the shunt admittance of an overhead 
line is so small that it can be neglected. Figure 6.2 shows the modified line 
segment model with the shunt admittance neglected.

When the shunt admittance is neglected, the generalized matrices become:

	 [ ] [ ]=a U 	 (6.32)

	 [ ] [ ]=b Z abc 	 (6.33)

	 [ ] [ ]=c 0 	 (6.34)

	 [ ] [ ]=d U 	 (6.35)

	 [ ] [ ]=A U 	 (6.36)

	 [ ] [ ]=B Z abc 	 (6.37)

6.2.1 � The Three-Wire Delta Line

If the line is a three-wire delta, then the voltage drops down the line must be 
in terms of the line-to-line voltages and line currents. However, it is possible 
to use “equivalent” line-to-neutral voltages, so that the equations derived to 
this point will still apply. Writing the voltage drops in terms of line-to-line 
voltages for the line in Figure 6.2 results in:

Node-n Node-m

Vagn

Vbgn

Vcgn

Vagm

Vbgm

Vcgm

Zaa

Zbb

Zcc

Zca

Zbc

Zab

+

––– –––

+

+

+

+

+

Ian

Icn

Ibn

Iam

Icm

Ibm

Ilinea

Ilineb

Ilinec

FIGURE 6.2
Modified line segment model.



151Distribution System Line Models

	

















=
















+



















−



















V
V
V

V
V
V

vdrop

vdrop

vdrop

vdrop

vdrop

vdrop

ab

bc

ca
n

ab

bc

ca
m

a

b

c

b

c

a
	

(6.38)

where

	 [ ]



















=
















⋅



















  = ⋅  

vdrop

vdrop

vdrop

Z Z Z
Z Z Z
Z Z Z

I line

I line

I line

vdrop Z I line

a

b

c

aa ab ac

ba bb bc

ca cb cc

a

b

c

abc abc abc 	

(6.39)

Expanding Equation 6.38 for the phase a–b:

	 Vab Vab vdrop vdropn m a b= + − 	 (6.40)

But:

	

= −

= −

Vab Van Vbn

Vab Van Vbn

n n n

m m m 	
(6.41)

Substitute Equation 6.41 into Equation 6.40:

	

Van Vbn Van Vbn vdrop vdrop

Van Van vdrop

Vbn Vbn vdrop

or:

n n m m a b

n m a

n m b

− = − + −

= +

= +
	

(6.42)

In general, Equation 6.42 can be broken into terms of “equivalent” line-to-
neutral voltages.

	

VLN VLN vdrop

VLN VLN Z I line

n m abc

n m abc abc

[ ]

[ ]

[ ] [ ]

[ ] [ ] [ ]

= +

= + ⋅
	

(6.43)

The conclusion is that it is possible to work with “equivalent” line-to-neutral 
voltages in a three-wire delta line. This is very important because it makes 
the development of general analyses techniques the same for four-wire wye 
and three-wire delta systems.
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6.2.2 � The Computation of Neutral and Ground Currents

In Chapter 4, the Kron reduction method was used to reduce the primitive 
impedance matrix to the 3 × 3 phase impedance matrix. Figure 6.3 shows a 
three-phase line with grounded neutral that is used in the Kron reduction. 
Note in Figure 6.3 that the direction of the current flowing in the ground is 
shown.

In the development of the Kron reduction method, Equation 4.52 
defined the “neutral transform matrix” [ ]t n . That equation is shown as 
Equation 6.44.

	
t z zˆ ˆn nn nj

1[ ] = −  ⋅ 
−

	
(6.44)

The matrices  ẑnn  and  ẑnj  are the partitioned matrices in the primitive 
impedance matrix.

When the currents flowing in the lines have been determined, Equation 6.45 
is used to compute the current flowing in the grounded neutral wire(s).

	 [ ] [ ] [ ]= ⋅I t I .n n abc 	 (6.45)

In Equation 6.45, the matrix [ ]I n  for an overhead line with one neutral wire 
will be a single element. However, in the case of an underground line con-
sisting of concentric neutral cables or taped-shielded cables with or without 
a separate neutral wire, [ ]I n  will be the currents flowing in each of the cable 
neutrals and the separate neutral wire if present. Once the neutral currents 
have been determined, Kirchhoff’s Current Law is used to compute the cur-
rent flowing in the ground.

	 I I I I In In Ing a b c k1 2( )= − + + + + +⋅ ⋅ ⋅+ 	 (6.46)

Vng V ′ng

Ia

Ib

Ic

In

Ig

+

V ′cg
+

Vcg
+

+

Vbg
+

Vag
+

V ′bg
+

V ′ag
+

−−−−− − − −

zab
^ zac

^

zbc
^ zbn

^ zan
^

zcn
^

znn
^

zcc
^

zbb
^

zaa
^

FIGURE 6.3
Three-phase line with neutral and ground currents.
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Example 6.2

The line of Example 6.1 will be used to supply an unbalanced load at 
node m. Assume that the voltages at the source end (node n) are bal-
anced three-phase at 12.47 kV line-to-line. The balanced line-to-ground 
voltages are:

	

[ ] = −



















VLG

7199.56/0

7199.56/ 120

7199.56/120

Vn

The unbalanced currents measured at the source end are given by:

	

















=

−
−



















I
I
I

249.97/ 24.5

277.56/ 145.8

305.54/95.2

A
a

b

c
n

Determine the following:

•	 The line-to-ground and line-to-line voltages at the load end 
(node m) using the modified line model

•	 The voltage unbalance
•	 The complex powers of the load
•	 The currents flowing in the neutral wire and ground

Solution: The [A] and [B] matrices for the modified line model are:

	

[ ] [ ]= =
















A U
1 0 0
0 1 0
0 0 1

	

B Z

j j j

j j j

j j j

0.8666 2.0417 0.2955 0.9502 0.2907 0.7290

0.2955 0.9502 0.8837 1.9852 0.2992 0.8023

0.2907 0.7290 0.2992 0.8023 0.8741 2.0172
abc[ ] [ ]= =

+ + +
+ + +
+ + +



















Ω

Because this is the approximate model, [ ]I abc m
 is equal to [ ]I abc n. 

Therefore:

	

I
I
I

249.97/ 24.5

277.56/ 145.8

305.54/95.2

A
a

b

c
m

















=

−

−


















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The line-to-ground voltages at the load end are:

	

[ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅ =

−
−



















VLG A VLG B I

6942.53/ 1.47

6918.35/ 121.55

6887.71/117.31

Vm n abc m

The line-to-line voltages at the load end are:

	

[ ] =
−

−
−

















Dv
1 1 0
0 1 1
1 0 1

	

[ ][ ] [ ]= ⋅ = −



















VLL Dv VLG

12, 008/28.4

12, 025/ 92.2

11, 903/148.1
m m

For this condition, the average load voltage is:

	

V VLG1
3

6916.20average m k
k 1

3

∑= ⋅ =
=

The maximum deviation from the average is on phase c so that:

	

=

= − =
















i

dV V VLG

for: 1,2,3

26.33
2.15
28.49

i average m i

	
V

dV
V

28.49
6916.20

100 0.4119%unbalance
max

average
= = ⋅ =

The complex powers of the load are:

S
S
S

V I

V I

V I

j

j

j
jkvar

1
1000

.

1597.2 678.8

1750.8 788.7

1949.7 792.0
kW

*

*

*

a

b

c

ag a

bg b

cg c

















= ⋅

⋅

⋅





















=
+
+
+



















+

The “neutral transformation matrix” from Example 4.1 is:

[ ][ ] = − − − − − −t j j j0.4292 0.1291 0.4476 0.1373 0.4373 0.1327n

AU: Please 
check is there 
any text missing 
here.
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The neutral current is:

[ ] [ ] [ ]= ⋅ = −I t I 26.2/ 29.5n n abc m

The ground current is:

( )= − + + + = −I I I I I 32.5/ 77.6g a b c n

6.3 � The Approximate Line Segment Model

Many times, the only data available for a line segment will be the positive 
and zero sequence impedances. The approximate line model can be devel-
oped by applying the “reverse impedance transformation” from symmetri-
cal component theory.

Using the known positive and zero sequence impedances, the “sequence 
impedance matrix” is given by:

	

Z
Z

Z
Z

0 0
0 0
0 0

seq

0

  =

















+

+ 	

(6.47)

The “reverse impedance transformation” results in the following approxi-
mate phase impedance matrix.

	 Z A Z Aapprox s seq s
1[ ] [ ]  = ⋅ ⋅ −

	 (6.48)

	

Z

Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z Z Z

1
3

2

2

2

approx

0 0 0

0 0 0

0 0 0

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

  = ⋅

⋅ + − −

− ⋅ + −

− − ⋅ +



















+ + +

+ + +

+ + +
	

(6.49)

Notice that the approximate impedance matrix is characterized by the three 
diagonal terms being equal and all mutual terms being equal. This is the 
same result that is achieved if the line is assumed to be transposed. Applying 
the approximate impedance matrix, the voltage at node n is computed to be:

	

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )



















=



















+ ⋅

⋅ + − −

− ⋅ + −

− − ⋅ +



















⋅



















+ + +

+ + +

+ + +

V

V

V

V

V

V

Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z Z Z

I

I

I

1
3

2

2

2

ag

bg

cg n

ag

bg

cg m

a

b

c m

0 0 0

0 0 0

0 0 0
	

(6.50)
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In condensed form, Equation 6.50 becomes:

	 VLG VLG Z In m approx abc m[ ] [ ] [ ]= + ⋅ 	 (6.51)

Note that Equation 6.51 is of the form:

	 [ ][ ] [ ][ ] [ ]= + ⋅VLG a VLG b In m abc m 	
(6.52)

where:

	 [ ]a  = unity matrix

	
b Z approx[ ] =  

Equation 6.50 can be expanded and an equivalent circuit for the approximate 
line segment model can be developed. Solving Equation 6.50 for the phase a 
voltage at node n results in:

	
{ }( ) ( ) ( )= + + + − + ++ + +Vag Vag Z Z I Z Z I Z Z I1

3
2n a b c0 0 0m

	
(6.53)

Modify Equation 6.53 by adding and subtracting the term ( )− +Z Z Ia0  and 
then combining terms and simplifying:

	

{ }

( ) ( ) ( )

( ) ( )

( ) ( )( )

( ) ( )

= +
+ + − + −

+ − − −













= + + − + +

= + ⋅ +
−

⋅ + +

+ + +

+ +

+ +

+
+

Vag Vag
Z Z I Z Z I Z Z I

Z Z I Z Z I

Vag Vag Z I Z Z I I I

Vag Vag Z I
Z Z

I I I

1
3

2

1
3

3

3

n m

a b c

a a

n m a a b c

n m a a b c

0 0 0

0 0

0

0

	

(6.54)

The same process can be followed in expanding Equation 6.50 for phases b 
and c. The final results are:

	

( ) ( )= + ⋅ +
−

⋅ + ++
+Vbg Vbg Z I

Z Z
I I I

3
n m b a b c

0

	
(6.55)

	

( ) ( )= + ⋅ +
−

⋅ + ++
+Vcg Vcg Z I

Z Z
I I I

3
n m c a b c

0

	
(6.56)

Figure 6.4 illustrates the approximate line segment model.
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Figure 6.4 is a simple equivalent circuit for the line segment because no 
mutual coupling has to be modeled. It must be understood, however, that the 
equivalent circuit can only be used when transposition of the line segment 
has been assumed.

Example 6.3

The line segment of Example 4.1 is to be analyzed assuming that the 
line has been transposed. In Example 4.1, the positive and zero sequence 
impedances were computed to be:

	

= +
= +

Ω+z j

z j

0.3061 0.6270

0.7735 1.9373
/mile

0

Assume that the load at node m is the same as in Example 6.1. That is:

	 = = =kVA kVLL6000, 12.47, Power factor 0.8 lagging

Determine the voltages and currents at the source end (node n) for this 
loading condition.

Solution: The sequence impedance matrix is:

	

z

j

j

j

0.7735 1.9373 0 0

0 0.3061 0.6270 0

0 0 0.3061 0.6270

/mileseq  =
+

+
+



















Ω

Performing the reverse impedance transformation results in the approx-
imate phase impedance matrix.

	 z A z Aapprox s seq s
1[ ] [ ]  = ⋅ ⋅ −

Node n Node m

Vagn Vagm

Vbgm

Vcgm

Vbgn

Vcgn
+

+

+

+

+

+

IaZ+

IbZ+

IcZ+

(Z0 − Z+)/3 (Ia + Ib + Ic) − − −− − −

FIGURE 6.4
Approximate line segment model.
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z

j j j

j j j

j j j

0.4619 1.0638 0.1558 0.4368 0.1558 0.4368

0.1558 0.4368 0.4619 1.0638 0.1558 0.4368

0.1558 0.4368 0.1558 0.4368 0.4619 1.0638

/mileapprox  =
+ + +
+ + +
+ + +



















Ω

For the 10,000-ft line, the phase impedance matrix and the [b] matrix are:

	
b Z z 10, 000

5280
approx approx[ ] =   =  ⋅

	

[ ] =
+ + +
+ + +
+ + +



















Ωb

j j j

j j j

j j j

0.8748 2.0147 0.2951 0.8272 0.2951 0.8272

0.2951 0.8272 0.8748 2.0147 0.2951 0.8272

0.2951 0.8272 0.2951 0.8272 0.8748 2.0147

Note in the approximate phase impedance matrix that the three diago-
nal terms are equal and all of the mutual terms are equal. Again, this is 
an indication of the transposition assumption.

From Example 6.1, the voltages and currents at node m are:

	

[ ] = −



















VLG

7199.56/0

7199.56/ 120

7199.56/120

Vm

	

[ ] =

−
−



















I

277.79/ 25.84

277.79/ 145.84

277.79/94.16

Aabc m

Using Equation 6.52:

	

[ ][ ] [ ] [ ] [ ]= ⋅ + ⋅ =

−
−



















VLG a VLG b I

7491.72/ 1.73

7491.72/ 118.27

7491.72/121.73

Vn m abc m

Note that the computed voltages are balanced. In Example 6.1, it was 
shown that when the line is modeled accurately, there is a voltage unbal-
ance of 0.6275%. It should also be noted that the average value of the 
voltages at node n in Example 6.1 was 7491.69 V.

The Vag at node n can also be computed using Equation 6.48.

	
( )( )= + ⋅ +

−
⋅ + ++

+Vag Vag Z I
Z Z

I I I
3

n m a a b c
0
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Because the currents are balanced, this equation reduces to:

	 = + ⋅+Vag Vag Z In m a

	 ( )= + + ⋅ − =Vag j7199.56/0 0.5797 1.1875 277.79/ 25.84 7491.72/1.73 Vn

It can be noted that when the loads are balanced and transposition has 
been assumed, the three-phase line can be analyzed as a simple single-
phase equivalent as was done in the foregoing calculation.

Example 6.4

Use the balanced voltages and unbalanced currents at node n in 
Example  6.2 and the approximate line model to compute the voltages 
and currents at node m.

Solution: From Example 6.2, the voltages and currents at node n are 
given as:

	

[ ] = −



















VLG

7199.56/0

7199.56/ 120

7199.56/120

Vn

	

















=

−
−



















I
I
I

249.97/ 24.5

277.56/ 145.8

305.54/95.2

A
a

b

c
n

The [A] and [B] matrices for the approximate line model are:
where

	 [ ]A  = unity matrix

	 B Z approx[ ] =  

The voltages at node m are determined by:

	

[ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅ =

−
−



















VLG A VLG B I

6993.10/ 1.63

6881.15/ 121.61

6880.23/117.50

Vm n abc n

The voltage unbalance for this case is computed by:

	
V VLG1

3
6918.16average m k

k 1

3

∑= ⋅ =
=
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=

= − =
















i

dV V VLG

for: 1,2,3

74.94
37.01
37.93

i average m i

	
V dV

V
74.94

6918.16
100 1.0833%unbalance

max

average
= = ⋅ =

Note that the approximate model has led to a higher voltage unbalance 
than the “exact” model.

6.4 � The Modified “Ladder” Iterative Technique

The previous example problems have assumed a linear system. Unfortunately, 
that will not be the usual case for distribution feeders. When the source volt-
ages are specified and the loads are specified as constant kW and kvar (con-
stant PQ), the system becomes nonlinear and an iterative method will have 
to be used to compute the load voltages and currents. Chapter 10 develops 
in detail the modified “ladder” iterative technique. However, a simple form 
of that technique will be developed here in order to demonstrate how the 
nonlinear system can be evaluated.

The ladder technique is composed of two parts:

	 1.	Forward sweep
	 2.	Backward sweep

The forward sweep computes the downstream voltages from the source by 
applying Equation 6.57.

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅VLG A VLG B Iabc m abc n abc 	 (6.57)

To start the process, the load currents [ ]I abc  are assumed to be equal to zero 
and the load voltages are computed. In the first iteration, the load voltages 
will be the same as the source voltages and the load currents are computed.

The backward sweep computes the currents from the load back to the 
source using the most recently computed voltages from the forward sweep. 
Equation 6.58 is applied for this sweep.

	

[ ]

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

= ⋅ + ⋅

=

= ⋅

I c VLG d I

c

I d I

since: 0

abc n abc m abc m

abc n abc m 	

(6.58)



161Distribution System Line Models

After the first forward and backward sweeps, the new load voltages are com-
puted using the most recent currents. The forward and backward sweeps 
continue until the error between the new and previous load voltages are 
within a specified tolerance. Using the matrices computed in Example 6.1, a 
very simple Mathcad program that applies the ladder iterative technique is 
demonstrated in Example 6.5.

Example 6.5

The line of Example 6.1 serves an unbalanced three-phase load of:
Phase a: 2500 kVA and PF = 0.9 lagging
Phase b: 2000 kVA and PF = 0.85 lagging
Phase c: 1500 kVA and PF = 0.95 lagging
The source voltages are balanced at 12.47 kV.

Tol      .00001
Eabc

7200

7200 e j 120 deg

7200 e j  120 deg
Start

0

0

0
kVLN 7.2

Y         I abc Start

Vold Start

VLGabc A Eabc B Iabc

Iabc
i

SLi 1000

VLGabc
i

i     1   3for

Errorj

VLGabc
j

Vold
j

kVLN 1000

j     1    3for

Errmax max(Error)

break  if  Errmax Tol

Vold VLGabc

n     1   200for

Out1 VLGabc

Out2 Iabc

Out3 n

Out

FIGURE 6.5
Mathcad program for Example 6.5.



162 Distribution System Modeling and Analysis

	
= =ELN 12, 470

3
7199.6

A simple Mathcad program (shown in Figure 6.5) is used to compute the 
load voltages and currents. The matrices [A] and [B] from Example 6.1 
are used.

After seven iterations, the load voltages and currents are computed 
to be:

	

VLG I

6678.2/ 2.3

6972.8/ 122.1

7055.5/118.7

374.4/ 28.2

286.8/ 153.9

212.6/100.5
abc abc[ ] [ ]=

−

−



















=

−

−



















Example 6.5 demonstrates the application of the ladder iterative 
technique. This technique will be used as models of other distribu-
tion feeder elements that are developed. A simple flowchart of the 
program and one that will be used in other chapters is shown in 
Figure 6.6.

Compute

Forward sweep

Backward sweep

Initialize

Error < Tol ?
Yes

No

error

Output
results

Stop

FIGURE 6.6
Simple modified ladder flow chart.
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6.5 � The General Matrices for Parallel Lines

The equivalent Pi circuits for two parallel three-phase lines are shown in 
Figure 6.7.

The 6 × 6 phase impedance and shunt admittance matrices for parallel 
three-phase lines were developed in Chapters 4 and 5. These matrices are 
used in the development of the general matrices used in modeling parallel 
three-phase lines.

The first step in computing the abcd matrices is to multiply the 6 × 6 phase 
impedance matrix from Chapter 4 and the 6 × 6 shunt admittance matrix 
from Chapter 5 by the distance that the lines are parallel.

	

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ] [ ]













 =













⋅ ⋅













 =













⋅















= ⋅

v

v

z z

z z
length

I

I

Z Z

Z Z

I

I

v Z I

1

2

1

2

1

2
V

11 12

21 22

11 12

21 22

	
(6.59)

	

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]













⋅ =















y y

y y
length

Y Y

Y Y
S

11 12

21 22

11 12

21 22
	

(6.60)

Referring to Figure 6.7, the line currents in the two circuits are given by:

	

[ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ] [ ] [ ]













 =













+ ⋅













⋅















= + ⋅ ⋅

I

I

IR

IR

Y Y

Y Y

VR

VR

I IR Y VR

1
2

A

1
2

1

2

1

2

11 12

21 22

1

2

	

(6.61)

[VS1]

[VS2]

+
+

+

+
+

+
[v2]

[v1]
[IS1]

[IS2]

[I1]

[I2]

[IR1]

[IR2]

[VR1]

[VR2]

[ISC1]

[ISC2]

[IRC1]

[IRC2]

−

−

−

−

−−

Y1
2

Y2
2

Y2
2

Y1
2

FIGURE 6.7
Equivalent Pi parallel lines.
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The sending end voltages are given by:

	

[ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ] [ ] [ ]













=












+












⋅












= + ⋅

VS

VS

VR

VR

Z Z

Z Z

I

I

VS VR Z I

V
1

2

1

2

11 12

21 22

1

2

	

(6.62)

Substitute Equation 6.61 into Equation 6.62:

	

[ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ] [ ] [ ] [ ] [ ]













 =













 +















×












 + ⋅













 ⋅





























= + ⋅ + ⋅ ⋅







VS

VS

VR

VR

Z Z

Z Z

IR

IR

Y Y

Y Y

VR

VR

VS VR Z IR Y VR

1
2

1
2

1

2

1

2

11 12

21 22

1

2

11 12

21 22

1

2

	
(6.63)

Combine terms in Equation 6.63:

[ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]













 =













 + ⋅











































×












 +













 ⋅















= + ⋅ ⋅





 ⋅ + ⋅

VS

VS

U

U

Z Z

Z Z

Y Y

Y Y

VR

VR

Z Z

Z Z

IR

IR

VS U Z Y VR Z IR

1
2

1
2

1

2

11 12

21 22

11 12

21 22

1

2

11 12

21 22

1

2

	

(6.64)

Equation 6.64 is of the form:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅VS a VR b IR 	 (6.65)

where

	 [ ]

[ ] [ ] [ ] [ ]

[ ]

= + ⋅ ⋅

=

a U Z Y

b Z

1
2

	

(6.66)
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The sending end currents are given by:

	

[ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ] [ ] [ ]













 =













 + ⋅













 ⋅















= + ⋅ ⋅

IS

IS

I

I

Y Y

Y Y

VS

VS

IS I Y VS

1
2

1
2

1

2

1

2

11 12

21 22

1

2

	

(6.67)

Substitute Equations 6.61 and 6.65 into Equation 6.67 using the shorthand 
form.

	
( )[ ][ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]= + ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅IS IR Y VR Y a VR b IR1

2
1
2

A
	

(6.68)

Combine terms in Equation 6.68.

	
( ) [ ][ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]= ⋅ + ⋅ ⋅ + + ⋅ ⋅






⋅IS Y Y a VR U Y b IR1

2
1
2 	

(6.69)

Equation 6.69 is of the form:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅IS c VR d IR 	 (6.70)

where

	

( )

[ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

= ⋅ + ⋅ = ⋅ + ⋅ + ⋅ ⋅


























= + ⋅ ⋅ ⋅

= + ⋅ ⋅ = + ⋅ ⋅

c Y Y a Y Y U Z Y

c Y Y Z Y

d U Y b U Y Z

1
2

1
2

1
2

1
4

1
2

1
2 	

(6.71)

The derived matrices [ ] [ ][ ] [ ]a b c d, , ,  will be 6 × 6 matrices. These four matri-
ces can all be partitioned between the third and fourth rows and columns. 
The final voltage equation in partitioned form is given by:

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ]
[ ]













 =













 ⋅













 +













 ⋅















VS

VS

a a

a a

VR

VR

b b

b b

IR

IR

1

2

11 12

21 22

1

2

11 12

21 22

1

2
	

(6.72)
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The final current equation in partitioned form is given by:

	

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ]
[ ]













 =













 ⋅













 +













 ⋅















IS

IS

c c

c c

VR

VR

d d

d d

IR

IR

1

2

11 12

21 22

1

2

11 12

21 22

1

2
	

(6.73)

Equations 6.72 and 6.73 are used to compute the sending end voltages and 
currents of two parallel lines. The matrices [ ]A  and [ ]B  are used to compute 
the receiving end voltages when the sending end voltages and receiving end 
currents are known. Solving Equation 6.65 for [ ]VR :

	

( )[ ]

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

= ⋅ − ⋅

= ⋅ − ⋅ ⋅

= ⋅ − ⋅

−

− −

VR a VS b IR

VR a VS a b IR

VR A VS B IR

1

1 1

	

(6.74)

where

	
[ ]

[ ] [ ]

[ ] [ ]

=

= ⋅

−

−

A a

B a b

1

1
	

In expanded form, Equation 6.74 becomes:

	

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]













=












 ⋅













−












 ⋅













VR
VR

A A

A A
VS
VS

B B

B B
IR
IR

1

2

11 12

21 22

1

2

11 12

21 22

1

2
	

(6.75)

6.5.1 � Physically Parallel Lines

Two distribution lines can be physically parallel in two different ways in a 
radial system. Figure 6.8 illustrates two lines connected to the same sending 
end node, but the receiving ends of the lines do not share a common node.

The physically parallel lines of Figure 6.8 represent the common practice of 
two feeders leaving a substation on the same poles or right of ways and then 
branching in different directions downstream. Equations 6.72 and 6.73 are 
used to compute the sending end node voltages using the known line cur-
rent flows and node voltages at the receiving end. For this special case, the 
sending end node voltages must be the same at the end of the two lines so 
that Equation 6.72 is modified to reflect that [ ] [ ]=VS VS1 2 . A modified ladder 
iterative technique is used to force the two sending end voltages to be equal. 
In Chapter 10, the “ladder” iterative technique will be developed that will be 
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used to adjust the receiving end voltages in such a manner that the sending 
end voltages will be the same for both lines.

Example 6.6

The parallel lines of Examples 4.2 and 5.2 are connected as shown in 
Figure 6.8 and are parallel to each other for 10 miles.

	 1.	 Determine the abcd and AB matrices for the parallel lines.

From Examples 4.2 and 5.2, the per-mile values of the phase impedance 
and shunt admittance matrices in partitioned form are shown. The first 
step is to multiply these matrices by the length of the line. Note that the 
units for the shunt admittance matrix in Example 5.2 are in μS/mile.

	

dist

Z z dist

Y y dist

10

10 6

=

= ⋅

= ⋅ ⋅−

The unit matrix [ ]U  must be defined as 6 × 6, and then the abcd matrices 
are computed using the equations developed in this chapter. The final 
results in partitioned form are:

	

[ ] [ ]= =
+

+
+



















a a

j

j

j

0.9998 0.0001 0 0

0 0.9998 0.0001 0

0 0 0.9998 0.0001
11 22

	

[ ] [ ]= =
















a a
0 0 0
0 0 0
0 0 0

12 21

	

[ ] =
+ + +
+ + +
+ + +



















b

j j j

j j j

j j j

4.5015 11.0285 1.4643 5.3341 1.4522 4.1255

1.4643 5.3341 4.5478 10.8726 1.4754 4.5837

1.4522 4.1255 1.4754 4.5837 4.5231 10.9556
11

[VS]
[IS1] [IR1]

[IR2]

[VR1]

[VR2]
[IS2]

[IS]

FIGURE 6.8
Physically parallel lines with a common sending end node.
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[ ] =
+ + +
+ + +
+ + +



















b

j j j

j j j

j j j

1.5191 4.8484 1.4958 3.9305 1.4775 5.5601

1.5446 5.3359 1.5205 4.3234 1.5015 4.9093

1.5311 4.2867 1.5074 5.4599 1.4888 3.9548
12

	

[ ] =
+ + +
+ + +
+ + +



















b

j j j

j j j

j j j

1.5191 4.8484 1.5446 5.3359 1.5311 4.2867

1.4958 3.9305 1.5205 4.3234 1.5074 5.4599

1.4775 5.5601 1.5015 4.9093 1.4888 3.9548
21

	

[ ] =
+ + +
+ + +
+ + +



















b

j j j

j j j

j j j

5.7063 10.9130 1.5801 4.2365 1.5595 5.0167

1.5801 4.2365 5.6547 11.0819 1.5348 3.8493

1.5595 5.0167 1.5348 3.8493 5.6155 11.2117
22

	

[ ] [ ]

[ ] [ ]

= =



















= =
















c c

j

j

j

c c

0.0001 0 0

0 0.0001 0

0 0 0.0001

0 0 0
0 0 0
0 0 0

11 12

21 22

	
[ ] [ ] [ ] [ ][ ] [ ] [ ] [ ]= = = =d a d a d a d a11 11 12 12 21 21 22 22

	

[ ] [ ] [ ]= = =
−

−
−



















−A A a

j

j

j

1.0002 0.0001 0 0

0 1.0002 0.0001 0

0 0 1.0002 0.0001
11 22 11

1

	

[ ] [ ]= =
















A A
0 0 0
0 0 0
0 0 0

12 21

	

[ ][ ] [ ]= ⋅ =
+ + +
+ + +
+ + +



















−B a b

j j j

j j j

j j j

4.5039 11.031 1.4653 5.3357 1.4533 4.1268

1.4653 5.3357 4.5502 10.8751 1.4764 4.5852

1.4533 4.1268 1.4764 4.5852 4.5255 10.9580
11 11

1
11

	

[ ][ ] [ ]= ⋅ =
+ + +
+ + +
+ + +



















−B a b

j j j
j j j
j j j

1.5202 4.8499 1.4969 3.9318 1.4786 5.5618

1.4969 3.9318 1.5216 4.3248 1.5026 4.9108

1.4786 5.5618 1.5026 4.9108 1.4899 3.9560
12 12

1
12
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[ ][ ] [ ]= ⋅ =
+ + +
+ + +
+ + +



















−B a b

j j j

j j j
j j j

1.5202 4.8499 1.5457 5.3375 1.5322 4.2881

1.5457 5.3375 1.5216 4.3248 1.5058 5.4615

1.5322 4.2881 1.5058 5.4615 1.4899 3.9560
21 21

1
21

	

[ ][ ] [ ]= ⋅ =
+ + +
+ + +
+ + +



















−B a b

j j j

j j j

j j j

5.7092 10.9152 1.5812 4.2378 1.5606 5.0183

1.5812 4.2378 5.6577 11.0842 1.5360 3.8506

1.5606 5.0183 1.5360 3.8506 5.6184 11.2140
22 22

1
22

The loads at the ends of the two lines are treated as constant current 
loads with values of:

	 Line 1: [ ] =

−
−



















IR1

102.6/ 20.4

82.1/ 145.2

127.8/85.2

	 Line 2: [ ] =

−
−



















IR2

94.4/ 27.4

127.4/ 152.5

100.2/99.8

The voltages at the sending end of the lines are:

	

[ ] = −



















VS

14, 400/0

14, 400/ 120

14, 400/120

	 2.	 Determine the receiving end voltages for the two lines.

Because the common sending end voltages are known and the receiv-
ing end line currents are known, Equation 6.75 is used to compute the 
receiving end voltages:

	 Line 1: 

( )[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ]

= + ⋅ − ⋅ − ⋅

=

−
−



















VR A A VS B IR B IR

VR

14, 119/ 2.3

14, 022/ 120.4

13, 686/117.4

1 11 12 11 1 12 2

1

	 Line 2: 

( )[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ]

= + ⋅ − ⋅ − ⋅

=

−
−



















VR A A V B IR B IR

VR

13, 971/ 1.6

13, 352/ 120.8

13, 566/118.1

2 21 22 1 21 1 22 2

2
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The second way in which two lines can be physically parallel in a radial 
feeder is to have neither the sending nor the receiving ends common to 
both lines. This is shown in Figure 6.9.

Equations 6.72 and 6.73 are again used for the analysis of this special 
case. Because neither the sending end nor the receiving end nodes are 
common, no adjustments need to be made to Equation 6.72. Typically, 
these lines will be part of a large distribution feeder in which case an 
iterative process will be used to arrive at the final values of the sending 
and receiving end voltages and currents.

Example 6.7

The parallel lines of Examples 4.2 and 5.2 are connected as shown in 
Figure 6.9. The lines are parallel to each other for 10 miles.

The complex power flowing out of each line is:

	 Line 1: 

= =

= =

= =

S PF

S PF

S PF

1 1450 kVA, 0.95

1 1150 kVA, 0.90

1 1750 kVA, 0.85

a a

b b

c c

	 Line 2: 

= =

= =

= =

S PF

S PF

S PF

2 1320 kVA, 0.90

2 1700 kVA, 0.85

2 1360 kVA, 0.95

a a

b b

c c

The line-to-neutral voltages at the receiving end nodes are:

	 Line 1: 

= −

= −

=

VR

VR

VR

1 13, 430/ 33.1

1 13, 956/ 151.3

1 14, 071/86.0

an

bn

cn

	 Line 2: 

= −

= −

=

VR

VR

VR

2 14, 501/ 29.1

2 13, 932/ 154.8

2 12, 988/90.3

an

bn

cn

[VS2]

[VS1]
[IS1] [IR1]

[IR2]

[VR1]

[VR2]
[IS2]

FIGURE 6.9
Physically parallel lines without common nodes.
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Determine the sending end voltages of the two lines.
The currents leaving the two lines are:

	 Line 1: 

i a b c

IR
S

V

For = , ,

1
1 1000

1

108.0/ 51.3

82.4/ 177.1

124.4/54.2

*

i
i

i
= ⋅





=

−

−



















	 Line 2: 
= ⋅





=

−

















i a b c

IR
S

V

For = , ,

2
2 1000

2

91.0/ 54.9

122.0/173.5

104.7/72.1

*

i
i

i

The sending end voltages of the two lines are computed using 
Equation 6.72.

	 Line 1: [ ] =

−
−



















VS 1

13, 673/ 30.5

14, 361/ 151.0

14, 809/88.7

	 Line 2: [ ] =

−
−



















VS 2

14, 845/ 27.5

14, 973/ 154.3

13, 898/92.5

The sending end currents are:

	

[ ] =

−
−



















IS 1

107.7/ 50.8

82.0/ 176.2

124.0/54.7

	

[ ] =

−

















IS 2

90.5/ 54.3

121.4/173.8

104.2/72.6

Note in this example the very slight difference between the sending and 
receiving end currents. The very small difference is because of the shunt 
admittance. It is seen that very little error will be made if the shunt admit-
tance of the two lines is ignored. This will be the usual case. Exceptions 
will be for very long distribution lines (50 miles or more) and for under-
ground concentric neutral lines that are in parallel for 10 miles or more.
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A third option for physically parallel lines in a radial feeder might be con-
sidered with the receiving end nodes common to both lines and the sending 
end nodes not common. However, this would violate the “radial” nature of 
the feeder, since the common receiving end nodes would constitute the cre-
ation of a loop.

6.5.2 � Electrically Parallel Lines

Figure 6.10 shows two distribution lines that are electrically parallel.
The analysis of the electrically parallel lines requires an extra step from 

that of the physically parallel lines, since the individual line currents are not 
known. In this case, only the total current leaving the parallel lines is known.

In the typical analysis, the receiving end voltages will either have been 
assumed or computed, and the total phase currents IR[ ] will be known. With 
V S[ ] and VR[ ]  common to both lines, the first step must be to determine 
how much of the total current IR[ ]  flows on each line. Because the lines are 
electrically parallel, Equation 6.72 can be modified to reflect this condition:

	

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ]
[ ]













 =













 ⋅













 +













 ⋅















VS

VS

a a

a a

VR

VR

b b

b b

IR

IR

1

2

11 12

21 22

11 12

21 22
	

(6.76)

The current in line 2 is a function of the total current, and the current in line 
1 is given by:

	 [ ] [ ] [ ]= −IR IR IR2 1 	 (6.77)

Substitute Equation 6.77 into Equation 6.76:

	

[ ] [ ]
[ ] [ ]

[ ]

[ ]
[ ] [ ]
[ ] [ ]

[ ]

[ ]
[ ]

[ ] [ ]













=












 ⋅













+












 ⋅

−















VS

VS

a a

a a

VR

VR

b b

b b

IR

IR IR

1

1

11 12

21 22

11 12

21 22
	

(6.78)

[VS]
[IS1]

[IS]
[IR1]

[IR2]

[VR]

[IR]

[IS2]

FIGURE 6.10
Electrically parallel lines.
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Because the sending end voltages are equal, Equation 6.78 is modified to 
reflect this:

	

( )
( )

( )
( )

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

+ ⋅ + − ⋅ + ⋅

= + ⋅ + − ⋅ + ⋅

a a VR b b IR b IR

a a VR b b IR b IR

1

1

11 12 11 12 12

21 22 21 22 22 	
(6.79)

Collect terms in Equation 6.79:

	

( )
( )

( ) [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ]

+ − − ⋅ + − ⋅

= − − + ⋅

a a a a VR b b IR

b b b b IR1

11 12 21 22 12 22

21 22 11 12 	
(6.80)

Equation 6.80 is in the form of:

	 [ ] [ ][ ] [ ] [ ] [ ]⋅ + ⋅ = ⋅Aa VR Bb IR Cb IR1 	 (6.81)

where

	

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ]

= + − −

= −

= − − +

Aa a a a a

Bb b b

Cc b b b b

11 12 21 22

12 22

21 22 11 12 	

(6.82)

Equation 6.81 can be solved for the receiving end current in line 1:

	 ( )[ ][ ] [ ] [ ] [ ] [ ]= ⋅ ⋅ + ⋅−IR Cc Aa VR Bb IR1 1

	
(6.83)

Equation 6.77 can be used to compute the receiving end current in line 2.
With the two receiving end line currents known, Equations 6.72 and 6.73 

are used to compute the sending end voltages. As with the physically paral-
lel lines, an iterative process (Chapter 10) will have to be used to ensure that 
the sending end voltages for each line are equal.

Example 6.8

The two lines in Example 6.5 are electrically parallel as shown in 
Figure 6.10. The receiving end voltages are given by:

	

[ ] =

−

















VR

13, 280/ 33.1

14, 040/151.7

14, 147/86.5
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The complex power-out of the parallel lines is the sum of the complex 
power of the two lines in Example 6.6:

	

=

=

=

S PF

S PF

S PF

2,763.8 kVA at 0.928

2,846.3 kVA at 0.872

3,088.5 kVA at 0.90

a

b

c

The first step in the solution is to determine the total current leaving the 
two lines:

	

= ⋅





=

−

















IR
S

VR
1000

208.1/ 54.9

202.7/179.0

218.8/50.2

*

i
i

i

Equation 6.83 is used to compute the current in line 1. Before that is done, 
the matrices of Equation 6.82 must be computed.

	

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ]

= + − − =
















= − =
− − − − − +
− + − − − +
− − − + − −



















= − − +

=
− − − − − +
− − − − − +
− + − + − −



















Aa a a a a

Bb b b

j j j

j j j

j j j

Cc b b b b

j j j

j j j

j j j

0 0 0
0 0 0
0 0 0

4.1872 6.0646 0.0843 0.3060 0.0820 0.5434

0.0354 1.0995 4.1342 6.7585 0.0333 1.0599

0.0284 0.7300 0.0274 1.6105 4.1267 7.2569

7.1697 12.2446 0.0039 0.3041 0.0032 0.7046

0.0039 0.3041 7.1616 13.3077 0.0013 1.9361

0.0032 0.7046 0.0013 1.9361 7.1610 14.2577

11 12 21 22

12 22

21 22 11 12

The current in line 1 is now computed by:

	

( )[ ][ ] [ ] [ ] [ ] [ ]= ⋅ ⋅ + ⋅ =

−

















−IR Cc Aa VR Bb IR1

110.4/ 59.7

119.3/172.6

121.7/50.2

1

The current in line 2 is:

	

[ ] [ ] [ ]= − =

−
−



















IR IR IR2 1

98.5/ 49.6

85.2/ 172.2

101.1/73.3
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The sending end voltages are:

	

VS a a VR b IR b IR

VS a a VR b IR b IR

1 1 2

13,738/ 30.9

14,630/ 151.0

14, 912/88.3

2 1 2

13,738/ 30.9

14,630/ 151.0

14, 912/88.3

11 12 11 12

21 22 21 22

( )

( )

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

= + ⋅ + ⋅ + ⋅ =

−

−



















= + ⋅ + ⋅ + ⋅ =

−

−







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It is satisfying that the two equations give us the same results for the 
sending end voltages.

The sending end currents are:
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When the shunt admittance of the parallel lines is ignored, a parallel 
equivalent 3 × 3 phase impedance matrix can be determined. Because 
very little error is made ignoring the shunt admittance on most distribu-
tion lines, the equivalent parallel phase impedance matrix can be very 
useful in distribution power flow programs that are not designed to 
model electrically parallel lines.

Because the lines are electrically parallel, the voltage drops in the two 
lines must be equal. The voltage drop in the two parallel lines is given by:
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(6.84)

Substitute Equation 6.77 into Equation 6.84:
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Expand Equation 6.85 to solve for the voltage drops:

	

( ) ( )
( ) ( )
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(6.86)

Collect terms in Equation 6.86:

	 ( ) ( )[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]− − + ⋅ = − ⋅Z Z Z Z IR Z Z IR111 12 21 22 22 12 	 (6.87)

Let:

	 ( )[ ] [ ] [ ] [ ] [ ]= − − +ZX Z Z Z Z11 12 21 22 	 (6.88)

Substitute Equation 6.88 into Equation 6.87, and solve for the current in 
line 1:

	 ( )[ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅−IR ZX Z Z IR1 1
22 12 	 (6.89)

Substitute Equation 6.89 into the top line of Equation 6.85.

	 ( )( ) ( )[ ] [ ] [ ] [ ] [ ] [ ] [ ]= − ⋅ ⋅ − + ⋅−v Z Z ZX Z Z Z IRabc 11 12
1

22 12 12
	

(6.90)

	 [ ] [ ]=  ⋅v Z IRabc eq 	 (6.91)

where

	 ( )( ) ( )[ ] [ ] [ ] [ ] [ ]  = − ⋅ ⋅ − +−Z Z Z ZX Z Z Zeq 11 12
1

22 12 12

The equivalent impedance of Equation 6.91 is the 3 × 3 equivalent for 
the two lines that are electrically parallel. This is the phase impedance 
matrix that can be used in conventional distribution power flow pro-
grams that cannot model electrically parallel lines.

Example 6.9

The same two lines are electrically parallel, but the shunt admittance 
is neglected. Compute the equivalent 3 × 3 impedance matrix using the 
impedance-partitioned matrices of Example 6.6.
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7.1697 12.2446 0.0039 0.3041 0.0032 0.7046

0.0039 0.3041 7.1616 13.3077 0.0013 1.9361

0.0032 0.7046 0.0013 1.9361 7.1610 14.2577

11 12 21 22
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The sending end voltages are:
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6.6 � Summary

This chapter has developed the “exact,” “modified,” and “approximate” line 
segment models. The exact model uses no approximations. That is, the phase 
impedance matrix, assuming no transposition, and the shunt admittance 
matrix are used. The modified model ignores the shunt admittance. The 
approximate line model ignores the shunt admittance and assumes that the 
positive and zero sequence impedances of the line are the known parame-
ters. This is paramount to assuming the line is transposed. For the three line 
models, generalized matrix equations have been developed. The equations 
utilize the generalized matrices [ ] [ ][ ] [ ]a b c d, , , , [ ]A , and [ ]B . The example 
problems demonstrate that because the shunt admittance is very small, the 
generalized matrices can be computed by neglecting the shunt admittance 
with very little, if any, error. In most cases, the shunt admittance can be 
neglected; however, there are situations where the shunt admittances should 
not be neglected. This is particularly true for long, rural, lightly loaded lines 
and for many underground lines.

A method for computing the current flowing in the neutral and ground 
was developed. The only assumption used that can make a difference on 
the computing currents is that the resistivity of earth was assumed to be 
100 Ω-m.

A simple version of the ladder iterative technique was introduced and 
applied in Example 6.5. The ladder method will be used in future chapters 
and is fully developed in Chapter 10.

The generalized matrices for two lines in parallel have been derived. The 
analysis of physically parallel and electrically parallel lines was developed 
with examples to demonstrate the analysis process.
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Problems

6.1 A 2-mile long three-phase line uses the configuration of Problem 4.1. 
The phase impedance matrix and shunt admittance matrix for the configu-
ration are:
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S/mileabc

The line is serving a balanced three-phase load of 10,000 kVA, with balanced 
voltages of 13.2 kV line-to-line, and a power factor of 0.85 lagging.

	 a.	Determine the generalized matrices.
	 b.	For the given load, compute the line-to-line and line-to-neutral volt-

ages at the source end of the line.
	 c.	Compute the voltage unbalance at the source end.
	 d.	Compute the source end complex power per phase.
	 e.	Compute the power loss by phase over the line. (Hint: Power loss is 

defined as power-in minus power-out)

6.2 Use the line of Problem 6.1. For this problem, the source voltages are spec-
ified as:
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The three-phase load is unbalanced connected in wye and given by:
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Use the ladder iterative technique and determine:

	 a.	The load line-to-neutral voltages
	 b.	Power at the source
	 c.	The voltage unbalance at the load

6.3 Use Windmil for Problem 6.2.

6.4 The positive and zero sequence impedances for the line in Problem 6.1 are:

	 z j z j0.186 0.5968 /mile, 0.6534 1.907 /mile0= + Ω = + Ω+

Repeat Problem 6.1 using the “approximate” line model.

6.5 The line of Problem 6.1 serves an unbalanced grounded wye connected 
constant impedance load of:

	 Z Z Z15/ 30 , 17/36.87 , 20/25.84ag bg cg= Ω = Ω = Ω

The line is connected to a balanced three-phase 13.2 kV source.

	 a.	Determine the load currents.
	 b.	Determine the load line-to-ground voltages.
	 c.	Determine the complex power of the load by phase.
	 d.	Determine the source complex power by phase.
	 e.	Determine the power loss by phase and the total three-phase 

power loss.
	 f.	Determine the current flowing in the neutral and ground.

6.6 Repeat Problem 6.3; only the load on phase b is changed to 50/36.87 Ω.

6.7 The two-phase line of Problem 4.2 has the following phase impedance 
matrix:

	

z
j j

j j

0.4576 1.0780 0 0.1535 0.3849

0 0 0
0.1535 0.3849 0 0.4615 1.0651

/mileabc[ ] =
+ +

+ +

















Ω

The line is 2 miles long and serves a two-phase load such that:
Sag = 2000 kVA at 0.9 lagging power factor and voltage of 7620/0 V
Scg = 1500 kVA at 0.95 lagging power factor and voltage of 7620/120 V
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Neglect the shunt admittance and determine the following:

	 a.	The source line-to-ground voltages using the generalized matrices. 
(Hint: Even though phase b is physically not present, assume that it 
is with a value of 7620/−120 V and is serving a 0 kVA load.)

	 b.	The complex power by phase at the source.
	 c.	The power loss by phase on the line.
	 d.	The current flowing in the neutral and ground.

6.8 The single-phase line of Problem 4.3 has the following phase impedance 
matrix:

	

[ ] = +
















Ωz j

0 0 0
0 1.3292 1.3475 0

0 0 0

/mileabc

The line is 1 mile long and serves a single-phase load of 2000 kVA, 0.95 lag-
ging power factor at a voltage of 7500/−120 V. Determine the source voltage 
and power loss on the line. (Hint: As in the previous problem, even though 
phases a and c are not physically present, assume they are and along with 
phase b make up a balanced three-phase set of voltages.)

6.9 The three-phase concentric neutral cable configuration of Problem 4.10 is 
two miles long and serves a balanced three-phase load of 10,000 kVA, 13.2 kV, 
0.85 lagging power factor. The phase impedance and shunt admittance 
matrices for the cable line are:
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S/mileabc

	 a.	Determine the generalized matrices.
	 b.	For the given load, compute the line-to-line and line-to-neutral volt-

ages at the source end of the line.
	 c.	Compute the voltage unbalance at the source end.
	 d.	Compute the source end complex power per phase.
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	 e.	Compute the power loss by phase over the line. (Hint: Power loss is 
defined as power-in minus power-out.)

6.10 The line of Problem 6.9 serves an unbalanced grounded wye connected 
constant impedance load of:

	 Zag = 15/30 Ω, Zbg = 50/36.87 Ω, Zcg = 20/25.84 Ω

The line is connected to a balanced three-phase 13.2 kV source.

	 a.	Determine the load currents.
	 b.	Determine the load line-to-ground voltages.
	 c.	Determine the complex power of the load by phase.
	 d.	Determine the source complex power by phase.
	 e.	Determine the power loss by phase and the total three-phase power 

loss.
	 f.	Determine the current flowing in each neutral and ground.

6.11 The tape-shielded cable single-phase line of Problem 4.12 is 2 miles 
long and serves a single-phase load of 3000 kVA, at 8.0 kV and 0.9 lagging 
power factor. The phase impedance and shunt admittances for the line 
are:
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y
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0 0 140.39
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µ

Determine the source voltage and the power loss for the loading condition.

6.12 Two distribution lines constructed on one pole are shown in Figure 6.11.

Line #1 Data:
	 Conductors: 336,400 26/7 ACSR

GMR = 0.0244 ft, Resistance = 0.306 Ω/mile, Diameter = 0.721 in.

Line # 2 Data:
	 Conductors: 250,000 AA
	 GMR = 0.0171 ft, Resistance = 0.41 Ω/mile, Diameter = 0.574 in.
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Neutral Conductor Data:
	 Conductor: 4/0 6/1 ACSR
	 GMR = 0.00814 ft, Resistance = 0.592 Ω/mile, Diameter = 0.563 in.

Length of lines is 10 miles
Balanced load voltages of 24.9 kV line-to-line
Unbalanced loading:
	 Load #1: Phase a: 1440 kVA at 0.95 lagging power factor

	 Phase b: 1150 kVA at 0.9 lagging power factor
	 Phase c: 1720 kVA at 0.85 lagging power factor

	 Load #2: Phase a: 1300 kVA at 0.9 lagging power factor
	 Phase b: 1720 kVA at 0.85 lagging power factor
	 Phase c: 1370 kVA at 0.95 lagging power factor

The two lines have a common sending end node (Figure 6.6)
Determine:

	 a.	The total phase impedance matrix (6 × 6) and total phase admittance 
matrix (6 × 6)

	 b.	The abcd and AB matrices
	 c.	The sending end node voltages and currents for each line for the 

specified loads
	 d.	The sending end complex power for each line
	 e.	The real power loss of each line
	 f.	The current flowing in the neutral conductor and ground

Line 1

Line 2 a
2.0 ′

2.5 ′ 4.5 ′

3.0 ′

c

c

30.0 ′

6.0 ′

a

b

n

b

FIGURE 6.11
Two parallel lines on one pole.
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6.13 The lines of Problem 6.12 do not share a common sending or receiving 
end node (Figure 6.7). Determine:

	 a.	The sending end node voltages and currents for each line for the 
specified loads

	 b.	The sending end complex power for each line
	 c.	The real power loss of each line

6.14 The lines of Problem 6.12 are electrically parallel (Figure 6.8).
Compute the equivalent 3 × 3 impedance matrix and determine:

	 a.	The sending end node voltages and currents for each line for the 
specified loads

	 b.	The sending end complex power for each line
	 c.	The real power loss of each line

WindMil Assignment

Use System 2 and add a two-phase concentric neutral cable line connected 
to Node 2. Call this “System 3.” The line uses phases a and c and is 300 ft 
long and consists of two 1/0 AA 1/3 neutral concentric neutral cables. The 
cables are 40 in. below ground and 6 in. apart. There is no additional neutral 
conductor. Call this line UG-1. At the end of UG-1, connect a node and call 
it Node 4. The load at Node 4 is delta-connected load modeled as constant 
current. The load is 250 kVA at 95% lagging power factor.

Determine the voltages at all nodes on a 120-volt base and all line currents.
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7
Voltage Regulation

The regulation of voltages is an important function on a distribution feeder. 
As the loads on the feeders vary, there must be some means of regulating 
the voltage so that every customer’s voltage remains within an acceptable 
level. Common methods of regulating the voltage are the application of step-
type voltage regulators, load tap changing (LTC) transformers, and shunt 
capacitors.

7.1 � Standard Voltage Ratings

The American National Standards Institute (ANSI) standard ANSI C84.1-
1995 for “Electric Power Systems and Equipment Voltage Ratings (60 Hertz)” 
provides the following definitions for system voltage terms [1]:

•	 System voltage: The root mean square (rms) phasor voltage of a por-
tion of an alternating-current electric system. Each system voltage 
pertains to a portion of the system that is bounded by transformers 
or utilization equipment.

•	 Nominal system voltage: The voltage by which a portion of the system 
is designated, and to which certain operating characteristics of the 
system are related. Each nominal system voltage pertains to a portion 
of the system bounded by transformers or utilization equipment.

•	 Maximum system voltage: The highest system voltage that occurs 
under normal operating conditions, and the highest system voltage 
for which equipment and other components are designed for satis-
factory continuous operation without derating of any kind.

•	 Service voltage: The voltage at the point where the electrical system 
of the supplier and the electrical system of the user are connected.

•	 Utilization voltage: The voltage at the line terminals of utilization 
equipment.

•	 Nominal utilization voltage: The voltage rating of certain utilization 
equipment used on the system.
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The ANSI standard specifies two voltage ranges. An over-simplification of 
the voltage ranges is as follows:

•	 Range A: Electric supply systems shall be so designated and oper-
ated that most service voltages will be within the limits specified for 
Range A. The occurrence of voltages outside of these limits should 
be infrequent.

•	 Range B: Voltages above and below Range A. When these voltages 
occur, corrective measures shall be undertaken within a reasonable 
time to improve voltages to meet Range A.

For a normal three-wire 120/240-V service to a user, the Range A and Range 
B voltages are as follows:

•	 Range A:
•	 Nominal utilization voltage = 115 V
•	 Maximum utilization and service voltage = 126 V
•	 Minimum service voltage = 114 V
•	 Minimum utilization voltage = 110 V

•	 Range B:
•	 Nominal utilization voltage = 115 V
•	 Maximum utilization and service voltage = 127 V
•	 Minimum service voltage = 110 V
•	 Minimum utilization voltage = 107 V

These ANSI standards give the distribution engineer a range of “normal 
steady-state” voltages (Range A) and a range of “emergency steady-state” 
voltages (Range B) that must be supplied to all users.

In addition to the acceptable voltage magnitude ranges, the ANSI standard 
recommends that the “electric supply systems should be designed and oper-
ated to limit the maximum voltage unbalance to 3% when measured at the 
electric-utility revenue meter under a no-load condition.” Voltage unbalance 
is defined as:

	
= ⋅Voltage

Maximum deviation from average voltage
Average voltage

100%unbalance

	
(7.1)

The task for the distribution engineer is to design and operate the distribu-
tion system, so that under normal steady-state conditions, the voltages at the 
meters of all users will lie within Range A and that the voltage unbalance 
will not exceed 3%.
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A common device used to maintain system voltages is the step-voltage 
regulator. Step-voltage regulators can be single-phase or three-phase. Single-
phase regulators can be connected in wye, delta, or open delta, in addition 
to being operated as a single-phase device. The regulators and their controls 
allow the voltage output to vary as the load varies.

A step-voltage regulator is basically an autotransformer with an LTC mech-
anism on the “series” winding. The voltage change is obtained by changing 
the number of turns (tap changes) of the series winding of the autotransformer.

An autotransformer can be visualized as a two-winding transformer with 
a solid connection between a terminal on the primary side of the transformer 
and a terminal on the secondary side. Before proceeding to the autotrans-
former, a review of two-transformer theory and the development of general-
ized constants will be presented.

7.2 � Two-Winding Transformer Theory

The exact equivalent circuit for a two-winding transformer is shown in 
Figure 7.1.

In Figure 7.1, the high-voltage transformer terminals are denoted by H1 and 
H2 and the low-voltage terminals are denoted by X1 and X2. The standards 
for these markings are such that at no load, the voltage between H1 and H2 
will be in phase with the voltage between X1 and X2. Under a steady-state 
load condition, the currents I1 and I2 will be in phase.

Without introducing a significant error, the exact equivalent circuit in 
Figure 7.1 is modified by referring the primary impedance (Z1) to the second-
ary side as shown in Figure 7.2.

Referring to Figure 7.2, the total “leakage” impedance of the transformer 
is given by:

	 Z n Z Zt t
2

1 2= ⋅ + 	 (7.2)

where

	
n N

N
t

2

1
=

	
(7.3)

To better understand the model for the step-regulator, a model for the two-
winding transformer will first be developed. Referring to Figure 7.2, the 
equations for the ideal transformer become:

	
E N

N
E n Et2

2

1
1 1= ⋅ = ⋅

	
(7.4)
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I N

N
I n It1

2

1
2 2= ⋅ = ⋅

	
(7.5)

Applying Kirchhoff’s Voltage Law (KVL)  in the secondary circuit:
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(7.6)

In general form, Equation 7.6 can be written as:

	 V a V b IS L 2= ⋅ + ⋅ 	 (7.7)

where

	
a

n
1

t
=

	
(7.8)

	
b Z

n
t

t
=

	
(7.9)

H1

VS

IS

Iex

H2

Ym

−− − −

VL

I2I1

X2

X1

Zt

E2

N1 : N2

+ + ++

E1

FIGURE 7.2
Two-winding transformer approximate equivalent circuit.

Z1

H1
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IS
Iex

H2

Ym

−− − −

VL

I2I1

X2

X1

Z2

E2

N1 : N2

+ + ++

E1

FIGURE 7.1
Two-winding transformer exact equivalent circuit.
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The input current to the two-winding transformer is given by:

	 I Y V IS m S 1= ⋅ + 	 (7.10)

Substitute Equations 7.6 and 7.5 into Equation 7.10:

	

I Y
n

V Y Z
n

I n I

I Y
n

V Y Z
n

n I

1
S m

t
L m

t

t
t

S
m

t
L

m t

t
t

2 2

2

= ⋅ ⋅ + ⋅ ⋅ + ⋅

= ⋅ + ⋅ +






⋅

	

(7.11)

In general form, Equation 7.11 can be written as:

	 I c V d IS L 2= ⋅ + ⋅ 	 (7.12)

where

	
c Y

n
m

t
=

	
(7.13)

	
d Y Z

n
nm t

t
t= ⋅ +
	

(7.14)

Equations 7.7 and 7.12 are used to compute the input voltage and cur-
rent to a two-winding transformer when the load voltage and current are 
known. These two equations are of the same form as Equations 6.8 and 
6.16 that were derived in Chapter 6 for the three-phase line models. The 
only difference at this point is that only a single-phase, two-winding trans-
former is being modeled. Later, in this chapter, the terms a, b, c, and d 
will be expanded to 3 × 3 matrices for all possible three-phase regulator 
connections.

Sometimes, particularly in the ladder iterative process, the output voltage 
needs to be computed by knowing the input voltage and the load current. 
Solving Equation 7.7 for the load voltage yields:

	
V

a
V b

a
Z1

L S t= ⋅ − ⋅
	

(7.15)

Substituting Equations 7.8 and 7.9 into Equation 7.15 results in:

	 V A V B IL S 2= ⋅ − ⋅ 	 (7.16)
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where

	 A nt= 	 (7.17)

	 B Zt= 	 (7.18)

Again, Equation 7.16 is of the same form as Equation 6.26. Later, in this chap-
ter, the expressions for A and B will be expanded to 3 × 3 matrices for all pos-
sible three-phase transformer connections.

Example 7.1

A single-phase transformer is rated 75 kVA, 2400–240 V. The transformer 
has the following impedances and shunt admittance:

Z1 = 0.612 + j1.2 Ω (high-voltage winding impedance)
Z2 = 0.0061 + j0.0115 Ω. (low-voltage winding impedance)
Ym = 1.92·10–4 – j8.52·10–4 S (referred to the high-voltage winding)

Determine the generalized a, b, c, and d constants and the A and B 
constants.

The transformer “turns ratio” is:

	
= = = =n

N
N

V
V

240
2400

0.1t
rated

rated

2

1

_ 2

_ 1

The equivalent transformer impedance referred to the low-voltage 
side is:

	 Z Z n Z j0.0122 0.0235t t2
2

1= + ⋅ = +

The generalized constants are:

	
a

n
1 1

0.1
10

t
= = =

	
b Z j

0.1
0.1222 0.235t= = +

	
c Y

n
j0.0019 0.0085m

t
= = −

	
d Y Z

n
n j0.1002 0.0001m t

t
t= ⋅ + = −

	 A n 0.1t= =
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	 B Z j0.0122 0.0235t= = +

Assume that the transformer is operated at rated load (75 kVA) and rated 
voltage (240 V) with a power factor of 0.9 lagging. Determine the source 
voltage and current using the generalized constants.

	 V 240/0L =

	
I 75 1000

240
/ cos (0.9) 312.5/ 25.842

1= ⋅ − = −−

Applying the values of the a, b, c, and d parameters computed earlier:

	
V a V b I 2466.9/1.15VS L 2= ⋅ + ⋅ =

	
I c V d I 32.67/ 28.75AS L 2= ⋅ + ⋅ = −

Using the computed source voltage and the load current determine the 
load voltage.

	 V A V B I j0.1 2466.9/1.15 0.0122 0.0235 312.5/ 25.84L S S ( ) ( )( )( )= ⋅ − ⋅ = ⋅ − + ⋅ −

	 V 240.0/0VL =

For future reference, the per-unit impedance of the transformer is com-
puted by:

	
= ⋅ = ⋅ = ΩZ

kV
kVA

1000 0.240 1000
75

0.768base
2
2 2

	
= =

+
=Z

Z
Z

j0.0122 0.0115
0.768

0.0345/62.5per-unitpu
t

base

The per-unit shunt admittance is computed by:

	
=

⋅
=

⋅
Y

kVA
kV 1000

75
2.4 1000

0.013 Sbase
1

2 2

	
= =

⋅ − ⋅
= −

− −

Y
Y

Y
j

j
1.92 10 8.52 10

0.013
0.0147 0.0654 per-unitpu

m

base

4 4

Example 7.1 demonstrates that the generalized constants provide a quick 
method for analyzing the operating characteristics of a two-winding 
transformer.
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7.3 � Two-Winding Autotransformer

A two-winding transformer can be connected as an autotransformer. 
Connecting the high-voltage terminal H1 to the low-voltage terminal X2 as 
shown in Figure 7.3 can create a “step-up” autotransformer. The source is 
connected to terminals H1 and H2, whereas the load is connected between 
the X1 terminal and the extension of H2.

In Figure 7.3, VS is the “source” voltage and VL is the “load” voltage. The 
low-voltage winding of the two-winding transformer will be referred to as 
the “series” winding of the autotransformer, and the high-voltage winding 
of the two-winding transformer will be referred to as the “shunt” winding 
of the autotransformer.

Generalized constants similar to those of the two-winding transformer can 
be developed for the autotransformer. The total equivalent transformer 
impedance is referred to as the “series” winding. The “ideal” transformer 
Equations 7.4 and 7.5 still apply.

Apply KVL in the secondary circuit:

	 E E V Z IL t1 2 2+ = + ⋅ 	 (7.19)

Using the “ideal” transformer relationship in Equation 7.5:

	 E n E n E V Z I1t t L t1 1 1 2( )+ ⋅ = + ⋅ = + ⋅ 	 (7.20)

N2

I2

X1

X2

H1

H2

IS

VS Ym

Iex

E1

I1

N1

VL

+ +

++

−

−

−−

E2

Zt

FIGURE 7.3
Step-up autotransformer.
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Because the source voltage VS is equal to E1 and I2 is equal to IL, Equation 7.20 
can be modified to:

	
V

n
V Z

n
I1

1 1
S

t
L

t

t
L=

+
⋅ +

+
⋅

	
(7.21)

	 V a V b IS L L= ⋅ + ⋅ 	 (7.22)

where

	
a

n
1

1 t
=

+ 	
(7.23)

	
b Z

n1
t

t
=

+ 	
(7.24)

Applying KCL at input node H1:

	

I I I I

I n I Y V1

S ex

S t m S

1 2

2( )

= + +

= + ⋅ + ⋅ 	

(7.25)

Substituting Equation 7.21 into Equation 7.25:

	

I n I Y
n

V Z
n

I

I Y
n

V Y Z
n

n I

I c V d I

1 1
1 1

1 1
1

S t m
t

L
t

t

S
m

t
L

m t

t
t

S L

2 2

2

2

( )= + ⋅ +
+

⋅ +
+

⋅








=
+

⋅ + ⋅
+

+ +






⋅

= ⋅ + ⋅ 	

(7.26)

where

	
c Y

n1
m

t
=

+ 	
(7.27)

	
d Y Z

n
n

1
1m t

t
t= ⋅

+
+ +

	
(7.28)

Equations 7.23, 7.24, 7.27, and 7.28 define the generalized constants for the 
“step-up” autotransformer.
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The two-winding transformer can also be connected in the “step-down” 
connection by reversing the connection between the shunt and series wind-
ing as shown in Figure 7.4.

Generalized constants can be developed for the “step-down” connection 
following the same procedure as that for the step-up connection.

Apply KVL in the secondary circuit:

	 E E V Z IL t1 2 2− = + ⋅ 	 (7.29)

Using the “ideal” transformer relationship in Equation 7.5:

	 E n E n E V Z I1t t L t1 1 1 2( )− ⋅ = − ⋅ = + ⋅ 	 (7.30)

Because the source voltage VS is equal to E1 and I2 is equal to IL, Equation 7.30 
can be modified to:

	
V

n
V Z

n
I1

1 1
S

t
L

t

t
L=

−
⋅ +

−
⋅

	
(7.31)

	 V a V b IS L L= ⋅ + ⋅ 	 (7.32)

where

	
a

n
1

1 t
=

− 	
(7.33)

	
b Z

n1
t

t
=

− 	
(7.34)

N2

I2

X2

X1

H1

H2

IS

VS Ym

Iex

E1

I1

N1

VL

+ +

++

−

−

−−

E2

Zt

FIGURE 7.4
Step-down autotransformer.
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It is observed at this point that the only difference between the a and 
b constants  in Equations 7.23 and 7.24 for the step-up connection and 
Equations 7.33 and 7.44 for the step-down connection is the sign in front of the 
turns ratio (nt). This will also be the case for the c and d constants. Therefore, 
for the step-down connection, the c and d constants are defined by:

	
c Y

n1
m

t
=

− 	
(7.35)

	
d Y Z

n
n

1
1m t

t
t= ⋅

−
+ −

	
(7.36)

The only difference between the definitions of the generalized constants is 
the sign of the turns ratio nt. In general, then, the generalized constants can 
be defined by:

	
a

n
1

1 t
=

± 	
(7.37)

	
b Z

n1
t

t
=

± 	
(7.38)

	
c Y

n1
m

t
=

± 	
(7.39)

	
d Y Z

n
n

1
1m t

t
t= ⋅

±
+ ±

	
(7.40)

In Equations 7.37 through 7.40, the sign of nt will be positive for the step-up 
connection and negative for the step-down connection.

As with the two-winding transformer, it is sometimes necessary to relate 
the output voltage as a function of the source voltage and the output current. 
Solving Equation 7.32 for the output voltage:

	
V

a
V b

a
Z I1

L S t L= ⋅ − ⋅ ⋅
	

(7.41)

	 V A V B IL S L= ⋅ − ⋅ 	 (7.42)

where

	
A

a
n1 1 t= = ±

	
(7.43)

	
B b

a
Zt= =

	 (7.44)
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The generalized equations for the step-up and step-down autotransform-
ers have been developed. They are of exactly the same form as was derived 
for the two-winding transformer and for the line segment in Chapter  6. 
For the single-phase autotransformer, the generalized constants are sin-
gle values but will be expanded later to 3 × 3 matrices for three-phase 
autotransformers.

7.3.1 � Autotransformer Ratings

The kVA rating of the autotransformer is the product of the rated input volt-
age VS times the rated input current IS or the rated load voltage VL times the 
rated load current IL. Define the rated kVA and rated voltages of the two-
winding transformer and the autotransformer as:

kVAxfm = kVA rating of the two-winding transformer
kVAauto = kVA rating of the autotransformer
V1-rated = E1 = rated source voltage of the two-winding transformer
V2-rated = E2 = rated load voltage of the two-winding transformer
VS-source = rated source voltage of the autotransformer
VL-rated = rated load voltage of the autotransformer

For the following derivation, neglect the voltage drop through the series 
winding impedance.

	 = ± = ± ⋅V E E n E(1 )L auto t- 1 2 1 	 (7.45)

The rated output kVA is then:

	 ( )= ⋅ = ± ⋅ ⋅kVA V I n E I1auto L auto t- 2 1 2 	 (7.46)

but: I I
nt

2
1=

Therefore:

	

( )=
±

⋅ ⋅kVA
n

n
E I

1
auto

t

t
1 1

	
(7.47)

but: E I kVAxfm1 1⋅ =
Therefore:

	

( )=
±

⋅kVA
n

n
kVA

1
auto

t

t
xfm

	
(7.48)

Equation 7.48 gives the kVA rating of a two-winding transformer when con-
nected as an autotransformer. For the step-up connection, the sign of nt will 
be positive, whereas the step-down will use the negative sign. In general, 
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the turns ratio nt will be a relatively small value so that the kVA rating of the 
autotransformer will be considerably greater than the kVA rating of the two-
winding transformer.

Example 7.2

The two-winding transformer of Example 7.1 is connected as a “step-up” 
autotransformer. Determine the kVA and voltage ratings of the 
autotransformer.

From Example 7.1, the turn’s ratio was determined to be: n 0.1t =
The rated kVA of the autotransformer using Equation 7.35:

	
= + ⋅ =kVA

1 0.1
0.1

75 825 kVAauto

The voltage ratings are:

	 = =V V 2400 VS auto rated- 1-

	 = + = + =V V V 2400 240 2640 VL auto rated rated- 1- 2-

Therefore, the autotransformer would be rated as 825 kVA, 2400–2640 V.
Suppose now that the autotransformer is supplying rated kVA at rated 

voltage with a power factor of 0.9 lagging, determine the source voltage 
and current.

	 = =V V 2640/0 VL L auto-

	
I

kVA
V

1000 825, 000
2640

/ cos 0.9 312.5/ 25.84auto

L auto
2

1 ( )= ⋅ = − = −
−

−

Determine the generalized constants:

	
a 1

1 0.1
0.9091=

+
=

	
b j j0.0122 0.0235

1 0.1
0.0111 0.0214= +

+
= +

	
c

j
j

1.92 8.52 10
1 0.1

1.7364 7.7455 10
4

4( ) ( )=
− ⋅

+









 = − ⋅

−
−

	
d

j j
j

1.92 8.52 10 0.0122 0.0235
1 0.1

0.1 1 1.1002 0.000005
4( ) ( )=

− ⋅ ⋅ +
+









 + + = −

−
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Applying the generalized constants:

	
V a b2640/0 312.5/ 25.84 2406.0/0.1 VS = ⋅ + ⋅ − =

	
I c d2640/0 312.5/ 25.84 345.06/ 26.11 AS = ⋅ + ⋅ − = −

When the load-side voltage is determined by knowing the source voltage 
and load current, the A and B parameters are needed:

	
= =A

n
1 1.1

t

	 = = +B Z j0.0111 0.0235t

The load voltage is then:

	
V A B2406.04/0.107 312.5/ 25.84 2640.00/0 VL = ⋅ − ⋅ − =

Rework this example by setting the transformer impedances and shunt 
admittance to zero.

When this is done, the generalized matrices are:

	
a

n
1

1
0.9091

t
=

+
=

	
b

n
Z1

1
0

t
t=

+
⋅ =

	
c Y

n1
0m

t
=

+
=

	
d Y Z

n
n

1
1 1.1m t

t
t= ⋅

+
+ + =

Using these matrices, the source voltages and currents are:

	
V a V b I 2400/0S L L= ⋅ + ⋅ =

	
I c V d I 343.75/ 25.8S L L= ⋅ + ⋅ = −

The “errors” for the source voltages and currents by ignoring the imped-
ances and shunt admittance are:

	
= −



 ⋅ =Error

2406.0 2400
2406

100 0.25%V

	
= −



 ⋅ =Error

345.07 343.75
345.07

100 0.38%I

By ignoring the transformer impedances and shunt admittance, very lit-
tle error has been made. This example demonstrates why, for all practical 
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purposes, the impedance and shunt admittance of an autotransformer 
can be ignored. This idea will be carried forward for the modeling of 
voltage regulators.

7.3.2 � Per-Unit Impedance

The per-unit impedance of the autotransformer based upon the autotrans-
former kVA and kV ratings can be developed as a function of the per-unit 
impedance of the two-winding transformer based upon the two-winding 
transformer ratings.

Let: Zpuxfm  = the per-unit impedance of the two-winding transformer 
based upon the two-winding kVA and kV ratings.

V rated2-  = rated secondary voltage of the two-winding transformer
The base impedance of the two-winding transformer referred to the low-

voltage winding (series winding of the autotransformer) is:

	
=

⋅
Zbase

V
kVA 1000

xfm
rated

xfm

-2
2

	
(7.49)

The actual impedance of the transformer referred to the low-voltage (series) 
winding is:

	
= ⋅ = ⋅

⋅
Zt Zpu Zbase Zpu

V
kVA 1000

actual xfm xfm xfm
rated

xfm

-2
2

	
(7.50)

The rated load voltage of the autotransformer as a function of the rated low-
side voltage of the transformer is:

	
= ±





⋅V
n

n
V

1
auto

t

t
rated2- 2-

	
(7.51)

The base impedance for the autotransformer referenced to load side is:

	
Zbase

V
kVA 1000

auto
auto

auto

-2
2

=
⋅ 	

(7.52)

Substitute Equations 7.48 and 7.51 into Equation 7.52:

	

=

±





⋅










±





⋅ ⋅

= ± ⋅

Zbase

n
n

V

n
n

kVA

Zbase
n

n
Zbase

1

1
1000

1

auto

t

t
rated

t

t
xfm

auto
t

t
xfm

2-

2

	

(7.53)
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The per-unit impedance of the autotransformer based upon the rating of the 
autotransformer is:

	
=Zauto

Zt
Zbasepu

actual

auto 	
(7.54)

Substitute Equations 7.50 and 7.53 into Equation 7.54:

	

= ⋅
±





⋅
=

±






⋅Zauto Zpu
Zbase

n
n

Zbase

n
n

Zpu
1 1

pu xfm
xfm

t

t
xfm

t

t
xfm

	

(7.55)

Equation 7.55 gives the relationship between the per-unit impedance of the 
autotransformer and the per-unit impedance of the two-winding trans-
former. The point is that the per-unit impedance of the autotransformer 
is very small compared to that of the two-winding transformer. When the 
autotransformer is connected to boost the voltage by 10%, the value of nt is 
0.1, and Equation 7.57 becomes:

	
=

+
⋅ = ⋅Zpu Zpu Zpu

0.1
1 0.1

0.0909auto xfm xfm
	

(7.56)

The per-unit shunt admittance of the autotransformer can be developed as a 
function of the per-unit shunt admittance of the two-winding transformer. 
Recall that the shunt admittance is represented on the source side of the two-
winding transformer.

Let:

Ypuxfm  = �per-unit admittance of the two-winding transformer based 
upon the transformer ratings

Ypuauto  = �per-unit admittance of the autotransformer based upon the 
autotransformer ratings

The base admittance of the two-winding transformer referenced to the 
source side is given by:

	
= ⋅

Ybase
kVA

V
1000

xfm
xfm

rated1-
2

	
(7.57)

The actual shunt admittance referred to the source side of the two-winding 
transformer is:

	
= ⋅ = ⋅ ⋅

Yt Ypu Ybase Ypu
kVA

V
1000

actual xfm xfm xfm
xfm

rated1-
2

	
(7.58)
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The base admittance reference to the source side of the autotransformer is 
given by:

= ⋅ =

±





⋅ ⋅
= ±





⋅Ybase
kVA

V

n
n

kVA

V
n

n
Ybase

1000
1

1000
1

auto
auto

rated

t

t
xfm

rated

t

t
xfm2

1-
2

1- 	
(7.59)

The per-unit admittance of the autotransformer is:

	

=
⋅

=
⋅

±





⋅
Ypu

Ypu Ybase
Ybase

Ypu Ybase

n
n

Ybase
1

auto
xfm xfm

auto

xfm xfm

t

t
xfm

	 ( )=
±

⋅Ypu
n

n
Ypu

1
auto

t

t
xfm

	
(7.60)

Equation 7.60 shows that the per-unit admittance based upon the autotrans-
former ratings is much smaller than the per-unit impedance of the two-
winding transformer. For an autotransformer in the raise connection with 
nt = 0.1, Equation 7.62 becomes:

	
=

+




 ⋅ = ⋅Ypu Ypu Ypu

0.1
1 0.1

0.0909auto xfm xfm

It has been shown that the per-unit impedance and admittance values based 
upon the autotransformer kVA rating and nominal voltage are approximately 
one-tenth of that of the values for the two-winding transformer.

Example 7.3

The shunt admittance referred to the source side of the two-winding 
transformer in Example 7.2 is:

	 = = ⋅ − ⋅− −Yt Y j1.92 10 8.52 10 Sactual m
4 4

	 a.	 Determine the per-unit shunt admittance based upon the two-
winding transformer ratings.

	
=

⋅
=Ybase

75
2.4 1000

0.013xfm 2

	
=

⋅ − ⋅
= −

− −

Ypu
j

j
1.92 10 8.52 10

0.013
0.014746 0.065434xfm

4 4
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	 b.	 In Example 7.2, the kVA rating of the two-winding transformer 
connected as an autotransformer was computed to be 825 kVA 
and the voltage ratings were 2400–2640 V. Determine the per-
unit admittance based upon the autotransformer kVA rating 
and a nominal voltage of 2400 V and the ratio of the per-unit 
admittance of the autotransformer to the per-unit admittance 
of the two-winding transformer.

	
= ⋅ =Ybase

825 1000
2400

0.1432auto 2

	
=

⋅ − ⋅
= −

− −

Ypu
j

j
1.92 10 8.52 10

0.1432
0.001341 0.005949auto

4 4

	
=

−
−

=Ratio
j
j

0.001341 0.005949
0.014746 0.065434

0.0909

In this section, the equivalent circuit of an autotransformer has been 
developed for the “raise” and “lower” connections. These equivalent cir-
cuits included the series impedance and shunt admittance. If a detailed 
analysis of the autotransformer is desired, the series impedance and shunt 
admittance should be included. However, it has been shown in Example 7.2 
that these values are very small and when the autotransformer is to be a 
component of a system, very little error will be made by neglecting both 
the series impedance and shunt admittance of the equivalent circuit.

7.4 � Step-Voltage Regulators

A step-voltage regulator consists of an autotransformer and an LTC mech-
anism. The voltage change is obtained by changing the taps of the series 
winding of the autotransformer. The position of the tap is determined by 
a control circuit (line drop compensator). Standard step-regulators contain 
a reversing switch enabling a regulator range of ±10%, usually in 32 steps. 
This amounts to a 5/8% change per step or 0.75-V change per step on a 120 V 
base. Step-regulators can be connected in a “Type A” or “Type B” connec-
tion according to the ANSI/IEEE C57.15-1986 standard [2]. The more common 
Type B connection is shown in Figure 7.5.

The step-voltage regulator control circuit is shown in block form in 
Figure 7.6.

The step-voltage regulator control circuit requires the following settings:

	 1.	Voltage level—The desired voltage (on 120-V base) to be held at the 
“load center.” The load center may be the output terminal of the reg-
ulator or a remote node on the feeder.
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	 2.	Bandwidth—The allowed variance of the load-center voltage from 
the set voltage level. The voltage held at the load center will be ± one-
half the bandwidth. For example, if the voltage level is set to 122 V 
and the bandwidth set to 2 V, the regulator will change taps until the 
load-center voltage lies between 121 and 123 V.

	 3.	Time delay—Length of time that a raise or lower operation is called 
for before the actual execution of the command. This prevents taps 
changing during a transient or short time change in current.
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FIGURE 7.5
Type “B” step-voltage regulator.
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FIGURE 7.6
Step-voltage regulator control circuit.
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	 4.	Line drop compensator
	 a.	 Analog compensator: Analog circuit set to compensate for the volt-

age drop (line drop) between the regulator and the load center. 
The settings consist of R and X settings in volts corresponding to 
the equivalent impedance between the regulator and the “load 
center.” This setting may be zero if the regulator output termi-
nals are the “load center.”

	 b.	 Digital compensator: The same as the analog compensator; only 
the output voltage of the compensator is computed similar to a 
computer program. Based upon the computed output, compen-
sator voltage taps will change in order to hold the “load-center” 
voltage within specified limits.

	 c.	 Smart meters: With the advent of the “smart grid,” it is possible 
for the actual voltage at the “load center” to be transmitted back 
to the regulator. Taps are then changed to hold the “load-center” 
voltage within the prescribed limits.

The required rating of a step-regulator is based upon the kVA transformed, not 
the kVA rating of the line. In general, this will be 10% of the line rating, because 
rated current flows through the series winding, which represents the ±10% 
voltage change. The kVA rating of the step-voltage regulator is determined in 
the same manner as that of the previously discussed autotransformer.

7.4.1 � Single-Phase Step-Voltage Regulators

Because the series impedance and shunt admittance values of step-voltage 
regulators are so small, they will be neglected in the following equivalent 
circuits. It should be pointed out, however, that if it is desired to include 
the impedance and admittance, they can be incorporated into the follow-
ing equivalent circuits in the same way they were originally modeled in the 
autotransformer equivalent circuit.

7.4.1.1 � Type A Step-Voltage Regulator

The detailed equivalent circuit and abbreviated equivalent circuit of a Type 
A step-voltage regulator in the “raise” position is shown in Figure 7.7.

As shown in Figure 7.7, the primary circuit of the system is connected 
directly to the shunt winding of the Type A regulator. The series winding is 
connected to the shunt winding and, in turn, via taps, to the regulated cir-
cuit. In this connection, the core excitation varies because the shunt winding 
is connected directly across the primary circuit.

When the Type A connection is in the “lower” position, the reversing switch is 
connected to the “L” terminal. The effect of this reversal is to reverse the direction 
of the currents in the series and shunt windings. Figure 7.8 shows the equivalent 
circuit and abbreviated circuit of the Type A regulator in the lower position.
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Type A step-voltage regulator in the raise position.
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7.4.1.2 � Type B Step-Voltage Regulator

The more common connection for step-voltage regulators is the Type B. 
Because this is the more common connection, the defining voltage and cur-
rent equations for the voltage regulator will be developed only for the Type 
B connection.

The detailed and abbreviated equivalent circuits of a Type B step-voltage 
regulator in the “raise” position is shown in Figure 7.9.

The primary circuit of the system is connected, via taps, to the series wind-
ing of the regulator in the Type B connection. The series winding is connected 
to the shunt winding, which is connected directly to the regulated circuit. In 
a Type B regulator, the core excitation is constant because the shunt winding 
is connected across the regulated circuit.

The defining voltage and current equations for the regulator in the raise 
position are as follows:

	
= ⋅ = ⋅E
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= −






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= −



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= ⋅V a VS R L

	
= ⋅I a IL R S

	
(7.66)

	
a N

N
1R

2

1
= −

	
(7.67)

Equations 7.66 and 7.67 are the necessary defining equations for modeling a 
Type B regulator in the raise position.

The Type B step-voltage connection in the “lower” position is shown in 
Figure 7.10. As in the Type A connection, note that the direction of the cur-
rents through the series and shunt windings change, but the voltage polarity 
of the two windings remain the same.
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Type B step-voltage regulator in the raise position.
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The defining voltage and current equations for the Type B step-voltage 
regulator in the lower position are as follows:

	
= ⋅ = ⋅E
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= ⋅V a VS R L

	
= ⋅I a IL R S

	
(7.73)

	
a N

N
1R

2

1
= +

	
(7.74)

Equations 7.67 and 7.74 give the value of the effective regulator ratio as a 
function of the ratio of the number of turns on the series winding (N2) to the 
number of turns on the shunt winding (N1).

In the final analysis, the only difference between the voltage and current 
equations for the Type B regulator in the raise and lower positions is the sign 
of the turn’s ratio N N/2 1( ). The actual turn’s ratio of the windings is not 
known. However, the particular tap position will be known. Equations 7.67 
and 7.74 can be modified to give the effective regulator ratio as a function of 
the tap position. Each tap changes the voltage by 5/8% volts or 0.00625 per 
unit. Therefore, the effective regulator ratio can be given by:

	 a 1 0.00625 TapR = ⋅ 	 (7.75)

In Equation 7.75, the minus sign applies for the “raise” position and the posi-
tive sign for the “lower” position.

7.4.1.3 � Generalized Constants

In previous chapters and sections of this text, generalized abcd constants 
have been developed for various devices. It can now be shown that the gen-
eralized abcd constants can also be applied to the step-voltage regulator. For 
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both the Type A and Type B regulators, the relationship between the source 
voltage and current to the load voltage and current are of the form:

	
V

a
V I a IType A: 1

S
R

L S R L= ⋅ = ⋅
	

(7.76)

	
V a V I

a
IType B: 1

S R L S
R

L= ⋅ = ⋅
	

(7.77)

Therefore, the generalized constants for a single-phase step-voltage regula-
tor become:

	

a
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b c d a

A a B
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a a b c d
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B
Type B:

0 0 1

1 0

R
R

R

= = = =

= =
	

(7.79)

where aR is given by Equation 7.75, and the sign convention is given in 
Table 7.1.

7.4.1.4 � The Line Drop Compensator

The changing of taps on a regulator is controlled by the “line drop compen-
sator.” Figure 7.11 shows an analog circuit of the compensator circuit and as 
to how it is connected to the distribution line through a potential transformer 
and a current transformer. Older regulators are controlled by an analog com-
pensator circuit. Modern regulators are controlled by a digital compensator. 
The digital compensators require the same settings as the analog. Because it 
is easy to visualize, the analog circuit will be used in this section. However, 
understand that the modern digital compensators perform the same function 

TABLE 7.1

Sign Convention Table for aR

Type A Type B

Raise + −
Lower − +
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for changing the taps on the regulators. Moreover, as the smart grid becomes 
popular, it will be possible to transmit the load-center voltage directly to the 
regulator; so there will not be a need for the compensator circuit.

The purpose of the line drop compensator is to model the voltage drop of 
the distribution line from the regulator to the “load center.” The compensa-
tor is an analog circuit that is a scale model of the line circuit. The compensa-
tor input voltage is typically 120 V, which requires the potential transformer 
in Figure 7.11 to reduce the rated voltage down to 120 V. For a regulator that 
is connected line-to-ground, the rated voltage is the nominal line-to-neutral 
voltage, whereas for a regulator that is connected line-to-line, the rated volt-
age is the line-to-line voltage. The current transformer turns ratio is speci-
fied as CTP:CTS, where the primary rating (CTP) will typically be the rated 
current of the feeder. The setting that is most critical is that of R′ and X′ 
calibrated in volts. These values must represent the equivalent impedance 
from the regulator to the load center. The basic requirement is to force the 
per-unit line impedance to be equal to the per-unit compensator impedance. 
To cause this to happen, it is essential that a consistent set of base values be 
developed wherein the per-unit voltage and currents in the line and in the 
compensator are equal. The consistent set of base values is determined by 
selecting a base voltage and current for the line circuit and then comput-
ing the base voltage and current in the compensator by dividing the system 
base values by the potential transformer ratio and current transformer ratio, 
respectively. For regulators connected line-to-ground, the base system volt-
age is selected as the rated line-to-neutral voltage (VLN), and the base system 
current is selected as the rating of the primary winding of the current trans-
former (CTP). Table  7.2 gives “Table of Base Values,” which employs these 
rules for a regulator connected line-to-ground.

Voltage relayVR

  ++

  +

Vreg

Vdrop

R ′  + jX ′
Icomp

Iline

MVArated

kvLLhi/kvLLlo

Rline + jXline 

NPT :1

Load center

CTP : CTS

1:1

−

−

−

FIGURE 7.11
Line drop compensator circuit.
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With the Table of Base Values developed, the compensator R and X settings 
in ohms can be computed by first computing the per-unit line impedance.

	
( )

+ =
+

+ = + ⋅

Ω Ω

Ω Ω

R jX
Rline jX line

Z

R jX Rline jX line
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V
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pu pu

pu pu
P

LN

line

	

(7.80)

The per-unit impedance in Equation 7.80 must be the same in the line and 
in the compensator. The compensator impedance in ohms is computed by 
multiplying the per-unit impedance by the compensator base impedance.
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Equation 7.81 gives the value of the compensator R and X settings in ohms. 
The compensator R and X settings in volts are determined by multiplying the 
compensator R and X in ohms times the rated secondary current (CTS) of the 
current transformer.
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TABLE 7.2

Table of Base Values

Base Line Circuit Compensator Circuit

Voltage VLN V
N

LN

PT

Current CTP CTS

Impedance =Zbase
V
CTline

P

LN
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⋅
Zbase

V
N CTcomp
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PT S
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Knowing the equivalent impedance in ohms from the regulator to the load 
center, the required value for the compensator settings in volts is determined 
by using Equation 7.82. This is demonstrated in Example 7.4.

Example 7.4

Refer to Figure 7.11.
The substation transformer is rated 5000 kVA, 115 delta—4.16 grounded 

wye and the equivalent line impedance from the three single-phase reg-
ulators connected in wye to the load center is 0.3 + j0.9 Ω. The settings for 
each phase regulator will be the same.

	 1.	 Determine the potential transformer and current transformer 
ratings for the compensator circuit.

		  The rated line-to-ground voltage of each regulator is:

	 V 2400S =

	 In order to provide 120 V to the compensator, the potential 
transformer ratio is:

	
N 2400

120
20PT = =

	 The rated current of the substation transformer is:

	
=

⋅
=I

5000
3 4.16

693.9rated

	 The primary rating of the CT is selected as 700 amps, and if the 
compensator current is reduced to 5 amps, the CT ratio is:

	
CT CT

CT
700

5
140P

S
= = =

	 2.	 Determine the R and X settings of the compensator in ohms 
and volts.

		  Applying Equation 7.78 to determine the settings in volts:

	
R jX j j0.3 0.9 700

20
10.5 31.5 V( )′+ ′ = + ⋅ = +

	 The R and X settings in ohms are determined by dividing the 
settings in volts by the rated secondary current of the current 
transformer.

	
R jX j j10.5 31.5

5
2.1 6.3+ = + = + ΩΩ Ω

	 Understand that the R and X settings on the compensator 
control board are calibrated in volts.
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Example 7.5

The substation transformer in Example 7.4 is supplying a three-phase 
load of 2500 kVA at 4.16 kV and 0.9 power factor lag. The regulator has 
been set so that:

	 R jX j10.5 31.5 V′+ ′ = +

Voltage level = 120 V (desired voltage to be held at the load center)
Bandwidth = 2 V
Determine the tap position of the regulator that will hold the load-

center voltage at the desired voltage level and within the bandwidth. 
This means that the tap on the regulator needs to be set so that the volt-
age at the load center lies between 119 and 121 V.

The first step is to calculate the actual line current.

	
=

⋅
− = −I

2500
3 4.16

/ acos(0.9) 346.97/ 25.84 Aline

The current in the compensator is then:

	
= =

−
= −I

I
CT

346.97/ 25.84

140
2.4783/ 25.84 Acomp

line

The input voltage to the compensator is:

	
= = = =V

VLN
N

4160
3

20

2401.78/0

20
120.09/0 Vreg

rated

PT

The voltage drop in the compensator circuit is equal to the compensator 
current times the compensator R and X values in ohms:

	 ( )= + ⋅ − =V j2.1 6.3 2.4783/ 25.84 16.458/45.7 Vdrop

The voltage across the voltage relay is:

	 = − = − = −V V V 120.09/0 16.458/45.7 109.24/ 6.19 VR reg drop

The voltage across the voltage relay represents the voltage at the load 
center. Because this is well below the minimum voltage level of 119, the 
voltage regulator will have to change taps in the raise position to bring 
the load-center voltage up to the required level. Recall that on a 120-V 
base, a single step change on the regulator changes the voltage by 0.75 V. 
The number of required tap changes can then be approximated by:

	
= − =Tap

119 109.24
0.75

13.02
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This shows that the final tap position of the regulator will be “raise 13.” 
With the tap set at +13, the effective regulator ratio assuming a Type B 
regulator is:

	 a 1 0.00625 13 0.9188R = − ⋅ =

The generalized constants for modeling the regulator for this operating 
condition are:

	

a a

b

c

d

0.9188

0

0
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1.0884

R= =

=

=

= =

Example 7.6

Using the results of Example 7.6, calculate the actual voltage at the load 
center with the tap set at +13 assuming the 2500 kVA at 4.16 kV measured 
at the substation transformer low-voltage terminals.

The actual line-to-ground voltage and line current at the load-side ter-
minals of the regulator are:

	
V V

a
2401.78/0

0.9188
2614.2/0 VL

S= = =

	
I I

d
346.97/ 25.84

1.0884
318.77/ 25.84 AL

S= =
−

= −

The actual line-to-ground voltage at the load center is:

	 ( )= − ⋅ = − + ⋅ − = −V V Z I j2614.2/0 0.3 0.9 318.77/ 25.84 2412.8/ 5.15 VLC L line L

On a 120-V base, the load-center voltage is:
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−
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V
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In the compensator circuit:
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Note that the voltage relay matches the voltage at the load center. The +13 
tap was an approximation and has resulted in a load-center voltage 
within the bandwidth. However, since the regulator started in the neu-
tral position, the taps will be changed one at a time until the load-center 
voltage is inside the 119 lower bandwidth. Remember that each step 
changes the voltage by 0.75 V. Because the load-center voltage has been 
computed to be 120.6 V, it would appear that the regulator went one step 
more than necessary. Table 7.3 shows what the compensator relay voltage 
will be as the taps change one at a time from 0 to the final value.

Table 7.3 shows that when the regulator is modeled to change one tap at a 
time starting from the neutral position that when it reaches tap 12, the relay 
voltage is inside the bandwidth. For the same load condition, it may be that 
the taps will change to lower the voltage owing to a previous larger load. In 
this case, the taps will reduce one at a time until the relay voltage is inside 
the 121 upper bandwidth voltage. The point is that there can be different taps 
for the same load depending upon whether the voltage needs to be raised or 
lowered from an existing tap position.

It is important to understand that the value of equivalent line impedance 
is not the actual impedance of the line between the regulator and the load 
center. Typically, the load center is located down the primary main feeder 
after several laterals have been tapped. As a result, the current measured 
by the CT of the regulator is not the current that flows all the way from 
the regulator to the load center. The only way to determine the equivalent 
line impedance value is to run a power-flow program of the feeder without 
the regulator operating. From the output of the program, the voltages at the 
regulator output and the load center are known. Now the “equivalent” line 
impedance can be computed as:

	
+ =

−
ΩΩ

− −
ΩRline jX line

V V
I

regulator output load center

line 	
(7.83)

In Equation 7.83, the voltages must be specified in system volts and the cur-
rent in system amperes.

TABLE 7.3

Tap Changing

Tap Voltage

0 109.2
1 110.1
2 110.9
3 111.7

 

10 117.8
11 118.8
12 119.7
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This section has developed the model and generalized constants for Type 
A and Type B single-phase step-voltage regulators. The compensator control 
circuit has been developed, and it has been demonstrated as to how this 
circuit controls the tap changing of the regulator. The following section will 
discuss the various three-phase step-type voltage regulators.

7.4.2 � Three-Phase Step-Voltage Regulators

Three single-phase step-voltage regulators can be connected externally to 
form a three-phase regulator. When three single-phase regulators are con-
nected together, each regulator has its own compensator circuit, and there-
fore the taps on each regulator are changed separately. Typical connections 
for single-phase step-regulators are:

	 1.	Single-phase
	 2.	Two regulators connected in “open wye” (sometimes referred to as 

“V” phase)
	 3.	Three regulators connected in grounded wye
	 4.	Two regulators connected in open delta
	 5.	Three regulators connected in closed delta

A three-phase regulator has the connections between the single-phase wind-
ings internal to the regulator housing. The three-phase regulator is “gang” 
operated so that the taps on all windings change the same, and as a result, 
only one compensator circuit is required. For this case, it is up to the engi-
neer to determine as to which phase current and voltage will be sampled by 
the compensator circuit. Three-phase regulators will only be connected in a 
three-phase wye or closed delta.

Mostly, the substation transformer will have LTC windings on the second-
ary. The LTC will be controlled in the same way as a gang-operated three-
phase regulator.

In the regulator models to be developed in the following sections, the phas-
ing on the source side of the regulator will use capital letters A, B, and C. The 
load-side phasing will use lower case letters a, b, and c.

7.4.2.1 � Wye-Connected Regulators

Three Type B single-phase regulators connected in wye are shown in 
Figure 7.12.

In Figure 7.12, the polarities of the windings are shown in the “raise” posi-
tion. When the regulator is in the “lower” position, a reversing switch will 
have reconnected the series winding so that the polarity on the series wind-
ing is now at the output terminal. Regardless of whether the regulator is 
raising or lowering the voltage, the following equations apply:
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Voltage equations
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(7.84)

where aR a_ , aR b_ , and aR c_  represent the effective turns ratios for the three 
single-phase regulators.

Equation 7.84 is of the form:

	 [ ][ ] [ ] [ ]=   ⋅ + ⋅VLN a VLN b IABC abc abc 	 (7.85)

In Equation 7.85, the matrix b[ ] will be zero when the regulator impedance 
is neglected.

Current equations

	

I
I
I

a

a

a

I
I
I

1 0 0

0 1 0

0 0 1

A

B

C

R a

R b

R c

a

b

c

_

_

_

















=



























⋅

















	

(7.86)

B IB

A

C

c

b

a

VAn VAn

+

+

IA

IC

Ia

Ib

Ic

−
−

FIGURE 7.12
Wye-connected Type B regulators.
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Or:

	 [ ][ ] [ ] [ ] [ ]= ⋅ +I c VLG d IABC abc abc 	 (7.87)

In Equation 7.87, the matrix c[ ] will be zero since the regulator shunt admit-
tance is neglected.

Equations 7.85 and 7.87 are of the same form as the generalized equa-
tions that were developed for the three-phase line segment of Chapter 6. 
For a three-phase wye-connected step-voltage regulator neglecting the series 
impedance and shunt admittance, the forward and backward sweep matri-
ces are therefore defined as:

	

a
a

a
a

0 0
0 0
0 0

R a

R b

R c

_

_

_

[ ] =

















	

(7.88)

	

b
0 0 0
0 0 0
0 0 0

[ ] =














 	 (7.89)

	

c
0 0 0
0 0 0
0 0 0

[ ] =














 	 (7.90)

	

d

a

a

a

1 0 0

0 1 0

0 0 1

R a

R b

R c

_

_

_

[ ] =

























 	 (7.91)

	

A

a

a

a

1 0 0

0 1 0

0 0 1

R a

R b

R c

_

_

_

[ ] =

























 	 (7.92)

	

B
0 0 0
0 0 0
0 0 0

[ ] =














 	 (7.93)
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In Equations 7.88, 7.91, and 7.93, the effective turn’s ratio for each regulator 
must satisfy:

a0.9 1.1R abc_≤ ≤  in 32 steps of 0.625 %/step (0.75 V/step on 120 V base)

The effective turn ratios a a a, , andR a R b R c_ _ _( ) can take on different values 
when three single-phase regulators are connected in wye. It is also possible 
to have a three-phase regulator connected in wye, where the voltage and cur-
rent are sampled on only one phase, and then all three phases are changed 
by the same number of taps.

Example 7.7

An unbalanced three-phase load is served at the end of a 10,000-ft, 
12.47 kV distribution line segment. The phase-generalized matrices for 
the line segment were computed in Example 6.1 and used in Example 6.5. 
The computed matrices are:

	

[ ] =
















a
1 0 0
0 1 0
0 0 1

line

	

  =
+ + +
+ + +
+ + +



















b

j j j

j j j

j j j

0.8667 2.0417 0.2955 0.9502 0.2907 0.7290

0.2955 0.9502 0.8837 1.9852 0.2992 0.8023

0.2907 0.7290 0.2992 0.8023 0.8741 2.0172
line

For this line, the A and B matrices are defined as:

	 [ ] [ ]= −A aline line
1

	 [ ][ ] [ ] [ ]= ⋅ =−B a b Zline line line abc
1

In Example 6.5, the substation line-to-line voltages are balanced three-
phase. The line-to-neutral voltages at the substation are balanced 
three-phase:

	

[ ] = −



















VLN

7199.6/0

7199.6/ 120

7199.6/120

VABC

In Example 6.5, the unbalanced three-phase loads were:

	

kVA PF
2500
2000
1500

0.9
0.85
0.95

kVA[ ] [ ]=
















=















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In Example 6.5, the ladder iterative technique was used and the load cur-
rents and the currents leaving the substation were:

	

I

374.4/ 28.2

286.8 153.9

212.6/100.5
ABC[ ] =

−
−



















The load voltages were calculated to be:

	

  =

−
−



















V load

6678.2/ 2.3

6972.8/ 122.1

7055.5/118.7
abc

The load voltages on a 120-V base were computed to be:

	

V

111.3/ 2.3

116.2/ 122.1

117.6/118.7
120[ ] =

−
−



















It is obvious that the load voltages are not within the ANSI standard. To 
correct this problem, three single-phase Type B step-voltage regulators 
will be connected in wye and installed in the substation. The regulators 
are to be set such that each line-to-neutral load voltage on a 120-V base 
will lie between 119 and 121 V.

The potential and current transformers of the regulators are rated as:

	

N

CT CT
CT

7200
120

60

600
5

120

PT

P

S

= =

= = =

The voltage level and bandwidth are:

Voltage level = 120 V
Bandwidth = 2 V

The equivalent line impedance for each phase can be determined by 
applying Equation 7.83:

	

=
− −

−
= +

=
− − −

−
= + Ω

=
−

= +

Zline j

Z line j

Z line j

7199.6/0 6678.2/ 2.3
374.4/ 28.2

0.8989 1.3024

7199.6/ 120 6972.8/ 122.1
286.8/ 153.9

0.1655 1.2007

7199.6/120 7055.5/118.7
212.6/100.5

0.4044 0.9141

a

b

c
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Even though the three regulators change taps independently, it is the 
usual practice to set the R and X settings of the three regulators the 
same. The average value of the foregoing three line impedances can be 
used for this purpose.

	 = + ΩZline j0.4896 1.1391average

The compensator R and X settings are computed according to 
Equation 7.82:

	
( ) ( )′ + ′ = + ⋅ = + ⋅Ω ΩR jX Rline jXline

CT
N

j0.4896 1.1391
600
60

P

PT

	 R jX j4.8964 11.3908 V′+ ′ = +

The compensator controls are not calibrated to that many significant 
figures; so the values set are:

	 R jX j5 11 V′+ ′ = +

For the same unbalanced loading and with the three-phase wye-
connected regulators in service, the approximate tap settings are:

	
=

−
= − =Tap

V load119

0.75
119 111.3

0.75
10.2615a

a

	
=

−
= − =Tap

V load119

0.75
119 116.2

0.75
3.7154b

b

	
=

−
= − =Tap

V load119

0.75
119 117.6

0.75
1.8787c

c

Because the taps must be integers, the actual tap settings will be:

	

= +

= +

= +

Tap

Tap

Tap

10

4

2

a

b

c

The effective turns ratio for the three regulators and the resulting gen-
eralized matrices are determined by applying Equations 7.88, 7.91, and 
7.92 for each phase:

	

  =
− ⋅

− ⋅
− ⋅

















=
















a
1 0.00625 10 0 0

0 1 0.00625 4 0
0 0 1 0.00625 2

0.9375 0 0
0 0.975 0
0 0 0.9875

reg
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  =   =
















−
d a

1.0667 0 0
0 1.0256 0
0 0 1.0127

reg reg
1

	

  =   =
















−
A a

1.0667 0 0
0 1.0256 0
0 0 1.0127

reg reg
1

	

  =
















B
0 0 0
0 0 0
0 0 0

reg

With the voltage regulators connected to the source, the one-line dia-
gram of the simple system is shown in Figure 7.13.

A Mathcad program is written following the flowchart in Figure 6.7. 
The program is used to compute the load voltages and currents after the 
regulator taps and resulting matrices have been computed. The program 
is shown in Figure 7.14.

After six iterations, the results of the analysis are:

	

  =

−
−



















V load

7205.6/ 1.9

7145.9/ 122.0

7147.2/118.7
abc

	

V

120.1/ 1.9

119.1/ 122.0

119.1/118.7
120[ ] =

−
−



















	

I

347.0/ 27.8

279.9/ 153.8

209.9/100.5
abc[ ] =

−
−



















	

I

370.1 27.8

287.1/ 153.8

212.5/100.5
ABC[ ] =

−
−



















Source
Vreg

10,000 ft line Unbalanced
load

FIGURE 7.13
Simple system with a regulator and line.
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In this example, the tap positions have been determined by the analysis 
of the actual load voltages. Note that now all of the load voltages on the 
120-V base are within ANSI standards assuming that the taps were actu-
ally set at +10, +4, and +2. This procedure will only work when the regu-
lator is being fed the actual load voltages. Unfortunately, it works in such 
a way that the compensator circuit will adjust the taps based upon the 
compensator relay voltage. Recall that the compensator input voltage Vreg 
is a measure of the output voltage of the regulator and the compensator 

Start

0

0

0

Tol      .00001 EABC

7199.5579

7199.5579 e j 120 deg

7199.5579 e j 120 deg

Solve         I abc Start

Vold Start

Vregabc Areg EABC Breg Iabc

Vloadabc Aline Vregabc Bline Iabc

Iabc
i

SLi 1000

Vloadabc
i

i     1   3for

Error
j

Vloadabc
j

Vold
j

VLN

j     1  3for

Errmax max(Error)

break  if  Errmax Tol

Vold Vloadabc

V120

Vloadabc

Npt

IABC dreg Iabc

n     1   200for

Out1 Vloadabc

Out2 V120

Out3 Iabc

Out4 IABC

Out5 n

Out

FIGURE 7.14
Mathcad program.
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current I comp is a measure of the line current out of the regulator. For this 
example, the compensator R and X in ohms are:

	
Z R jX

CT
j j5 11

5
1 2.2c

s
= + = + = +

Initially, the taps are set to zero with the voltages, and currents at the 
output terminals of t	he regulator are:

	

[ ] [ ]

[ ]

=   ⋅ = −



















=   ⋅ =

−
−



















−

V A E

I d I

7199.6/0

7199.6/ 120

7199.6/120

374.4/ 28.2

286.8/ 153.9

212.6/100.5

out reg ABC

out reg ABC
1

The voltages and currents into the compensator circuits are:

	

[ ]

[ ]

  = = −



















  = =

−
−



















V
V
N

I
I
CT

120.0/0

120.0/ 120

120.0/120

3.12/ 28.2

2.39/ 153.9

1.77/100.6

reg
out

PT

comp
out

The compensator impedance matrix is:

	

  =
















=
+

+
+



















Z
Z

Z
Z

j

j

j

0 0
0 0
0 0

1 2.2 0 0

0 1 2.2 0

0 0 1 2.2
comp

c

c

c

The compensator relay voltages are:

	

  =   −   ⋅   =

−
−



















V V Z I

114.1/ 2.3

115.1/ 121.5

117.1/118.5
relay reg comp reg

Because the relay voltages are not within the bandwidth, the taps will 
change one step at a time until the voltages are within the bandwidth. 
It should be pointed out that as each regulator gets the voltage within 
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the bandwidth, it will stop while the others continue to change taps until 
their voltages are within the bandwidth. With the regulators changing 
one tap at a time, the final taps based upon the compensator relay volt-
ages are:

	

  =
+
+
+

















Taps
7
5
3

With these taps, the regulator stops changing taps, and the relay voltages are:

	

  =
















V
119.9
119.1
119.4

relay

Note that these are not the same taps as originally given for this exam-
ple. When these taps are applied to the analysis of the system, the result-
ing load voltages on a 120-V base are:

	

[ ] =
















V
117.3
120.1
119.9

load

The phase a voltage is not within the bandwidth. The problem is that 
when the example was first analyzed with the original taps, the taps had 
been determined by using the actual line voltage drops with the regula-
tors in the neutral position. However, when the compensator R and X 
values were computed, the average of the equivalent line impedances 
was used for each regulator. Because the three line currents are all dif-
ferent, it means the heavily loaded phase (a) voltage will not represent 
what is actually happening on the system. Once again, this is a problem 
that occurs because of the unbalanced loading.

One way to raise the load voltages is to specify a higher voltage level 
by increasing the voltage level to 122 V. With the regulator changing taps 
one at a time until all voltage relays have a voltage just greater than 121 V 
(lower bandwidth voltage), the results are:

	

  =
















  =
















  =
















Taps

V load

V

9
8
5

119.1
122.6
121.5

121.6
121.7
121.0

relay

120
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Example 7.7 is a long example intended to demonstrate how the engi-
neer can determine the correct compensator R and X settings knowing 
the substation and load voltages and the currents leaving the substa-
tion. Generally, it will be necessary to run a power-flow study in order 
to determine these values. A simple Mathcad routine demonstrates that 
with the regulator tap settings, the load voltages are within the desired 
limits. The regulator has automatically set the taps for this load condi-
tion, and as the load changes, the taps will continue to change in order 
to hold the load voltages within the desired limits.

7.4.2.2 � Closed Delta-Connected Regulators

Three single-phase Type B regulators can be connected in a closed delta as 
shown in Figure 7.15. In this figure, the regulators are shown in the “raise” 
position.

The closed delta connection is typically used in three-wire delta feeders. 
Note that the potential transformers for this connection are monitoring the 
load-side line-to-line voltages, and the current transformers are not monitor-
ing the load-side line currents.

The relationships between the source side and currents and the voltages 
are needed. Equations 7.64 through 7.67 define the relationships between the 
series and shunt winding voltages and currents for a step-voltage regulator 
that must be satisfied regardless of how the regulators are connected.

VAB

Vbc + 

−  

+

+

+ 

−

−  

VCc
+ 

−  Vab

+ 

−  

VAa

+ 

−  

−  VBb + −  

VCa

+ 

−  

B

C

b
c

A

aL

SSL

SL S

SL

L

S

L

FIGURE 7.15
Closed delta-connected regulators with voltages.
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Kirchhoff’s Voltage Law is first applied around a closed loop starting with 
the line-to-line voltage between phases A and B on the source side. Refer to 
Figure 7.14, which defines the various voltages.

	 = + −V V V VAB Aa ab Bb 	 (7.94)

But:

	
= − ⋅V N

N
VBb bc

2

1 	
(7.95)

	
= − ⋅V N

N
VAa ab

2

1 	
(7.96)

Substitute Equations 7.95 and 7.96 into Equation 7.94 and simplify:

	
V N

N
V N

N
V a V a V1 1AB ab bc R ab ab R bc bc

2

1

2

1
_ _( )= −







⋅ + ⋅ = ⋅ + − ⋅

	
(7.97)

The same procedure can be followed to determine the relationships between 
the other line-to-line voltages. The final three-phase equation is:

	

















=
−

−
−

















⋅
















V
V
V

a a
a a

a a

V
V
V

1 0
0 1

1 0

AB

BC

CA

R ab R bc

R bc R ca

R ab R ca

ab

bc

ca

_ _

_ _

_ _
	

(7.98)

Equation 7.98 is of the generalized form:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅VLL a VLL b IABC abc abc 	 (7.99)

Figure 7.16 shows the closed delta–delta connection with the defining 
currents.

The relationship between source and load line currents starts with apply-
ing KCL at the load-side terminal a.

	 I I I I I Ia a ca A ab ca= ′ + = − + 	 (7.100)

But:

	
I N

N
Iab A

2

1
= ⋅

	
(7.101)

	
I N

N
Ica C

2

1
= ⋅

	
(7.102)
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Substitute Equations 7.100 and 7.101 into Equation 7.100 and simplify:

	
( )= −







 ⋅ + = ⋅ + − ⋅I N

N
I N

N
I a I a I1 1a A C R ab A R ca C

2

1

2

1
_ _

	
(7.103)

The same procedure can be followed at the other two load-side terminals. 
The resulting three-phase equation is:

	

















=
−

−
−

















⋅
















I
I
I

a a
a a

a a

I
I
I

0 1
1 0

0 1

a

b

c

R ab R ca

R ab R bc

R bc R ca

A

B

C

_ _

_ _

_ _ 	

(7.104)

Equation 7.104 is of the general form:

	 I D Iabc ABC[ ] [ ] [ ]= ⋅ 	 (7.105)

where D
a a

a a
a a

0 1
1 0

0 1

R ab R ca

R ab R bc

R bc R ca

_ _

_ _

_ _

[ ] =
−

−
−

















Ibc

IC ′

IC

Ib ′

Ib

Ic

B

C

b
c

IB

Ica

Iab
IC

IA

Ia ′

A

IA

Ia
aL

SSL

L

IB

SL S

SL

L

S

FIGURE 7.16
Closed delta-connected regulators with currents.
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The general form needed for the standard model is:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅I c VLL d IABC ABC abc 	 (7.106)

where

	 d D 1[ ] [ ]= −

As with the wye-connected regulators, the matrices [b] and [c] are equal to 
zero as long as the series impedance and shunt admittance of each regulator 
is neglected.

The closed delta connection can be difficult to apply. Note in both the volt-
age and current equations that a change of the tap position in one regulator 
will affect voltages and currents in two phases. As a result, increasing the 
tap in one regulator will affect the tap position of the second regulator. In 
most cases, the bandwidth setting for the closed delta connection will have 
to be wider than that for wye-connected regulators.

7.4.2.3 � Open Delta-Connected Regulators

Two Type B single-phase regulators can be connected in the “open” delta 
connection. Shown in Figure 7.17 is an open delta connection where two 
single-phase regulators have been connected between phases AB and CB.

A

IA

Ia a
VCA

VAB  Vab

Iab

VAa L

+

+

+

+

�

�

�

�

S

S

IC

B

b

c
IB

Ic

IbVCc
Icb

Vab

Vbc

Vca
Vbc

VBC

C S SL

+

+

+
+

+

+ �

�

�

�

�

�

L

FIGURE 7.17
Open delta connection.
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Two additional open connections can be made by connecting the single-
phase regulators between phases BC and AC and also between phases CA 
and BA.

The open delta connection is typically applied to three-wire delta feeders. 
Note that the potential transformers monitor the line-to-line voltages and the 
current transformers monitor the line currents. Once again, the basic voltage 
and current relations of the individual regulators are used to determine the 
relationships between the source-side and load-side voltages and currents. 
The connection shown in Figure 7.17 will be used to derive the relationships, 
and then the relationships of the other two possible connections can follow 
the same procedure.

The voltage VAB across the first regulator consists of the voltage across the 
series winding plus the voltage across the shunt winding.

	 V V VAB Aa ab= + 	 (7.107)

Paying attention to the polarity marks on the series and shunt windings, the 
voltage across the series winding is:

	
V N

N
VAa ab

2

1
= − ⋅

	
(7.108)

Substituting Equation 7.108 into Equation 7.107 yields:

	
= −







 ⋅ = ⋅V N

N
V a V1AB ab R ab ab

2

1
_

	
(7.109)

Following the same procedure for the regulator connected across VBC, the 
voltage equation is:

	
= −







 ⋅ = ⋅V N

N
V a V1BC bc R cb bc

2

1
_

	
(7.110)

Kirchhoff’s Voltage Law must be satisfied so that:

	 V V V a V a VCA AB BC R ab ab R cb bc_ _( )= − + = − ⋅ − ⋅ 	 (7.111)

Equations 7.107, 7.108, and 7.109 can be put into matrix form:

	

















=
− −

















⋅

















V
V
V

a
a

a a

V
V
V

0 0
0 0

0

AB

BC

CA

R ab

R cb

R ab R cb

ab

bc

ca

_

_

_ _ 	

(7.112)
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Equation 7.112 in generalized form is:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅VLL a VLL b IABC LL abc LL abc 	 (7.113)

where

	

a
a

a
a a

0 0
0 0

0
LL

R ab

R cb

R ab R cb

_

_

_ _

[ ] =
− −

















	

(7.114)

The effective turn’s ratio of each regulator is given by Equation 7.75. Again, 
as long as the series impedance and shunt admittance of the regulators are 
neglected, bLL[ ] is zero. Equation 7.114 gives the line-to-line voltages on the 
source side as a function of the line-to-line voltages on the load side of the 
open delta using the generalized matrices. Up to this point, the relation-
ships between the voltages have been in terms of line-to-neutral voltages. In 
Chapter 8, the [W] matrix is derived. This matrix is used to convert line-to-
line voltages to equivalent line-to-neutral voltages.

	 [ ] [ ] [ ]= ⋅VLN W VLLABC ABC 	 (7.115)

where

	

W 1
3

2 1 0
0 2 1
1 0 2

[ ] = ⋅
















The line-to-neutral voltages are converted to line-to-line voltages by:

	 [ ] [ ] [ ]= ⋅VLL Dv VLNABC ABC 	 (7.116)

where

	

[ ] =
−

−
−



















Dv

1 1 0

0 1 1

1 0 1

Convert Equation 7.113 to line-to-neutral form:

	

[ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

= ⋅

= ⋅ = ⋅ ⋅ ⋅

=   ⋅

VLL a VLL

VLN W VLL W a Dv VLN

VLN a VLN

ABC LL abc

ABC ABC LL abc

ABC reg abc 	

(7.117)
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where

	 [ ] [ ] [ ]  = ⋅ ⋅a W a Dvreg LL

When the load-side line-to-line voltages are needed as a function of the 
source-side line-to-line voltages, the necessary equation is:

	

V
V
V

a

a

a a

V
V
V

1 0 0

0 1 0

1 1 0

ab

bc

ca

R ab

R cb

R ab R cb

AB

BC

CA

_

_

_ _

















=

− −



























⋅

















	

(7.118)

	 [ ] [ ] [ ]= ⋅VLL A VLLabc LL ABC 	 (7.119)

where

	

A

a

a

a a

1 0 0

0 1 0

1 1 0

LL

R ab

R cb

R ab R cb

_

_

_ _

[ ] =

− −



























	

(7.120)

Equation 7.119 is converted to line-to-neutral voltages by:

	

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

[ ] [ ]

= ⋅ = ⋅ ⋅

= ⋅ ⋅ ⋅

=   ⋅

VLN W VLL W A VLL

VLN W A Dv VLN

VLN A VLN

abc abc LL ABC

abc LL ABC

abc reg ABC 	

(7.121)

where

	 [ ] [ ] [ ]  = ⋅ ⋅A W A Dvreg LL

There is no general equation for each of the elements of  Areg . The matrix  
 Areg  must be computed according to Equation 7.121.

Referring to Figure 7.17, the current equations are derived by applying KCL 
at the L node of each regulator.

	 I I IA a ab= + 	 (7.122)
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But:

	
I N

N
Iab A

2

1
= ⋅

Therefore, Equation 7.122 becomes:

	
−







 =IN

N
I1 A a

2

1 	
(7.123)

Therefore:

	
I

a
I1

A
R ab

a
_

= ⋅
	

(7.124)

Similarly, the current equation for the second regulator is given by:

	
I

a
I1

C
R cb

c
_

= ⋅
	

(7.125)

Because this is a three-wire delta line, then:

	
I I I

a
I

a
I1 1

B A C
R ab

a
R cb

c
_ _

( )= − + = − ⋅ − ⋅
	

(7.126)

In matrix form, the current equations become:

	

I
I
I

a

a a

a

I
I
I

1 0 0

1 0 1

0 0 1

A

B

C

R ab

R ab R cb

R cb

a

b

c

_

_ _

_

















= − −



























⋅

















	

(7.127)

In generalized form, Equation 7.127 becomes:

	 [ ] [ ] [ ]=   ⋅ +   ⋅I c VLN d IABC reg ABC reg abc 	 (7.128)



234 Distribution System Modeling and Analysis

where

	

  = − −



























d

a

a a

a

1
0 0

1
0

1

0 0
1

reg

R ab

R ab R cb

R cb

_

_ _

_ 	

(7.129)

When the series impedances and shunt admittances are neglected, the con-
stant matrix [creg] will be zero.

The load-side line currents as a function of the source line currents are 
given by:

	

I
I
I

a
a a

a

I
I
I

0 0
0

0 0

a

b

c

R ab

R ab R cb

R cb

A

B

C

_

_ _

_

















= − −

















⋅

















	

(7.130)

	 [ ] [ ]=   ⋅I D Iabc reg ABC 	 (7.131)

where

	

  = − −

















D
a
a a

a

0 0
0

0 0
reg

R ab

R ab R cb

R cb

_

_ _

_ 	

(7.132)

The determination of the R and X compensator settings for the open delta fol-
lows the same procedure as that of the wye-connected regulators. However, 
care must be taken to recognize that in the open delta connection, the voltages 
applied to the compensator are line-to-line and the currents are line currents. 
The open delta-connected regulators will maintain only two of the line-to-
line voltages at the load center within defined limits. The third line-to-line 
voltage will be dictated by the other two (Kirchhoff’s Voltage Law). Therefore, 
it is possible that the third voltage may not be within the defined limits.

With reference to Figure 7.18, an equivalent impedance between the reg-
ulators and the load center must be computed. Because each regulator is 
sampling line-to-line voltages and a line current, the equivalent impedance 
is computed by taking the appropriate line-to-line voltage drop and divid-
ing it by the sampled line current. For the open delta connection shown in 
Figure 7.18, the equivalent impedances are computed as:

	
= −

Z
VR VL

Ieq
ab ab

a
a

	
(7.133)
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= −

Z
VR VL

Ieq
cb cb

c
c

	
(7.134)

The units of these impedances will be in system ohms. They must be con-
verted to compensator volts by applying Equation 7.78. For the open delta 
connection, the potential transformer will transform the system line-to-line 
rated voltage down to 120 V. Example 7.8 demonstrates how the compensa-
tor R and X settings are determined knowing the line-to-line voltages at the 
regulator and at the load center.

Example 7.8

A three-wire delta system is shown in Figure 7.19. The voltages at 
node S are:

	

[ ]

[ ] [ ] [ ]

= −



















= ⋅ =

−
−



















VLL

VLN W VLL

12, 470/0

12, 470/ 120

12, 470/120

7199.6/ 30

7199.6/ 150

7199.6/90

ABC

ABC ABC

Load
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VLab

VLcb

Vb

Vc

Va 

A

IA

Ia a

VCA

VAB  

L

+

+ +

−

L

L

IC Icb

B

b

cIB

Ic

Ib

Iab

VRab

VRcbVBC

C S SL

+

+

−

+ +

− −

−−

−

L

FIGURE 7.18
Open delta-connected to a load center.
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The three-wire delta line conductor is 336,400 26/7 ACSR with spacings 
as shown in Figure 7.20.

The load is delta-connected with values of:

	

[ ] [ ]=
















=
















kVA PF
2500
2000
1500

0.90
0.85
0.95

The line is 10,000 ft long, and the total phase impedance matrix is:

	

[ ] =
+ + +
+ + +
+ + +



















Z

j j j

j j j

j j j

0.7600 2.6766 0.1805 1.1627 0.1805 1.3761

0.1805 1.1627 0.7600 2.6766 0.1805 1.4777

0.1805 1.3761 0.1805 1.4777 0.7600 2.6766
abc

For this connection, the potential transformer ratio and current trans-
former ratios are selected to be:

	
= =N 12, 470

120
103.92PT

	
= =CT 500

5
100

S

[VLNABC] [VRabc] [VLabc]
[Iabc]

R L

FIGURE 7.19
Circuit for Example 7.8.

4.5 ′2.5 ′
c

29.0 ′

a b

FIGURE 7.20
Three-wire delta line spacings.
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The Mathcad program of Example 7.7 (Figure 7.14) is modified so that the 
line-to-line voltages at the load are computed and used to compute the 
load currents flowing in the line. In the program, the regulator taps are 
initially set in the neutral position. With the regulators set in neutral on 
a 120-V base, the load-center voltages are computed to be:

	

[ ] [ ] [ ]

[ ]

= ⋅

















= = ⋅

−
−



















=

−
−



















VLL Dv VL

VLL
N

V120
V120
V120

1
103.92

11,883.0/ 2.0

11,943.7/ 121.4

12022.1/118.0

114.4/ 2.0

114.9/ 121.4

115.7/118.0

V

abc abc

abc

PT

ab

bc

ca

The line currents are:

	

[ ] =

−

















I

303.2/ 46.9

336.2/176.1

236.2/57.1
abc

Two single-phase Type B regulators are to be installed in an open delta 
connection. The regulators are to be connected between phases A–B and 
B–C as shown in Figure 7.18. The voltage level will be set at 120 V with a 
bandwidth of 2 V. As computed earlier, the load-center voltages are not 
within the desired limits of 120 ± 1 V.

The compensator R and X settings for each regulator must first be 
determined using the results of the power-flow study. The first regula-
tor monitors the voltage Vab and the line current I a. The equivalent line 
impedance for this regulator is:

	
= − = + ΩZeq

VR VL
I

j0.3224 2.3844ab ab

a
a

The second regulator monitors the voltage Vcb and the line current I c. 
In the computation of the equivalent line impedance, it is necessary to 
use the c–b voltages, which are the negative of the given b–c voltages.

	
= − = − + = + ΩZeq

VR VL
I

VR VL
I

j2.1776 1.3772c
cb cb

c

bc bc

c

Unlike the wye-connected regulators, the compensator settings for the 
two regulators will be different. The settings calibrated in volts are:

	
( )′ + ′ = = + ⋅ = +R jX Z CT

N
j j. 0.3224 2.3844

500
103.92

1.5511 11.4726 Vab ab a
P

PT

	
( )′ + ′ = ⋅ = + ⋅ = +R jX Z CT

N
j j2.1776 1.3772

500
103.92

10.4776 6.6263 Vcb cb c
P

PT
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The compensator settings will be set to:

	

′ + ′ = +
′ + ′ = +

R X j

R jX j

1.6 11.5

10.5 6.6
V

ab ab

cb cb

With regulators installed and in the neutral position and with the same 
loading, the currents and voltages in the compensator circuits are:

	
= = =Vcomp

VR
N

12, 470/0
103.92

120/0 Vab
ab

pt

	
= − = =Vcomp

VR
N

12, 470/60
103.92

120/60 Vcb
bc

PT

	
= = −Icomp

I
CT

3.0321/ 46.9 Aa
a

	
= =Icomp

I
CT

2.3621/57.1 Ac
c

The compensator impedances in ohms are determined by dividing the 
settings in volts by the secondary rating of the current transformer.

	
+ = ′ + ′ = + = + ΩR jX

R jX
CT

j
j

1.6 11.5
5

0.32 2.3ab ab
ab ab

secondary

	
+ = ′ + ′ = + = + ΩR jX

R jX
CT

j
j

10.5 6.6
5

2.1 1.32cb cb
cb cb

secondary

The voltages across the voltage relays in the two compensator circuits are:

	
= − + ⋅ = −Vrelay Vcomp R jX Icomp( ) 114.3/ 2.0 Vab ab ab ab a

	 = − + ⋅ =Vrelay Vcomp R jX Icomp( ) 114.9/58.6 Vcb cb cb cb c

Because the voltages are below the lower limit of 119, the control cir-
cuit will send “raise” commands to change the taps one at a time on 
both regulators. For analysis purposes, the approximate number of tap 
changes necessary to bring the load-center voltage into the lower limit of 
the bandwidth for each regulator will be:

	
= − = ≈Tap

119 114.3
0.75

6.2422 6ab

	
= − = ≈Tap

119 114.9
0.75

5.43 5cb

With the taps set at 6 and 5, a check can be made to determine whether 
the voltages at the load center are now within the limits.
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With the taps adjusted, the regulator ratios are:

	 = − ⋅ =a Tap1.0 0.00625 0.9625R ab ab_

	 = = ⋅ =a Tap1.0 0.00625 0.9688R cb cb_

In order to determine the load-side regulator voltages and currents, the 

matrix [ALL] (Equation 7.120) is then converted to the equivalent  Areg  
matrix where the system line-to-neutral voltages are used.

	

[ ]

[ ] [ ] [ ]

=

− −

























=
− −

















  = ⋅ ⋅ =
− −

− −
− −

















A

A W A D

1
0.9625

0 0

0
1

0.9688
0

1
0.9625

1
0.9688

0

1.039 0 0
0 1.0323 0

1.039 1.0323 0

0.6926 0.3486 0.3441
0.3463 0.6904 0.3441
0.3463 0.3419 0.6882

LL

reg LL

Using Equation 7.129, the current matrix  dreg  is computed to be:

	

  = − −
















d
1.039 0 0
1.039 0 1.0323

0 0 1.0323
reg

With the taps set at +6 and +5, the output line-to-neutral voltages from 
the regulators are:

	

[ ] [ ]=   ⋅ =

−
−



















VR A VLN

7480.1/ 29.8

7455.9/ 150.1

7431.9/90.2

Vabc reg ABC

The line-to-line voltages are:

	

[ ] [ ] [ ]= ⋅ = −



















VRLL D VR

12,955.8/0

12,872.3/ 120

12,914.3/120

Vabc abc

The source output currents are:

	

[ ] =

−

















I

302.9/ 46.7

335.4/176.1

234.757.3

AABC
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The output currents from the regulators are:

	

[ ] [ ]=   =

−

















I D I.

291.6/ 46.7

323.5/176.3

227.4/57.3

Aabc reg ABC

There are two ways to test whether the voltages at the load center are 
within the limits. The first method is to compute the relay voltages in the 
compensator circuits. The procedure is the same as was done initially to 
determine the load-center voltages. First, the voltages and currents in the 
compensator circuits are computed:

	
= = =Vcomp

VR
N

12,955.8/0
103.92

124.7/0 Vab
ab

PT

	
= − = =Vcomp

VR
N

12,872.3/60
103.92

123.1/60 Vcb
bc

PT

	
= =

−
= −Icomp

I
CT

291.6/ 46.7
100

2.916/ 58.0 Aa
a

	
= = =Icomp

I
CT

227.4/57.3
100

2.274/57.3 Ac
c

The voltages across the voltage relays are computed to be:

	 = − + ⋅ = −Vrelay Vcomp R jX Icomp( ) 119.2/ 1.9 Vab ab ab ab a

	 = − + ⋅ =Vrelay Vcomp R jX Icomp( ) 119.0/58.7 Vcb cb cb cb c

Because both voltages are within the bandwidth, no further tap chang-
ing will be necessary.

The actual voltages at the load center can be computed using the out-
put voltages and currents from the regulator and then by computing the 
voltage drop to the load center.

With reference to Figure 7.19, the equivalent line-to-neutral and actual 
line-to-line voltages at the load are:

	

[ ] [ ] [ ] [ ]

[ ] [ ]

= − ⋅ =

−
−



















=   ⋅ =

−
−



















VL VR Z I

VLL Dv VL

7180.1/ 29.8

7455.9/ 150.1

7431.9/90.2

12,392.4/ 1.9

12,366.5/ 121.3

12, 481.8/118.5

V

abc abc abc abc

abc abc

Dividing the load-center line-to-line voltages by the potential trans-
former ratio gives the load line-to-line voltages on the 120-V base as:
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= −

= −

=

V120 119.35/ 1.9

V120 119.0/ 121.3 V

V120 120.1/118.5

ab

bc

ca

Note how the actual load voltages on the 120-V base match very closely 
with the values computed across the compensator relays. It is also noted 
that, in this case, the third line-to-line voltage is also within the band-
width. That will not always be the case.

This example is very long but has been included to demonstrate how 
the compensator circuit is set and then how it will adjust taps so that the 
voltages at a remote load-center node will be held within the set limits. 
In actual practice, the only responsibilities of the engineer will be to cor-
rectly determine the R and X settings of the compensator circuit and to 
determine the desired voltage level and bandwidth.

The open delta regulator connection using phases A–B and C–B has 
been presented. There are two other possible open delta connections 
using phase B–C and A–C and then C–A and B–A. Generalized matrices 
for these additional two connections can be developed using the proce-
dures presented in this section.

7.5 � Summary

It has been shown that all possible connections for Type B step-voltage regulators 
can be modeled using the generalized matrices. The derivations in this chap-
ter were limited to three-phase connections. If a single-phase regulator is con-
nected line-to-neutral or two regulators connected in open wye, then the a[ ] and 
d[ ] matrices will be of the same form as that of the wye-connected regulators, 

and only the terms in the rows and columns associated with the missing phases 
would be zero. The same can be said for a single-phase regulator connected line-
to-line. Again, the rows and columns associated with the missing phases would 
be set to zero in the matrices developed for the open delta connection.

The generalized matrices developed in this chapter are of exactly the same 
form as those developed for the three-phase line segments. In the next chapter, 
the generalized matrices for all three-phase transformers will be developed.

Problems

7.1 A single-phase transformer is rated 100 kVA, 2400–240 V. The impedances 
and shunt admittance of the transformer are:

Z1 = 0.65 + j0.95 Ω (high-voltage winding impedance)
Z2 = 0.0052 + j0.0078 Ω (low-voltage winding impedance)
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Ym = 2.56·10–4 – j11.37·10–4 S (referred to the high-voltage winding)
	 a.	 Determine the a, b, c, d constants and the A and B constants.
	 b.	 The transformer is serving an 80 kW, 0.85 lagging power factor 

load at 230 V. Determine the primary voltage, current, and com-
plex power.

	 c.	 Determine the per-unit transformer impedance and shunt 
admittance based upon the transformer ratings.

7.2 The single-phase transformer of Problem 7.1 is to be connected as a step-
down autotransformer to transform the voltage from 2400 V down to 2160 V.

	 a.	Draw the connection diagram including the series impedance and 
shunt admittance.

	 b.	Determine the autotransformer kVA rating.
	 c.	Determine the a, b, c, d, A, and B generalized constants.
	 d.	The autotransformer is serving a load of 80 kVA, 0.95 lagging power 

factor at a voltage of 2000 V. Including the impedance and shunt 
admittance, determine the input voltage, current, and complex 
power.

	 e.	Determine the per-unit impedance and shunt admittance based 
upon the autotransformer rating. How do these values compare to 
the per-unit values of Problem 7.1?

7.3 A “Type B” step-voltage regulator is installed to regulate the voltage on 
a 7200-V single-phase lateral. The potential transformer and current trans-
former ratios connected to the compensator circuit are:

Potential transformer: 7200–120 V
Current transformer: 500:5 A

The R and X settings in the compensator circuit are: R = 5 V and X = 10 V
The regulator tap is set on the +10 position when the voltage and current on 

the source side of the regulator are:

Vsource = 7200 V and Isource = 375 at a power factor of 0.866 lagging power 
factor.

	 a.	 Determine the voltage at the load center.
	 b.	 Determine the equivalent line impedance between the regulator 

and the load center.
	 c.	 Assuming that the voltage level on the regulator has been set 

at 120 V with a bandwidth of 2 V, what tap will the regulator 
move to?
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7.4 Refer to Figure 7.11. The substation transformer is rated 24 MVA, 230 kV 
delta −13.8 kV wye. Three single-phase Type B regulators are connected in 
wye. The equivalent line impedance between the regulators and the load-
center node is:

Zline = 0.264 + j0.58 Ω/mile
The distance to the load-center node is 10,000 ft.

	 a.	 Determine the appropriate PT and CT ratios.
	 b.	 Determine the R′ and X′ settings in ohms and volts for the com-

pensator circuit.
	 c.	 The substation is serving a balanced three-phase load of 16 MVA, 

0.9 lagging power factor when the output line-to-line voltages 
of the substation are balanced 13.8 kV and the regulators are set 
in the neutral position. Assume the voltage level is set at 121 V 
and a bandwidth of 2 V. Determine the final tap position for each 
regulator (they will be the same). The regulators have 32–5/8% 
taps (16 raise and 16 lower).

	 d.	 What would be the regulator tap settings for a load of 24 MVA, 
0.9 lagging power factor, with the output voltages of the substa-
tion transformer balanced three-phase 13.8 kV?

	 e.	 What would be the load-center voltages for the load of part d above?

7.5 Three Type B step-voltage regulators are connected in wye and located on 
the secondary bus of a 12.47 kV substation. The feeder is serving an unbal-
anced load. A power-flow study has been run, and the voltages at the substa-
tion and the load-center node are:
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Vabc

The currents at the substation are:

	

I

362.8/ 27.3
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The regulator potential transformer ratio is 7200–120 and the current trans-
former ratio is 500:5. The voltage level of the regulators is set at 121 V and the 
bandwidth at 2 V.

	 a.	Determine the equivalent line impedance per phase between the 
regulator and the load center.

	 b.	The compensators on each regulator are to be set with the same R 
and X values. Specify these values in volts and in ohms.

7.6 The impedance compensator settings for the three step-regulators of 
Problem 7.5 have been set as:

	 R X3.0 V 9.3 V′ = ′ =

The voltages and currents at the substation bus are:
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Determine the final tap settings for each regulator.

7.7 For a different load condition for the system of Problem 7.5, the taps on the 
regulators have been automatically set by the compensator circuit to:

	 = + = + = +Tap Tap Tap8 11 6a b c

The load reduces so that the voltages and currents at the substation bus are:
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Determine the new final tap settings for each regulator.

7.8 The load-center node for the regulators described in Problem 7.5 is located 
1.5 miles from the substation. There are no lateral taps between the substa-
tion and the load center. The phase impedance matrix of the line segment 
(Problem 4.1) is:

z

j j j

j j j

j j j

0.3375 1.0478 0.1535 0.3849 0.1559 0.5017

0.1535 0.3849 0.3414 1.0348 0.1580 0.4236

0.1559 0.5017 0.1580 0.4236 0.3465 1.0179

/mileabc[ ] =
+ + +
+ + +
+ + +



















Ω

A wye-connected, unbalanced constant impedance load is located at the 
load-center node. The load impedances are:

	 = + Ω = + Ω = + ΩZL j W ZL j W ZL j W19 11 , 22 12 , 18 10a b c

The voltages at the substation are balanced three-phase of 7200 V line-to- 
neutral. The regulators are set on neutral.

	 a.	Determine the line-to-neutral voltages at the load center.
	 b.	Determine the R and X settings in volts for the compensator.
	 c.	Determine the required tap settings in order to hold the load-center 

voltages within the desired limits.

7.9 The R and X settings for the line in Problem 7.8 have been set to 2.3 + j7.4 V. 
For this problem, the loads are wye-connected and modeled such that the 
per-phase load kVA and Power Factor (constant PQ loads) are:
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Determine:

	 a.	The final regulator tap positions.
	 b.	The compensator relay voltages.
	 c.	The load line-to-neutral voltages on a 120-V base.

7.10 The phase impedance matrix for a three-wire line segment is:

z

j j j

j j j

j j j

0.4013 1.4133 0.0953 0.8515 0.0953 0.7802

0.0953 0.8515 0.4013 1.4133 0.0953 0.7266

0.0953 0.7802 0.0953 0.7266 0.4013 1.4133

/mileabc[ ] =
+ + +
+ + +
+ + +
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The line is serving an unbalanced load so that at the substation transformer 
line-to-line voltages and output currents are:
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Two Type B step-voltage regulators are connected in open delta at the sub-
station using phases A–B and C–B. The potential transformer ratios are 
12,470/120, and the current transformer ratios are 500:5. The voltage level is 
set at 121 V with a 2-V bandwidth.

	 a.	Determine the line-to-line voltages at the load center.
	 b.	Determine the R and X compensator settings in volts. For the open-

delta connection, the R and X settings will be different on each 
regulator.

	 c.	Determine the final tap positions of the two voltage regulators.

7.11 The regulators in Problem 7.10 have gone to the +9 tap on both regula-
tors for a particular load. The load is reduced so that the currents leaving the 
substation transformer with the regulators in the +9 position are:

	

I

144.3/ 53.5

136.3/179.6

125.7/66.3

Aabc[ ] =
−

















Determine the final tap settings on each regulator for this new load 
condition.

7.12 Use the system of Example 7.8 with the delta-connected loads changed to:
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The source voltages, potential transformer, and current transformer ratings 
are those in the example. The desired voltage level is set at 122 V with a band-
width of 2 V. For this load condition:

	 a.	Use the R and X compensator values from Example 7.8.
	 b.	Determine the required tap positions.
	 c.	Determine the final relay voltages.
	 d.	Determine the final load line-to-line load voltages and the line 

currents.

WindMil Assignment

Use System 3 and add a step-voltage regulator connected between the source 
and the three-phase OH line. Call this “System 4.” The regulator is to be 
set with a specified voltage level of 122 V at Node 2. The potential trans-
former ratio is 7200–120, and the CT ratio is 200:5. Call the regulator Reg-1. 
Follow these steps in the User’s Manual on how to install the three-phase 
wye-connected regulators.

	 1.	Follow the steps outlined in the User’s Manual to have WindMil 
determine the R and X settings to hold the specified voltage level at 
Node 2.

	 2.	Run “Voltage Drop.” Check the node voltages and in particular the 
voltage at Node 2.

	 3.	What taps did the regulators go to?
	 4.	 In Example 7.7, a method to hand calculate the compensator R and X 

setting was demonstrated. Follow that procedure to compute the R 
and X settings, and compare it to the WindMil settings.

References

	 1.	 American Nation Standard for Electric Power—Systems and Equipment Voltage 
Ratings (60 Hertz), ANSI C84.1-1995, National Electrical Manufacturers 
Association, Rosslyn, VA, 1996.

	 2.	 IEEE Standard Requirements, Terminology, and Test Code for Step-Voltage and 
Induction-Voltage Regulators, ANSI/IEEE C57.15-1986, Institute of Electrical and 
Electronic Engineers, New York, 1988.



http://www.taylorandfrancis.com


249

8
Three-Phase Transformer Models

Three-phase transformer banks are found in the distribution substation, 
where the voltage is transformed from the transmission or subtransmission 
level to the distribution feeder level. In most cases, the substation transformer 
will be a three-phase unit, perhaps with high-voltage no-load taps and, per-
haps, low-voltage load tap changing (LTC). For a four-wire wye feeder, the 
most common substation transformer connection is the delta–grounded 
wye. A three-wire delta feeder will typically have a delta–delta transformer 
connection in the substation. Three-phase transformer banks downstream 
from the substation will provide the final voltage transformation to the cus-
tomer’s load. A variety of transformer connections can be applied. The load 
can be pure three-phase or a combination of single-phase lighting load and a 
three-phase load such as an induction motor. In the analysis of a distribution 
feeder, it is important that the various three-phase transformer connections 
be modeled correctly.

Unique models of three-phase transformer banks applicable to radial dis-
tribution feeders will be developed in this chapter. Models for the following 
three-phase connections are included:

•	 Delta–grounded wye
•	 Ungrounded wye–delta
•	 Grounded wye–delta
•	 Open wye–open delta
•	 Grounded wye–grounded wye
•	 Delta–delta
•	 Open delta–open delta

8.1 � Introduction

Figure 8.1 defines the various voltages and currents for all three-phase trans-
former banks connected between the source-side node n and the load-side 
node m.
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In Figure 8.1, the models can represent a step-down (source side to load 
side) or a step-up (source side to load side) transformer bank. The notation 
is such that the capital letters A, B, C, and N will always refer to the source 
side (node n) of the bank, and the lower case letters a, b, c, and n will always 
refer to the load side (node m) of the bank. It is assumed that all variations of 
the wye–delta connections are connected in the “American Standard Thirty 
Degree” connection. The described phase notation and the standard phase 
shifts for positive sequence voltages and currents are:

Step-down connection

	 V Vleads by 30AB ab


	 (8.1)

	 I Ileads by 30A a


	 (8.2)

Step-up connection

	 V Vleads by 30ab AB


	 (8.3)

	 I Ileads by 30a A


	 (8.4)

8.2 � Generalized Matrices

The models to be used in power-flow and short-circuit studies are general-
ized for the connections in the same form as have been developed for line 
segments (Chapter 6) and voltage regulators (Chapter 7). In the “forward 
sweep” of the “ladder” iterative technique described in Chapter 10, the volt-
ages at node m are defined as a function of the voltages at node n and the 
currents at node m. The required equation is:

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅VLN A VLN B Iabc t ABC t abc 	 (8.5)
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FIGURE 8.1
General three-phase transformer bank.
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In the “backward sweep” of the ladder technique, the matrix equations for 
computing the voltages and currents at node n as a function of the voltages 
and currents at node m are given by:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅VLN a VLN b IABC t abc t abc 	 (8.6)

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅I c VLN d IABC t abc t abc 	 (8.7)

In Equations 8.5, 8.6, and 8.7, the matrices [ ]VLN ABC  and [ ]VLN abc  represent 
the line-to-neutral voltages for an ungrounded wye connection or the line-
to-ground voltages for a grounded wye connection. For a delta connection, 
the voltage matrices represent “equivalent” line-to-neutral voltages. The cur-
rent matrices represent the line currents regardless of the transformer wind-
ing connection.

In the modified ladder technique, Equation 8.5 is used to compute new 
node voltages downstream from the source using the most recent line 
currents. In the backward sweep, only Equation 8.7 is used to compute 
the source-side line currents using the newly computed load-side line 
currents.

8.3 � The Delta–Grounded Wye Step-Down Connection

The delta–grounded wye step-down connection is a popular connection that 
is typically used in a distribution substation serving a four-wire wye feeder 
system. Another application of the connection is to provide service to a load 
that is primarily single-phase. Because of the wye connection, three single-
phase circuits are available, thereby making it possible to balance the single-
phase loading on the transformer bank.

Three single-phase transformers can be connected delta–grounded wye in 
a “standard 30° step-down connection” (as shown in Figure 8.2).

8.3.1 � Voltages

The positive sequence phasor diagrams of the voltages (Figure 8.2) show the 
relationships between the various positive sequence voltages. Note that the 
primary line-to-line voltage from A to B leads the secondary line-to-line volt-
age from a to b by 30°. Care must be taken to observe the polarity marks 
on the individual transformer windings. In order to simplify the notation, 
it is necessary to label the “ideal” voltages with voltage polarity markings 
as shown in Figure 8.2. Observing the polarity markings of the transformer 
windings, the voltage Vta  will be 180° out of phase with the voltage VCA and the  
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voltage Vtb  will be 180° out of phase with the voltage VAB. Kirchhoff’s Voltage 
Law at no-load gives the line-to-line voltage between phases a and b as:

	 = −V Vt Vtab a b 	 (8.8)

The phasors of the positive sequence voltages in Equation 8.8 are shown in 
Figure 8.2.

The magnitude changes between the voltages can be defined in terms of 
the actual winding turns ratio (nt). With reference to Figure 8.2, these ratios 
are defined as follows:

	
n

kVLL
kVLN

t
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rated secondary
=

	
(8.9)

With reference to Figure 8.2, the line-to-line voltages on the primary side of 
the transformer connection as a function of the ideal secondary-side voltages 
are given by:
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(8.10)
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FIGURE 8.2
Standard delta–grounded wye connection with voltages.
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where
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Equation 8.10 gives the primary line-to-line voltages at node n as a function 
of the ideal secondary voltages. However, what is needed is a relationship 
between “equivalent” line-to-neutral voltages at node n and the ideal sec-
ondary voltages. The question is how the equivalent line-to-neutral voltages 
are determined knowing the line-to-line voltages. One approach is to apply 
the theory of symmetrical components.

The known line-to-line voltages are transformed to their sequence 
voltages by:

	 [ ] [ ]  = ⋅−VLL A VLLs ABC012
1

	
(8.11)
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(8.12)

	 a 1.0/120s =

By definition, the zero sequence line-to-line voltage is always zero. The rela-
tionship between the positive and negative sequence line-to-neutral and line-
to-line voltages is known. These relationships in matrix form are given by:
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(8.13)

where

	
t 1

3
/30=

Because the zero sequence line-to-line voltage is zero, the (1,1) term of the 
matrix [T] can be of any value. For the purposes here, the (1,1) term is chosen 
to have a value of 1.0. Knowing the sequence line-to-neutral voltages, the 
equivalent line-to-neutral voltages can be determined.
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The equivalent line-to-neutral voltages as a function of the sequence line-
to-neutral voltages are:

	 [ ] [ ] [ ]= ⋅VLN A VLNABC s 012 	 (8.14)

Substitute Equation 8.13 into Equation 8.14:

	
[ ] [ ] [ ]= ⋅ ⋅  VLN A T VLLABC s 012 	 (8.15)

Substitute Equation 8.11 into Equation 8.15:

	
[ ] [ ]= ⋅  VLN W VLLABC ABC 	 (8.16)

where

	

W A T A 1
3

2 1 0
0 2 1
1 0 2

s s
1[ ] [ ] [ ] [ ]= ⋅ ⋅ = ⋅

















−

	

(8.17)

Equation 8.17 provides a method of computing equivalent line-to-neutral 
voltages from a knowledge of the line-to-line voltages. This is an important 
relationship that will be used in a variety of ways as other three-phase trans-
former connections are studied.

To continue on, Equation 8.16 can be substituted into Equation 8.10:

	 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]= ⋅ = ⋅ ⋅ = ⋅VLN W VLL W AV Vt a VtABC abc t abc 	 (8.18)

where

	

a W AV n
3

0 2 1
1 0 2
2 1 0

t
t[ ] [ ] [ ]= ⋅ = − ⋅
















	

(8.19)

Equation 8.19 defines the generalized at[ ] matrix for the delta–grounded wye 
step-down connection.

The ideal secondary voltages as a function of the secondary line-to-ground 
voltages and the secondary line currents are:

	 [ ] [ ] [ ] [ ]= + ⋅Vt VLG Zt Iabc abc abc abc 	 (8.20)
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where

	

[ ] =
















Zt
Zt

Zt
Zt

0 0
0 0
0 0

abc

a

b

c
	

(8.21)

Notice in Equation 8.21 that there is no restriction that the impedances of the 
three transformers be equal.

Substitute Equation 8.20 into Equation 8.18:

	

( )
[ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

= ⋅ + ⋅

= ⋅ + ⋅

VLN a VLG Zt I

VLN a VLG b I

ABC t abc abc abc

ABC t abc t abc 	

(8.22)

where

	

[ ] [ ] [ ]= ⋅ = − ⋅
⋅

⋅
⋅

















b a Zt
n

Zt Zt
Zt Zt

Zt Zt
3

0 2
0 2

2 0
t t abc

t
b c

a c

a b
	

(8.23)

The generalized matrices [at] and [bt] have now been defined. The derivation 
of the generalized matrices [At] and [Bt]  begins with solving Equation 8.10 for 
the ideal secondary voltages:

	 [ ] [ ] [ ]= ⋅−Vt AV VLLabc ABC
1

	 (8.24)

The line-to-line voltages as a function of the equivalent line-to-neutral volt-
ages are:

	 [ ] [ ] [ ]= ⋅VLL Dv VLNABC ABC 	 (8.25)

where

	

Dv
1 1 0
0 1 1
1 0 1

[ ] =
−

−
−
















	

(8.26)

Substitute Equation 8.25 into Equation 8.24:

	 [ ] [ ] [ ] [ ] [ ] [ ]= ⋅ ⋅ = ⋅−Vt AV Dv VLN A VLNabc ABC t ABC
1

	 (8.27)
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where

	

A AV Dv
n
1 1 0 1

1 1 0
0 1 1

t
t

1 [ ][ ]  = ⋅ = ⋅
−

−
−

















−

	

(8.28)

Substitute Equation 8.20 into Equation 8.27:

	 [ ] [ ] [ ] [ ] [ ]+ ⋅ = ⋅VLG Zt I A VLNabc abc abc t ABC 	 (8.29)

Rearrange Equation 8.29:

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅VLG A VLN B Iabc t ABC t abc 	 (8.30)

where

	

[ ] [ ]= =
















B Zt
Zt

Zt
Zt

0 0
0 0
0 0

t abc

a

b

c
	

(8.31)

Equation 8.22 is referred to as the “backward sweep voltage equation,” 
and Equations 8.30 is referred to as the “forward sweep voltage equation.” 
Equations 8.22 and 8.30 apply only for the step-down delta–grounded 
wye transformer. Note that these equations are exactly in the same form 
as those derived in earlier chapters for line segments and step-voltage 
regulators.

8.3.2 � Currents

The 30° connection specifies that the positive sequence current entering the 
H1 terminal will lead the positive sequence current leaving the X1 terminal 
by 30°. Figure 8.3 shows the same connection as Figure 8.2 but with the cur-
rents instead of the voltages displayed.

As with the voltages, the polarity marks on the transformer windings 
must be observed for the currents. For example, in Figure 8.3 the current  
Ia is entering the polarity mark on the low-voltage winding; so the current 
IAC flowing out of the polarity mark on the high-voltage winding will be in 
phase with Ia. This relationship is shown in the phasor diagrams for positive 
sequence currents in Figure 8.3. Note that the primary line current on phase 
A leads the secondary phase a current by 30°.
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The line currents can be determined as a function of the delta currents by 
applying Kirchhoff’s Current Law (KCL):

	

I
I
I

I
I
I

1 1 0
0 1 1
1 0 1

A

B

C

AC

BA

CB

















=
−

−
−

















⋅

















	

(8.32)

In condensed form, Equation 8.32 is:

	 [ ] [ ] [ ]= ⋅I D IDABC ABC 	 (8.33)

where

	

D
1 1 0
0 1 1
1 0 1

[ ] =
−

−
−

















The matrix equation relating the delta primary currents to the secondary 
line currents is given by:

	

I
I
I

n

I
I
I

1 1 0 0
0 1 0
0 0 1

AC

BA

CB
t

a

b

c

















= ⋅















⋅

















	

(8.34)

	 ID AI IABC abc[ ] [ ] [ ]= ⋅ 	 (8.35)

H1A

Zta Ztb Ztc In

Ib IcIa

nt

++

+
X3cX2b

g

Vab

Vag

Vbc

X1a

H2B H3C

–

–

–

Ib

Ia

IA

IA IB IC

Ib IcIa

IAC IBA ICB

ICB

IBA

IAC

Ic

FIGURE 8.3
Delta–grounded wye connection with currents.
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where

	

[ ] = ⋅
















AI
n
1 1 0 0

0 1 0
0 0 1t

Substitute Equation 8.35 into Equation 8.33:

	 [ ][ ] [ ] [ ] [ ] [ ] [ ] [ ]= ⋅ ⋅ = ⋅ + ⋅I D AI I c VLG d IABC abc t abc t abc 	 (8.36)

where

	

[ ] [ ] [ ]= ⋅ = ⋅
−

−
−

















d D AI
n
1 1 1 0

0 1 1
1 0 1

t
t

	

(8.37)

	

[ ] =
















c
0 0 0
0 0 0
0 0 0

t

	

(8.38)

Equation 8.36 (referred to as the “backward sweep current equations”) pro-
vides a direct method of computing the phase line currents at node n by 
knowing the phase line currents at node m. Again, this equation is in the 
same form as that previously derived for three-phase line segments and 
three-phase step-voltage regulators.

The equations derived in this section are for the step-down connection. 
The next section (8.4) will summarize the matrices for the delta–grounded 
wye step-up connection.

Example 8.1

In the example system in Figure 8.4, an unbalanced constant impedance 
load is being served at the end of a 10,000-ft section of a three-phase 
line. The 10,000 ft long line is being fed from a substation transformer 
rated 5000 kVA, 115 kV delta—12.47 kV grounded wye with a per-unit 

2 31

10,000 ft

FIGURE 8.4
Example system.
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impedance of 0.085/85. The phase conductors of the line are 336,400 26/7 
Aluminum Conductor Steel Reinforced (ACSR) with a neutral conductor 
4/0 ACSR. The configuration and computation of the phase impedance 
matrix are given in Example 4.1. From that example, the phase imped-
ance matrix was computed to be:

	

[ ]

[ ]

[ ]

=
+ + +
+ + +
+ + +



















Ω

=

= ⋅ =
+ + +
+ + +
+ + +



















z

j j j

j j j

j j j

L

Zline L z

j j j

j j j

j j j

0.4576 1.0780 0.1560 0.5017 0.1535 0.3849

0.1560 0.5017 0.4666 1.0482 0.1580 0.4236

0.1535 0.3849 0.1580 0.4236 0.4615 1.0651

/mile

10, 000
5280

mile

0.8667 2.0417 0.2955 0.9502 0.2907 0.7290

0.2955 0.9502 0.8837 1.9852 0.2992 0.8023

0.2907 0.7290 0.2992 0.8023 0.8741 2.0172

line

abc line

The general matrices for the line are:

	
[ ] [ ][ ] [ ]=

















= =
















A B Z line d
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

line line abc line

The transformer impedance needs to be converted to ohms referenced to 
the low-voltage side of the transformer. The base impedance is:

	
Z 12.47 1000

5000
31.1base

2

= ⋅ =

The transformer impedance referenced to the low-voltage side is:

	 ( )= ⋅ = + ΩZt j0.085/85 31.3 0.2304 2.6335

The transformer phase impedance matrix is:

	

[ ] =
+

+
+



















ΩZt

j

j

j

0.2304 2.6335 0 0

0 0.2304 2.6335 0

0 0 0.2304 2.6335
abc

The unbalanced constant impedance load is connected in grounded 
wye. The load impedance matrix is specified to be:

	

Zload

j

j

j

12 6 0 0

0 13 4 0

0 0 14 5
abc[ ] =

+
+

+



















Ω
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The unbalanced line-to-line voltages at node 1 serving the substation 
transformer are given as:

	

[ ] = −



















VLL

115, 000/0

116, 500/ 115.5

123, 538/121.7

VABC

	 a.	 Determine the generalized matrices for the transformer:
		  The “transformer turn’s” ratio is:

	

= = =n
kVLL
kVLN

115
12.47

3

15.9732t
high

low

	 From Equation 8.19:

	

[ ] = − ⋅
















=
− −

− −
− −

















a n
3

0 2 1
1 0 2
2 1 0

0 10.6488 5.3244
5.3244 0 10.6488
10.6488 5.3244 0

t
t

	 From Equation 8.23:

	

[ ] = − ⋅
⋅

⋅
⋅

















b
n Zt Zt

Zt Zt
Zt Zt

3

0 2
0 2

2 0
t

t

	

[ ] =
− − − −

− − − −
− − − −



















b

j j

j j
j j

0 2.4535 28.0432 1.2267 14.0216

1.2267 14.0216 0 2.4535 28.0432

2.4535 28.0432 1.2267 14.0216 0
t

	 From Equation 8.37:

	

[ ] = ⋅
−

−
−

















=
−

−
−

















d
n
1 1 1 0

0 1 1
1 0 1

0.0626 0.0626 0
0 0.0626 0.0626

0.0626 0 0.0626
t

t

	 From Equation 8.28:

	

[ ] = ⋅
−

−
−

















=
−

−
−

















A
n
1 1 0 1

1 1 0
0 1 1

0.0626 0 0.0626
0.0626 0.0626 0

0 0.0626 0.0626
t

t
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From Equation 8.31:

	

[ ] [ ]= =
+

+
+



















B Zt

j

j

j

0.2304 2.6335 0 0

0 0.2304 2.6335 0

0 0 0.2304 2.6335
t abc

	 b.	 Given the line-to-line voltages at node 1, determine the “ideal” 
transformer voltages:

		  From Equation 8.13:

	

[ ] = ⋅
−

−
−

















=
−

−
−

















AV n
0 1 0
0 0 1
1 0 0

0 15.9732 0
0 0 15.9732

15.9732 0 0
t

	

[ ] [ ] [ ]= ⋅ =

−

















−Vt AV VLL

7734.1/ 58.3

7199.6/180

7293.5/64.5

Vabc ABC
1

	 c.	 Determine the load currents.
		  Since the load is modeled as constant impedances, the sys-

tem is linear and the analysis can combine all of the impedances 
(transformer, line, and load) to an equivalent impedance matrix.

	 Kirchhoff’s Voltage Law (KVL) gives:

	 ( )[ ] [ ] [ ][ ] [ ] [ ] [ ]= + + ⋅ = ⋅Vt Zt Zline Zload I Zeq Iabc abc abc abc abc abc abc

	

[ ] =
+ + +
+ + +
+ + +



















ΩZeq

j j j

j j j

j j j

13.0971 10.6751 0.2955 0.9502 0.2907 .7290

0.2955 0.9502 14.1141 8.6187 0.2992 0.8023

0.2907 .7290 0.2992 0.8023 15.1045 9.6507
abc

	 The line currents can now be computed as:

	

[ ][ ] [ ]= ⋅ =

−

















−I Zeq Vt

471.7/ 95.1

456.7/149.9

427.3/33.5

Aabc abc abc
1

	

	 d.	 Determine the line-to-ground voltages at the load in volts and 
on a 120-V base.

	

[ ] [ ] [ ]= ⋅ =

−

















V load Zload I

6328.1/ 68.6

6212.2/167.0

6352.6/53.1

Vabc abc abc
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		  The load voltages on a 120-V base are:

	

[ ] =

−

















V load

105.5/ 68.6

103.5/167.0

105.9/53.1
120

		  The line-to-ground voltages at node 2 are:

	

[ ] [ ][ ] [ ] [ ]= ⋅ + ⋅ =

−

















VLG a V load b I

6965.4/ 66.0

6580.6/171.4

6691.4/56.7

Vabc line abc line abc

	

	 e.	 Using the backward sweep voltage equation, determine the 
equivalent line-to-neutral voltages and the line-to-line voltages 
at node 1.

	

[ ][ ] [ ] [ ] [ ]= ⋅ + =

−
−



















VLN a VLG b I.

69.443/ 30.3

65, 263/ 147.5

70, 272/94.0

VABC t abc t abc

	

[ ] [ ] [ ]= ⋅ = −



















VLL Dv VLN

115, 000/0

116, 500 115.5

123.538/121.7
VABC ABC

		  It is always comforting to be able to work back and compute 
what was initially given. In this case, the line-to-line voltages 
at node 1 have been computed, and the same values result that 
were given at the start of the problem.

	 f.	 Use the forward sweep voltage equation to verify that the line-
to-ground voltages at node 2 can be computed knowing the 
equivalent line-to-neutral voltages at node 1 and the currents 
leaving node 2.

	

[ ] [ ] [ ] [ ]=   ⋅ − =

−

















VLG A VLN B I.

6965.4/ 66.0

6580.6/171.4

6691.4/56.7

Vabc t ABC t abc

		  These are the same values of the line-to-ground voltages at node 
2 that were determined working from the load toward the source.

Example 8.1 has demonstrated the application of the forward and back-
ward sweep equations. The example also provides verification that the same 
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voltages and currents result working from the load toward the source or 
from the source toward the load.

In Example 8.2, the system in Example 8.1 is used only when the source 
voltages at node 1 are specified and the three-phase load is specified as con-
stant PQ. Because this makes the system nonlinear, the ladder iterative tech-
nique must be used to solve for the system voltages and currents.

Example 8.2

Use the system in Example 8.1. The source voltages at node 1 are:

	

[ ] = −



















ELL

115, 000/0

115, 000/ 120

115, 000/120
ABC

The wye-connected loads are:

	

[ ] [ ]=
















=
















kVA PF
1700
1200
1500

0.90
0.85
0.95

The complex powers of the loads are computed to be:

	

= ⋅ =
+
+
+



















( )⋅SL kVA

j

j

j
jkvare

1530 741.0

1020 632.1

1425 468.4

kW +i i
j a PFicos

The ladder iterative technique must be used to analyze the system. 
A simple Mathcad program is initialized with:

	

I Tol VM
0
0
0

0.000001 12, 470
3

7199.5579start[ ] =
















= = =

The Mathcad program is shown in Figure 8.5.
Note in this routine that in the forward sweep, the secondary trans-

former voltages are first computed and then those are used to compute 
the voltages at the loads. At the end of the routine, the newly calculated 
line currents are taken back to the top of the routine and used to com-
pute the new voltages. This continues until the error in the difference 
between the two most recently calculated load voltages is less than the 
tolerance. As a last step, after conversion, the primary currents of the 
transformer are computed.
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After nine iterations, the load voltages and currents are:

	

[ ] =

−

















VLN

6490.1/ 66.7

6772.4/176.2

6699.4/53.9
load

Start :=

0

0

0

Tol := .000001 VM :=
kVLLsec 1000

3
VM = 7199.5579

XI:= Iabc Start

Iloadabc Start

Vold Start

ELNABC ELLABC

V2LNabc At ELNABC Bt Iabc

V3LNabc Aline V2LNabc Bline Iloadabc

Iloadabcj V3LNabcj

SLj 1000

1  3for

Errork

V3LNabck
Voldk

VM

1  3for

Errormax max(Error)

break if

Vold V3LNabc

Iabc dline Iloadabc

IABC dt Iabc

200for

Out1 V3LNabc

Out2 V2LNabc

Out3 Iabc

Out4 IABC

Out5 n

Out

n 1

j

k

W

Errormax < Tol

FIGURE 8.5
Example 8.2 Mathcad program.
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[ ] =

−

















I

261.9/ 92.5

177.2/144.4

223.9/35.7
abc

The primary currents are:

	

[ ] =

−
−



















I

24.3/ 70.0

20.5/ 175.2

27.4/63.8
ABC

The magnitude of the load voltages on a 120-V base are:

	

[ ] =

−

















V load

108.2/ 66.6

112.9/176.2

111.7/53.9
120

Needless to say, these voltages are not acceptable. In order to correct this 
problem, three step-voltage regulators can be installed at the secondary 
terminals of the substation transformer as shown in Figure 8.6. The volt-
age level set on the regulator is 120 V with a bandwidth of 2 V.

Using the method as outlined in Chapter 7, the initial steps for the 
three regulators are:

	

=
−

=
















=
















Tap
V load

Tap

119

0.75

14.44
8.17
9.79

Round off tap:
14
8

10

i
120i

With these tap positions, the load voltages are:

	

=

−

















V load

119.8/ 66.2

118.9/176.3

119.7/54.1

V120

R 2 31

10,000 ft

FIGURE 8.6
Voltage regulators installed.



266 Distribution System Modeling and Analysis

Because the phase b voltage is low, the phase b tap is changed to 9.

	

[ ] =
















Tap
14
9

10

The regulator turns ratios are:

	

= − ⋅ =
















aR Tap1 .00625
0.9125
0.9438
0.9375

i i

The regulator matrices are:

	

  =   =



























=
















  =
















A d

aR

aR

aR

B

1
0 0

0
1

0

0 0
1

1.0959 0 0
0 1.0596 0
0 0 1.0667

0 0 0
0 0 0
0 0 0

reg reg

reg

1

2

3

At the start of the Mathcad routine, the following equation is added:

	 ←I Startreg

In the Mathcad routine, the first three equations inside the n loop are:

	

← ⋅ − ⋅

← ⋅ − ⋅

← ⋅ − ⋅

VR A ELN B I

V LN A VR B I

V LN A V LN B I

2

3 2

abc t ABC t reg

abc reg abc reg abc

abc line abc line abc

At the end of the loop, the following equations are added:

	

← ⋅

← ⋅

I d I

I d I

reg reg abc

ABC t reg

With the three regulators installed, the load voltages on a 120-V base are:

	

[ ] =

−

















V load

119.8/ 66.2

119.7/176.3

119.7/54.1

Vabc
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As can be seen from this example, as more elements of a system are added, there 
will be one equation for each of the system elements for the forward sweep and 
backward sweeps. This concept will be further developed in later chapters.

8.4 � The Delta–Grounded Wye Step-Up Connection

Figure 8.7 shows the connection diagram for the delta–grounded wye step-
up connection.

The no-load phasor diagrams for the voltages and currents are also shown 
in Figure 8.7. Note that the high-side (primary) line-to-line voltage from A to 
B lags the low-side (secondary) line-to-line voltage from a to b by 30°, and the 
same can be said for the high- and low-side line currents.

The development of the generalized matrices follows the same procedure 
as was used for the step-down connection. Only two matrices differ between 
the two connections.

The primary (low-side) line-to-line voltages are given by:

[ ] [ ][ ]
















= ⋅
















⋅
















= ⋅
V
V
V

n
Vt
Vt
Vt

VLL AV Vt
1 0 0
0 1 0
0 0 1

AB

BC

CA

t

a

b

c

ABC abc

	

(8.39)

where

	

[ ] = ⋅
















AV n
1 0 0
0 1 0
0 0 1

t

	
=n

kVLL
kVLN

t
rated primary

rated ondarysec

The primary delta currents are given by:

	

[ ] [ ] [ ]
















= ⋅
















⋅
















= ⋅
I
I
I

n

I
I
I

ID AI I
1 1 0 0

0 1 0
0 0 1

AB

BC

CA
t

a

b

c

ABC abc

	

(8.40)

where

	

AI
n
1 1 0 0

0 1 0
0 0 1t

[ ] = ⋅















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The primary line currents are given by:

	

[ ] [ ] [ ]
















=
−

−
−

















⋅
















= ⋅
I
I
I

I
I
I

I Di ID
1 0 1
1 1 0

0 1 1

A

B

C

AB

BC

CA

ABC ABC

	

(8.41)

where

	

[ ] =
−

−
−

















Di
1 0 1
1 1 0

0 1 1

The forward sweep matrices are:
Applying Equation 8.28:

	

[ ] = ⋅ = ⋅
−
−

−

















−A AV Di
n
1 1 0 1

0 1 1
1 0 1

t
t

1

	

(8.42)

H1A

Zta Ztb Ztc In

Ib IcIa

nt

++

+ – + –

+
X3cX2b

g

Vab

Vag

Vbc

X1a

H2B H3C

–

–

–

IA IB IC

IAB IBC ICA

VAB

VAB

VBC

VBC
+ – + –Vta Vtb

+ –Vtc

ICA

IBC

IAB

IA

VCA

Vta

Vtb

Vab

Ic

Ib
Ia

Vtc

FIGURE 8.7
Delta–grounded wye step-up connection.
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Applying Equation 8.31:

	

[ ] [ ]= =
















B Zt
Zt

Zt
Zt

0 0
0 0
0 0

t abc

a

b

c
	

(8.43)

The backward sweep matrices are:

Applying Equation 8.19:

	

a W AV n
3

2 1 0
0 2 1
1 0 2

t
t[ ] [ ] [ ]= ⋅ = ⋅

















	

(8.44)

Applying Equation 8.23:

	

[ ] [ ] [ ]= ⋅ = ⋅
⋅

⋅
⋅

















b a Zt
n

Zt Zt
Zt Zt

Zt Zt
3

2 0
0 2

0 2
t t abc

t
a b

b c

a c
	

(8.45)

Applying Equation 8.37:

	

d Di AI
n
1 1 0 1

0 1 1
1 0 1

t
t

[ ] [ ] [ ]= ⋅ = ⋅
−
−

−

















	

(8.46)

8.5 � The Ungrounded Wye–Delta Step-Down Connection

Three single-phase transformers can be connected in a wye–delta connec-
tion. The neutral of the wye can be grounded or ungrounded. The grounded 
wye connection is characterized by the following:

•	 The grounded wye provides a path for zero sequence currents 
for line-to-ground faults upstream from the transformer bank. 
This causes the transformers to be susceptible to burnouts on the 
upstream faults.

•	 If one phase of the primary circuit is opened, the transformer bank 
will continue to provide three-phase service by operating as an open 
wye–open delta bank. However, the two remaining transformers 
may be subject to an overload condition leading to burnout.
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The most common connection is the ungrounded wye–delta. This connec-
tion is typically used to provide service to a combination of single-phase 
“lighting” load and a three-phase “power” load such as an induction motor. 
The generalized constants for the ungrounded wye–delta transformer con-
nection will be developed following the same procedure as was used for the 
delta–grounded wye.

Three single-phase transformers can be connected in an ungrounded wye 
“standard 30° step-down connection” as shown in Figure 8.8.

The voltage phasor diagrams in Figure 8.7 illustrate that the high-side 
positive sequence line-to-line voltage leads the low-side positive sequence 
line-to-line voltage by 30°. In addition, the same phase shift occurs between 
the high-side line-to-neutral voltage and the low-side “equivalent” line-to-
neutral voltage. The negative sequence phase shift is such that the high-side 
negative sequence voltage will lag the low-side negative sequence voltage 
by 30°.

Figure 8.8 illustrates that the positive sequence line current on the high 
side of the transformer (node n) leads the low-side line current (node m) by 
30°. It can also be shown that the negative sequence high-side line current 
will lag the negative sequence low-side line current by 30°.

The definition for the “turns ratio nt” will be the same as Equation 8.9, with 
the exception that the numerator will be the line-to-neutral voltage and the 
denominator will be the line-to-line voltage. It should be noted in Figure 8.7 
that the “ideal” low-side transformer voltages for this connection will be 
line-to-line voltages. Moreover, the “ideal” low-side currents are the currents 
flowing inside the delta.

VAN

VBN

VAB

Vca

Vab

VCN

Vbc

IC IA

Iac

Icb

Iba

Ia

IB

H1-A

IA IB IC

VAN

Vtab

Ztab Ztbc Ztca

Ib IcIa

Iba Icb Iac

nt

–

+ +

– –

+

+

+
+
–

–

X3-c

X2-b

Vtbc Vtca

Vab

Vbc

Vbc

X1-a

VBN

VAB

VCN

H2-B H3-C

+

+– VBC +–

– –

+ +

–

–

FIGURE 8.8
Standard ungrounded wye–delta connection step-down.
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The basic “ideal” transformer voltage and current equations as a function 
of the “turn’s ratio” are:

	

















=
















⋅
















V
V
V

n
n

n

Vt
Vt
Vt

0 0
0 0
0 0

AN

BN

CN

t

t

t

ab

bc

ca
	

(8.47)

where

	
=n

kVLN
kVLL

t
rated primary

rated ondarysec

	 [ ] [ ] [ ]= ⋅VLN AV VtABC abc 	 (8.48)

	

















= ⋅
















⋅
















I
I
I

n

ID
ID
ID

1 1 0 0
0 1 0
0 0 1

A

B

C
t

ba

cb

ac
	

(8.49)

	

[ ] [ ] [ ]

[ ] [ ] [ ]

= ⋅

= ⋅−

I AI ID

ID AI I

ABC abc

abc ABC
1

	

(8.50)

Solving Equation 8.48 for the “ideal” delta transformer voltages:

	 [ ] [ ] [ ]= ⋅−Vt AV VLNabc ABC
1

	 (8.51)

The line-to-line voltages at node m as a function of the “ideal” transformer 
voltages and the delta currents are given by:

	

















=
















−
















⋅
















V
V
V

Vt
Vt
Vt

Zt
Zt

Zt

ID
ID
ID

0 0
0 0
0 0

ab

bc

ca

ab

bc

ca

ab

ac

ca

ba

cb

ac
	

(8.52)

	 VLL Vt Zt IDabc abc abc abc[ ] [ ] [ ] [ ]= − ⋅ 	
(8.53)

Substitute Equations 8.50 and 8.51 into Equation 8.53:

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅−VLL AV VLN ZNt Iabc ABC abc ABC
1

	 (8.54)



272 Distribution System Modeling and Analysis

where

	

[ ] [ ] [ ]= ⋅ =
⋅

⋅
⋅

















−ZNt Zt AI
n Zt

n Zt
n Zt

0 0
0 0
0 0

abc abc

t ab

t bc

t ca

1

	

(8.55)

The line currents on the delta side of the transformer bank as a function of 
the wye transformer currents are given by:

	 [ ] [ ] [ ]= ⋅I Di IDabc abc 	 (8.56)

where

	

Di
1 0 1
1 1 0

0 1 1
[ ] =

−
−

−

















	

(8.57)

Substitute Equation 8.50 into Equation 8.56:

	 I Di AI I DY Iabc ABC ABC
1[ ] [ ] [ ] [ ] [ ] [ ]= ⋅ ⋅ = ⋅−

	 (8.58)

where

	

DY Di AI
n n
n n

n n

0
0

0

t t

t t

t t

1[ ] [ ] [ ]= ⋅ =
−

−
−

















−

	

(8.59)

Because the matrix [Di] is singular, it is not possible to use Equation 8.56 
to develop an equation relating the wye-side line currents at node n to the 
delta-side line currents at node m. In order to develop the necessary matrix 
equation, three independent equations must be written. Two independent 
KCL equations at the vertices of the delta can be used. Because there is no 
path for the high-side currents to flow to the ground, they must sum to zero 
and, therefore, so must the delta currents in the transformer secondary sum 
to zero. This provides the third independent equation. The resulting three 
independent equations in matrix form are given by:

	

I
I

I
I
I0

1 0 1
1 1 0

1 1 1

a

b

ba

cb

ac

















=
−

−

















⋅

















	

(8.60)
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Solving Equation 8.60 for the delta currents:




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

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1
3
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2 1 1 0
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a

b

a
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1

	
(8.61)

	 [ ] [ ] [ ]= ⋅ID L I0abc ab 0 	 (8.62)

Equation 8.62 can be modified to include the phase c current by setting the 
third column of the [L0] matrix to zero.
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(8.63)

	 [ ] [ ] [ ]= ⋅ID L Iabc abc 	 (8.64)

Solve Equation 8.50 for [IABC], and substitute into Equation 8.64:

	 I AI L I d IABC abc t abc[ ][ ] [ ] [ ] [ ] [ ]= ⋅ ⋅ = ⋅ 	 (8.65)

where

	

[ ] [ ] [ ]= ⋅ =
⋅

⋅
−

− −

















d AI L
n

1
3

1 1 0
1 2 0
2 1 0

t
t

	

(8.66)

Equation 8.66 defines the generalized constant matrix [dt] for the ungro-
unded wye–delta step-down transformer connection. In the process of the 
derivation, a very convenient Equation 8.63 evolved that can be used any-
time the currents in a delta need to be determined knowing the line cur-
rents. However, it must be understood that this equation will only work 
when the delta currents sum to zero, which means an ungrounded neutral 
on the primary.

The generalized matrices [at] and [bt] can now be developed. Solve 
Equation 8.54 for [ ]VLN ABC .

	 [ ] [ ] [ ] [ ] [ ] [ ]= ⋅ + ⋅ ⋅VLN AV VLL AV ZNt IABC abc abc ABC 	 (8.67)



274 Distribution System Modeling and Analysis

Substitute Equation 8.65 into Equation 8.67:

	 [ ][ ] [ ] [ ] [ ] [ ] [ ]= ⋅ + ⋅ ⋅ ⋅VLN AV VLL AV ZNt d IABC abc abc t abc

	 [ ] [ ] [ ]= ⋅VLL Dv VLNabc abc

where
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(8.68)

where
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(8.69)
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ca ca
	

(8.70)

The generalized constant matrices have been developed for computing volt-
ages and currents from the load toward the source (backward sweep). The 
forward sweep matrices can be developed by referring back to Equation 8.54, 
which is repeated here for convenience.

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅−VLL AV VLN ZNt Iabc ABC abc ABC
1

	 (8.71)

Equation 8.16 is used to compute the equivalent line-to-neutral voltages as a 
function of the line-to-line voltages.

	 [ ] [ ] [ ]= ⋅VLN W VLLabc abc 	 (8.72)

Substitute Equation 8.71 into Equation 8.72:

	 [ ][ ] [ ] [ ] [ ] [ ] [ ] [ ]= ⋅ ⋅ − ⋅ ⋅ ⋅−VLN W AV VLN W ZNt d Iabc ABC abc t abc
1

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅VLN A VLN B Iabc t ABC t abc 	 (8.73)
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where

	

[ ] [ ] [ ]= ⋅ =
⋅

⋅
















−A W AV
n

1
3

2 1 0
0 2 1
1 0 2

t
t

1

	

(8.74)

	

[ ][ ] [ ] [ ]= ⋅ ⋅ = ⋅
⋅ + ⋅ − ⋅

⋅ − ⋅ ⋅ −
− ⋅ − − ⋅

















B W ZNt d
Zt Zt Zt Zt

Zt Zt Zt Zt
Zt Zt Zt Zt

1
9

2 2 2 0
2 2 4 0

4 2 0
t abc t

ab bc bc ab

bc ca bc ca

ab ca ab ca
	

(8.75)

The generalized matrices have been developed for the ungrounded wye–
delta transformer connection. The derivation has applied basic circuit theory 
and the basic theories of transformers. The end result of the derivations is 
to provide an easy method of analyzing the operating characteristics of the 
transformer connection. Example 8.3 will demonstrate the application of the 
generalized matrices for this transformer connection.

Example 8.3

Figure 8.9 shows three single-phase transformers in an ungrounded 
wye–delta step-down connection serving a combination of single-phase 
and three-phase load in a delta connection. The voltages at the load are 
balanced three-phase of 240 V line-to-line. The net loading by phase is:

Sab = 100 kVA at 0.9 lagging power factor
Sbc = Sca = 50 kVA at 0.8 lagging power factor

The transformers are rated:

Phase A–N: 100 kVA, 7200–240 V, Z = 0.01 + j0.04 per unit
Phases B–N and C–N: 50 kVA, 7200–240 V, Z = 0.015 + j0.035 per unit

IC

IN

IA

IB
VBN

VCG

VBG

VAG

VAN

+

+
+

+

+

+

+

+ +

+

Vtbc

Vtab

Iba
Sca

Ibc
Iab

Ica

Sbc

Sab
Iac

IabZtab

Ztbc

Zt
ca

Vtca

Ic

Ia

Ib

Vca

Vbc

+

− −

−
−

−
−−

−

−
−

VCN

FIGURE 8.9
Ungrounded wye–delta step-down with unbalanced load.
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Determine the following:

	 1.	 The currents in the load
	 2.	 The secondary line currents
	 3.	 The equivalent line-to-neutral secondary voltages
	 4.	 The primary line-to-neutral and line-to-line voltages
	 5.	 The primary line currents

Before the analysis can start, the transformer impedances must be con-
verted to actual values in ohms and located inside the delta-connected 
secondary windings.

“Lighting” transformer:

	
= ⋅ =Z 0.24 1000

100
0.576base

2

	 ( )= + ⋅ = + ΩZt j j0.01 0.4 0.576 0.0058 .023ab

“Power” transformers:

	
= ⋅ =Z 0.24 1000

50
1.152base

2

	 ( )= = + ⋅ = + ΩZt Zt j j0.015 0.35 1.152 0.0173 0.0403bc ca

The transformer impedance matrix can now be defined:

	

[ ] =
+

+
+



















ΩZt

j

j

j

0.0058 .023 0 0

0 0.0173 .0403 0

0 0 0.0173 .0403
abc

The turn’s ratio of the transformers is: = =n 7200
240

30t

Define all of the matrices:

	

[ ] [ ] [ ]= ⋅
















=
−

−
−

















=
−

−
−

















W Dv Di1
3

2 1 0
0 2 1
1 0 2

1 1 0
0 1 1
1 0 1

1 0 1
1 1 0

0 1 1

	

[ ] = ⋅
−

−
−

















=
−

−
−

















a n
1 1 0
0 1 1
1 0 1

30 30 0
0 30 30
30 0 30

t t

	

[ ] = ⋅
−
⋅

− ⋅ −

















=
+ − −
+ +

− − − −



















b n
Zt Zt
Zt Zt

Zt Zt

j j

j j

j j
3

0
2 0

2 0

0.0576 .2304 0.576 .2304 0

0.1728 .4032 0.3456 .8064 0

0.3456 .8064 0.1728 .4032 0
t

t
ab ab

bc bc

ca ca
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[ ] =
















c
0 0 0
0 0 0
0 0 0

t

	

[ ] =
⋅

⋅
−

− −

















=
−

− −

















d
n

1
3

1 1 0
1 2 0
2 1 0

0.0111 0.0111 0
0.0111 0.0222 0
0.0222 0.0111 0

t
t

	

[ ] =
⋅

⋅
















=
















A
n

1
3

2 1 0
0 2 1
1 0 2

0.0222 0.0111 0
0 0.0222 0.0111

0.0111 0 0.0222
t

t

	

[ ] = ⋅
⋅ + ⋅ − ⋅

⋅ − ⋅ ⋅ −
− ⋅ − − ⋅

















B
Zt Zt Zt Zt

Zt Zt Zt Zt
Zt Zt Zt Zt

1
9

2 2 2 0
2 2 4 0

4 2 0
t

ab bc bc ab

bc ca bc ca

ab ca ab ca

	

[ ] =
+ +

+
− − − −



















B

j j
j

j j

0.0032 .0096 0.0026 .0038 0

0 0.0058 .0134 0

0.007 .0154 0.0045 .0115 0
t

Define the line-to-line load voltages:

	

[ ] = −



















VLL

240/0

240/ 120

240/120

Vabc

Define the loads:

	

( )
( )
( )

[ ] =





















=
+

+
+



















SD

j

j

j

100/acos 0.9

50/acos 0.8

50/acos 0.8

90 43.589

40 30

40 30

kVAabc

Calculate the delta load currents:

	
= ⋅





ID
SD
VLL

1000
A

*

i
i

abci

	

[ ] =
















=

−
−



















ID
I
I
I

416.7/ 25.84

208.3/ 156.87

208.3/83.13

Aabc

ab

bc

ca
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Compute the secondary line currents:

	

[ ] [ ] [ ]= ⋅ =

−
−



















I Di ID

522.9/ 47.97

575.3/ 119.06

360.8/53.13

Aabc abc

Compute the equivalent secondary line-to-neutral voltages:

	

[ ] [ ] [ ]= ⋅ =

−
−



















VLN W VLL

138.56/ 30

138.56/ 150

138.56/90

Aabc abc

Use the generalized constant matrices to compute the primary line-to-
neutral voltages and line-to-line voltages:

	

[ ][ ] [ ] [ ] [ ]= ⋅ + ⋅ = −



















VLN a VLN b I

7367.6/1.4

7532.3/ 119.1

7406.2/121.7

VABC t abc t abc

	

[ ] [ ] [ ]= ⋅ = −



















VLL Dv VLN

12,9356/31.54

12,8845/ 88.95

12,8147/151.50

kVABC ABC

The high primary line currents are:

	

[ ][ ] [ ]= ⋅ =

−
−



















I d I

11.54/ 28.04

8.95/ 166.43

7.68/101.16

AABC t abc

It is interesting to compute the operating kVA of the three transformers. 
Taking the product of the transformer voltage times the conjugate of the 
current gives the operating kVA of each transformer.

	

( )
=

⋅
=



















ST
VLN I

1000

85.02/29.46

67.42/47.37

56.80/20.58

kVA
*

i
ABC ABCi i
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The operating power factors of the three transformers are:

	

[ ] =

















=
















PF
cos(29.46)
cos(47.37)
cos(20.58)

87.1
67.7
93.6

%

Note that the operating kVAs do not match very closely with the rated kVAs 
of the three transformers. In particular, the transformer on phase A did not 
serve the total load of 100 kVA that is directly connected to its terminals. 
That transformer is operating below the rated kVA, whereas the other two 
transformers are overloaded. In fact, the transformer connected to phase 
B is operating 35% above the rated kVA. Because of this overload, the rat-
ings of the three transformers should be changed so that the phase B and 
phase C transformers are rated 75 kVA. Finally, the operating power factors 
of the three transformers bear little resemblance to the load power factors.

Example 8.3 demonstrates how the generalized constant matrices can be used 
to determine the operating characteristics of the transformers. In addition, the 
example shows that the obvious selection of transformer ratings will lead to 
an overload condition on the two power transformers. The advantage in this is 
that if the generalized constant matrices have been applied in a computer pro-
gram, it is simple to change the transformer kVA ratings, and we can be assured 
that none of the transformers will be operating in an overload condition.

Example 8.3 has demonstrated the “backward” sweep to compute the pri-
mary voltages and currents. As before, when the source (primary) voltages 
are given along with the load PQ, the ladder iterative technique must be used 
to analyze the transformer connection.

Example 8.4

The Mathcad program that has been used in previous examples is modi-
fied to demonstrate the ladder iterative technique for computing the 
load voltages given the source voltages and load power and reactive 
powers (PQ load). In Example 8.4, the computed source voltages from 
Example 8.3 are specified along with the same loads. From Example 8.3, 
the source voltages are:

	

[ ] = −



















VLL

12,935.6/31.5

12,884.5/ 88.9

12,814.7/151.5
ABC

The initial conditions are:

	

[ ] =
















= =Start Tol VM
0
0
0

0.000001 240



280 Distribution System Modeling and Analysis

The modified Mathcad program is shown in Figure 8.10.
With balanced source voltages specified, after six iterations the load 

voltages are computed to be exactly as they were specified in Example 8.3:

	

[ ] = −



















VLL

240/0

240/ 120

240.0/120

Vabc

Start :=

XI :=

0

0

0

Tol := .000001 VM := kVLLsec 1000 VM = 240

Iabc Start

Vold Start

VLNABC W VLLABC

VLNabc At VLNABC Bt Iabc

VLLabc Dv VLNabc

IDabcj

SLj 1000

VLLabcj

1  3for

Errork

VLLabck
Voldk

VM

kfor

Errormax max(Error)

break  if  Errormax < Tol

Vold VLLabc

Iabc Di IDabc

IABC dt Iabc

2001for n

Out1 VLNabc

Out2 VLLabc

Out3 Iabc

Out4 IABC

Out5 n

Out

j

31

FIGURE 8.10
Example 8.4 Mathcad program.
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Example 8.4 has demonstrated how the simple Mathcad program can be 
modified to analyze the ungrounded wye–delta step-down transformer 
bank connection.

8.6 � The Ungrounded Wye–Delta Step-Up Connection

The connection diagram for the step-up connection is shown in Figure 8.11.
The only difference in the matrices between the step-up and step-down 

connections is the definitions of the turn’s ratio nt , [ ]AV  and [ ]AI . For the 
step-up connection:

	
=n

kVLN
kVLL

t
rated primary

rated ondarysec 	
(8.76)

	 [ ] [ ] [ ]

















= ⋅
−

−
−

















⋅
















= ⋅

V
V
V

n
Vt
Vt
Vt

VLN AV Vt

0 0 1
1 0 0

0 1 0

AN

BN

CN

t

ab

bc

ca

ABC abc 	

(8.77)

where

	

[ ] = ⋅
−

−
−

















AV n
0 0 1
1 0 0

0 1 0
t

VCN
Vab VAB

Vca

Vbc

VAN

VBN

IC

Iac

IB

IA

Icb

Iba Ia

H1-A

IA IB IC

VAB

Vtca

Ztca Ztab Ztbc

Ib IcIa

Iac Iba Icb

nt
+ + +

++

–

X3-cX2-b

Vtab Vtbc

Vab Vbc

X1-a

VBC
H2-B H3-C

+– ++ –

– – –

VAN+ + +VBN VCN– – –

––

FIGURE 8.11
Ungrounded wye–delta step-up connection.
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	 [ ] [ ] [ ]

















= ⋅
−

−
−

















⋅
















= ⋅

I
I
I

n

ID
ID
ID

I AI ID

1 0 0 1
1 0 0

0 1 0

A

B

C
t

ba

cb

ac

ABC abc 	

(8.78)

where

	

[ ] = ⋅
−

−
−

















AI
n
1 0 0 1

1 0 0
0 1 0t

Example 8.5

The equations for the forward and backward sweep matrices, as defined 
in Section 8.3, can be applied using the definitions in Equations 8.76, 8.77, 
and 8.77. The system in Example 8.3 is modified so that transformer con-
nection is step up. The transformers have the same ratings, but now the 
rated voltages for the primary and secondary are:

	

= =

=

= = =

VLL VLN

VLL

VLN
VLL

Primary: 240 138.6 V

Secondary: 12, 470 V

n
138.6

12, 470
0.0111

pri pri

sec

t
pri

sec

The transformer impedances must be computed in Ohms relative to the 
delta secondary and then used to compute the new forward and back-
ward sweep matrices. When this is done, the new matrices are:

	

[ ]

[ ]

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

= ⋅ = −
− −

















= ⋅ =
− −

− −
− −

















= ⋅ ⋅ =
+ +

+
− − − −



















−

−

d AI L

A W AV

B W ZNt d

j j
j

j j

60 30 0
30 30 0
30 60 0

0 60 30
30 0 60
60 30 0

8.64 25.92 6.91 10.37 0

0 15.55 36.28 0

19.01 41.47 12.09 31.10 0

t

t

t abc t

1

1
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Using these matrices and the same loads, specify the primary line-to-
line voltages to be:

	

[ ] = −



















VLL

240/30

240/ 90

240/150
ABC

Using the Mathcad program in Figure 8.9, the Ladder iterative technique 
computes the load voltages as:

	

[ ] = −



















VLL

12, 055/58.2

11, 982/ 61.3

12,106/178.7
abc

8.7 � The Grounded Wye–Delta Step-Down Connection

The Connection diagram for the standard 30° grounded wye (high)–delta 
(low) transformer connection grounded through an impedance of Zg is 
shown in Figure 8.12. Note that the primary is grounded through an imped-
ance of Zg .

AU: Please 
check if there 
any missing text 
in this sentence.

H1-A

IA IB IC

VAN

Vtab

Ztab

Zg

Ztbc Ztca

Ib IcIa

Iba Icb Iac

nt

+

+

–

+

–

+

+

+
+
–

–

X3-c

X2-b

Vtbc Vtca

Vab

Vbc

VbcX1-a

VBN

VAB

VCN

H2-B H3-C
+– VBC +–

– –

+– +

–

–

VAN

VBN

VAB

Vca

Vab

VCN

Vbc

Icb Ia

Iba
IC IA

Iac

IB

FIGURE 8.12
The grounded wye–delta connection.
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Basic transformer equations:

The turn’s ratio is given by:

	
=n

kVLN
kVLL

t
rated primary

rated ondarysec 	
(8.79)

The basic “ideal” transformer voltage and current equations as a function of 
the turn’s ratio are:

	 [ ] [ ] [ ]

















= ⋅
















⋅
















= ⋅

V
V
V

n
Vt
Vt
Vt

VLN AV Vt

1 0 0
0 1 0
0 0 1

AN

BN

CN

t

ab

bc

ca

ABC abc 	

(8.80)

where

	

[ ] = ⋅
















AV n
1 0 0
0 1 0
0 0 1

t

	

[ ] [ ] [ ]

[ ] [ ] [ ]

















= ⋅
















⋅
















= ⋅

= ⋅−

I
I
I

n

ID
ID
ID

I AI ID

ID AI I

1 1 0 0
0 1 0
0 0 1

A

B

C
t

ba

cb

ac

ABC abc

abc ABC
1

	

(8.81)

where

	

[ ] = ⋅
















AI
n
1 1 0 0

0 1 0
0 0 1t

Solving Equation 8.80 for the “ideal” transformer voltages:

	 [ ] [ ] [ ]= ⋅−Vt AV VLNabc ABC
1

	 (8.82)
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The line-to-neutral transformer primary voltages as a function of the system 
line-to-ground voltages are given by:

	 [ ] [ ] [ ] [ ]

= − ⋅ + +

= − ⋅ + +

= − ⋅ + +

















=
















−



















⋅

















= − ⋅

V V Z I I I

V V Z I I I

V V Z I I I

V
V
V

V
V
V

Z Z Z

Z Z Z

Z Z Z

I
I
I

VLN VLG ZG I

( )

( )

( )

AN AG g A B C

BN BG g A B C

CN CG g A B C

AN

BN

CN

AG

BG

CG

g g g

g g g

g g g

A

B

C

ABC ABC ABC 	

(8.83)

where

	

[ ] =



















ZG

Z Z Z

Z Z Z

Z Z Z

g g g

g g g

g g g

The line-to-line voltages on the delta side are given by:

	 [ ] [ ] [ ] [ ]

















=
















−
















⋅
















= − ⋅

V
V
V

Vt
Vt
Vt

Zt
Zt

Zt

ID
ID
ID

VLL Vt Zt ID

0 0
0 0
0 0

ab

bc

ca

a

b

c

ab

bc

ca

ba

cb

ac

abc abc abc abc 	

(8.84)

Substitute Equation 8.82 into 8.84:

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅−VLL AV VLN Zt IDabc ABC abc abc
1

	 (8.85)

Substitute Equation 8.81 into 8.85:

	
( )[ ] [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅ ⋅− −VLL AV VLN Zt AI Iabc ABC abc ABC

1 1

	
(8.86)
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Substitute Equation 8.83 into Equation 8.86:

	

( )
( )

( )[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

= ⋅ − ⋅ − ⋅ ⋅

= ⋅ − ⋅ + ⋅ ⋅

− −

− − −

VLL AV VLG ZG I Zt AI I

VLL AV VLG AV ZG Zt AI I

abc ABC ABC abc ABC

abc ABC abc ABC

1 1

1 1 1

	

(8.87)

Equation 8.81 gives the delta secondary currents as a function of the primary 
wye-side line currents. The secondary line currents are related to the sec-
ondary delta currents by:

	

[ ] [ ] [ ]
















=
−

−
−

















⋅
















= ⋅
I
I
I

ID
ID
ID

I Di ID
1 0 1
1 1 0

0 1 1

a

b

c

ba

cb

ac

abc abc

	

(8.88)

The real problem of transforming currents from one side to the other occurs 
for the case when the line currents on the delta secondary side [Iabc] are 
known and the transformer secondary currents [ ]IDabc  and primary line 
currents on the wye side [IABC] are needed. The only way a relationship can 
be developed is to recognize that the sum of the line-to-line voltages on the 
delta secondary of the transformer bank must add up to zero. Three inde-
pendent equations can be written as follows:

	

= −

= −

I I I

I I I

a ba ac

b cb ba 	
(8.89)

KVL around the delta secondary windings gives:

	 − ⋅ + − ⋅ + − ⋅ =Vt Zt I Vt Zt I Vt Zt I 0ab ab ba bc bc cb ca ca ac 	 (8.90)

Replacing the “ideal” secondary delta voltages with the primary line-to-
neutral voltages:

	
+ + = ⋅ + ⋅ + ⋅V

n
V

n
V

n
Zt I Zt I Zt IAN

t

BN

t

CN

t
ab ba bc cb ca ac

	
(8.91)

Multiply both sides of the Equation 8.91 by the turn’s ratio nt:

	 + + = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅V V V n Zt I n Zt I n Zt IAN BN CN t ab ba t bc cb t ca ac 	 (8.92)
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Determine the left side of Equation 8.92 as a function of the line-to-ground 
voltages using Equation 8.83:

	
( )

+ + = + + − ⋅ ⋅ + +

+ + = + + − ⋅ ⋅ ⋅ + +

V V V V V V Z I I I

V V V V V V
n

Z I I I

3 ( )

3
1

AN BN CN AG BG CG g A B C

AN BN CN AG BG CG
t

g ba cb ac

	

(8.93)

Substitute Equation 8.93 into Equation 8.92:

	

( )+ + − ⋅ ⋅ + + = ⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅

= ⋅ + ⋅






 ⋅ + ⋅ + ⋅







 ⋅

+ ⋅ + ⋅






 ⋅

V V V
n

Z I I I n Zt I

n Zt I n Zt I

V n Zt
n

Z I n Zt
n

Z I

n Zt
n

Z I

3

3 3

3

AG BG CG
t

g ba cb ac t ab ba

t bc cb t ca ac

sum t ab
t

g ba t bc
t

g cb

t ca
t

g ac
	

(8.94)

where

	 = + +V V V Vsum AG BG CG

Equations 8.88, 8.89, and 8.94 can be put into matrix form:



















=

−
−

⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅



















⋅



















I

I

V
n Zt

n
Z n Zt

n
Z n Zt

n
Z

I

I

I

1 0 1
1 1 0

3 3 3

a

b

sum
t ab

t
g t bc

t
g t ca

t
g

ba

cb

ac
	

(8.95)

Equation 8.95 in general form is:

	 [ ] [ ] [ ]= ⋅X F IDabc 	 (8.96)

Solve for [ ]IDabc :

	 [ ] [ ] [ ] [ ] [ ]= ⋅ = ⋅−ID F X G Xabc
1

	 (8.97)
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Equation 8.97 in full form is:

ID
G G G
G G G
G G G

I
I

V V V

ID
G G G
G G G
G G G

V
V
V

G G
G G
G G

I
I
I

0
0
0

abc

a

b

AG BG CG

abc

AG

BG

CG

a

b

c

11 12 13

21 22 23

31 32 33

13 13 13

23 23 23

33 33 33

11 12

21 22

31 32

[ ]

[ ]

=
















⋅
+ +

















=
















⋅
















+
















⋅
















	
(8.98)

Equation 8.98 in shortened form is:

	 [ ] [ ] [ ] [ ] [ ]= ⋅ + ⋅ID G VLG G Iabc ABC abc1 2 	 (8.99)

Substitute Equation 8.81 into Equation 8.98:

	

( )
[ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

= ⋅ = ⋅ ⋅ + ⋅

= ⋅ + ⋅

I AI ID AI G VLG G I

I x VLG d I

ABC abc ABC abc

ABC t ABC t abc

1 2

	
(8.100)

where

	 [ ]

[ ] [ ] [ ]

[ ] [ ]

= ⋅

= ⋅

x AI G

d AI G

t

t

1

2

Equation 8.100 is used in the “backward” sweep to compute the primary cur-
rents based upon the secondary currents and primary LG voltages.

The “forward” sweep equation is determined by substituting Equation 8.100 
into Equation 8.87.

VLL AV VLG AV ZG Zt AI I

VLL AV VLG Zt AI AV ZG

x VLG d I

X Zt AI AV ZG

VLL AV X x VLG X d I

VLN W VLL

VLN W AV X x VLG X d I

VLN W AV X x VLG W X d I

Define:

abc abc ABC

abc ABC abc

t t abc

abc

abc t ABC t abc

abc abc

abc t t abc

abc t ABC t abc

1 1 1

1 1 1

1
1 1

1 1

1
1 1

1
1 1

ABC

ABC

ABC( )

( )
( )

( )
( )

( )

( )

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

= ⋅ − ⋅ + ⋅ ⋅

= ⋅ − ⋅ + ⋅

⋅ ⋅ + ⋅

= ⋅ + ⋅

= − ⋅ ⋅ − ⋅ ⋅

= ⋅

= ⋅ − ⋅ ⋅ − ⋅ ⋅

= ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅

− − −

− − −

− −

−

−

	

(8.101)
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The final form of Equation 8.101 gives the equation for the forward sweep.

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅VLN A VLG B Iabc t ABC t abc 	 (8.102)

where

	

( )
[ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

= ⋅ − ⋅

= ⋅ ⋅

−A W AV X x

B W X d

t t

t t

1
1

1

Example 8.6

The system in Examples 8.3 and 8.4 is changed so that the same trans-
formers are connected in a grounded wye–delta step-down connection 
to serve the same load. The neutral ground resistance is 5 Ω. The com-
puted matrices are:

	

[ ] =
− − −
− − −
− − −



















x

j j j

j j j

j j j

0.0053 0.0061 0.0053 0.0061 0.0053 0.0061

0.0053 0.0061 0.0053 0.0061 0.0053 0.0061

0.0053 0.0061 0.0053 0.0061 0.0053 0.0061
t

	

[ ] =
+ − −
+ −

− + − −



















d

j j

j j

j j

0.0128 0.0002 0.0128 0.0002 0

0.0128 0.0002 0.0206 0.0002 0

0.0206 0.0002 0.0128 0.0002 0
t

	

[ ] =
+ + − +

− − − − −
−

















A
j j j

j j j

0.0128 0.0002 0.0017 0.0002 0.0094 0.0002

0.0128 0.0002 0.0094 0.0002 0.0017 0.0002

0 0.0111 0.0111
t

	

[ ] =
+ +
+ +

− − − −



















B

j j

j j

j j

0.0043 0.0112 0.0014 0.0022 0

0.0014 0.0022 0.0043 0.0112 0

0.0058 0.0134 0.0058 0.0134 0
t

The only change in the program from Example 8.4 is for the equation 
computing the primary line currents.

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅I x VLG d IABC t ABC t abc

The source voltages are balanced of 12,470 V. After five iterations, the 
resulting load line-to-line load voltages are:

	

[ ] =

−
−



















VLL

232.6/ 1.7

231.0/ 121.4

233.0/118.8
abc
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The voltage unbalance is computed to be:

	 =V 0.53%unbalance

The currents are:

	

[ ]

[ ]

=

−

















=

−

−



















= − + + =

I

I

I I I I

540.8/ 49.5

594.1/168.5

373.0/51.7

13.7/ 28.6

7.8/ 160.4

7.1/87.3

( ) 5.4/157.8

abc

ABC

g A B C

As can be seen, the major difference between this and the ungrounded 
connection is in the line currents and the ground current on the pri-
mary side. Experience has shown that the value of the neutral grounding 
resistance should not exceed the transformer impedance relative to the 
primary side. If the ground resistance is too big, the program will not 
converge.

The question can be whether the neutral for the wye–delta connec-
tion can be grounded or not. In Chapter 10, the short-circuit calculations 
for the grounded wye–delta transformer bank will be developed. In this 
development, it will be shown that during a grounded fault upstream 
from the transformer bank, there will be a back feed current from the 
grounded wye–delta bank back to the grounded fault. This typically 
results in blowing the transformer fuses for the upstream ground fault. 
With that in mind, the grounded wye–delta transformer connection 
should not be used.

8.8 � Open Wye–Open Delta

A common load to be served on a distribution feeder is a combination of a 
single-phase lighting load and a three-phase power load. Mostly, the three-
phase power load will be an induction motor. This combination load can be 
served by a grounded or ungrounded wye–delta connection as previously 
described or by an “open wye–open delta” connection. When the three-
phase load is small compared to the single-phase load, the open wye–open 
delta connection is commonly used. The open wye–open delta connection 
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requires only two transformers, but the connection will provide three-
phase line-to-line voltages to the combination load. Figure 8.13 shows the 
open wye–open delta connection and the primary and secondary positive 
sequence voltage phasors.

With reference to Figure 8.11, the basic “ideal” transformer voltages as a 
function of the “turn’s ratio” are:

	 [ ] [ ] [ ]

















= ⋅
















⋅

















= ⋅

V
V
V

n
Vt
Vt
Vt

VLG AV Vt

1 0 0
0 1 0
0 0 0

AG

BG

CG

t

ab

bc

ca

ABC abc 	

(8.103)

The currents as a function of the turn’s ratio are given by:

	 ( )

= ⋅ = ⋅

= ⋅ = − ⋅

= − +

I
n

I
n

I

I
n

I
n

I

I I I

1 1

1 1

A
t

ba
t

a

B
t

cb
t

c

b a c 	

(8.104)
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–
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Vcat

Vabt

Vbct
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FIGURE 8.13
Open wye–open delta connection.
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Equation 8.104 can be expressed in matrix form by:

	 [ ][ ] [ ]

















= ⋅ −

















⋅

















= ⋅

I
I
I

n

I
I
I

I d I

1 1 0 0
0 0 1
0 0 0

A

B

C
t

a

b

c

ABC t abc 	

(8.105)

where

	

[ ] = ⋅ −

















d
n
1 1 0 0

0 0 1
0 0 0

t
t

The secondary line currents as a function of the primary line currents are:

	 [ ] [ ] [ ]

















= ⋅ −
−

















⋅

















= ⋅

I
I
I

n
I
I
I

I Ai I

1 0 0
1 1 0

0 1 0

a

b

c

t

A

B

C

abc ABC 	

(8.106)

where

	

[ ] = ⋅ −
−

















Ai n
1 0 0
1 1 0

0 1 0
t

The ideal transformer secondary voltages can be determined by:

	

= + ⋅

= − ⋅

Vt V Zt I

Vt V Zt I

ab ab ab a

bc bc bc c 	
(8.107)

Substitute Equation 8.107 into Equations 8.103:

	

= ⋅ = ⋅ + ⋅ ⋅

= ⋅ = ⋅ − ⋅ ⋅

V n Vt n V n Zt I

V n Vt n V n Zt I

AG t ab t ab t ab a

BG t bc t bc t bc c 	
(8.108)
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Equation 8.108 can be put into three-phase matrix form as:

[ ][ ] [ ] [ ] [ ]



















= ⋅
















⋅



















+ ⋅ −

















⋅

















= ⋅ + ⋅

V

V

V

n

V

V

V

n
Zt

Zt
I
I
I

VLG AV VLL b I

1 0 0
0 1 0
0 0 0

0 0
0 0
0 0 0

AG

BG

CG

t

ab

bc

ca

t

ab

bc

a

b

c

ABC abc t abc (8.109)

The secondary line-to-line voltages in Equation 8.109 can be replaced by the 
equivalent line-to-neutral secondary voltages.

	

[ ]

[ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

= ⋅ ⋅ + ⋅

= ⋅ + ⋅

VLG AV Dv VLN b I

VLG a VLN b I

ABC abc t abc

ABC t abc t abc 	
(8.110)

where

	

[ ]

[ ] [ ] [ ]= ⋅

= ⋅ −

















a AV Dv

b n
Zt

Zt
0 0

0 0
0 0 0

t

t t

ab

bc

Equations 8.109 and 8.110 give the matrix equations for the backward sweep. 
The forward sweep equation can be determined by solving Equation 8.108 
for the two line-to-line secondary voltages:

	

= ⋅ − ⋅

= ⋅ − ⋅

V
n

V Zt I

V
n

V Zt I

1

1

ab
t

AG ab a

bc
t

BG bc c

	

(8.111)

The third line-to-line voltage Vca must be equal to the negative sum of the 
other two line-to-line voltages (KVL). In matrix form, the desired equation is:

[ ] [ ] [ ] [ ] [ ]



















= ⋅
− −

















⋅



















− −
−

















⋅

















= ⋅ − ⋅

V

V

V
n

V

V

V

Zt
Zt

Zt Zt

I
I
I

VLL BV VLG Zt I

1 1 0 0
0 1 0
1 1 0

0 0
0 0

0

ab

bc

ca

t

AG

BG

CG

ab

bc

ab bc

a

b

c

abc ABC abc abc
	(8.112)
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The equivalent secondary line-to-neutral voltages are then given by:

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]= ⋅ = ⋅ − ⋅ ⋅VLN W VLL W BV VLG W Zt Iabc ABC ABC abc abc   (8.113)

The forward sweep equation is given by:

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅VLN A VLG B Iabc t ABC t abc 	
(8.114)

where

	

[ ] [ ] [ ]

[ ] [ ] [ ]

= ⋅ =
⋅

⋅ −
− −

















= ⋅ = ⋅
⋅ −

− −
− ⋅

















A W BV
n

B W Zt
Zt Zt
Zt Zt
Zt Zt

1
3

2 1 0
1 1 0
1 2 0

1
3

2 0
0
0 2

t
t

t abc

ab bc

ab bc

ab bc

The open wye–open delta connection derived in this section utilized phases 
A and B on the primary. This is just one of three possible connections. The 
other two possible connections would use phases B and C and then phases 
C and A. The generalized matrices will be different from those derived now. 
The same procedure can be used to derive the matrices for the other two 
connections.

The terms “leading” and “lagging” connection are also associated with 
the open wye–open delta connection. When the lighting transformer is con-
nected across the leading of the two phases, the connection is referred to as 
the “leading” connection. Similarly, when the lighting transformer is con-
nected across the lagging of the two phases, the connection is referred to as 
the “lagging” connection. For example, if the bank is connected to phases 
A and B and the lighting transformer is connected from phase A to the 
ground, this would be referred to as the “leading” connection because the 
voltage A–G leads the voltage B–G by 120°. Reverse the connection, and it 
would now be called the “lagging” connection. Obviously, there is a leading 
and lagging connection for each of the three possible open wye–open delta 
connections.

Example 8.7

The unbalanced load in Example 8.3 is to be served by the “leading” 
open wye–open delta connection using phases A and B. The primary 
line-to-line voltages are balanced 12.47 kV.

The “lighting” transformer is rated: 100 kVA, 7200 Wye—240 delta, 
Z = 1.0 + j4.0%
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The “power” transformer is rated: 50 kVA, 7200 Wye—240 delta, 
Z = 1.5 + j3.5%.

Use the forward/backward sweep to compute:

	 1.	 The load line-to-line voltages
	 2.	 The secondary line currents
	 3.	 The load currents
	 4.	 The primary line currents
	 5.	 Load voltage unbalance

The transformer impedances referred to the secondary are the same as 
in Example 8.7, since the secondary rated voltages are still 240 V.

The required matrices for the forward and backward sweeps are:

	

[ ] = −
− −

















A
0.0128 0.0064 0
0.0064 0.0064 0
0.0064 0.0128 0

t

	

[ ] =
+ − −

− − − −
− − +



















B

j j

j j

j j

0.0038 0.0154 0 0.0058 0.0134

0.0019 0.0077 0 0.0058 0.0134

0.0019 0.0077 0 0.0115 0.0269
t

	

[ ] = −

















d
0.0192 0 0

0 0 0.0192
0 0 0

t

The same Mathcad program from Example 8.3 can be used for this 
example. After seven iterations, the results are:

	

[ ] =

−
−



















VLL

228.3/ 1.4

231.4/ 123.4

222.7/116.9
abc

	

[ ] =

−

















I

548.2/ 50.3

606.5/167.8

381.0/50.5
abc

	

[ ] =

−
−



















ID

438.0/ 27.3

216.1/ 160.4

224.6/80.0
abc
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[ ] =
−

−



















I
18.3/ 50.3

12.7/ 129.5

0

ABC

	 =V 2.11%unbalance

Note the significant difference in voltage unbalance between this and 
Example 8.6. While it is economical to serve the load with two rather 
than three transformers, it has to be recognized that the open connection 
will lead to a much higher voltage unbalance.

8.9 � The Grounded Wye–Grounded Wye Connection

The grounded wye–grounded wye connection is primarily used to supply 
single-phase and three-phase loads on four-wire multigrounded systems. 
The grounded wye–grounded wye connection is shown in Figure 8.14.

Unlike the delta–wye and wye–delta connections, there is no phase shift 
between the voltages and the currents on the two sides of the bank. This 
makes the derivation of the generalized constant matrices much easier. The 
ideal transformer equations are:

	
=n

VLN
VLN

t
rated primary

rated secondary 	
(8.115)

H1-A

Zta Ztb Ztc

Ib IcIa

nt

++

+
X3-cX2-b

Vag

Vbg Vcg

X1-a

H2-B H3-C

–– –

IA IB IC

+ –VAG + –VBG + –VCG

+ – + –Vta Vtb + –Vtc

FIGURE 8.14
Grounded wye–grounded wye connection.
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	 [ ] [ ] [ ]
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













= ⋅
















⋅



















= ⋅

V
V
V

n

Vt

Vt

Vt

VLG AV Vt

1 0 0
0 1 0
0 0 1

AG

BG

CG

t

ag

bg

cg

ABC abc 	

(8.116)

where

	

[ ] = ⋅
















AV n
1 0 0
0 1 0
0 0 1

t

	 [ ] [ ] [ ]

















= ⋅
















⋅

















= ⋅

I
I
I

n

I
I
I

I AI I

1 1 0 0
0 1 0
0 0 1

A

B

C
t

a

b

c

ABC abc 	

(8.117)

where

	

[ ] = ⋅
















AI
n
1 1 0 0

0 1 0
0 0 1t

With reference to Figure 8.12, the ideal transformer voltages on the second-
ary windings can be computed by:

	 [ ] [ ] [ ] [ ]

















=



















+

















⋅

















= + ⋅

Vt
Vt
Vt

V

V

V

Zt
Zt

Zt

I
I
I

Vt VLG Zt I

0 0
0 0
0 0

a

b

c

ag

bg

cg

a

b

c

a

b

c

abc abc abc abc 	

(8.118)

Substitute Equation 8.118 into Equation 8.116:

	

( )
[ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

= ⋅ + ⋅

= ⋅ + ⋅

VLG AV VLG Zt I

VLG a VLG b I

ABC abc abc abc

ABC t abc t abc 	

(8.119)
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Equation 8.119 is the backward sweep equation with the [at] and [bt] matrices 
defined by:

	

[ ] [ ]= = ⋅
















a AV n
1 0 0
0 1 0
0 0 1

t t

	

(8.120)

	

[ ] [ ] [ ]= = ⋅

















b AV Zt n
Zt

Zt
Zt

.
0 0

0 0
0 0

t abc t

a

b

c
	

(8.121)

The primary line currents as a function of the secondary line currents are 
given by:

	 [ ][ ] [ ]= ⋅I d IABC t abc 	 (8.122)

where

	

[ ] [ ]= = ⋅
















d AI
n
1 1 0 0

0 1 0
0 0 1

t
t

The forward sweep equation is determined solving Equation 8.119 for the 
secondary line-to-ground voltages:

	

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

= ⋅ − ⋅

= ⋅ − ⋅

−VLG AV VLG Zt I

VLG A VLG B I

abc ABC abc abc

abc t ABC t abc

1

	

(8.123)

where

	

[ ] [ ]

[ ] [ ]

=

=

−A AV

B Zt

t

t abc

1

The modeling and analysis of the grounded wye–grounded wye connec-
tion does not present any problems. Without the phase shift, there is a direct 
relationship between the primary and secondary voltages and currents 
as had been demonstrated in the derivation of the generalized constant 
matrices.
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8.10 � The Delta–Delta Connection

The delta–delta connection is primarily used on three-wire delta systems to 
provide service to a three-phase load or a combination of three-phase and 
single-phase loads. Three single-phase transformers connected in a delta–
delta are shown in Figure 8.15.

The basic “ideal” transformer voltage and current equations as a function 
of the “turn’s ratio” are:

	
=n

VLL
VLL

t
rated primary

rated secondary 	
(8.124)

	 [ ] [ ] [ ]

















= ⋅
















⋅

















= ⋅

VLL
VLL
VLL

n
Vt
Vt
Vt

VLL AV Vt

1 0 0
0 1 0
0 0 1

AB

t

ab

bc

ca

ABC abc

BC

CA

	

(8.125)

where

	

[ ] = ⋅
















AV n
1 0 0
0 1 0
0 0 1

t

H1-A

IA IB IC

VAB

VCA

Vca

Vtab

Ztab Ztbc Ztca

Ib IcIa

Iba Icb Iac

nt
+ + +

+

+
+
–

–

X3-c
X2-b

Vtbc Vtca

Vab Vbc

X1-a

VAB
H2-B H3-C

+ – ++ –

–

– – –

–

IAB IBC ICA

FIGURE 8.15
Delta–delta connection.
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
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(8.126)

where

	

[ ] = ⋅
















AI
n
1 1 0 0

0 1 0
0 0 1t

Solve Equation 8.126 for the secondary-side delta currents:

	 [ ] [ ] [ ]= ⋅−ID AI IDabc ABC
1

	 (8.127)

The line currents as a function of the delta currents on the source side are 
given by:

	 [ ] [ ] [ ]

















=
−

−
−

















⋅

















= ⋅

I
I
I

I
I
I

I Di ID

1 0 1
1 1 0

0 1 1

A

B

C

AB

BC

CA

ABC ABC 	

(8.128)

where

	

[ ] =
−

−
−

















Di
1 0 1
1 1 0

0 1 1

Substitute Equation 8.126 into Equation 8.128:

	 [ ] [ ] [ ] [ ]= ⋅ ⋅I Di AI IDABC abc 	 (8.129)

Since [AI] is a diagonal matrix, Equation 8.129 can be rewritten as:

	 [ ] [ ] [ ] [ ]= ⋅ ⋅I AI Di IDABC abc 	 (8.130)
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The load-side line currents as a function of the load-side delta currents are:

	

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ]

= ⋅

= ⋅−

−

I Di ID

ID Di I

Di

or:

even though is singular

abc abc

abc abc
1

1

	

(8.131)

Applying Equation 8.131, Equation 8.130 becomes:

	

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

= ⋅ ⋅ ⋅

= ⋅

−I AI Di Di I

I AI I

ABC abc

ABC abc

1

	

(8.132)

Turn Equation 8.132 around to solve for the load-side line currents as a func-
tion of the source-side line currents:

	 [ ] [ ] [ ]= ⋅−I AI Iabc ABC
1

	 (8.133)

Equations 8.132 and 8.133 merely demonstrate that the line currents on the 
two sides of the transformer are in phase and differ only by the turn’s ratio of 
the transformer windings. In the per-unit system, the per-unit line currents 
on the two sides of the transformer are exactly equal.

The ideal delta voltages on the secondary side as a function of the line-
to-line voltages of the delta currents and the transformer impedances are 
given by:

	 [ ] [ ] [ ] [ ]= + ⋅Vt VLL Zt IDabc abc abc abc 	 (8.134)

where

	

[ ] =

















Zt
Zt

Zt
Zt

0 0
0 0
0 0

abc

ab

bc

ca

Substitute Equation 8.134 into Equation 8.125:

	 [ ] [ ] [ ] [ ] [ ] [ ]= ⋅ + ⋅ ⋅VLL AV VLL AV Zt IDABC abc abc abc 	 (8.135)

Solve Equation 8.135 for the load-side line-to-line voltages:

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅−VLL AV VLL Zt IDabc ABC abc abc
1

	 (8.136)
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The delta currents [ ]IDabc  in Equations 8.135 and 8.136 need to be replaced by 
the secondary line currents [Iabc]. In order to develop the needed relationship, 
three independent equations are needed. The first two come from applying 
KCL at two vertices of the delta-connected secondary.

	

= −

= −

I I I

I I I

a ba ac

b cb ba 	
(8.137)

The third equation comes from recognizing that the sum of the primary line-
to-line voltages and therefore the secondary ideal transformer voltages must 
sum to zero. KVL around the delta windings gives:

	 − ⋅ + − ⋅ + − ⋅ =Vt Zt I Vt Zt I Vt Zt I 0ab ab ba bc bc cb ca ca ac 	 (8.138)

Replacing the “ideal” delta voltages with the source-side line-to-line voltages:

	
+ + = ⋅ + ⋅ + ⋅V

n
V
n

V
n

Zt I Zt I Zt IAB

t

BC

t

CA

t
ab ba bc cb ca ac

	
(8.139)

Because the sum of the line-to-line voltages must equal zero (KVL) and the 
turn’s ratios of the three transformers are equal, Equation 8.139 is simplified to:

	 = ⋅ + ⋅ + ⋅Zt I Zt I Zt I0 a ba b cb c ac 	 (8.140)

Note in Equation 8.140 that if the three transformer impedances are equal, 
then the sum of the delta currents will add to zero, meaning that the zero 
sequence delta currents will be zero.

Equations 8.137 and 8.140 can be put into matrix form:

	 [ ] [ ] [ ]
















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
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

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



⋅


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









= ⋅

I
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Zt Zt Zt

I
I
I

I F ID

0
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1 1 0

0

a

b

ab bc ca

ba

cb

ac

abc abc 	

(8.141)

where

	

[ ]

[ ]

=








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


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
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





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


I
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Zt Zt Zt
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0
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a

b

ab bc ca
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Solve Equation 8.141 for the load-side delta currents:

	 [ ] [ ] [ ] [ ] [ ]= ⋅ = ⋅−ID F I G I0 0abc abc abc
1

	 (8.142)

where

	 [ ] [ ]= −G F 1

Writing Equation 8.142 in matrix form gives:

	












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
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


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

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

⋅
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

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
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I
I
I

G G G
G G G
G G G

I
I
0
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ac

a

b

11 12 13

21 22 23

31 32 33
	

(8.143)

From Equations 8.142 and 8.143, it is seen that the delta currents are a func-
tion of the transformer impedances and just the line currents in phases 
a and b. Equation 8.143 can be modified to include the line current in phase c 
by setting the last column of the [G] matrix to zeros.
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0
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a
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1 	

(8.144)

where

	

[ ] =

















G
G G
G G
G G

0
0
0

1

11 12

21 22

31 32

When the impedances of the transformers are equal, the sum of the delta 
currents will be zero, meaning that there is no circulating zero sequence cur-
rent in the delta windings.

Substitute Equation 8.144 into Equation 8.135:

	 [ ] [ ] [ ] [ ] [ ] [ ] [ ]= ⋅ + ⋅ ⋅VLL AV VLL AV Zt G IABC abc abc abc1 	 (8.145)

The generalized matrices are defined in terms of the line-to-neutral voltages 
on the two sides of the transformer bank. Equation 8.145 is modified to be in 
terms of equivalent line-to-neutral voltages.
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[ ] [ ] [ ]

[ ] [ ][ ] [ ] [ ] [ ] [ ] [ ] [ ]

= ⋅

= ⋅ ⋅ + ⋅ ⋅ ⋅

VLN W VLL

VLN W AV Dv VLN W Zt G I

ABC ABC

ABC abc abc abc1 	

(8.146)

Equation 8.146 is in the general form:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅VLN a VLN b IABC t abc t abc 	 (8.147)

where

	 [ ]

[ ] [ ] [ ] [ ]

[ ][ ] [ ] [ ]

= ⋅ ⋅

= ⋅ ⋅

a W AV Dv

b AV W Zt G

t

t abc 1

Equation 8.133 gives the generalized equation for currents:

	 [ ][ ] [ ] [ ] [ ]= ⋅ = ⋅I AI I d IABC abc t abc 	 (8.148)

where

	 [ ] [ ]=d AIt 	

The forward sweep equations can be derived by modifying Equation 8.136 in 
terms of equivalent line-to-neutral voltages.

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

= ⋅

= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅−

VLN W VLL

VLN W AV Dv VLN W Zt G I

abc abc

abc ABC abc abc
1

1 	

(8.149)

The forward sweep equation is:

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅VLN A VLN B Iabc t ABC t abc 	 (8.150)

where

	

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

= ⋅ ⋅

= ⋅ ⋅

−A W AV Dv

B W Zt G

t

t abc

1

1

The forward and backward sweep matrices for the delta–delta connection 
have been derived. Once again, it has been a long process to get to the final 
six equations that define the matrices. The derivation provides an excellent 
exercise in the application of basic transformer theory and circuit theory. 
Once the matrices have been defined for a particular transformer connection, 
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the analysis of the connection is a relatively simple task. Example 8.8 will 
demonstrate the analysis of this connection using the generalized matrices.

Example 8.8

Figure 8.16 shows three single-phase transformers in a delta–delta con-
nection serving an unbalanced three-phase load connected in delta.

The source voltages at the load are balanced three-phase of 240 V 
line-to-line.

	

[ ] = −



















VLL

12, 470/0

12, 470/ 120

12, 470/120

Vabc

The loading by phase is:

Sab = 100 kVA at 0.9 lagging power factor
Sbc = Sca = 50 kVA at 0.8 lagging power factor

The ratings of the transformers are:

Phase A–B: 100 kVA, 12,470–240 V, Z = 0.01 + j0.04 per unit
Phases B–C and C–A: 50 kVA, 12,470–240 V, Z = 0.015 + j0.035 

per unit

Determine the following:

	 1.	 The load line-to-line voltages
	 2.	 The secondary line currents
	 3.	 The primary line currents
	 4.	 The load currents
	 5.	 Load voltage unbalance

Before the analysis can start, the transformer impedances must be con-
verted to actual values in ohms and located inside the delta-connected 
secondary windings.

IA

IAB

IB

IC

IBC

VAB

VCA
+

+

+

+

+

+

+

+
−

Vtab

Vtbc

Vtca

Iac

Ztab

Ztca

Ztbc

Icb

Iba

Ic

Ia

Ib

Vca Sca

Sbc

Sab

Vbc

Vab

+
–

− −

−

−

−

−

−

VBC

ICA

FIGURE 8.16
Delta–delta bank serving an unbalanced delta-connected load.
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Phase a–b transformer:

	
= ⋅ = ΩZ 0.24 1000

100
0.576base

2

	 ( )= + ⋅ = + ΩZt j j0.01 0.04 0.576 0.0058 .023ab

Phase b–c and c–a transformers:

	
= ⋅ = ΩZ 0.24 1000

50
1.152base

2

	 ( )= = + ⋅ = + ΩZt Zt j j0.015 0.035 1.152 0.0173 0.0403bc ca

The transformer impedance matrix can now be defined as:

	

[ ] =
+

+
+



















ΩZt

j

j

j

0.0058 .023 0 0

0 0.0173 .0403 0

0 0 0.0173 .0403
abc

The turn’s ratio of the transformers is: = =n 12, 470
240

51.9583t

Define all of the matrices:

	

[ ] [ ] [ ]= ⋅
















=
−

−
−

















=
−

−
−

















W Dv Di1
3

2 1 0
0 2 1
1 0 2

1 1 0
0 1 1
1 0 1

1 0 1
1 1 0

0 1 1

	

[ ] = ⋅
















=
















AV n
1 0 0
0 1 0
0 0 1

51.9583 0 0
0 51.9583 0
0 0 51.9583

t

	

[ ] = ⋅
















=
















AI
n
1 1 0 0

0 1 0
0 0 1

0.0192 0 0
0 0.0192 0
0 0 0.0192t

	

[ ] =
−

−
+ + +

















F
j j j

1 0 1
1 1 0

0.0058 0.023 0.0173 0.0403 0.0173 0.0404

	

[ ] [ ]= =
− − + −
− + −

− − − + −



















−G F

j j j

j j j

j j j

0.3941 0.0134 0.3941 0.0134 3.2581 8.378

0.3941 0.0134 0.6059 0.0134 3.2581 8.378

0.6059 0.0134 0.3941 0.0134 3.2581 8.378

1
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[ ] =
− − +
− +

− − − +



















G

j j

j j

j j

0.3941 0.0134 0.3941 0.0134 0

0.3941 0.0134 0.6059 0.0134 0

0.6059 0.0134 0.3941 0.0134 0
1

	

[ ] [ ] [ ] [ ]= ⋅ ⋅ =
− −

− −
− −

















a W AV Dv
34.6489 17.3194 17.3194
17.3194 34.6489 17.3194
17.3194 17.3194 34.6489

t

	

[ ] [ ] [ ] [ ] [ ]= ⋅ ⋅ ⋅ =
+ +
+ +

− − − −



















b AV W Zt G

j j

j j

j j

0.2166 0.583 0.0826 0.1153 0

0.0826 0.1153 0.2166 0.583 0

0.2993 0.6983 0.2993 0.6983 0
t abc 1

	

[ ] [ ]= =
















d AI
0.0192 0 0

0 0.0192 0
0 0 0.0192

t

	

[ ] [ ] [ ] [ ]= ⋅ ⋅ =
− −

− −
− −

















−A W AV D
0.0128 0.0064 0.0064
0.0064 0.0128 0.0064
0.0064 0.0064 0.0128

t
1

	

[ ] [ ] [ ] [ ]= ⋅ ⋅ =
+ +
+ +

− − − −



















B W Zt G

j j

j j

j j

0.0042 0.0112 0.0016 0.0022 0

0.0016 0.0022 0.0042 0.0112 0

0.0058 0.0134 0.0058 0.0134 0
t abc 1

The Mathcad program is modified slightly to account for the delta con-
nections. The modified program is shown in Figure 8.17.

The initial conditions are:

	

[ ] [ ]= −



















=
















= =VLL Start Tol VM

12470/30

12470/ 90

12470/1500

0
0
0

0.000001 240ABC

After six iterations, the results are:

	

[ ] = −



















VLL

232.9/28.3

231.0/ 91.4

233.1/148.9
abc

	

[ ] =

−
−



















I

540.3/ 19.5

593.6/ 161.5

372.8/81.7
abc
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[ ] =

−
−



















I

10.4/ 19.5

11.4/ 161.5

7.2/81.7
ABC

Start :=

XI :=

0

0

0

Tol := .000001 VM := kVLLsec 100 VM = 240

Iabc Start

Vold Start

VLGABC W VLLABC

VLNabc At VLGABC – Bt Iabc

VLLabc Dv VLNabc

IDabcj

SLj 1000

VLLabcj

1..3for  j

Errork

VLLabck
Voldk

VM

kfor

Errormax max(Error)

break  if  Errormax < Tol

Vold VLLabc

Iabc Di IDabc

IABC dt Iabc

1..200for   n

Out1 VLNabc

Out2 VLLabc

Out3 Iabc

Out4 IABC

Out5 IDabc

Out6 n

Out

1   3

FIGURE 8.17
Delta–delta Mathcad program.
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  = −



















ID

429.3/2.4

216.5/ 128.3

214.5/112.0

Aabc i

	 =V 0.59%unbalance

This example demonstrates that a small change in the Mathcad program can 
be made to represent the delta–delta transformer connection.

8.11 � Open Delta–Open Delta

The open delta–open delta transformer connection can be connected in three 
different ways. Figure 8.18 shows the connection using phase AB and BC.

The relationship between the primary line-to-line voltages and the sec-
ondary ideal voltage is given by:

	 [ ] [ ] [ ]

















= ⋅
− −

















⋅

















= ⋅

V
V
V

n
Vt
Vt
Vt

VLL AV Vt

1 0 0
0 1 0
1 1 0

AB

BC

CA

t

ab

bc

ca

ABC abc 	

(8.151)

where

	

[ ] = ⋅
− −

















AV n
1 0 0
0 1 0
1 1 0

t

The last row of the matrix [AV] is the result that the sum of the line-to-line 
voltages must be equal to zero.

A

B

C

IA Ia

Vca

Vab

Vbc

b

Ic

Ib

a

c

IB

IC

VCA

Ztab

Ztbc
Vtab

VtbcVBC

VAB

+

+

+

+

+

+
+

+

−

−−−

−

−
−

−

FIGURE 8.18
Open delta–open delta using phases AB and BC.
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The relationship between the secondary and primary line currents is:

	 [ ] [ ] [ ]

















= ⋅ − −

















⋅

















= ⋅

I
I
I

n

I
I
I

I AI I

1 1 0 0
1 0 1

0 0 1

A

B

C
t

a

b

c

ABC abc 	

(8.152)

where

	

[ ][ ] = = ⋅ − −

















AI d
n
1 1 0 0

1 0 1
0 0 1

t
t

The ideal secondary voltages are given by:

	

= + ⋅

= + ⋅

Vt V Zt I

Vt V Zt I

ab ab ab a

bc bc bc c 	
(8.153)

The primary line-to-line voltages as a function of the secondary line-to-line 
voltages are given by:

	

= ⋅ = ⋅ + ⋅ ⋅

= ⋅ = ⋅ + ⋅ ⋅

V n Vt n V n Zt I

V n Vt n V n Zt I

AB t ab t ab t ab a

BC t bc t bc t bc c 	
(8.154)

The sum of the primary line-to-line voltages must equal zero. Therefore, the 
voltage VCA is given by:

	

( ) ( )= − + = − ⋅ + ⋅ ⋅ + + ⋅ ⋅

= − ⋅ − ⋅ − ⋅ ⋅ − ⋅ ⋅

V V V n V n Zt I V n Zt I

V n V n V n Zt I n Zt I

CA AB BC t ab t ab a bc t bc c

CA t ab t bc t ab a t bc c 	
(8.155)

Equations 8.154 and 8.155 can be put into matrix form to create the backward 
sweep voltage equation:

	 [ ] [ ] [ ] [ ] [ ]= ⋅ + ⋅ ⋅VLL AV VLL n Zt IABC abc t abc abc 	 (8.156)

where

	

[ ] =
− −

















Zt
Zt

Zt
Zt Zt

0 0
0 0

0
abc

ab

bc

ab bc
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Equation 8.156 gives the backward sweep equation in terms of line-to-line 
voltages. In order to convert the equation to equivalent line-to-neutral volt-
ages, the [W] and [DV] matrices are applied to Equation 8.156.

VLL AV VLL n Zt I

VLN W VLL W AV Dv VLN W n Zt I

VLN a VLN b I

ABC abc t abc abc

ABC ABC abc t abc abc

ABC t abc t abc[ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

= ⋅ + ⋅ ⋅

= ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

= ⋅ + ⋅
	

(8.157)

where

	 [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

= ⋅ ⋅

= ⋅ ⋅

a W AV Dv

b W n Zt

t

t t abc

The forward sweep equation can be derived by defining the ideal voltages as 
a function of the primary line-to-line voltages:

	 [ ] [ ] [ ]

















=
− −

















⋅

















= ⋅

Vt
Vt
Vt

n

V
V
V

Vt BV VLL

1 .
1 0 0
0 1 0
1 1 0

ab

bc

ca
t

AB

BC

CA

abc ABC 	

(8.158)

where

	

[ ] =
− −

















BV
n
1 .

1 0 0
0 1 0
1 1 0t

The ideal secondary voltages as a function of the terminal line-to-line volt-
ages are given by:

	 [ ] [ ] [ ] [ ]

















=

















+
− −

















⋅

















= + ⋅

Vt
Vt
Vt

V
V
V

Zt
Zt

Zt Zt

I
I
I

Vt VLL Zt I

0 0
0 0

0

ab

bc

ca

ab

bc

ca

ab

bc

ab bc

a

b

c

abc abc abc abc 	

(8.159)
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where

	

[ ] =
− −

















Zt
Zt

Zt
Zt Zt

0 0
0 0

0
abc

ab

bc

ab bc

Equate Equation 8.158 to Equation 8.159:

	

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

⋅ = + ⋅

= ⋅ − ⋅

BV VLL VLL Zt I

VLL BV VLL Zt I

ABC abc abc abc

abc ABC abc abc 	

(8.160)

Equation 8.160 gives the forward sweep equation in terms of line-to-line volt-
ages. As before, the [W] and [D] matrices are used to convert Equation 8.160 
to line-to-neutral voltages as shown in Equation 8.161:

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

= ⋅ − ⋅

= ⋅ = ⋅ ⋅ ⋅ − ⋅ ⋅

= ⋅ − ⋅

VLL BV VLL Zt I

VLN W VLL W BV Dv VLN W Zt I

VLN A VLN B I

abc ABC abc abc

abc abc ABC abc abc

abc t ABC t abc 	
� (8.161)

where

	

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

= ⋅ ⋅

= ⋅

A W BV Dv

B W Zt

t

t abc

Example 8.9

In Example 8.8, remove the transformer connected between phases C 
and A. This creates an open delta–open delta transformer bank. This 
transformer bank serves the same loads as in Example 8.8.
Determine the following:

	 1.	 The load line-to-line load voltages
	 2.	 The secondary line currents
	 3.	 The primary line currents
	 4.	 The load currents
	 5.	 Load voltage unbalance

The exact same program from Example 8.8 is used, since only the val-
ues of the matrices change for this connection. After six iterations, the 
results are:
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[ ] = −



















VLL

229.0/28.5

248.2/ 86.9

255.4/147.2
abc

	

[ ] =

−

−



















I

529.9/ 17.9

579.6/ 161.1

353.8/82.8
abc

	

	

[ ] =

−

−



















I

10.2/ 17.9

11.2/ 161.1

6.8/82.8
ABC

	

[ ] = −



















ID

436.7/2.7

201.4/ 123.8

195.8/110.3
abc

	 =V 6.2%unbalance

An inspection of the line-to-line load voltages should raise a question, 
as two of the three voltages are greater than the no-load voltages of 
240 V. Why is there an apparent voltage rise on two of the phases? This 
can be explained by computing the voltage drops in the secondary 
circuit:

	

= ⋅ =

= ⋅ =

v Zt I

v Zt I

12.6/58.0

15.5/149.6

a ab a

b bc c

The ideal voltages are:

	

=

= −

Vt

Vt

240/30

240/ 90

ab

bc

The terminal voltages are given by:

	 ( )

= − =

= − = −

= − + =

V Vt v

V Vt v

V V V

229.0/28.5

248.2/ 86.9

255.4/147.2

ab ab a

bc bc b

ca ab bc
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Figure 8.19 shows the phasor diagrams (not to scale) for the voltages defined 
earlier. In the phasor diagram, it is clear that there is a voltage drop on phase 
ab and then a voltage rise on phase bc. The voltage on ca is also greater than 
the rated 240 V because the sum of the voltages must add to zero.

It is important that when there is a question about the results of a study, 
the basic circuit and transformer theory along with a phasor diagram can 
confirm that the results are correct. This is a good example of when the 
results should be confirmed. Notice also that the voltage unbalance is 
much greater for the open delta–open delta than the closed delta–delta 
connection.

8.12 � Thevenin Equivalent Circuit

This chapter has developed the general matrices for the forward and back-
ward sweeps for most standard three-phase transformer connections. In 
Chapter 10, the section for short-circuit analysis will require the Thevenin 
equivalent circuit referenced to the secondary terminals of the transformer. 
This equivalent circuit must take into account the equivalent impedance 
between the primary terminals of the transformer and the feeder source. 
Figure 8.20 is a general circuit showing the feeder source down to the sec-
ondary bus.

The Thevenin equivalent circuit needs to be determined at the second-
ary node of the transformer bank. This is basically the same as “referring” 
the source voltage and the source impedance to the secondary side of the 

Vca

Vtab

Vtbc

va

Vb

Vab

Vbc

FIGURE 8.19
Voltage phasor diagram.
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transformer. The desired “Thevenin equivalent circuit” at the transformer 
secondary node is shown in Figure 8.21.

A general Thevenin equivalent circuit can be used for all connections 
defined by the forward and backward sweep matrices.

In Figure 8.18, the primary transformer equivalent line-to-neutral voltages 
as a function of the source voltages and the equivalent high-side impedance 
is given by:

	 [ ][ ] [ ] [ ]= − ⋅VLN ELN Zsys IABC ABC ABC ABC 	 (8.162)

but: [ ][ ] [ ]= ⋅I d IABC t abc

Therefore:

	 [ ] [ ][ ] [ ] [ ]= − ⋅ ⋅VLN ELN Zsys d IABC ABC ABC t abc 	 (8.163)

The forward sweep equation gives the secondary line-to-neutral voltages as 
a function of the primary line-to-neutral voltages.

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅VLN A VLN B Iabc t ABC t abc 	 (8.164)

Substitute Equation 8.163 into Equation 8.164:

	

( )
{ }[ ]

[ ]

[ ]

[ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

= − ⋅ ⋅ − ⋅

= ⋅ − ⋅ ⋅ + ⋅

= − ⋅

VLN A ELN Zsys d I B I

VLN A ELN A Zsys d B I

VLN E Z I

.abc t ABC ABC t abc t abc

abc t ABC t ABC t t abc

abc th th abc 	

(8.165)

Source

[ELGABC] [VLNABC] [VLNabc]

[Iabc]
[IABC]

[ZsysABC]

[Vload]

FIGURE 8.20
Equivalent system.

[VLNabc] [Vload]

[Iabc]

[Zth][Eth]

FIGURE 8.21
Thevenin equivalent circuit.
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where

	 ( )[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

= ⋅

= ⋅ ⋅ +

E A ELN

Z A Zsys d B

th t ABC

th t ABC t t

The definitions of the Thevenin equivalent voltages and impedances as 
given in Equation 8.165 are general and can be used for all transformer con-
nections. Example 8.5 is used to demonstrate the computation and applica-
tion of the Thevenin equivalent circuit.

Example 8.10

The delta–grounded wye transformer bank in Example 8.2 is connected 
to a balanced three-phase source of 115 kV through a 5-mile section of a 
four-wire three-phase line as shown in Figure 8.20.

The phase impedance matrix for the 5-mile long 115 kV line is given by:
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ABC  Ω

For the unbalanced load in Example 8.2 using a Mathcad program, the 
load line-to-neutral voltages and secondary and primary currents are 
computed as:
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The Thevenin equivalent voltages and impedances referred to the sec-
ondary terminals of the transformer bank are:

	

[ ] [ ] [ ]= ⋅ =

−













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	 [ ][ ] [ ][ ] [ ]= ⋅ ⋅ +Zth A Zsys d Babc t ABC t t
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abc

The Thevenin equivalent circuit for this case is shown in Figure 8.18.
It is always good to confirm the Thevenin equivalent circuit by using 

the solved-for-load currents and then the Thevenin equivalent circuit to 
compute the load voltage.
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The Mathcad program was modified to match the equivalent system in 
Figure 8.18. The load voltages and load currents were computed. This 
example is intended to demonstrate that it is possible to compute the 
Thevenin equivalent circuit at the secondary terminals of the trans-
former bank. The example shows that using the Thevenin equivalent 
circuit and the original secondary line currents, the original equivalent 
line-to-neutral load voltages are computed. The major application of the 
Thevenin equivalent circuit will be in the short-circuit analysis of a dis-
tribution that will be developed in Chapter 10.

8.13 � Summary

In this chapter, the forward and backward sweep matrices have been devel-
oped for seven common three-phase transformer bank connections. For 
unbalanced transformer connections, the derivations were limited to just 
one of at least three ways that the primary phases could be connected to the 
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transformer bank. The methods in the derivation of these transformer banks 
can be extended to all possible phasing.

One of the major features of the chapter has been to demonstrate how the 
forward and backward sweep technique (ladder) is used to analyze the oper-
ating characteristics of the transformer banks. Several Mathcad programs 
were used in the examples to demonstrate how the analysis is mostly inde-
pendent of the transformer connection by using the derived matrices. This 
approach was first demonstrated with the line models and then continued to 
the voltage regulators and now the transformer connections. In Chapter 10, 
the analysis of a total distribution feeder will be developed using the for-
ward and backward sweep matrices for all possible system components.

Many of the examples demonstrated the use of a Mathcad program for the 
analysis. An extension of this is the use of the student version of the WindMil 
distribution analysis program that can be downloaded as explained in the 
Preface of this text. When the program is downloaded, a “User’s Manual” 
will be included. The User’s Manual serves two purposes:

•	 A tutorial on how to get started using WindMil for the first-time user
•	 Included will be the WindMil systems for many of the examples in 

this and other chapters.

It is highly encouraged that the program and manual be downloaded.

Problems

8.1 A three-phase substation transformer is connected delta–grounded wye 
and rated:

5000 kVA, 115 kV delta—12.47 kV grounded wye, Z = 1.0 + j7.5%

The transformer serves an unbalanced load of:

Phase a: 1384.5 kVA, 89.2% lagging power factor at 6922.5/−33.1 V
Phase b: 1691.2 kVA, 80.2% lagging power factor at 6776.8/−153.4 V
Phase c: 1563.0 kVA, unity power factor at 7104.7/85.9 V

	 a.	 Determine the forward and backward sweep matrices for the 
transformer.

	 b.	 Compute the primary equivalent line-to-neutral voltages.
	 c.	 Compute the primary line-to-line voltages.
	 d.	 Compute the primary line currents.
	 e.	 Compute the currents flowing in the high-side delta windings.
	 f.	 Compute the real power loss in the transformer for this load 

condition.
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8.2 Write a simple Mathcad or MATLAB® program using the ladder technique 
to solve for the load line-to-ground voltages and line currents in the bank of 
8.1 when the source voltages are balanced three-phase of 115 kV line-to-line.

8.3 Create the system in WindMil for Problem 8.2.

8.4 Three single-phase transformers are connected in delta–grounded wye 
serving an unbalanced load. The ratings of three transformers are:

Phase A–B: 100 kVA, 12,470—120 V, Z = 1.3 + j1.7%
Phase B–C: 50 kVA, 12,470—120 V, Z = 1.1 + j1.4%
Phase C–A: same as Phase B–C transformer

The unbalanced loads are:

Phase a: 40 kVA, 0.8 lagging power factor at V = 117.5/−32.5 V
Phase b: 85 kVA, 0.95 lagging power factor at V = 115.7/−147.3 V
Phase c: 50 kVA, 0.8 lagging power factor at V = 117.0/95.3 V

	 a.	Determine the forward and backward sweep matrices for this 
connection.

	 b.	Compute the load currents.
	 c.	Compute the primary line-to-neutral voltages.
	 d.	Compute the primary line-to-line voltages.
	 e.	Compute the primary currents.
	 f.	Compute the currents in the delta primary windings.
	 g.	Compute the transformer bank real power loss.

8.5 For the same load and transformers in Problem 8.4, assume that the pri-
mary voltages on the transformer bank are balanced three-phase of 12,470 V 
line-to-line. Write a Mathcad or MATLAB® program to compute the load 
line-to-ground voltages and the secondary line currents.

8.6 For the transformer connection and loads in Problem 8.4, build the sys-
tem in WindMil.

8.7 The three single-phase transformers in Problem 8.4 are serving an unbal-
anced constant impedance load of:

Phase a: 0.32 + j0.14 Ω
Phase b: 0.21 + j0.08 Ω
Phase c: 0.28 + j0.12 Ω
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The transformers are connected to a balanced 12.47 kV source.

	 a.	Determine the load currents.
	 b.	Determine the load voltages.
	 c.	Compute the complex power of each load.
	 d.	Compute the primary currents.
	 e.	Compute the operating kVA of each transformer.

8.8 Solve Problem 8.7 using WindMil.

8.9 A three-phase transformer is connected wye–delta and rated as:

500 kVA, 4160—240 V, Z = 1.1 + j3.0%

The primary neutral is ungrounded. The transformer is serving a balanced 
load of 480 kW with balanced voltages of 235 V line-to-line and a lagging 
power factor of 0.9.

	 a.	Compute the secondary line currents.
	 b.	Compute the primary line currents.
	 c.	Compute the currents flowing in the secondary delta windings.
	 d.	Compute the real power loss in the transformer for this load.

8.10 The transformer in Problem 8.9 is serving an unbalanced delta load of:

Sab = 150 kVA, 0.95 lagging power factor
Sbc = 125 kVA, 0.90 lagging power factor
Sca = 160 kVA, 0.8 lagging power factor

The transformer bank is connected to a balanced three-phase source of 
4160 V line-to-line.

	 a.	Compute the forward and backward sweep matrices for the trans-
former bank.

	 b.	Compute the load equivalent line-to-neutral and line-to-line 
voltages.

	 c.	Compute the secondary line currents.
	 d.	Compute the load currents.
	 e.	Compute the primary line currents.
	 f.	Compute the operating kVA of each transformer winding.
	 g.	Compute the load voltage unbalance.
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8.11 Three single-phase transformers are connected in an ungrounded 
wye–delta connection and serving an unbalanced delta-connected load. The 
transformers are rated:

Phase A: 15 kVA, 2400–240 V, Z = 1.3 + j1.0%
Phase B: 25 kVA, 2400–240 V, Z = 1.1 + j1.1%
Phase C: Same as phase A transformer

The transformers are connected to a balanced source of 4.16 kV line-to-line. 
The primary currents entering the transformer are:

IA = 4.60 A, 0.95 lagging power factor
IB = 6.92 A, 0.88 lagging power factor
IC = 5.37 A, 0.69 lagging power factor

	 a.	Determine the primary line-to-neutral voltages. Select VAB as 
reference.

	 b.	Determine the line currents entering the delta-connected load.
	 c.	Determine the line-to-line voltages at the load.
	 d.	Determine the operating kVA of each transformer.
	 e.	 Is it possible to determine the load currents in the delta-connected 

load? If so, do it. If not, why not?

8.12 The three transformers in Problem 8.11 are serving an unbalanced delta-
connected load of:

Sab = 10 kVA, 0.95 lagging power factor
Sbc = 20 kVA, 0.90 lagging power factor
Sca = 15 kVA, 0.8 lagging power factor

The transformers are connected to a balance 4160 line-to-line voltage source. 
Determine the load voltages, and the primary and secondary line currents 
for the following transformer connections:

•	 Ungrounded wye–delta connection
•	 Grounded wye–delta connection
•	 Open wye–open delta connection where the transformer connected 

to phase C has been removed

8.13 Three single-phase transformers are connected in grounded wye–
grounded wye and serving an unbalanced constant impedance load. The 
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transformer bank is connected to a balanced three-phase 12.47 line-to-line 
voltage source. The transformers are rated:

Phase A: 100 kVA, 7200–120 V, Z = 0.9 + j1.8%
Phase B and Phase C: 37.5 kVA, 7200–120 V, Z = 1.1 + j1.4 %

The constant impedance loads are:

Phase a: 0.14 + j0.08 Ω
Phase b: 0.40 + j0.14 Ω
Phase c: 0.50 + j0.20 Ω

	 a.	Compute the generalized matrices for this transformer bank.
	 b.	Determine the load currents.
	 c.	Determine the load voltages.
	 d.	Determine the kVA and power factor of each load.
	 e.	Determine the primary line currents.
	 f.	Determine the operating kVA of each transformer.

8.14 Three single-phase transformers are connected in delta–delta and are 
serving a balanced three-phase motor rated 150 kVA, 0.8 lagging power fac-
tor and a single-phase lighting load of 25 kVA, 0.95 lagging power factor con-
nected across phases a–c. The transformers are rated:

Phase A–B: 75 kVA, 4800–240 V, Z = 1.0 + j1.5%
Phase B–C: 50 kVA, 4800–240 V, Z = 1.1 + j1.4%
Phase C–A: same as Phase B–C

The load voltages are balanced three-phase of 240 V line-to-line.

	 a.	Determine the forward and backward sweep matrices.
	 b.	Compute the motor input currents.
	 c.	Compute the single-phase lighting load current.
	 d.	Compute the primary line currents.
	 e.	Compute the primary line-to-line voltages.
	 f.	Compute the currents flowing in the primary and secondary delta 

windings.
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8.15 In Problem 8.14, the transformers on phases A–B and B–C are 
connected  in an open delta–open delta connection and serving an unbal-
anced three-phase load of:

Phase a–b: 50 kVA at 0.9 lagging power factor
Phase b–c: 15 kVA at 0.85 lagging power factor
Phase c–a: 25 kVA at 0.95 lagging power factor

The source line-to-line voltages are balanced at 4800 V line-to-line. Determine:

•	 The load line-to-line voltages
•	 The load currents
•	 The secondary line currents
•	 The primary line currents

WindMil Assignment

Use System 4 to build this new System 5. A 5000 kVA delta–grounded wye 
substation transformer is to be connected between the source and Node 1. 
The voltages for the transformer are 115 kV delta to 12.47 kV grounded wye. 
The impedance of this transformer is 8.06% with an X/R ratio 8. By install-
ing this substation transformer, be sure to modify the source so that it is 
115,000 V rather than the 12.47 V. Follow the steps in the User’s Manual on 
how to install the substation transformer.

	 1.	When the transformer has been connected, run Voltage Drop.
	 2.	What are the node voltages at Node 2?
	 3.	What taps has the regulator gone to?
	 4.	Why did the taps increase when the transformer was added to the 

system?
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9
Load Models

The loads on a distribution system are typically specified by the complex 
power consumed. With reference to Chapter 2, the specified load will be the 
“maximum diversified demand.” This demand can be specified as kVA and 
power factor, kW and power factor, or kW and kvar. The voltage specified 
will always be the voltage at the low-voltage bus of the distribution substa-
tion. This creates a problem because the current requirement of the loads 
cannot be determined without knowing the voltage. For this reason, some 
form of an iterative technique must be employed. An iterative technique is 
developed in Chapter 10 that is called the “ladder” technique or the “back-
ward/forward sweep” technique.

Loads on a distribution feeder can be modeled as wye-connected or delta-
connected. The loads can be three-phase, two-phase, or single-phase with 
any degree of unbalance and can be modeled as:

•	 Constant real and reactive power (constant PQ)
•	 Constant current
•	 Constant impedance
•	 Any combination of the above

The load models developed are to be used in the iterative process of a power-
flow program, where the load voltages are initially assumed. One of the 
results of the power-flow analysis is to replace the assumed voltages with 
the actual operating load voltages. All models are initially defined by a com-
plex power per phase and an assumed line-to-neutral voltage (wye load) or 
an assumed line-to-line voltage (delta load). The units of the complex power 
can be in volt-amperes and volts or per-unit volt-amperes and per-unit volt-
ages. For all loads, the line currents entering the load are required in order to 
perform the power-flow analysis.

9.1 � Wye-Connected Loads

Figure 9.1 is the model of a wye-connected load.
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The notation for the specified complex powers and voltages are as follows:

	 θ = + δPhase :a S P jQ V/ and /a a a a an a 	 (9.1)

	 θ = + δPhase :b S P jQ V/ and /b b b b bn b 	 (9.2)

	 θ = + δPhase :c S P jQ V/ and /c c c c cn c 	 (9.3)

9.1.1 � Constant Real and Reactive Power Loads

The line currents for constant real and reactive power loads (PQ loads) are 
given by:
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	 (9.4)

In this model, the line-to-neutral voltages will change during each iteration 
until convergence is achieved.
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FIGURE 9.1
Wye-connected load.
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9.1.2 � Constant Impedance Loads

The “constant load impedance” is first determined from the specified com-
plex power and assumed line-to-neutral voltages.
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The load currents as a function of the “constant load impedances” are given by:
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	 (9.6)

In this model, the line-to-neutral voltages will change during each iteration, 
but the impedance computed in Equation 9.5 will remain constant.

9.1.3 � Constant Current Loads

In this model, the magnitudes of the currents are computed according 
to Equations 9.4 and then held constant while the angle of the voltage (δ) 
changes, resulting in a changing angle on the current so that the power fac-
tor of the load remains constant.
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where
δabc = line-to-neutral voltage angles
θabc = power factor angles
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9.1.4 � Combination Loads

Combination loads can be modeled by assigning a percentage of the total 
load to each of the three aforementioned load models. The current for the 
constant impedance load is computed assuming the nominal load voltage. 
In a similar manner, the current for the constant current load is computed 
assuming the nominal load voltage. All load currents will change as the load 
voltage changes in the iterative process. The total line current entering the 
load is the sum of the three components.

Example 9.1

A combination load is served at the end of a 10,000 ft long, three-phase 
distribution line. The impedance of the three-phase line is:
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The complex powers of a combination wye-connected load at nominal 
voltages are:

	

[ ]

=

=

=

=

















=
+
+
+



















S

S

S
S
S
S

j

j

j

2240 at 0.85 power factor

S 2500 at 0.95 power factor

2000 at 0.90 power factor

1904.0 1180.0

2375.0 780.6

1800.0 871.8

kVA

an

bn

cn

abc

an

bn

cn

The load is specified to be 50% constant complex power, 20% constant 
impedance, and 30% constant current. The nominal line-to-line voltage 
of the feeder is 12.47 kV.

a.	 �Assume the nominal voltage and compute the component of load 
current attributed to each of the loads and the total load current.
	 The assumed line-to-neutral source voltages at the start of the 

iterative routine are:
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The complex powers for each of the loads are:
Complex power load:
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Constant impedance load:
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Constant current load:
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The currents due to the constant complex power computed at 
nominal voltages are:
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The constant impedances for that part of the load are computed as:
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For the first iteration, the currents due to the constant impedance 
portion of the loads are:
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The magnitudes of the constant current portion of the loads are:
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The contribution of the load currents due to the constant current 
portion of the loads is:
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The total load currents are the sum of the three components:
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To check that the computed currents give the initial complex 
power:
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This gives the same complex powers that were given for nominal 
load voltages.

b.	� Determine the currents at the start of the second iteration. The 
voltages at the load after the first iteration are:
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The steps are repeated with the exceptions that the impedances of 
the constant impedance portion of the load will not be changed 
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and the magnitude of the currents for the constant current portion 
of the load change will not change.
The constant complex power portion of the load currents is:
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The currents due to the constant impedance portion of the load are:
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The currents due to the constant current portion of the load are:
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The total load currents at the start of the second iteration will be:
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The new complex powers of the combination loads are:
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Because the load voltages have changed, the total complex power 
has also changed.

Observe how the currents have changed from the original currents. The 
currents for the constant complex power loads have increased because 
the voltages are reduced from the original assumption. The currents 
for the constant impedance portion of the load have decreased because 
the impedance stayed constant but the voltages are reduced. Finally, 
the magnitude of the constant current portion of the load has remained 
constant. Again, all three components of the loads have the same phase 
angles because the power factor of the load has not changed.
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9.2 � Delta-Connected Loads

The model for a delta-connected load is shown in Figure 9.2.
The notation for the specified complex powers and voltages in Figure 9.2 

are as follows:

	 θ = + δPhase :ab S P jQ V/ and /ab ab ab ab ab ab 	 (9.8)

	 θ = + δPhase :bc S P jQ V/ and /bc bc bc bc bc bc 	 (9.9)

	 θ = + δPhaseca S P jQ V: / and /ca ca ca ca ca ca 	 (9.10)

9.2.1 � Constant Real and Reactive Power Loads

The currents in the delta-connected loads are:
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	 (9.11)

In this model, the line-to-line voltages will change during each iteration, 
resulting in new current magnitudes and angles at the start of each iteration.

ILab

ILb

ILa

ILc

ILca ILbc

Sab

SbcSca

FIGURE 9.2
Delta-connected load.
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9.2.2 � Constant Impedance Loads

The “constant load impedance” is first determined from the specified 
complex power and line-to-line voltages:
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	 (9.12)

The delta load currents as a function of the “constant load impedances” are:

	

= = δ − θ = α

= = δ − θ = α

= = δ − θ = α

IL V
Z

V
Z

IL

IL V
Z

V
Z

IL

IL V
Z

V
Z

IL

/ /

/ /

/ /

ab
ab

ab

ab

ab
ab ab ab ab

bc
bc

bc

bc

bc
bc bc bc bc

ca
ca

ca

ca

ca
ca ca ca ca

	 (9.13)

In this model, the line-to-line voltages will change during each iteration 
until convergence is achieved.

9.2.3 � Constant Current Loads

In this model, the magnitudes of the currents are computed according 
to Equations 9.11 and then held constant while the angle of the voltage 
(δ) changes during each iteration. This keeps the power factor of the load 
constant.

	

= δ − θ

= δ − θ

= δ − θ

IL IL

IL IL

IL IL

/

/

/

ab ab ab ab

bc bc bc bc

ca bca ca ca

	 (9.14)
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9.2.4 � Combination Loads

Combination loads can be modeled by assigning a percentage of the total 
load to each of the three aforementioned load models. The total delta current 
for each load is the sum of the three components.

9.2.5 � Line Currents Serving a Delta-Connected Load

The line currents entering the delta-connected load are determined by apply-
ing Kirchhoff’s Current Law at each of the nodes of the delta. In matrix form, 
the equations are:

	 [ ] [ ] [ ]
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	 (9.15)

9.3 � Two-Phase and Single-Phase Loads

In both the wye- and delta-connected loads, single-phase and two-phase 
loads are modeled by setting the currents of the missing phases to zero. The 
currents in the phases present are computed using the same appropriate equa-
tions for constant complex power, constant impedance, and constant current.

9.4 � Shunt Capacitors

Shunt capacitor banks are commonly used in distribution systems to help 
in voltage regulation and to provide reactive power support. The capacitor 
banks are modeled as constant susceptances connected in either wye or delta. 
Similar to the load model, all capacitor banks are modeled as three-phase 
banks with the currents of the missing phases set to zero for single-phase 
and two-phase banks.

9.4.1 � Wye-Connected Capacitor Bank

The model of a three-phase wye-connected shunt capacitor bank is shown 
in Figure 9.3.
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The individual phase capacitor units are specified in kvar and kV. 
The  constant susceptance for each unit can be computed in Siemens. The 
susceptance of a capacitor unit is computed by:

	
=

⋅
SB kvar

kV 1000
c

LN
2

	 (9.16)

With the susceptance computed, the line currents serving the capacitor bank 
are given by:

	

= ⋅

= ⋅

= ⋅

IC jB V

IC jB V

IC jB V

a a an

b b bn

c c cn 	

(9.17)

9.4.2 � Delta-Connected Capacitor Bank

The model for a delta-connected shunt capacitor bank is shown in Figure 9.4.
The individual phase capacitor units are specified in kvar and kV. 

For the delta-connected capacitors, the kV must be the line-to-line voltage. 
The constant susceptance for each unit can be computed in Siemens. The 
susceptance of a capacitor unit is computed by:

	
=

⋅
SB kvar

kV 1000
c

LL
2 	 (9.18)

ICb

ICa

Vbn
jBc

Van

Vcn

+

+

+

−

−

jBa

jBb

ICc

−

FIGURE 9.3
Wye-connected capacitor bank.
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With the susceptance computed, the delta currents serving the capacitor 
bank are given by:

	

= ⋅

= ⋅

= ⋅

IC jB V

IC jB V

IC jB V

ab a ab

bc b bc

ca c ca

	 (9.19)

The line currents flowing into the delta-connected capacitors are computed 
by applying Kirchhoff’s Current Law at each node. In matrix form, the 
equations are:
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	 (9.20)

9.5 � Three-Phase Induction Machine

The analysis of an induction machine (motor or generator) when operat-
ing with unbalanced voltage conditions has traditionally been performed 
using the method of symmetrical components. In this section, the symmetri-
cal component analysis method will be used to establish a base line for the 
machine operation. Once the sequence currents and voltages in the machine 

ICb

ICa

ICc

ICca ICbc

ICab

Bab

Bbc

Bca

FIGURE 9.4
Delta-connected capacitor bank.
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have been determined, they are converted to the phase domain. A direct 
analysis of the machine in the phase domain is introduced and is employed 
for the analysis of both motors and generators.

9.5.1 � Induction Machine Model

The equivalent positive and negative sequence networks for an induction 
machine can be represented by the circuit in Figure 9.5. Because all induction 
machines are connected either in an ungrounded wye or in delta, there will 
not be any zero sequence currents and voltages; therefore, only the positive 
and negative sequence networks are analyzed. In the circuit in Figure 9.5, the 
power consumed by the resistors (RLi) represents the electrical power being 
converted to shaft power.

In Figure 9.5:

i = 1 for the positive sequence circuit
i = 2 for the negative sequence circuit

The given parameters for the induction machine are assumed to be:

	

= =

=

=

= +

= +

=

kVA HP

kVA kVA

V

V V

Zs Rs jXs

Zr Rr jXr

Zm jXm

three phase rating

3
= single-phase rating

: rated line-to-line voltage

3
: rated line to neutral voltage

: stator sequence impedance in per-unit

: rotor sequence impedance in per-unit

: magnetizing impedance in per-unit

LL

LN
LL

3

1
3

Imi

Ymi

Isi

Vsi

Zsi Zri

Iri

RLi Vri

+

−−

+

FIGURE 9.5
Sequence network.



338 Distribution System Modeling and Analysis

The impedances must be converted to actual impedances in ohms. Two sets 
of base values are needed. The impedances in ohms are computed for the 
wye and delta connections by:

	

= ⋅ = ⋅

= =

= ⋅ = ⋅Ω Ω

IY
kVA

V
ID

kVA
V

ZY
V
IY

ZD
V

ID

ZY Z ZY ZD Z ZD

Wye Delta

1000 1000
base

LN
base

LL

base
LN

base
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pu pu base

1 1

base

	 (9.21)

Typically, the sequence networks are assumed to be a wye connection. When 
the motor is delta-connected, the computation for the impedances inside the 
delta is shown in Equation 9.21. These delta impedances are equal and can be 
converted to an equivalent wye by dividing by three. As it turns out, these 
values of the machine impedances in ohms will be the same as that com-
puted using the wye-connected base values.

	
=Ω

ΩZY ZD
3 	

(9.22)

Example 9.2

A three-phase induction machine is rated:

	 =P150 kVA, 480 line-to-line volts, 3.25 kWFW 	

	 = + = + =Zs j Zr j Zm j0.0651 0.1627, 0.0553 0.1139, 4.0690pu pu pu

Determine the wye and delta impedances in ohms.
Set base values:
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Base values for wye connection:
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Wye-connected impedances in ohms:
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Base values for delta connection:

	

= =

= ⋅ =

= ⋅ = ⋅

= ⋅ ⋅ = ⋅

ID kVA
kVLL

ZD kVLL
ID

ZD kVLL
kVA

kVLL
kVA

ZD kVLL
kVA

ZY

1 104.1667

1000 4.608

1000
1

1000

3

3
1000

3

base
base

base

base
base

base

base
base

base

base

base

base
base

base
base

2 2

2

Delta-connected impedances in ohms:
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Note that converting the delta impedances to wye impedances in ohms 
results in the same values by using the wye base values.
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9.5.2 � Symmetrical Component Analysis of a Motor

In Figure 9.5, the motor sequence resistances are given by:

	
= − ⋅RL s
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i
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i 	 (9.23)

where
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s r

s

s

r

1

2 1

Note that the negative sequence load resistance will be a negative value that 
will lead to a negative component of shaft power.

The positive and negative sequence networks can be analyzed individually, 
and then sequence currents and voltages are converted to phase components. 
At this point, it is assumed that the stator line-to-line voltages are known. 
When only the magnitudes of the line-to-line voltages are known, the Law 
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of Cosines is used to establish the angles on the voltages. The equivalent line-
to-neutral voltages are needed for the analysis of the sequence networks. The 
line-to-neutral voltages are computed by:
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	 (9.24)

where
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The computed line-to-neutral voltages are converted to sequence 
voltages by:
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With the stator sequence voltages computed, the circuits of Figure 9.5 are 
analyzed to compute the sequence stator and rotor currents. The sequence 
input impedances for i = 1 and 2 are:

	

( )= +
⋅ +
+ +
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Zm Zr RL
Zm Zr RLi i

i i i

i i i
	 (9.26)

The stator input sequence currents are:
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The rotor currents and voltages are computed by:
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(9.28)

After the sequence voltages and currents have been computed, they are con-
verted to phase components by:
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The various complex powers are computed by:
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Example 9.3

The motor of Example 9.2 is operating with a positive sequence slip of 
0.035 and line-to-line input voltages of:
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Compute:

•	 Stator and rotor currents
•	 Load output voltages
•	 Input and output complex powers

The line-to-neutral input phase and sequence voltages are:
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The positive and negative sequence stator voltages are:
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[ ] =
−











Vs
278.1/ 31.0

5.1/130.1

The input stator sequence impedances are:

	

( )

=

= +
⋅ +
+ +

=
+
+













k

Zin Zs
Zm Zr RL
Zm Zr RL

j

j

For: 1 and 2

2.1090 1.1786

0.1409 0.4204k
k

k

The positive and negative sequence stator, magnetizing, and rotor 
currents are:

	

= =
−











= − ⋅ =
−











= =
−











= − =
−











Im

Im

Is
Vs
Zin

Vm Vs Zs Is

Vm
Zm

Ir Is

115.1/ 60.2

11.5/58.6

254.7/ 35.4

2.0/135.1

40.8/ 125.4

0.3/45.1

104.7/ 39.6

11.2/59.0

k
k

k

k k k

k
k

k k k

The sequence current arrays are:

	

[ ]

[ ]

=

















= −



















=

















= −



















Is Is
Is

Ir Ir
Ir

0 0

115.1/ 60.2

11.5/58.6

0 0

104.7/ 39.6

11.2/59.0

012 1

2

012 1

2

The stator and rotor phase currents are:
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[ ] [ ] [ ]

[ ] [ ] [ ]

= ⋅ =

−

















= ⋅ =

−
−



















Is A Is

Ir A Ir

110.0/ 55.0

126.6/179.7

109.6/54.6

103.7/ 33.4

115.2/ 161.6

96.2/76.3

abc

abc

012

012

The rotor sequence and phase voltages are:

	

[ ]

[ ] [ ] [ ]

= ⋅ =
−

−













= −
−

















= ⋅ =
−
−



















Vr Ir RL

Vr

Vr A Vr

245.2/ 39.6

0.5/ 121.0

0
245.2/ 39.6

0.5/ 121.0

245.3 39.7

244.7/ 159.5

245.5/80.5

k k k

abc

012

012

The input and output complex powers are:

	

∑

∑

( )

( )

( ) ( )

=

=
⋅

=
+
+
+



















= = +

=
⋅

=
+
+
+



















= =

= − =

−

=

var

i

Ss
Vs Is

j

j

j

Ss Ss j jk

Sr
Vr I

j

j

j

Sr Sr

P Ss Sr

For 1,2,3

1000

27.4 12.4

30.9 17.8

25.6 16.8

83.87 47.00 kW+

4

1000

25.3 2.8

28.2 1.0

23.6 1.7

77.03 kW

Re Re 6.84 kW

abc
abc abc

total abck

k

abc abc

total abck

k

loss total total

*

1

3

*

1

3

i
i K

abci

i k



346 Distribution System Modeling and Analysis

9.5.3 � Phase Analysis of an Induction Motor [1]

In the previous section, the analysis starts by converting known phase 
voltages to sequence voltages. These sequence voltages are then used to 
compute the stator and rotor sequence currents along with the rotor output 
sequence voltages. The sequence currents and voltages are then converted 
to phase components. In the following sections, methods will be developed 
where the total analysis is performed only using the phase domain.

When the positive sequence slip (s1) is known, the input sequence 
impedances for the positive and negative sequence networks can be 
determined as:

	

( ) ( )
( )

= + +
⋅ + +

+ + +
ZM Rs jXs

jXm Rr RL jXr
Rr RL j Xm Xr

i i i
i i i i

i i i i

	 (9.31)

Once the input sequence impedances have been determined, the analysis 
of an induction machine operating with unbalance voltages requires the 
following steps:

Step 1: Transform the known line-to-line voltages to sequence line-to-
line voltages.

	

















=
















⋅

















Vab
Vab
Vab

a a
a a

V
V
V

1
3

1 1 1
1
1

o ab

bc

ca

1

2

2

2

	 (9.32)

In Equation 9.32, Vab0 = 0 because of Kirchhoff’s Voltage Law (KVL).
Equation 9.32 can be written as:

	 = ⋅−VLL A VLL[ ] [ ] [ ]abc012
1 	 (9.33)

Step 2: Compute the sequence line-to-neutral voltages from the 
line-to-line voltages:

When the machine is connected either in delta or in ungrounded wye, 
the zero sequence line-to-neutral voltage can be assumed to be zero. 
The sequence line-to-neutral voltages as a function of the sequence 
line-to-line voltages are given by:

	

= =

= ⋅

= ⋅

Van Vab

Van t Vab

Van t Vab

00 0

1
*

1

2 2

	 (9.34)
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where

	
=t 1

3
/30

Equations 9.34 can be put into matrix form:

	 [ ] [ ] [ ]

















=

















⋅

















= ⋅

Van
Van
Van

t
t

Vab
Vab
Vab

VLN T VLL

1 0 0
0 0
0 0

0

1

2

*

0

1

2

012 012

	 (9.35)

where

	

[ ] =

















T t
t

1 0 0
0 0
0 0

*

Step 3: Compute the sequence line currents flowing into the machine:

	

=

=

=

Ia

Ia Van
ZM

Ia Van
ZM

00

1
1

1

2
2

2

	 (9.36)

Step 4: Transform the sequence currents to phase currents:

	 = ⋅I A I[ ] [ ] [ ]abc 012 	 (9.37)

where

	

[ ] =

















=

A a a
a a

a

1 1 1
1
1

1/120

2

2

The four steps outlined previously can be performed without actually 
computing the sequence voltages and currents. The procedure basically 
reverses the steps.
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Define:

	
=YM

ZM
1

i
i

	 (9.38)

The sequence currents are:

	

=

= ⋅

= ⋅

I

I YM Van

I YM Van

00

1 1 1

2 2 2 	

(9.39)

Since I0 and Vab0 are both zero, the following relationship is true:

	 = =I Vab 00 0 	 (9.40)

Equations 9.39 and 9.40 can be put into matrix form:

	

















=

















⋅



















= ⋅

I
I
I

YM
YM

Van

Van

Van

I YM VLN

1 0 0
0 0
0 0

[ ] [ ] [ ]

0

1

2

1

2

0

1

2

012 012 012

	 (9.41)

where

	

[ ] =

















YM YM
YM

1 0 0
0 0
0 0

012 1

2

Substitute Equation 9.35 into Equation 9.41:

	 [ ]= ⋅ ⋅I YM T VLL[ ] [ ] [ ]012 012 012 	 (9.42)

From symmetrical component theory:

	 = ⋅−VLL A VLL[ ] [ ] [ ]abc012
1 	 (9.43)

	 = ⋅I A I[ ] [ ] [ ]abc 012 	 (9.44)
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Substitute Equation 9.43 into Equation 9.42, and substitute the resultant 
equation into Equation 9.44 to get:

	 [ ]= ⋅ ⋅ ⋅ ⋅−I A YM T A VLL[ ] [ ] [ ] [ ] [ ]abc abc012
1 	 (9.45)

Define:

	 YM A YM T A[ ] [ ] [ ] [ ]abc 012
1[ ]= ⋅ ⋅ ⋅ − 	 (9.46)

Therefore:

	 = ⋅I YM VLL[ ] [ ] [ ]abc abc abc 	 (9.47)

The induction machine “phase frame admittance matrix” [ ]YMabc  is defined 
in Equation 9.46. Equation 9.47 is used to compute the input phase currents of 
the machine as a function of the phase line-to-line terminal voltages. This is 
the desired result. Recall that [ ]YMabc  is a function of the slip of the machine, 
so that a new matrix must be computed every time the slip changes.

Equation 9.47 can be used to solve for the line-to-line voltages as a function 
of the line currents by:

	 = ⋅VLL ZM I[ ] [ ] [ ]abc abc abc 	 (9.48)

where

	 = −ZM YM[ ] [ ]abc abc
1

As was done in Chapter 8, it is possible to replace the line-to-line voltages in 
Equation 9.48 with the “equivalent” line-to-neutral voltages:

	 = ⋅VLN W VLL[ ] [ ] [ ]abc abc 	 (9.49)

where

	

= ⋅ ⋅ = ⋅
















−W A T A[ ] [ ] [ ] [ ]
1
3

2 1 0
0 2 1
1 0 2

1

The matrix [W] is a very useful matrix that allows the determination of 
the “equivalent” line-to-neutral voltages from the line-to-line voltages. It is 
important to know that if the feeder serving the motor is grounded wye, 
then there will be line-to-ground voltages at the motor terminals. Because 
the motor is either ungrounded wye or delta, it will be necessary to convert 
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the feeder line-to-ground voltages to line-to-line voltages and then apply 
Equation 9.48 to compute the equivalent line-to-neutral voltages of the motor. 
Equation 9.48 can be substituted into Equation 9.49 to define the “line-to-
neutral” impedance equation.

	

= ⋅ ⋅

= ⋅

VLN W ZM I

VLN ZLN I

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

abc abc abc

abc abc abc
	 (9.50)

where

	 = ⋅ZLN W ZM[ ] [ ] [ ]abc abc

The inverse of Equation 9.50 can be taken to determine the line currents as a 
function of the equivalent line-to-neutral voltages.

	 = ⋅I YLN VLN[ ] [ ] [ ]abc abc abc 	 (9.51)

where

	 = −YLN ZLN[ ] [ ]abc abc
1
	

Care must be taken in applying Equation 9.51 to ensure that the voltages 
used are the equivalent line-to-neutral, not the line-to-ground, voltages. As 
was pointed out earlier, when the line-to-ground voltages are known, they 
must first be converted to the line-to-line values, and then Equation 9.49 
should be used to compute the line-to-neutral voltages.

Once the machine terminal currents and line-to-neutral voltages are 
known, the input phase complex powers and the total three-phase input 
complex power can be computed.

	

= ⋅

= ⋅

= ⋅

= + +

S V I

S V I

S V I

S S S S

( )

( )

( )

a an a

b bn b

c cn c

Total a b c

*

*

* 	
(9.52)

Mostly, the only voltages known will be the magnitudes of the three 
line-to-line voltages at the machine terminals. When this is the case, the Law 
of Cosines must be used to compute the angles associated with the measured 
magnitudes.
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Example 9.4

The induction machine in Example 9.2 is operating such that:

	

[ ] =

















= −



















=

VLL
Vs
Vs
Vs

s

480.0/0

490/ 121.4

475/118.3

V

Positive sequence slip: 0.035

abc

ab

bc

ca

1

Determine the input line currents and complex power input to the 
machine (motor).

Compute the negative sequence slip:

	 = − =s s2 1.9652 1

Compute the sequence load resistance values:

	
= − ⋅ =

−









RL s

s
Rr1 2.3408

0.0417i
i

i
i

Calculate the input sequence impedances and admittances:

	

( )= +
⋅ +
+ +

=
+
+













= =
−
−













ZM Zs
Zm Zr RL
Zm Zr RL

j

j

YM
ZM

j

j

2.109 1.1786

0.1409 0.4204

1 0.3613 0.2019

0.7166 2.1385

i i
i i i

i i i

i
i

Define the T, A, and W matrices:

	

[ ]

[ ]

[ ]

= ⋅ =
















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















= ⋅
















t T t
t

a A a a
a a

W

1
3

/30
1 0 0
0 0
0 0

1/120
1 1 1
1
1

1
3

2 1 0
0 2 1
1 0 2

*

2

2
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Define the sequence input admittance matrix:

	

[ ] =

















= −
−

















YM YM
YM

j

j

1 0 0
0 0
0 0

1 0 0
0 0.3613 0.2019 0

0 0 0.7166 2.1385
012 1

2

Compute the phase input admittance matrix:

	

YM A YM T A

j j j

j j j

j j j

0.6993 0.3559 0.0394 0.0684 0.34 0.4243

0.34 0.4243 0.6993 0.3559 0.0394 0.0684

0.0394 0.0684 0.34 0.4243 0.6993 0.3559

abc 012
1[ ] [ ] [ ] [ ] [ ]= ⋅ ⋅ ⋅

=
− − − +

+ − − −
− − + −



















−

Compute input line currents:

	

[ ] [ ] [ ]= ⋅ =

−

















Is YM VLL

110.0/ 55.0

126.6/179.7

109.6/54.6
abc abc abc

Compute line-to-neutral voltages:

	

[ ] [ ] [ ]= ⋅ =
−

−



















VLN W VLL

273.2/ 30.7

281.9 150.4

279.1/87.9
abc abc

Compute the stator complex input power:

	

( )

=

=
⋅

=
+
+
+



















= + +

j

Ss
VLN Is

j

j

j

Ss j jkvar

For 1,2,3

1000

27.4 12.4

30.9 17.8

25.6 16.8

83.9 47.0 kW

j
abc abc

total

*

j j

Note that these are the same results as in Example 9.3, and only fewer 
steps are required.
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9.5.4 � Voltage and Current Unbalance [2]

Three-phase distribution feeders are unbalanced because of conductor 
spacings and the unbalanced loads served. Because of this, the line-to-line 
voltages serving an induction motor will be unbalanced. When a motor 
operates with unbalanced voltages, it will overheat and draw unbalanced 
currents that may exceed the rated current of the motor. It has become a 
rule of thumb to not let the voltage unbalance exceed 3%. A common way of 
determining voltage and current unbalance is based upon the magnitudes 
of the line-to-line voltages and line currents. The computation of unbalance 
involves three steps:

Step 1: Compute the average of the line-to-line voltages
Step 2: Compute the magnitudes of the deviation (dev) between the 

phase magnitudes and the average

Step 3: Compute unbalance  = ⋅Unbalance
dev

average
max( )

100%

The same three steps are used to compute current unbalance.

Example 9.5

Determine the voltage and current unbalances for the motor in 
Examples 9.2 and 9.3.

The terminal line-to-line voltages were:

	

[ ] = −



















VLL

480/0

490/ 121.4

475/118.3
abc

Step 1: ∑= ⋅ =
=

V VLL
1
3

481.7average abc

k 1

3

k

Step 2: = − =
















dev VLL V
1.67
8.33
6.67

i i average

Step 3: = = ⋅ =V
dev

V
max( ) 8.33

481.7
100 1.73%unbalance

average

The line currents were:

	

[ ] =

−

















Is

110.0/ 55.0

126.6/179.7

109.8/54.6
abc
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	 Step 1: ∑= ⋅ =
=

I Is
1
3

115.4average abc

k 1

3

k

	 Step 2: = − =
















dev Is I
5.39

11.20
5.82

i abc averagei

	 Step 3: = = ⋅ =I
dev

I
max( ) 11.20

115.4
100 9.71%unbalance

average

9.5.5 � Motor Starting Current

An induction motor under line starting will cause a current to flow that 
is much greater than rated. Typically, the motor is not line-started, but the 
input voltages will be reduced under starting conditions. The starting cur-
rent can be computed by setting the positive sequence slip to 1. For the motor 
in Example 9.2 with the same line-to-line voltages applied, the starting cur-
rents are:

	

[ ] =
−

















Is

596.4/ 97.5

615.3/142.8

609.2/21.1
abc

When the starting voltage is reduced to one-half, the starting currents are:

	

[ ] =
−

















Is

298.2/ 97.5

307.7/142.8

304.6/21.1
abc

Note that the rated current for the motor is 180 A.

9.5.6 � The Equivalent T Circuit

Once the terminal line-to-neutral voltages and currents are known, it is desired 
to analyze as to what happens inside the machine. In particular, the stator and 
rotor losses are needed in addition to the “converted” shaft power. A method 
of performing the internal analysis can be developed in the phase frame by 
starting with the equivalent T sequence networks as shown in Figure 9.6.

The three sequence networks in Figure 9.6 can be reduced to the equivalent 
T sequence circuit shown in Figure 9.7.
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Because the zero sequence voltages and currents are always zero in 
Figure 9.7, the sequence matrices are defined as:

	

[ ] [ ]=

















=

















Vs Vs
Vs

Vr Vr
Vr

Voltages:
0 0

012 1

2

012 1

2

Positive sequence network

Zero sequence network

Is0 = 0 Ir0 = 0

Zr1Zs1

Zs2

Zm2

Zr2

Zm1

Ir1

Vr1

Is1

Is2 Ir2

Vs1

Vs2

+

−

−

− −

−

−

+

+

+

+

+

Vr2

Vr0 = 0Vs0 = 0
Im0 = 0

Im1

Im2

Negative sequence network

FIGURE 9.6
Induction machine equivalent T sequence networks.
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FIGURE 9.7
Sequence equivalent T circuit.
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(9.53)
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
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
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



Zm Zm
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0 0 0
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0 0

012 1

2

The sequence voltage drops in the rotor circuit of Figure 9.7 are:

	 [ ] [ ] [ ]= ⋅vr Zr Ir012 012 012 	 (9.54)

As an example, the rotor phase voltage drops are given by:

	

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ] [ ]
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	 (9.55)

where

	 [ ] [ ] [ ] [ ]= ⋅ ⋅ −Zr A Zr Aabc 012
1

The same process is used on the other voltage drops, so that the circuit of 
Figure 9.7 can be converted to an equivalent T circuit in terms of the phase 
components (Figure 9.8).

The stator voltages and currents of the phase equivalent T circuit as a 
function of the rotor voltages and currents are defined by:
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	 (9.56)



357Load Models

where
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The inverse of the ABCD matrices of Equation 9.56 is used to define the rotor 
voltages and currents as a function of the stator voltages and currents.

	

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ]
[ ] [ ]

[ ]
[ ]

[ ] [ ] [ ] [ ] [ ]













 =













 ⋅



























=
−

−













⋅















⋅ − ⋅ =

−
Vr

Ir

Am Bm

Cm Dm

Vs

Is

Vr
Ir

Dm Bm

Cm Am

Vs

Is

Am Dm Bm Cm Ubecause

abc

abc

abc abc

abc abc

abc

abc

abc

abc

abc abc

abc abc

abc

abc

abc abc abc abc

1

	 (9.57)

The power converted to the shaft is given by:

	
∑

( ) ( )

( )

( )= ⋅ + ⋅ + ⋅

= ⋅
=

P Vr Ir Vr Ir Vr Ir

P Vr Iror:

conv a b b c
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1

3

a c
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(9.58)

[Imabc]

where [Ymabc] = [Zmabc]−1

[Isabc]
[Vsabc]

[Zsabc] [Zrabc]

[Irabc]
[Vrabc][Ymabc]

++

− −

FIGURE 9.8
Phase equivalent T circuit.
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The useful shaft power can be determined as a function of the rotational 
(FW) losses:

	 = −P P Pshaft conv FW 	 (9.59)

The stator total power loss is:
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(9.60)

The rotor total power loss is:
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The total input complex power is:
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Example 9.6

For the motor in Example 9.2, determine:

	 1.	 ABCD matrices for the phase equivalent T circuit
	 2.	 Rotor output voltages and currents
	 3.	 Rotor converted and shaft powers
	 4.	 Rotor and stator “copper” losses
	 5.	 Total complex power input to the stator

Define the sequence impedance matrices:
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Compute the phase ABCD matrices:
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Compute the rotor output voltages and currents:
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Compute the rotor converted and shaft powers:
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Compute stator and rotor power losses:
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Compute complex power into stator:
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9.5.7 � Computation of Slip

When the input power to the motor is specified instead of the slip, an 
iterative process is required to compute the value of slip that will force the 
input power to be within some small tolerance of the specified input power.

The iterative process for computing the slip that will produce the specified 
input power starts with assuming an initial value of the positive sequence 
slip and a change in slip. To compute the slip the initial values are:

	

=

=

s

ds

0.0

0.01

old
	 (9.63)

The value of slip used in the first iteration is then:

	 = +s s dsold1

	
(9.64)

where s1 = positive sequence slip.
With the new value of slip, the input shunt admittance matrix YMabc[ ] is 

computed. The given line-to-line voltages are used to compute the stator 
currents. The [W] matrix is used to compute the equivalent line-to-neutral 
voltages. The total three-phase input complex power is then computed. The 
computed three-phase input power is compared to the specified three-phase 
input power. The error is computed as:

	 error P Pspecified computed= − 	 (9.65)

If the error is positive, the slip needs to be increased so that the computed 
power will increase. This is done by:

	

=

= = +

s

s s s ds

value of slip used in previous iterationold

new i old
	 (9.66)

The new value of s1 is used to repeat the calculations for the input power to 
the motor.

If the error is negative, it means that a bracket has been established. The 
required value of slip lies between s sandold new . In order to zero in on the 
required slip, the old value of slip will be used, and the change in slip will 
be reduced by a factor of 10.

	

=

= +

ds
ds

s s ds

10

i old

	 (9.67)



362 Distribution System Modeling and Analysis

This process is illustrated in Figure 9.9.
When the slip has produced the specified input power within a specified 

tolerance, the T circuit is used to compute the voltages and currents in the 
rotor.

Example 9.7

For the induction motor and voltages in Example 9.2, determine the value 
of positive sequence slip that will develop 100 kW input power to the motor.

To start set:

	

=

=

=

=

s

ds

tol

P

0

0.01

0.01

100

old

specified

Figure 9.10 shows a Mathcad program that computes the required slip.
After 22 iterations, the Mathcad program gives the following results.

	

=

= +

=

s

S j

Error

0.0426

100.00 52.54

0.004

total

1

Note that the motor is being supplied reactive power.

9.5.8 � Induction Generator

Three-phase induction generators are becoming common as a source of 
distributed generation on a distribution system. In particular, Windmills 
generally drive an induction motor. It is, therefore, important that a simple 
model of an induction generator be developed for power-flow purposes. 
In reality, the same model as that which was used for the induction motor 

Iteration

Sl
ip

1 2 3 4 5 6 7 8 9 10

0.04
0.03
0.02

0.00
0.01

FIGURE 9.9
Slip vs. iteration.
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X :=

s1 sold + ds

s2 2 – s1
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0
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0
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10

sold s1

1 .. 200for  n

Out1 s1

Out2 Stotal

Out3 Error

Out

FIGURE 9.10
Mathcad program for computed required slip.



364 Distribution System Modeling and Analysis

is used for the induction generator. The only change is that the generator 
will be driven at a speed in excess of synchronous speed, which means that 
the slip will be a negative value. The generator can be modeled with the 
equivalent admittance matrix from Equation 9.46.

Example 9.8

Using the same induction machine and line-to-line voltages in Examples 
9.2 and 9.4, determine the slip of the machine so that it will generate 
100 kW. Because the same model is being used with the same assumed 
direction of currents, the specified power at the terminals of the machine 
will be:

	 = −P 100gen

As before, the initial “old” value of slip is set to 0.0. However, because the 
machine is now a generator, the initial change in slip will be:

	 = −ds 0.01

As before, the value of slip to be used for the first iteration will be:

	 = + = −s s ds 0.01old1

The same Mathcad program as that which was used in Example 9.7 is 
used with the exception that the two “if” statements are reversed in 
order to determine the new value of slip. The two equations changed are:

	

← − <

← <

s s ds P P

ds
ds

P P

if

10
if

i i computed specified

computed specified

After 34 iterations, the results are:

	

= −

= − +

=

jkvar

s

S j

Error

0.03997

99.99 59.73 kW +

0.0084

computed

1

It must be noted that even though the machine is supplying power to the 
system, it is still consuming reactive power. The point being that even 
though the induction generator can supply real power to the system, it 
will still require reactive power from the system. This reactive power 
is typically supplied by shunt capacitors or a static kvar supply at the 
location of the Windmill.
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9.5.9 � Induction Machine Thevenin Equivalent Circuit

When an induction motor is operating under load and a short circuit occurs 
on the feeder for a brief period of time, the motor will supply short-circuit 
current as a result of the stored energy in the rotating mass of the motor and 
load. The induction machine T circuit is modified to indicate that there is a 
voltage at the rotor terminals as shown in Figure 9.11.

The stator input line-to-neutral voltages and currents are given by:

	

Vs Am Vr Bm Ir

Is Cm Vr Dm Ir

abc abc abc abc abc

abc abc abc abc abc

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]
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= ⋅ + ⋅
	 (9.68)

Solve for the rotor current in Equation 9.68:

	 Ir Dm Cm Vr Dm Isabc abc abc abc abc abc
1 1[ ] [ ] [ ] [ ] [ ] [ ]= − ⋅ ⋅ + ⋅− − 	 (9.69)

Substitute Equation 9.69 into Equation 9.68:
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( )[ ]

[ ]

[ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

= ⋅ + ⋅ − ⋅ ⋅ + ⋅

= − ⋅ ⋅ ⋅ + ⋅ ⋅

= − ⋅ ⋅ ⋅

= ⋅

= + ⋅
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�

(9.70)

The final form of Equation 9.70 reduces the T circuit to the Thevenin 
equivalent circuit of Figure 9.12.

In Figure 9.12, the Thevenin voltage drops are:

[Imabc]

[Ymabc][Vsabc]

+ +
[Isabc]

[Zsabc] [Zrabc]

[Irabc]

[Vrabc]

−−

FIGURE 9.11
Induction motor phase equivalent T circuit.
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The motor terminal Thevenin line-to-line voltages are:

	 [ ] [ ]

[ ]
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
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
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


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
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




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−

−
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
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








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









+
−

−
−




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










⋅
















= ⋅ + ⋅

Vs
Vs
Vs

Eth Eth
Eth Eth
Eth Eth

v v
v v
v v

v
v
v

v v
v v
v v

Dv

Vs
Vs
Vs

Eth
Eth
Eth

v
v
v

VsLL Dv Eth Dv v

Note that:
1 1 0
0 1 1
1 0 1

Apply the matrix :

1 1 0
0 1 1
1 0 1

1 1 0
0 1 1
1 0 1

ab

bc

ca

a b

b c

c a

a b

b c

c a

a

b

c

a b

b c

c a

ab

bc

ca

a

b

c

a

b

c

abc abcabc 	
�

(9.72)

Zthcc

Zthca

Zthaa

Vsbc

Vsab

Zthbc

Ib

+

+

+

+ +

+

Ic

Ia

Zthbb

Vsbc

Zthab

Ethc

Etha

Ethb

−

−

−

− −

−

FIGURE 9.12
Motor Thevenin equivalent circuit.
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Substitute Equation 6.71 into Equation 9.72:

	

[ ] [ ]
[ ] [ ]

[ ] [ ] [ ] [ ]
[ ] [ ]

















=
−

−
−




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








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













+
−

−
−

















⋅

















⋅
















= ⋅ + ⋅ ⋅

= + ⋅

Vs
Vs
Vs

Eth
Eth
Eth

Zth Zth Zth
Zth Zth Zth
Zth Zth Zth

I
I
I

VsLL Dv Eth Dv Zth I

VsLL EthLL Zth I

1 1 0
0 1 1
1 0 1

1 1 0
0 1 1
1 0 1

ab

bc

ca

a

b

c

aa ab ac

ba bb bc

ca cb ca

a

b

c

abc abc abc abc

abc abc LL abc

	(9.73)

where

	

[ ] [ ]
[ ] [ ]

[ ]
[ ]

= ⋅

= ⋅

EthLL Dv Eth

Zth Dv Zth

abc abc

LL abc

Equation 9.73 gives the terminal Thevenin equivalent line-to-line voltages.

Example 9.9

Use the computed rotor voltages and stator currents from Example 9.3 
and the ABCD matrices from Example 9.6 and compute the Thevenin 
equivalent terminal line-to-line voltages and Thevenin equivalent 
matrix.

From Example 9.3:

	

Vr Is

245.3/ 39.7

244.7/ 159.5

245.5/80.5

110.0/ 55.0

126.6/179.7

109.8/54.6
abc abc[ ] [ ]=

−
−



















=

−

















Compute the Thevenin emfs and the Thevenin impedance matrix:

	

( )[ ] [ ] [ ] [ ] [ ]= − ⋅ ⋅ ⋅   =

−

−



















−Eth Am Bm Dm Cm Vr

238.6/ 38.9

238.1/ 158.8

238.8/81.3
abc abc abc abc abc abc

1
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Zth Bm Dm

j j j

j j j

j j j

0.1202 0.2808 0.0601 0.1404 0.0601 0.1404

0.0601 0.1404 0.1202 0.2808 0.0601 0.1404

0.0601 0.1404 0.0601 0.1404 0.1202 0.2808
abc abc abc

1[ ] [ ] [ ]= ⋅ =
+ − − − −

− − + − −
− − − − +



















−

Define the matrix [Dv]:

	

Dv
1 1 0
0 1 1
1 0 1

[ ] =
−

−
−

















Compute the Thevenin line-to-line voltages and the Thevenin line-to-
line impedance matrix:

	

EthLL Dv Eth

Zth Dv Zth

j j
j j

j j

412.6/ 8.9

412.9/ 128.7

413.8/111.2

0.1803 0.4212 0.1803 0.4212 0

0 0.1803 0.4212 0.1803 0.4212

0.1803 0.4212 0 0.1803 0.4212

abc abc

LL abc

[ ] [ ]

[ ] [ ]

[ ]

[ ]

= ⋅ =

−
−



















= ⋅ =
+ − −

+ − −
− − +



















Compute the terminal Thevenin line-to-line voltages:

	

VmLL EthLL Zth Is

480/0

490/ 121.4

475/118.3
abc abc LL abc[ ] [ ][ ] [ ]= + ⋅ = −



















It is obvious that the terminal Thevenin line-to-line voltages are equal 
to the initial stator line-to-line voltages as specified in Example 9.3. This 
is a method to prove that the development of the Thevenin equivalent 
circuit is correct.

9.5.10 � The Ungrounded Wye–Delta Transformer Bank 
with an Induction Motor

In Section 9.5.9, the Thevenin equivalent circuit of a three-phase induction 
motor was developed and shown in Figure 9.12.

The Thevenin voltages and impedance matrix are given in Equation 9.70, 
and the line-to-line terminal voltages of the Thevenin circuit is given in 
Equation 9.73.
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The preferred and the most common method of connecting the motor to the 
distribution feeder is through a three-wire secondary and an ungrounded 
wye–delta transformer bank. This connection is shown in Figure 9.13.

In Figure 9.13, the voltage drops in the induction motor and secondary 
are shown rather than the impedances. For short-circuit studies, it is desired 
to develop a Thevenin equivalent circuit at the primary terminals of the 
ungrounded wye–delta transformer bank. The resulting primary Thevenin 
circuit is shown in Figure 9.14.

The equivalent impedance matrix between the motor and the secondary 
terminals of the transformer is given by:

	 [ ] [ ]  = +Zeq Zth Zlabc abc abc 	 (9.74)

Carson’s equations and the length of the secondary are used to define the 
3 × 3 secondary phase impedance matrix as:

IC

IB

VAN

IA

IN

VBN
VCG

VBG

VAG

VCN  −

+

  +
  +

+

+

−   −
− −

−

  +

Ica

Iac

Ibc

Vtca

Vtbc

Vtab

  −

  +

  −
  −

−

−

−

−

  +   +

+

+

Ztab

Ia

Ic

Ib

  −
  −

  −

+

  +
  ++

vIa

vIc

vIb

vtha

Etha

Ethc

Ethb
vtab

vtca

vtca

vthc

vthb

Zt ab

Ztbc

FIGURE 9.13
Ungrounded wye–delta with secondary connected to induction motor.
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ZthBB

ZthBC

ZthCC

ZthAB

ZthAA

EthB

EthC

EthA
VAB

+

+
+

+

+

+

VCA

VBC

IB

Ic

IA

−

−
−

−
−

−

FIGURE 9.14
Primary Thevenin circuit.
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Zl
Zl Zl Zl
Zl Zl Zl
Zl Zl Zl

abc

aa ab ac

ba bb bc

ca cb cc

[ ] =

















	 (9.75)

The ungrounded wye–delta connected transformer per-unit impedance 
converted to actual impedance is ohms referenced to the delta-connected 
secondary terminals are:

	

[ ] =

















Zt
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Zt
Zt

0 0
0 0
0 0

abc

ab

bc

ca

	 (9.76)

The voltage drops including the secondary lines and the motor are:

	 [ ] [ ]=   ⋅v Zeq Iabc abc abc 	 (9.77)

The line-to-line voltages at the secondary terminals of the transformer 
bank are:
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abc abc abc abc

abc abc LL abc

	 (9.78)

where

	

[ ] [ ][ ]

[ ]

= ⋅

  = ⋅  

EthLL Dv Eth

Zeq Dv Zeq

abc abc

LL abc

The primary currents are:

	

[ ] =

















I
I
I
I
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B
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	 (9.79)
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In Chapter 8, the currents flowing inside the delta secondary windings were 
defined as:

	 ID AI Iabc ABC
1[ ] [ ] [ ]= ⋅−

	 (9.80)

where
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The secondary line currents as a function of the primary line currents are:

	

I Di ID

I Di AI I

abc abc

abc ABC
1
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= ⋅ ⋅− 	
(9.81)

where
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−

−
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















Di
1 0 1
1 1 0

0 1 1

Substitute Equation 9.81 into Equation 9.78:
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[ ]

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

= +   ⋅

= ⋅ ⋅
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−

VLL EthLL Zeq I

I Di AI I

VLL EthLL Zeq Di AI I
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abc ABC

abc abc LL ABC

1

1

	 (9.82)
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The voltage across the transformer secondary windings are:
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	 (9.83)

Substitute Equation 9.82 into Equation 9.83:
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� (9.84)

The primary line-to-neutral voltages are:

VLN AV Vt

Vt EthLL Zeq Di Zt AI I
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� (9.85)

where
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	 ( )
[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ]

= ⋅ ⋅

= ⋅ ⋅   ⋅ + ⋅ −

Eth AV Dv Eth

Zth AV Dv Zeq Di Zth AI

ABC abc

ABC abc abc
1

Example 9.10

For the system in Figure 9.13, the ungrounded wye–delta transformer 
bank consists of three single-phase transformers each rated:

50 kVA, 7200/480 V, Zt = 0.011 + j0.018 per-unit

The impedance matrix for the transformer bank relative to the 480-V 
side is:

	

Zt

j

j

j

0.0507 0.0829 0 0

0 0.0507 0.0829 0

0 0 0.0507 0.0829
abc[ ] =

+
+

+



















Ω

The secondary in the system is a triplex cable of 500 ft long. The 
impedance matrix for the cable is:

	

Zl

j j j

j j j

j j j

0.1140 0.4015 0.0271 0.2974 0.0271 0.2735

0.0271 0.2974 0.1140 0.4015 0.0271 0.2974

0.0271 0.2735 0.0271 0.2974 0.1140 0.4015
abc[ ] =

+ + +
+ + +
+ + +








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








Ω

The induction motor is the motor from Example 9.9 operating at a 
slip of 0.035. The line-to-line voltages at the primary terminals of the 
transformer bank are:

	

VLL

12470/0

11850/ 118

12537/123.4

VABC[ ] = −



















Determine the Thevenin equivalent circuit of Figure 9.13 relative to the 
primary side of the transformer bank.

Step : Because the system conditions have changed, it is necessary to run 
a power-flow program to determine the motor stator voltages and cur-
rents. For the ungrounded wye–delta transformer bank, the equivalent 
line-to-neutral voltages must first be computed.
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VLN W VLL

7340.4/ 28.4
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
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A simple Mathcad routine was run to compute the stator and rotor 
voltages and currents with the following results:

	

Vs Vr

Is Ir

258.1/ 58.3

259.9/ 179.0

250.8/59.9

224.9/ 68.3

225.7/171.6

227.1/51.6

V
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The total three-phase converted power is:

	
∑= ⋅ =

=

Sr
Vr Ir

1000
65.4 kW

*
abc

abc abc

k 1

3
k k

The ABCD matrices for the motor are those computed in Example 9.6. 
The Thevenin equivalent voltages and currents are:

Eth Am Bm Dm Cm Vr

Zth Bm Dm

j j j

j j j

j j j

218.7/ 67.4

219.5/172.4

220.9/52.3

0.1202 0.2808 0.0601 0.1404 0.0601 0.1404

0.0601 0.1404 0.1202 0.2808 0.0601 0.1404

0.0601 0.1404 0.0601 0.1404 0.1202 0.2808

abc abc abc abc abc abc

abc abc abc
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−

−

It is always a good practice to confirm that the Thevenin equivalent 
voltages and currents will give the same stator line-to-neutral voltages 
that were computed at the end of the power-flow program.
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Vs Eth Zth Is

258.1/ 58.3

259.9/ 179.0
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These voltages match those from the power-flow program, which 
confirms the accuracy of the Thevenin equivalent circuit for the motor.

From Equations 9.78 and 9.85, the Thevenin equivalent voltages and 
currents on the primary side of the transformer bank are:

	

Eth AV Dv Eth

Zth

j j j

j j j

j j j
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60.1 112.8 131.7 255.0 60.1 123.6

60.1 123.6 60.1 123.6 131.7 265.8

ABC abc

ABC

[ ] [ ]

[ ]

[ ] [ ]= ⋅ ⋅ =

−
−



















=
+ − − − −

− − + − −
− − − − +



















Check to confirm that the Thevenin voltages and currents give the 
initial values of the primary line-to-neutral voltages at the start of the 
power-flow program.

	

VLN Eth Zth I

VLN

7340.4/ 28.4

6949.6/ 149.9

6989.6/93.7

ABC ABC ABC ABC

ABC

[ ] [ ][ ] [ ]

[ ]

= + ⋅

=

−
−



















These exactly match the initial LN transformer voltages.

9.6 � Summary

This chapter has developed load models for typical loads on a distribution 
feeder. It is important to recognize that a combination of constant PW, con-
stant Z, and constant current loads can be modeled using a percentage of 
each model. An extended model for a three-phase induction machine has 
been developed with examples of the machine operating as a motor and as 
a generator. An iterative procedure for the computation of slip to force the 
input power to the machine to be a specified value was developed and used 
in examples for both a motor and a generator. Thevenin equivalent circuits 
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have been developed for an induction motor. The Thevenin circuit is used to 
develop a Thevenin equivalent circuit at the primary terminals of the step-
down transformer feeding the secondary and the induction motor. This final 
Thevenin circuit is used in Chapter 10 on short-circuit analysis.

Problems

9.1 A 12.47-kV feeder provides service to an unbalanced wye-connected load 
specified to be:

Phase a: 1000 kVA, 0.9 lagging power factor
Phase b: 800 kVA, 0.95 lagging power factor
Phase c: 1100 kVA, 0.85 lagging power factor

	 a.	Compute the initial load currents, assuming the loads are modeled 
as constant complex power.

	 b.	Compute the magnitude of the load currents that will be held 
constant, assuming the loads are modeled as constant current.

	 c.	Compute the impedance of the load to be held constant, assuming 
the loads are modeled as constant impedance.

	 d.	Compute the initial load currents, assuming that 60% of the 
load is complex power, 25% constant current, and 15% constant 
impedance.

9.2 Using the results of Problem 9.1, rework the problem at the start of 
the second iteration if the load voltages after the first iteration have been 
computed to be:

	

VLN

6851/ 1.9

6973/ 122.1

6886/117.5

Vabc[ ] =

−
−



















9.3 A 12.47-kV feeder provides service to an unbalanced delta-connected 
load specified to be:

Phase a: 1500 kVA, 0.95 lagging power factor
Phase b: 1000 kVA, 0.85 lagging power factor
Phase c: 950 kVA, 0.9 lagging power factor
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	 a.	Compute the load and line currents if the load is modeled as constant 
complex power.

	 b.	Compute the magnitude of the load current to be held constant if the 
load is modeled as constant current.

	 c.	Compute the impedance to be held constant if the load is modeled as 
constant impedance.

	 d.	Compute the line currents if the load is modeled as 25% constant 
complex power, 20% constant current, and 55% constant impedance.

9.4 After the first iteration of the system in Problem 9.5, the load voltages are:

	

VLL

11, 981/28.3

12, 032/ 92.5

11, 857/147.7

Vabc[ ] = −



















	 a.	Compute the load and line currents if the load is modeled as constant 
complex power.

	 b.	Compute the load and line currents if the load is modeled as constant 
current.

	 c.	Compute the load and line current if the load is modeled as constant 
impedance.

	 d.	Compute the line currents if the load mix is 25% constant complex 
power, 20% constant current, and 55% constant impedance.

9.5 A three-phase induction motor has the following data:

25 Hp, 240 V
Zs = 0.0336 + j0.08 pu
Zr = 0.0395 + j0.08 pu
Zm = j3.12 pu

The motor is operating with a slip of 0.03 with balanced three-phase voltages 
of 240 V line-to-line. Determine the following:

	 a.	The input line currents and complex three-phase input complex power
	 b.	The currents in the rotor circuit
	 c.	The developed shaft power in HP

9.6 The motor in Problem 9.5 is operating with a slip of 0.03, and the line-to-
line voltage magnitudes are:
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	 = = =V V V240, 230, 250 Vab bc ca

	 a.	Compute the angles for the line-to-line voltages assuming the 
voltage a–b is reference.

	 b.	For the given voltages and slip, determine the input line currents 
and complex input complex power.

	 c.	Compute the rotor currents.
	 d.	Compute the developed shaft power in HP.

9.7 The motor of Problem 9.5 is operating with line-to-line voltages of:

	 = = − =V V V240/0, 233.4/ 118.1, 240/122.1Vab bc ca

The motor input kW is to be 20 kW.
Determine the following:

	 a.	Required slip
	 b.	The input kW and kvar
	 c.	The converted shaft power

9.8 A three-phase 100-hp, 480 V wye-connected induction motor has the 
following per-unit impedances:

	 = + = + =Zpu j Zpu j Zpu j0.043 0.089, 0.034 0.081, 3.11s r m

The rotating loss is =P 2.75 kWFW

	 a.	Determine the impedances in ohms.
	 b.	The motor is operating with a slip of 0.035. Determine the input 

shunt admittance matrix YMabc[ ] .

9.9 The motor in Problem 9.8 is operating at a slip of 0.035 with line-to-line 
input voltages of:

	

VLL
V
V
V

480.0/0

475.0/ 121.5

466.7/119.8
abc

ab

bc

ca

[ ] =

















= −



















Determine the following:

	 a.	The input stator currents
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	 b.	The per-phase complex input power
	 c.	The total three-phase complex input power
	 d.	The stator voltage and current unbalances

9.10 For the motor in Problem 9.8, determine:

	 a.	For the T equivalent circuit, the matrices 

	 Am Bm Cm Dm, , ,abc abc abc abc[ ] [ ] [ ] [ ]

	 b.	For the results in Problem 9.9, determine:
	 i.	 The rotor currents and output voltages
	 ii.	 The rotor converted and shaft powers
	 iii.	 Rotor and stator “copper” losses

9.11 For the induction motor in Problem 9.8, determine the value of the 
positive sequence slip that will develop 75 kW of input power to the motor.

9.12 The induction motor in Problem 9.9 is operating as a generator with a 
positive sequence slip of −0.04. Determine the stator output complex power.

9.13 Using the results of Problem 9.10, determine the line-to-line motor 
Thevenin voltages and Thevenin equivalent matrix.

9.14 The motor in Problem 9.8 is connected through a three-phase distribution 
line to three single-phase transformers as shown in Figure 9.15.

The three-phase induction motor is that of Problem 9.8. The secondary 
impedance matrix is:

	

[ ] =
+ + +
+ + +
+ + +



















ΩZl

j j j

j j j

j j j

0.4013 1.4133 0.0953 1.0468 0.0953 0.9627

0.0953 1.0468 0.4013 1.4133 0.0953 1.0468

0.0953 0.9627 0.0953 1.0468 0.4013 1.4133
/mileabc

12.47 kV
Source

12,470 – 480 V

1,000 ft
M

FIGURE 9.15
Simple system.
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The three-phase transformer bank consists of three single-phase transformers 
each rated:

	 = = = = +kVA kVLN kVLL Z j100, 7.2, 0.48, 0.0133 0.019hi low pu

The motor is operating at a slip of 0.035.
Determine the Thevenin equivalent line-to-neutral voltages referenced to 

the high-voltage side of the transformers EthABC[ ]  and Thevenin equivalent 
line impedance matrix ZthABC[ ] .
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10
Distribution Feeder Analysis

The analysis of a distribution feeder will typically consist of a study of the 
feeder under normal steady-state operating conditions (power-flow analy-
sis) and a study of the feeder under short-circuit conditions (short-circuit 
analysis). Models of all of the components of a distribution feeder have been 
developed in previous chapters. These models will be applied for the analy-
sis under steady-state and short-circuit conditions.

10.1 � Power-Flow Analysis

The power-flow analysis of a distribution feeder is similar to that of an 
interconnected transmission system. Typically, what will be known prior to 
the analysis will be the three-phase voltages at the substation and the com-
plex power of all of the loads and the load model (constant complex power, 
constant impedance, constant current, or a combination). Sometimes, the 
input complex power supplied to the feeder from the substation is also 
known.

In Chapters 6, 7, and 8, phase frame models are developed for the series 
components of a distribution feeder. In Chapter 9, models are developed 
for the shunt components (static loads, induction machines, and capacitor 
banks). These models are used in the “power-flow” analysis of a distribution 
feeder.

A power-flow analysis of a feeder can determine the following by phase 
and total three-phase:

•	 Voltage magnitudes and angles at all nodes of the feeder
•	 Line flow in each line section specified in kW and kvar, amps and 

degrees, or amps and power factor
•	 Power loss in each line section
•	 Total feeder input kW and kvar
•	 Total feeder power losses
•	 Load kW and kvar based upon the specified model for the load
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10.1.1 � The Ladder Iterative Technique

Because a distribution feeder is radial, iterative techniques commonly used 
in transmission network power-flow studies are not used because of poor 
convergence characteristics [1]. Instead, an iterative technique called the 
“ladder technique” specifically designed for a radial system is used [2].

10.1.1.1 � Linear Network

A modification of the “ladder” network theory of linear systems provides 
a robust iterative technique for power-flow analysis. A distribution feeder 
is nonlinear because most loads are assumed to be constant kW and kvar. 
However, the approach taken for the linear system can be modified to 
take into account the nonlinear characteristics of the distribution feeder.  
Figure 10.1 shows a linear ladder network.

For the ladder network, it is assumed that all of the line impedances and 
load impedances are known along with the voltage ( )VS  at the source. The 
solution for this network is to perform the “forward” sweep by calculating 
the voltage at node 5 (V5) under a no-load condition. With no load currents, 
there are no line currents; so the computed voltage at node 5 will equal that 
of the specified voltage at the source. The “backward” sweep commences by 
computing the load current at node 5. The load current I5 is:

	
=I V

ZL
5

5

5 	
(10.1)

For this “end-node” case, the line current I 45 is equal to the load current I 5. 
The “backward” sweep continues by applying Kirchhoff’s Voltage Law (KVL) 
to calculate the voltage at node 4:

	 V V Z I4 5 45 45= + ⋅ 	 (10.2)

The load current I 4 can be determined and then Kirchhoff’s Current Law 
(KCL) can be applied to determine the line current I 34.

	 I I I34 45 4= + 	 (10.3)

I12

1 Z12

VS

+

–

Z23 Z34 Z452 3 4 5

I23
I2

ZL2 ZL3 ZL4 ZL5

I3 I4 I5I34 I45

FIGURE 10.1
Linear ladder network.
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KVL is applied to determine the node voltage V3 . The backward sweep 
continues until a voltage ( )V1  has been computed at the source. The com-
puted voltage V1 is compared to the specified voltage VS . There will be a dif-
ference between these two voltages. The ratio of the specified voltage to the 
computed voltage can be determined as:

	
=Ratio

V
V

S

1 	
(10.4)

Because the network is linear, all of the line and load currents and node volt-
ages in the network can be multiplied by the ratio for the final solution to the 
network.

10.1.1.2 � Nonlinear Network

The linear network in Figure 10.1 is modified to a nonlinear network by 
replacing all of the constant load impedances by constant complex power 
loads as shown in Figure 10.2.

As with the linear network, the “forward” sweep computes the voltage at 
node 5 assuming no load. As before, the node 5 (end-node) voltage will equal 
that of the specified source voltage. In general, the load current at each node 
is computed by:

	
= 





I
S
V

*

n
n

n 	
(10.5)

The “backward” sweep will determine a computed source voltage V1. As in 
the linear case, this first “iteration” will produce a voltage that is not equal 
to the specified source voltage VS. Because the network is nonlinear, mul-
tiplying currents and voltages by the ratio of the specified voltage to the 
computed voltage will not give the solution. The most direct modification 
using the ladder network theory is to perform a “forward” sweep. The for-
ward sweep commences by using the specified source voltage and the line 

I12
S2 S3 S4 S5

1 Z12

Vs

+

–

Z23 Z34 Z452 3 4 5

I23
I2 I3 I4 I5I34 I45

FIGURE 10.2
Nonlinear ladder network.
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currents from the previous “backward” sweep. KVL is used to compute the 
voltage at node 2 by:

	 V V Z IS2 12 12= − ⋅ 	 (10.6)

This procedure is repeated for each line segment until a “new” voltage is 
determined at node 5. Using the “new” voltage at node 5, a second backward 
sweep is started that will lead to a “new” computed voltage at the source. In 
this modified version of the ladder technique, convergence is determined by 
computing the ratio of difference between the voltages at the n − 1 and n itera-
tions and the nominal line-to-neutral voltage. Convergence is achieved when 
all of the phase voltages at all nodes satisfy:

	

−
≤−V V

V
specified tolerancen n

nominal

1

	

Example 10.1

A single-phase lateral is shown in Figure 10.3.
The line impedance is:

	 = + Ωz j0.3 0.6 /mile 	

The impedance of the line segment 1–2 is:

	
( )= + ⋅ = + ΩZ j j0.3 0.6 3000

5280
0.1705 0.340912

	

The impedance of the line segment 2–3 is:

	
( )= + ⋅ = + ΩZ j j0.3 0.6 4000

5280
0.2273 0.454523

	

1 2 3

3000′ 4000′

S2 S3

FIGURE 10.3
Single-phase lateral.
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The loads are:

	
( )= +

= +
+

S j

S j
j

1500 750

900 500
kW kvar

2

3 	

The source voltage at node 1 is 7200 V.
Use the modified ladder method to compute the load voltage after the 

second forward sweep.
Set initial conditions:

	 = = = =I I V Tol0 0 0.0001old12 23 	

The first forward sweep:

	

= − ⋅ =

= − ⋅ =

=
−

=

=

V V Z I

V V Z I

Error
V V

Tol

V V

7200/0

7200/0

7200
1 (greater than , start backward sweep)

s

old

old

2 12 12

3 2 23 23

3

3

The first backward sweep:

	

( )
=

+ ⋅







 = −I

j900 500 1000

7200/0
143.0/ 29.0A

*

3

	

The current flowing in the line section 2–3 is:

	 = = −I I 143.0/ 29.0A23 3 	

The load current at node 2 is:

	

( )
=

+ ⋅







 = −I

j1500 750 1000

7200/0
232.9/ 27.5A

*

2

	

The current in line segment 1–2 is:

	 = + = −I I I 373.8/ 27.5A12 23 2 	

The second forward sweep:

= − ⋅ = −

= − ⋅ = −

=
−

= − =

=

V V Z I

V V Z I

Error
V V

V V

7084.5/ 0.7

7025.1/ 1.0

7200
7084.5 7200

7200
0.0243 (greater than tolerance, continue)

S

old

old

2 12 12

3 2 23 23

3

3
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At this point, the second backward sweep is used to compute the new 
line currents. This is followed by the third forward sweep. After four 
iterations, the voltages have converged to an error of 0.000017 with the 
final voltages and currents of:

	

[ ]

[ ]

[ ]

[ ]

= −

= −

= −

= −

V

V

I

I

7081.0/ .68

7019.3/ 1.02

383.4/ 28.33

146.7/ 30.07

2

3

12

23 	

10.1.2 � General Feeder

A typical distribution feeder will consist of the “primary main” with later-
als tapped off the primary main and sublaterals tapped off the laterals, etc. 
Figure 10.4 shows an example of a typical feeder.

In Figure 10.4, no distinction is made as to what type of element is con-
nected between nodes. However, the phasing is shown, and this is a must. 
All series elements (lines, transformers, regulators) can be represented by 
the circuit in Figure 10.5. Note in Figure 10.4 that the lines between nodes 3 
and 4 and between nodes 4 and 5 have “distributed” loads modeled at the 
middle of the lines. The model for the distributed loads was developed in 
Chapter 3. Connecting the loads at the center was only one of the three 
ways to model the load. A second method is to place one-half of the load at 

Source node

a b c

a b c c b a

3′

4′

1

2

3

4

8

c
ca

9 7 a
a

5

6

13

12

1110
a
b
c

b
c

FIGURE 10.4
Typical distribution feeder.
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each end of the line. The third method is to place two-thirds of the load 25% 
of the way down the line from the source end. The remaining one-third of 
the load is connected at the receiving-end node. This “exact” model gives 
the correct voltage drop down the line in addition to the correct power-line 
power loss.

In previous chapters, the forward and backward sweep models have been 
developed for the series elements. With reference to Figure 10.5, the forward 
and backward sweep equations are:

	 [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

= ⋅ − ⋅

= ⋅ + ⋅

VLN A VLN B I

I c VLN d I

Forward sweep:

Backward sweep:

abc n abc m abc n

abc n abc m abc n 	

(10.7)

In most cases, the c[ ] matrix will be zero. Long underground lines will be the 
exception. It was also shown that for the grounded wye–delta transformer 
bank, the backward sweep equation is:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅I x VLN d Iabc n t abc n abc m 	 (10.8)

The reason for this is that the currents flowing in the secondary delta wind-
ings are a function of the primary line-to-ground voltages.

Referring to Figure 10.4, nodes 4, 10, 5, and 7 are referred to as “junction 
nodes.” In both the forward and backward sweeps, the junction nodes must 
be recognized. In the forward sweep, the voltages at all nodes down the lines 
from the junction nodes must be computed. In the backward sweeps, the 
currents at the junction nodes must be summed before proceeding toward 
the source. In developing a program to apply the modified ladder method, it 
is necessary for the ordering of the lines and nodes to be such that all node 
voltages in the forward sweep are computed and all currents in the back-
ward sweep are computed.

10.1.3 � The Unbalanced Three-Phase Distribution Feeder

The previous section outlined the general procedure for performing the 
modified ladder iterative technique. This section will address how that pro-
cedure can be used for an unbalanced three-phase feeder.

Node n Node m

Series feeder
component[IABC]n [Iabc]m

[Vabc]n [Vabc]m

FIGURE 10.5
Standard feeder series component model.
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Figure 10.6 is the one-line diagram of an unbalanced three-phase feeder as 
shown in Figure 10.5.

The topology of the feeder in Figure 10.6 is the same as the feeder in 
Figure 10.5. Figure 10.6 shows more details of the feeder with step regulators 
at the source and a transformer bank at node 12. The feeder in Figure 10.6 can 
be broken into the “series” components and the “shunt” components. The 
series components have been shown in Section 10.1.2.

10.1.3.1 � Shunt Components

The shunt components of a distribution feeder are:

•	 Spot static loads
•	 Spot induction machines
•	 Capacitor banks

Spot static loads are located at a node and can be three-phase, two-phase, 
or single-phase, and connected in either a wye or a delta connection. The 
loads can be modeled as constant complex power, constant current, constant 
impedance, or a combination of the three.

A spot induction machine is modeled using the shunt admittance matrix as 
defined in Chapter 9. The machine can be modeled as a motor with a positive 
slip or as an induction generator with a negative slip. The input power (posi-
tive for a motor, negative for a generator) can be specified, and the required 
slip is computed using the iterative process described in Chapter 9.

Source node

a b c

a b c c b a

3′

4′

1

2

3

4

8

c
ca

9 7 a
a

5

6

13

12

1110
a
b
c

b
c

FIGURE 10.6
Unbalanced three-phase distribution feeder.
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Capacitor banks are located at a node and can be three-phase, two-phase, 
or single-phase, and can be connected in a wye or delta. Capacitor banks are 
modeled as constant admittances.

In Figure 10.6, the solid line segments represent overhead lines, while the 
dashed lines represent underground lines. Note that the phasing is shown 
for all of the line segments. In Chapter 4, the application of Carson’s equa-
tions for computing the line impedances for overhead and underground 
lines was presented. In that chapter, it is pointed out that two-phase and 
single-phase lines are represented by a 3 × 3 matrix with zeros set in the rows 
and columns of the missing phases.

In Chapter 5, the method for the computation of the shunt capacitive sus-
ceptance for overhead and underground lines was presented. Most of the 
times, the shunt capacitance of the line segment can be ignored; however, for 
long underground line segments, the shunt capacitance should be included.

The “node” currents may be three-phase, two-phase, or single-phase and 
consist of the sum of the spot load currents and one-half of the distributed 
load currents (if any) at the node plus the capacitor current (if any) at the 
node. It is possible that at a given node, the distributed load can be one-half 
of the distributed load in the “from” segment plus one-half of the distributed 
load connected to the “to” segment. In some cases, a “dummy” node is cre-
ated in the center of the line, and the total distributed load is connected to 
this node.

10.1.4 � Applying the Ladder Iterative Technique

Section 10.1.2 outlined the steps required for the application of the ladder 
iterative technique. Forward and backward sweep matrices have been devel-
oped in Chapters 6, 7, and 8 for the series devices. By applying these matri-
ces, the computation of the voltage drops along a segment will always be the 
same regardless of whether the segment represents a line, voltage regulator, 
or transformer.

In the preparation of data for a power-flow study, it is extremely impor-
tant that the impedances and admittances of the line segments are computed 
using the exact spacings and phasing. Because of the unbalanced loading 
and resulting unbalanced line currents, the voltage drops due to the mutual 
coupling of the lines become very important. It is not unusual to observe a 
voltage rise on a lightly loaded phase of a line segment that has an extreme 
current unbalance.

The real power loss in a device can be computed in two ways. The first 
method is to compute the power loss in each phase by taking the phase 
current squared times the total resistance of the phase. Care must be taken 
to not use the resistance value from the phase impedance matrix. The 
actual phase resistance that was used in Carson’s equations must be used. 
Developing a computer program calculating power loss this way requires 
that the conductor resistance is stored in the active database for each line 



390 Distribution System Modeling and Analysis

segment. Unfortunately, this method does not give the total power loss in 
a line segment, since the power losses in the neutral conductor and ground 
are not included. In order to determine the losses in the neutral and ground, 
the method outlined in Chapter 4 must be used to compute the neutral and 
ground currents and then the power losses.

A second, and preferred, method is to compute the power loss as the dif-
ference of real power into a line segment minus the real power output of 
the line segment. Because the effects of the neutral conductor and ground 
are included in the phase impedance matrix, the total power loss in this 
method will give the same results as mentioned earlier, where the neutral 
and ground power losses are computed separately. This method can lead 
to some interesting numbers for very unbalanced line flows in that it is 
possible to compute what appears to be a negative phase power loss. This 
is a direct result of the accurate modeling of the mutual coupling between 
phases. Remember that the effects of the neutral conductor and the ground 
resistance are included in Carson’s equations. In reality, there cannot be 
a negative phase power loss. Using this method, the algebraic sum of the 
line power losses will equal the total three-phase power loss that was com-
puted using the current squared times resistance for the phase and neutral 
conductors along with the ground current.

10.1.5 � Let’s Put It All Together

At this point, the models for all components of a distribution feeder have 
been developed. The ladder iterative technique has also been developed. It 
is time to put them all together and demonstrate the power-flow analysis 
of a very simple system. Example 10.2 will demonstrate how the models of 
the components work together in applying the ladder technique to achieve a 
final solution of the operating characteristics of an unbalanced feeder.

Example 10.2

A very simple distribution feeder is shown in Figure 10.7. This system is 
the IEEE 4 Node Test Feeder that can be found on the IEEE website [3].

For the system in Figure 10.7, the infinite bus voltages are balanced 
three-phase of 12.47 kV line-to-line. The “source” line segment from 

Load
4321

Infinite
bus [IABC] [Iabc]

[ZeqL][ZeqS]

FIGURE 10.7
Example 10.2 feeder.
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node 1 to node 2 is a three-wire delta 2000 ft long line and is constructed 
on the pole configuration in Figure 4.7 without the neutral. The “load” 
line segment from node 3 to node 4 is 2500 ft long and is also constructed 
on the pole configuration in Figure 4.7 but is a four-wire wye; so the neu-
tral is included. Both line segments use 336,400 26/7 ACSR phase con-
ductors, and the neutral conductor on the four-wire wye line is 4/0 6/1 
ACSR. Because the lines are short, the shunt admittance will be neglected. 
The 25°C resistance is used for the phase and neutral conductors:

336,400 26/7 ACSR: resistance at 25°C = 0.278 Ω/mile
4/0 6/1 ACSR: resistance at 25°C = 0.445 Ω/mile

The phase impedance matrices for the two line segments are:

	

[ ] =
+ + +
+ + +
+ + +



















ΩZeq

j j j

j j j

j j j

0.1414 0.5353 0.0361 0.3225 0.0361 0.2752

0.0361 0.3225 0.1414 0.5353 0.0361 0.2955

0.0361 0.2752 0.0361 0.2955 0.1414 0.5353
S

	

[ ] =
+ + +
+ + +
+ + +



















ΩZeq

j j j

j j j

j j j

0.1907 0.5035 0.0607 0.2302 0.0598 0.1751

0.0607 0.2302 0.1939 0.4885 0.0614 0.1931

0.0598 0.1751 0.0614 0.1931 0.1921 0.4970
L

	

The transformer bank is connected delta-grounded wye and the three-
phase ratings are:

	 = = = = +kVA kVLL kVLL Z j6000, 12.47, 4.16, 0.01 0.06S L pu

The feeder serves an unbalanced three-phase wye-connected constant 
PQ load of:

Sa = 750 kVA at 0.85 lagging power factor
Sb = 900 kVA at 0.90 lagging power factor
Sc = 1100 kVA at 0.95 lagging power factor

Before starting the iterative solution, the forward and backward sweep 
matrices must be computed for each series element. The ladder method 
is going to be employed; therefore, only the A[ ], [B], and [d]  matrices 
need to be computed.

Source line segment with shunt admittance neglected:

	

[ ] =
















U
1 0 0
0 1 0
0 0 1

	

[ ] [ ]= =
















A U
1 0 0
0 1 0
0 0 1

1
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[ ][ ] = =
+ + +
+ + +
+ + +



















B Zeq

j j j

j j j

j j j

0.1414 0.5353 0.0361 0.3225 0.0361 0.2752

0.0361 0.3225 0.1414 0.5353 0.0361 0.2955

0.0361 0.2752 0.0361 0.2955 0.1414 0.5353
S1

	

[ ] [ ]= =
















d U
1 0 0
0 1 0
0 0 1

1

Load line segment:

	

[ ] [ ]= =
















A U
1 0 0
0 1 0
0 0 1

2

	

[ ][ ] =
+ + +
+ + +
+ + +



















B Zeq

j j j

j j j

j j j

0.1907 0.5035 0.0607 0.2302 0.0598 0.1751

0.0607 0.2302 0.1939 0.4885 0.0614 0.1931

0.0598 0.1751 0.0614 0.1931 0.1921 0.4970
L2

	

	

[ ] [ ]= =
















d U
1 0 0
0 1 0
0 0 1

2

Transformer:
The transformer impedance must be converted to actual value in ohms 

referenced to the low-voltage windings.

	
=

⋅
= ΩZ

kVLL
kVA

1000
2.88base

L
2

	 ( )= + ⋅ = + ΩZt j j0.01 0.06 2.88 0.0288 0.1728low

The transformer phase impedance matrix is:

	

[ ] =
+

+
+



















ΩZt

j

j

j

0.0288 0.1728 0 0

0 0.0288 0.1728 0

0 0 0.0288 0.1728
abc

The “turns” ratio: = =n kVLL
kVLN

5.1958t
S

L

The ladder sweep matrices are:

	

[ ] = ⋅
−

−
−

















=
−

−
−

















A
n
1 1 0 1

1 1 0
0 1 1

0.1925 0 0.1925
0.1925 0.1925 0

0 0.1925 0.1925
t

t
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[ ] [ ]= =
+

+
+



















B Zt

j

j

j

0.0288 0.1728 0 0

0 0.0288 0.1728 0

0 0 0.0288 0.1728
t abc

	

[ ] = ⋅
−

−
−

















=
−

−
−

















d
n
1 1 1 0

0 1 1
1 0 1

0.1925 0.1925 0
0 0.1925 0.1925

0.1925 0 0.1925
t

t

Define the node 4 loads:

[ ] =



















=



















=
+
+
+



















S

j

j

j

750/acos(0.85)

900/acos(0.90)

1100/acos(0.95)

750/31.79

900/25.84

1100/18.19

637.5 395.1

810.0 392.3

1045.0 343.5

kVA4

Define infinite bus line-to-line and line-to-neutral voltages:

	

[ ] = −



















ELL

12, 470/30

12, 470/ 90

12, 470/150

Vs

	

[ ] = −



















ELN

7199.6/0

7199.6/ 120

7199.6/120

Vs

The initial conditions are:

	

=
















= =Start Tol VM
0
0
0

0.00001 7199.6

A Mathcad program is shown in Figure 10.8.
The Mathcad program is used to analyze the system, and after seven 

iterations, the load voltages on a 120-V base are:

	

  =
















V 4
113.4
111.5
112.0

V120

The voltages at node 4 are below the desired 120 V. These low voltages 
can be corrected with the installation of three step-voltage regulators 
connected in wye on the secondary bus (node 3) of the transformer. The 
new configuration of the feeder is shown in Figure 10.9.
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X : = Iabc

Iabc
i

start

IABC start

Vold start

VLN2 A1 
.
 Es    

_ B1
.IABC

VLN3 At 
.VLN2   

_ Bt
.Iabc

A2 
.VLN3   

_ B2
. IabcVLN4

Errori

VLN4i

VLN4
i

Voldi

VM

1.. 3for   i

SLi  1000

for  i

Vold VLN4

IABC dt  Iabc

1.. 200for   n

Out1

Out2

Out3

Out4

Out5

Out6

Out

VLN2

IABC

VLN3

Iabc

VLN4

n

break  if  max(Error)  < Tol

1..3

FIGURE 10.8
Mathcad program.

Load
433r21

Infinite
bus [IABC] [Iabc]

[ZeqL][ZeqS]

FIGURE 10.9
Voltage regulator added to the system.
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For the regulator, the potential transformer ratio will be 2400–120 V 
(Npt = 20), and the CT ratio is selected to carry the rated current of the 
transformer bank. The rated current is:

	
=

⋅
=I

6000
3 2.4

832.7rated

The CT ratio is selected to be 1000:5 = CT = 200.

The potential transformer ratio is: = = =N VLN
120

2400
120

20pt
rated

The equivalent phase impedance between nodes 3 and 4 is computed 
using the converged voltages at the two nodes. This is done so that the R 
and X settings of the compensator can be determined.

	

= − =
+
+
+



















ΩZeq V V
I

j

j

j

3 4
3

0.1563 0.2184

0.1837 0.2860

0.0919 0.3695
i

i i

i

The three regulators are to have the same R and X compensator settings. 
The average value of the computed impedances will be used.

	
∑= ⋅ = + Ω

=

Z Zeq j
1
3

0.1440 0.2913avg k

k 1

3

The value of the compensator impedance in volts is given by Equation 7.78:

	
( )′+ ′ = + ⋅ = +R jX j j0.1440 0.2913 1000

20
7.2 14.6 V

	

The value of the compensator settings in ohms is:

	
= + =

+
= + ΩΩ ΩZ R jX

j
j

7.2 14.6
5

1.44 2.92comp

With the regulator in the neutral position, the voltages being input to the 
compensator circuit for the given conditions are:

	

= =

−
−



















Vreg V
PT

3
117.5/ 31.2

117.4/ 151.5

117.2/88.0

Vi
i
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The compensator currents are:

	

= =

−
−



















Icomp Iabc
CT

1.6535/ 63.8

2.0174/ 179.1

2.4560/64.9

Ai
i

With the input voltages and compensator currents, the voltages across 
the voltage relays in the compensator circuit are computed to be:

	

  =   −   ⋅   =

−

−



















V Vreg Zcomp Icomp

113.0/ 32.6

112.2/ 153.5

111.4/85.3

Vrelay

Notice how close these compare to the actual voltages on a 120-V base 
at node 4.

Assume that the voltage level has been set at 121 V with a bandwidth of 
2 V. This means that the relay voltages must lie between 120 and 122 V. In 
order to model this system, the Mathcad routine in Figure 10.8 is slightly 
modified in the forward and backward sweeps. The initial matrices for 
the regulator are computed with the regulator taps set at zero.

Forward sweep

	

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

= ⋅ − ⋅

= ⋅ − ⋅

=   −   ⋅

= ⋅ − ⋅

VLN A E B I

VLN A VLN B I

VLN A VLN B I

VLN A VLN B I

s ABC

r t t in

reg abc

abc

2 1 1

3 2

3 3 reg

4 2 3 2

Backward sweep

	 [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

=

=   ⋅

= ⋅

V VLN

I d I

I d I

old

in reg abc

ABC t in

4

After the analysis routine has converged, a new routine will compute 
whether or not tap changes need to be made. The Mathcad routine for 
computing the new taps is shown in Figure 10.10. Recall that in Chapter 7 
it was shown that each tap changes the relay voltages by 0.75 V.

The computational sequence for the determination of the final tap 
settings and convergence of the system is shown in the flowchart in 
Figure 10.11.
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The tap-changing routine changes individual regulators, so that the 
relay voltages lie within the voltage bandwidth. For this simple system, 
the initial change in taps becomes the final tap settings of:

	

  =
















Tap
9

10
11

The final relay voltages are:

	

  =
















V
120.3
120.5
120.6

relay

The final voltages on a 120-V base at the load center (node 4) are:

	

[ ] =
















VLN
120.6
119.8
121.2

4120

Tap := start

XY := for i 1 .. 3

VLN3iVregi

Vregi – Zcompi, i

Npt

Iabci

Tapoldi

Tapoldi 
+ dTapi

Icompi

Icompi

Tapi

Tapi

Tapi

Out1

Out2

Out3

Out

Vrelay

Tap

aR

Round

aRi
1 – 0.00625 Tapi

Tapi, 1

dTapi

120 – Vrelayi

.75

CT

Vrelayi

FIGURE 10.10
Tap-changing routine.
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The compensator relay voltages and the actual load center voltages are 
very close to each other.

10.1.6 � Load Allocation

Many times, the input complex power (kW and kvar) to a feeder is known 
because of the metering at the substation. This information can be either for 
the total three-phase or for each individual phase. In some cases, the metered 
data may be the current and power factor in each phase.

It is desirable to force the computed input complex power to the feeder to 
match the metered input. This can be accomplished (following a converged 
iterative solution) by computing the ratio of the metered input to the com-
puted input. The phase loads can now be modified by multiplying the loads 
by this ratio. Because the losses of the feeder will change when the loads are 
changed, it is necessary to go through the ladder iterative process to deter-
mine a new computed input to the feeder. This new computed input will 
be closer to the metered input but most likely not within a specified toler-
ance. Following another ladder iteration, a ratio can be determined, and the 
loads modified followed. This process is repeated until the computed input 
is within a specified tolerance of the metered input.

Load allocation does not have to be limited to match metered readings just 
at the substation. The same process can be performed at any point on the 

Set taps

Compute regulator
A and d matrices

Analysis program

StopAll Vrelay inside
bandwith?

Yes

No

Tap changing
routine

FIGURE 10.11
Computational sequence.
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feeder where metered data are available. The only difference is that now the 
“downstream” nodes from the metered point will be modified.

10.1.7 � Loop Flow

The ladder interactive technique has proven to be a fast and efficient method for 
performing power-flow studies on radial distribution feeders. The shortcoming 
for this method is that there are cases where a feeder is not completely radial, 
and therefore a different method must be applied. Many times, the feeder may 
have just a few loops, in which case the ladder method can be modified to take 
into account the small looped feeder. A method called “loop flow” will be devel-
oped that will allow for loops in a predominately radial feeder [5].

10.1.7.1 � Single-Phase Feeder

Figure 10.12 shows two small single-phase systems operating independently 
but with a switch between the two that once closed the two small systems 
become one looped system. When the switch is closed, the difference voltage 
(dV34 ) will be zero. Something has to be done to the system in order to force 
the difference voltage to be zero.

A way to simulate the closed switch is illustrated in Figure 10.13.
To simulate the closed switch in Figure 10.13, it is necessary to determine 

the correct value of IT  to be injected into node 3 and the negative of IT  to 
be injected into node 4 that will force the voltage dV34 to be zero. The circuit 
in Figure 10.12 is modified to include the injected currents at nodes 3 and 4.

1 2 3
+ + +

+
–

– –

–

+

–

4 5 6

E2
V4V3

dV34

E1

I12 I23 I54

IL5
IL2

I65

Z12 Z23

SL2 SL5

Z45 Z56

FIGURE 10.12
Single-phase system with a loop.

3 4

IT

V3 V4

dV34

–IT

+

–

– ++

–

FIGURE 10.13
Simulation of closed switch.
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In Figure 10.14, the voltages at nodes 3 and 4 are given by:

	

( )
( )

= − ⋅ + − ⋅

= − ⋅ − + ⋅

V E Z IL IT Z IT

V E Z IL Z Z IT

3 1 12 2 23

3 1 12 2 12 23 	

Define:

	 ( )
= − ⋅

= − + ⋅

V E Z IL

V Z Z IT

V

I

3 1 12 2

3 12 23 	

Therefore:

	 = +V V VV I3 3 3 	 (10.9)

In a similar manner, the voltage at node 4 is computed as:

	

( ) ( )

( )

= − ⋅ − − ⋅ −

= − ⋅ + + ⋅

V E Z IL IT Z IT

V E Z IL Z Z IT

4 2 56 5 45

4 2 56 5 56 45 	

Define:

	

( )
= − ⋅

= + + ⋅

V E Z IL

V Z Z IT

V

I

4 2 56 5

4 56 45

	

Therefore:

	 = +V V VV I4 4 4 	 (10.10)

The voltage drop between nodes 3 and 4 consists of a component due to the 
source voltages and a component due to the injected currents. Using the final 
form of the node voltages, the difference voltage between nodes 3 and 4 is 
given by:

1 2 3
+ + +

+
–

– –

–

+

–

4 5 6

E2
V4V3

dV34

E1

I12 I23 I54

IL5
IL2

I65

IT –IT

Z12 Z23

SL2 SL5

Z45 Z56

FIGURE 10.14
Modified circuit.
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V V V

V V V

dV V V V V V V

dV dV dV

V I

V I

V V I I

V I

3 3 3

4 4 4

34 3 4 3 4 3 4

34 34 34

( )

= +

= +

= − = − + −

= + 	

(10.11)

Applying Equations 10.9 and 10.10, the difference voltage resulting from the 
application of the injection currents is given by:

	

( )= − = − + + + ⋅

= − ⋅

dV V V Z Z Z Z IT

dV ThevZ IT

I I I

I

34 3 4 12 23 56 45

34 	 (10.12)

where

	 = + + +ThevZ Z Z Z Z12 23 56 45	

For this simple system, ThevZ  is the sum of the line impedances around 
the closed loop. This impedance is referred to as the Thevenin equivalent 
impedance. For a general system, the impedance is computed by the prin-
ciple of superposition, where the voltage sources are set to zero, the loads 
neglected, and only the injected currents are applied to the system. For this 
simple system, such a circuit is shown in Figure 10.15.

Equation 10.12 applies KVL around the looped system in Figure 10.15. 
With the voltage drop dV I34  computed, the Thevenin equivalent impedance 
is computed as:

	
= −

ThevZ
dV
IT

I34

	
(10.13)

With ThevZ  computed, the final goal is to determine the value of IT  that will 
force the difference voltage to be zero as shown in Equation 10.14.

	

= +

= −

dV dV

dV dV

0 V I

I V

34 34

34 34 	

where:

	 = − ⋅dV ThevZ ITI34 	

Therefore:

	

− = − ⋅

=

dV ThevZ IT

IT
dV

ThevZ

V

V

34

34

	
(10.14)
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Because the loads on a distribution system are nonlinear, an iterative routine 
is used to compute the needed injection currents. Figure 10.16 shows a simple 
flowchart of an iterative routine used to compute the injected currents.

It is noted in Figure 10.16 that the initial injection currents are set to zero. 
During the first iteration, the difference voltage will be a function of only the 
source voltages and the load currents. With this difference voltage computed, 
the first value of the injection currents is computed according to Equation 10.14 
and then added to the initial value of =IT 0. With the new value of injection 
currents, the circuit in Figure 10.14 is evaluated to compute the new differ-
ence voltage, which now includes the effect of the injection currents. The new 
difference voltage is checked to see whether it is within a specified tolerance 
of the desired zero. If it is not, an additional injection current is computed 
and added to the most recent value of the injection currents.

Start

Define loads

Set: IT = 0

In Figure 10.14 compute V3 and V4 using
a radial distribution analysis program

dV34 = V3 – V4

dV34 < Tol
?

Yes

End

No

IT = IT + ITadd

ITadd = ThevZ–1.dV34

FIGURE 10.16
Flowchart for solution with injected currents.

1 2 3
+ – ++

– –

4 5 6

V4V3

dV34I
IT –IT

IT –IT

Z12 Z23 Z45 Z56

FIGURE 10.15
Thevenin equivalent impedance circuit.
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This simple single-phase circuit was used to demonstrate a method of 
simulating a looped system. To demonstrate how this approach is used in a 
larger system, the IEEE 13 Bus Test Feeder will be studied [4].

Example 10.3

Determine the values of the injected currents for the system in Figure 10.14 
to simulate loop flow between the two sources.

For the system, the following data are given:

	 = = ⋅ =E E E7200 V, 1.05 7560 V1 2 1

Impedance of the lines: = + ΩZ j1 0.5152 1.1359 /mile
Length of lines: L L L L5, 2, 3, 4 miles12 23 45 56= = = =

Line impedances: 

= +
= +
= +
= +

Ω

Z j

Z j

Z j

Z j

0.2576 0.5679

1.0304 2.2718

1.5456 3.4077

2.0608 4.5436

12

23

45

56

Loads: 
= +
= +

SL j
SL j

j
1500 1250

1000 750
kW+ kvar

2

5

Step 1: Set the voltage sources to zero, and apply the positive and 
negative injection currents.
	 The base values are:

	

= =

= =

kVA kVLN

I
kVA

kVLN

1000, 7.2

138.9

base base

base
base

base

The injected current magnitude is set to the base current:

	

= =

= − = −

IT I

IT IT

138.9

138.9

base1

2 1

The analysis of the system with the two injected currents gives:

	

= −

=

= − = −

V

V

dV V V

433.1/ 114.4

1212.6/65.6

1645.7/ 114.4

I

I

I I I

3

4

34 3 4

The Thevenin equivalent impedance is:

	
= − =

−
= +Z dV

IT
j

1645.7/ 114.4

138.9/0
4.8944 10.7911th

I34



404 Distribution System Modeling and Analysis

Step 2: Set the injected currents to zero and compute dV34 : 
With the injected currents equal to zero, a Mathcad routine 

computes the voltages as:

	

= −

= −

= − =

V

V

dV V V

7043.97/ 0.6

6734.96/ 3.4

454.86/45.2

V

V

V V V

3

4

34 3 4

With the equivalent Thevenin impedance computed, the first 
value of the required injected current is:

	

= = −

= + = + − = −

IT V
Z

IT IT IT

38.39/ 20.4

0 38.39/ 20.4 38.39/ 20.4

add
V

th

add

34

The difference voltage is now computed with the voltage sources 
and injected currents. After this first iteration, the difference 
voltage is computed to be:

	

= −

= −

=

V

V

dV

6958.3/ 1.3

7007.5/ 1.4

50.6/164.9

3

4

34

The added injection current and new total injected current is:

	

= =

= + = − + = −

IT

IT IT IT

50.6/164.9

11.85/65.60
4.28/99.27

38.39/ 20.4 4.28/99.27 36.46/ 14.52

add

add

The difference voltage is again computed using the new value of 
injected current. This process continues until after the fifth iter-
ation when the difference voltage is:

	

= −

= −

= − =

V

V

dV V V

6970.42./ 1.33

6970.42./ 1.33

0

3

4

34 3 4

The line currents flowing with injected currents are:

	

= −

= −

I

I

36.8842/ 14.65

36.8842/ 14.65

23

45

Because these two currents are identical, the two systems are now oper-
ating as one system, with system 1 providing current to system 2 just as 
though the switch between nodes 3 and 4 was closed.
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10.1.7.2 � IEEE 13 Bus Test Feeder

The IEEE 13 Bus Test Feeder was developed to allow distribution analysis 
programs to be tested with the results compared to the published results. 
This feeder will be used to demonstrate the simulation of a looped system 
using the method presented in the previous section. A one-line diagram of 
the IEEE 13 Bus Test Feeder is shown in Figure 10.17 [3].

Example 10.4

The system in Figure 10.17 was created in WindMil. With the original 
data, partial results are shown in Table 10.1. The currents are in amps, 
and the voltages are line-to-neutral on a 120-V base.

As seen in Table 10.1, the voltages are very unbalanced at Bus 11. This 
unbalance was purposely created so that distribution analysis programs 
could be tested for convergence in a very unbalanced feeder. No effort 
will be made in this text to balance the voltages. Even though the voltages 

TABLE 10.1

Original Feeder Results

Phase a Phase b Phase c

Regulator taps 9 6 9
I 1–2 553.9 416.0 584.6
I 3–4 0 64.9 64.9
I 10–11 203.1 68.6 123.4
V Bus 6 115.9
V Bus 11 117.9 125.3 116.1

4 3 2

1

14

150

15

6 7

8

9

16

10 11

FIGURE 10.17
IEEE 13 Bus Test Feeder.
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are unbalanced, they are still within the ANSI standard [5] of all voltages 
being between 114 and 126 V.

Rather than balance the voltages, two new loads are going to be added 
to the existing feeder, which will lead to the need for the looped feeder. 
The following loads are added to the system:

Bus 6: Phase c: 200 + j100 kW + jkvar
Bus 11: Three-phase load: 750 + j525 kW + jkvar

With the new loads and the voltage regulator operating, the partial 
results are shown in Table 10.2.

The voltage at Bus 6 has gone below the ANSI minimum of 114 V. The 
voltage at Bus 11 Phase c is also below the ANSI standard. The actual 
problem with Bus 11 is that the current capacity of 260 A on the under-
ground concentric neutral cable between Bus 10 and Bus 11 is exceeded. 
In order to solve these problems and to demonstrate the looped feeder 
simulation, two new lines will be added to the system. The one-line dia-
gram of the modified IEEE 13 feeder is shown in Figure 10.18.

TABLE 10.2

New Loads Added

Phase a Phase b Phase c

Regulator taps 11 8 14
I 1–2 685.9 536.8 824.7
I 7–6 163.6

I 10–11 319.9 127.9 253.1
V Bus 6 112.8

V Bus 11 117.9 124.7 113.6

4 3 2

1

14

150

15

SW-2

SW-1

SW-3

6

5

7

8

9

16

10

11

12

13

FIGURE 10.18
Modified IEEE 13 Bus Test Feeder.
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The new line from Bus 4 to Bus 5 consists of 1/0 ACSR 6/1 constructed 
on a single pole as shown in Figure 10.19. The length of the line is 600 ft.

The three-phase line from Bus 14 to Bus 13 consists of 4/0 ACSR 6/1 
phase and neutral conductors with a pole configuration as shown in 
Figure 10.20. The length of the line is 800 ft.

In order to simulate the loop flow, currents must be injected into Buses 
5, 6, 13, and 11 as shown in Figure 10.21.
The line from Bus 2 to bus 9 has a distributed load, which is modeled 
as two-thirds of the distributed load at Bus 2a, which is one-third the 
length of the line, and the remaining distributed load is connected at 

5.0′

0.5′

n

c

25.0′

FIGURE 10.19
Single-phase line.

3.0′

4.0′

n

25.0′

a c b
2.5′ 4.5′

FIGURE 10.20
Three-phase line.
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the end of the line at the new Bus 9a. In Figure 10.21, SW-1 is a three-
phase switch that can only be modeled as open or closed. SW-2 is a 
three-phase switch that can be modeled as open, closed, or looped. 
SW-3 is a single-phase switch on phase c and can only be modeled as 
open or looped.

The first step in simulating loop flow is to compute the Thevenin 
equivalent impedance at each looped switch for each phase. The currents 
injected into Bus 13 (IT 1) will be in phases a, b, and c. The injected cur-
rents at Bus 11 (IT 3) will be the negative of IT 1. Switch SW-3 is a single-
phase switch on Phase c. Therefore, the injected current at Bus 5 (IT 2) 
will only be a Phase c current. The injected current at Bus 6 (IT 4) will 
be the negative of IT 2. There will be a Thevenin equivalent impedance 
computed at each switch for each phase injected at each of the injection 
nodes. This will lead to a 4 × 4 Thevenin equivalent matrix (ThevZ ). For 
this process, the value of the injected current is assumed to be the base 
current of the system 694.4 A.

For the computation of ThevZ , the source voltages and all loads are 
set to zero. Refer to Figure 10.21 with SW-1 closed. The line-to-neutral 
voltages at Buses 13, 11, 5, and 6 are computed with only the Phase a cur-
rents being injected at Buses 13 and 12. A Mathcad program is used to 
compute the voltages. With only the Phase a currents, the vectors for the 
injected currents at the switch buses are:

	
[ ] [ ]=

















=
−















IT IT1
694.4

0
0

3
694.4

0
0 	

(10.15)

The bus voltages with just the Phase a-injected current at Bus 13 are com-
puted to be:

4 3 2

2a

1

14

150

15

SW-1

SW-3
IT3

IT4

IT1

IT2

SW-2

6

5

7

8

9a

9

16

10

11

12

13

FIGURE 10.21
Injected currents.
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(10.16)

The difference voltages are:
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




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




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dV
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(10.17)

Equation 10.17 is used to compute the first column elements of the ThevZ  
matrix.
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(10.18)

This process is repeated with the injected currents in Phase b at Buses 13 
and 12, followed by the injected currents in Phase c at Buses 13 and 12. 
The last step is to have the Phase c currents injected at Buses 5 and 6. The 
final ThevZ  matrix in ohms is:

	

[ ] =

+ + + +
+ + + +
+ + + +
+ + + +






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j j j j
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0.1252 0.2826 0.1262 0.2437 0.3880 0.7324 0.1293 0.3920

0.0598 0.1605 0.0581 0.1458 0.1293 0.3920 0.6328 0.9023
	

(10.19)

With ThevZ  computed, the values of the needed injection currents must 
be determined with the loads and capacitors included. The method is to 
apply Equation 10.18 in matrix form for the IEEE 13 bus feeder and solve 
for the [ ]IT  array. The equation is:
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(10.20)
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In order to determine the injection currents, the power-flow program 
must be run where all of the loads and capacitor along with the injection 
currents are modeled. The tap settings for the regulator are set at the 
same taps as in Table 10.2. As was done with the single-phase system, 
initially all of the injection currents are set to zero, and the difference 
voltages in Equation 10.20 are computed. Equation 10.20 is used to com-
pute the initial change in injection currents. The computed difference 
voltages for this first iteration are:
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With the difference voltages computed, Equation 10.20 is used to com-
pute the injection currents that will force the difference voltages to 
zero. During the first iteration, the injection currents were set to zero. 
Applying Equation 10.14 will give the “added” injection currents needed. 
After the first iteration, the computed injection currents are:
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With the currents in Equation 10.22 injected into the buses, the power-flow 
program is run again. Because the current flows on the lines will now be 
different, the bus voltages will also change. Because many of the loads are 
modeled as constant PQ, those load currents are subject to change. The 
second iteration is necessary to recalculate the bus voltages and deter-
mine whether additional injection currents are needed. After the second 
iteration, the difference voltages across the looped switches are:
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Because the difference voltages are not close to zero, additional injection 
currents are needed. The additional currents are:
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(10.24)
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The total injection currents for the next iteration are:
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Following this procedure, after the fourth iteration, the difference volt-
ages are very small, and the process stops. The injected currents and 
difference voltages are:
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In Table 10.2, it was shown that when the new loads were added at 
Buses 6 and 11, the bus voltage at Bus 6 was below the ANSI standard. 
Moreover, the concentric neutral line was overloaded. By adding the 
looped switches, Table 10.3 shows the results.

A comparison of Tables 10.2 and 10.3 shows the following:

•	 The voltage at Bus 6 is now above the minimum ANSI standard of 114 V.
•	 The current flowing in the concentric neutral cable from Bus 10 to 

Bus 11 is much lower than the cable current rating.

TABLE 10.3

Looped Switches

Phase a Phase b Phase c

Regulator taps 11   8 14
I 1–2 675.1 536.2 798.8
I 7–6   17.2

I 10–11   20.6   19.6   41.1
V Bus 6 119.3

V Bus 11 120.5 123.8 119.4
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•	 The voltages at Bus 11 are not as unbalanced and are somewhat 
higher.

•	 The current out of the substation is basically the same, since the net 
injection currents are zero; so the slight change in this current is 
because of the change in load currents for the constant PQ loads.

•	 The regulator tap positions have not changed, since the current into 
the line drop compensator is basically the same as that before the 
looped switches were closed.

10.1.7.3 � Summary of Loop Flow

A method of simulating a looped distribution system has been presented. 
The loop is simulated by the installation of a switch between two existing 
buses in the feeder. To simulate the loop flow, the voltage at buses on the two 
sides of the switch must be equal. This is accomplished by the injection of 
a positive current at one of the buses and a negative value on the other bus. 
A method of calculating the necessary injection currents to force the differ-
ence voltage across the loop switch to be zero has been presented. Initially, 
a simple single-phase system was used to develop the technique. Following 
that, the IEEE 13 Bus Test Feeder was used to demonstrate the closing of a 
three-phase loop switch and a single-phase loop switch.

10.1.8 � Summary of Power-Flow Studies

This section has developed a method for performing power-flow studies on 
a distribution feeder. Models for the various components of the feeder have 
been developed in previous chapters. The purpose of this section has been 
to develop and demonstrate the modified ladder iterative technique using 
the forward and backward sweep matrices for the series elements. It should 
be obvious that a study of a large feeder with many laterals and sublaterals 
cannot be performed without the aid of a complex computer program. In 
addition to the ladder iterative technique, a method of modeling a feeder 
with closed loops was presented under the name “loop flow.”

The development of the models and examples in this text use actual values 
of voltage, current, impedance, and complex power. When per-unit values 
are used, it is imperative that all values be converted to per-unit using a com-
mon set of base values. In the usual application of per-unit, there will be a 
base line-to-line voltage and a base line-to-neutral voltage; in addition, there 
will be a base line current and a base delta current. For both the voltage and 
current, there is a square root of three relationships between the two base 
values. In all of the derivations of the models, and in particular those for the 
three-phase transformers, the square root of three has been used to relate 
the difference in magnitudes between line-to-line and line-to-neutral volt-
ages and between the line and delta currents. Because of this, when using 
the per-unit system, there should be only one base voltage, and that should 
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be the base line-to-neutral voltage. When this is done, for example, the per-
unit positive and negative sequence voltages will be the square root of three 
times the per-unit positive and negative sequence line-to-neutral voltages. 
Similarly, the positive and negative sequence per-unit line currents will be 
the square of three times the positive and negative sequence per-unit delta 
currents. By using just one base voltage and one base current, the per-unit 
generalized matrices for all system models can be determined.

10.2 � Short-Circuit Studies

The computation of short-circuit currents for unbalanced faults in a nor-
mally balanced three-phase system has traditionally been accomplished 
by the application of symmetrical components. However, this method is 
not well suited to a distribution feeder that is inherently unbalanced. The 
unequal mutual coupling between phases leads to mutual coupling between 
sequence networks. When this happens, there is no advantage of using sym-
metrical components. Another reason for not using symmetrical components 
is that the phases between which faults occur are limited. For example, using 
symmetrical components line-to-ground faults are limited to phase a to the 
ground. What happens if a single-phase lateral is connected to Phase b or c 
and the short-circuit current is needed? This section will develop a method 
for short-circuit analysis of an unbalanced three-phase distribution feeder 
using the phase frame [4].

10.2.1 � General Short-Circuit Theory

Figure 10.22 shows the unbalanced feeder as modeled for short-circuit 
calculations.

Short circuits can occur at any one of the five points shown in Figure 10.22. 
Point 1 is the high-voltage bus of the distribution substation transformer. 
The values of the short-circuit currents at point 1 are normally determined 
from a transmission system short-circuit study. The results of these studies 

1 2 3 4 5

System
voltage
source 

[ZsysABC] [ZsubABC] [ZeqSABC] [Zxfmabc] [ZeqLabc]

Substation
transformer

Total secondary
line segment
impedance

Total primary
line segment
impedance

Equivalent
system
impedance

In-line feeder
transformer

FIGURE 10.22
Unbalanced feeder short-circuit analysis model.
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are supplied in terms of the three-phase and single-phase short-circuit Mega-
Volt-Amperes (MVAs). Using the short-circuit MVAs, the positive and zero 
sequence impedances of the equivalent system can be determined. These val-
ues are needed for the short-circuit studies at the other four points in Figure 10.22.

Given the three-phase short-circuit MVA magnitude and angle, the posi-
tive sequence equivalent system impedance in ohms is determined by:

	 ( )
= Ω+Z

kVLL

MVA
*

phase

2

3- 	
(10.27)

Given the single-phase short-circuit MVA magnitude and angle, the zero 
sequence equivalent system impedance in ohms is determined by:
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(10.28)

In Equations 10.27 and 10.28, kVLL is the nominal line-to-line voltage in kV of 
the transmission system.

The computed positive and zero sequence impedances need to be con-
verted into the phase impedance matrix using the symmetrical component 
transformation matrix defined in Equation 4.63 in Chapter 4.
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[ ] [ ] [ ] [ ]

=

















= ⋅ ⋅ −

	

(10.29)

For short circuits at points 2, 3, 4, and 5, it is necessary to compute the 
Thevenin equivalent three-phase circuit at the short-circuit point. The 
Thevenin equivalent voltages will be the nominal line-to-ground voltages 
with the appropriate angles. For example, assume the equivalent system 
line-to-ground voltages are balanced three-phase of nominal voltages with 
the Phase a voltage at zero degrees. The Thevenin equivalent voltages at 
points 2 and 3 will be computed by multiplying the system voltages by the 
generalized transformer matrix [At] of the substation transformer. Carrying 
this further, the Thevenin equivalent voltages at points 4 and 5 will be the 
voltages at node 3 multiplied by the generalized matrix [At] for the in-line 
transformer.

The Thevenin equivalent phase impedance matrices will be the sum of 
the Thevenin phase impedance matrices of each device between the system 
voltage source and the point of fault. Step-voltage regulators are assumed to 
be set in the neutral position, so that they do not enter into the short-circuit 
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calculations. Anytime that a three-phase transformer is encountered, the 
total phase impedance matrix on the primary side of the transformer must 
be referred to the secondary side using Equation 8.160.

Figure 10.23 illustrates the Thevenin equivalent circuit at the faulted 
node [3].

In Figure 10.23, the voltage sources Ea, Eb, and Ec represent the Thevenin 
equivalent line-to-ground voltages at the faulted node. The matrix [ZTOT] 
represents the Thevenin equivalent phase impedance matrix at the faulted 
node. The fault impedance is represented by Zf in Figure 10.23.

KVL in matrix form can be applied to the circuit in Figure 10.23.

	

















=
















⋅
















+
















⋅

















+
















+



















E
E
E

Z Z Z
Z Z Z
Z Z Z

If
If
If

Z
Z

Z

If
If
If

V
V
V

V

V

V

0 0
0 0
0 0

a

b

c

aa ab ac

ba bb bc

ca cb cc

a

b

c

f

f

f

a

b

c

ax

bx

cx

xg

xg

xg 	

(10.30)

Equation 10.30 can be written in compressed form as:

	
[ ] [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅ + + E ZTOT If ZF If V Vabc abc abc abcx xg 	 (10.31)

Combine terms in Equation 10.31.

	
E ZEQ If V Vabc abc abcx xg[ ][ ] [ ] [ ]= ⋅ + +  	

(10.32)

where

	 ZEQ ZTOT ZF[ ] [ ] [ ]= + 	
(10.33)

Solve Equation 10.15 for the fault currents:

	
[ ] [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅ − ⋅ If Y E Y V Y Vabc abc abcx xg 	

(10.34)

where

	 Y ZEQ 1[ ] [ ]= −

	
(10.35)
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Since the matrices Y[ ] and Eabc[ ] are known, define:

	 [ ] [ ] [ ]= ⋅IP Y Eabc abc 	 (10.36)

Substituting Equation 10.19 into Equation 10.17 and rearranging results in:

	
[ ][ ] [ ] [ ] [ ]= + ⋅ + ⋅ IP If Y V Y Vabc abc abcx xg 	

(10.37)

Expanding Equation 10.37:

	

















=

















+
















⋅
















+
















⋅



















IP
IP
IP

If
If
If

Y Y Y
Y Y Y
Y Y Y

V
V
V

Y Y Y
Y Y Y
Y Y Y

V

V

V

a

b

c

a

b

c

aa ab ac

ba bb bc

ca cb cc

ax

bx

cx

aa ab ac

ba bb bc

ca cb cc

xg

xg

xg
	

(10.38)

Performing the matrix operations in Equation 10.38:

	

( )

( )

( )

= + ⋅ + ⋅ + ⋅ + ⋅

= + ⋅ + ⋅ + ⋅ + ⋅

= + ⋅ + ⋅ + ⋅ + ⋅

IP If Y V Y V Y V Ys V

IP If Y V Y V Y V Ys V

IP If Y V Y V Y V Ys V

a a aa ax ab bx ac cx a xg

b b ba ax bb bx bc cx b xg

c a ca ax cb bx cc cx c xg 	

(10.39)
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+
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+

+
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x[ZTOT]
Zf

Zf

Ifa Vax

Vbx

Vcx

Vxg

Ifb

Ifc

c

b

a

Zf

Faulted
node

Ea Eb Ec

FIGURE 10.23
Thevenin equivalent circuit.
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where

	
∑

= + +

= + +

= + +

=
=

Ys Y Y Y

Ys Y Y Y

Ys Y Y Y

Ys Yor:

a aa ab ac

b ba bb bc

c ca cb cc

i i k

k

,

1

3

	

(10.40)

Equations 10.39 become the general equations that are used to simulate 
all types of short circuits. Basically, there are three equations and seven 
unknowns (If If If V V V V, , , , , , anda b c ax bx cx xg). The other three variables in 
the equations (IP IP IP, , anda b c) are functions of the total impedance and the 
Thevenin voltages and are therefore known. In order to solve Equations 10.22, 
it will be necessary to specify four additional independent equations. These 
equations are functions of the type of fault being simulated. The additional 
four equations required for various types of faults are given below. These 
values are determined by placing short circuits in Figure 10.13 to simulate 
the particular type of fault. For example, a three-phase fault is simulated by 
placing a short circuit from node a to x, node b to x, and node c to x. That gives 
three voltage equations. The fourth equation comes from applying KCL at 
node x, which gives the sum of the fault currents to be zero.

10.2.2 � Specific Short Circuits

Three-Phase Faults

	

V V V

I I I

0

0

ax bx cx

a b c

= = =

+ + = 	
(10.41)

Three-phase-to-ground Faults

	 V V V V 0ax bx cx xg= = = = 	 (10.42)

Line-to-line Faults (assume i–j fault with phase k unfaulted)

	

= =

=

+ =

V V

If

If If

0

0

0

ix jx

k

i j 	

(10.43)
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Line-to-line-to-ground Faults (assume i–j–g fault with phase k unfaulted)

	

V V

V

I

0

0

0

ix jx

xg

k

= =

=

= 	

(10.44)

Line-to-ground Faults (assume phase k fault with phases i and j unfaulted)

	

V V

If If

0

0

kx xg

i j

= =

= = 	
(10.45)

Notice that Equations 10.43, 10.44, and 10.45 will allow the simulation of line-
to-line faults, line-to-line-to-ground, and line-to-ground faults for all phases. 
There is no limitation to b–c faults for line-to-line and a–g for line-to-ground 
as is the case when the method of symmetrical components is employed.

A good way to solve the seven equations is to set them up in matrix form.

	


















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
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

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
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






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









⋅





























IP
IP
IP

Y Y Y Y
Y Y Y Y
Y Y Y Y
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If
If

V
V
V
V

0
0
0
0

1 0 0

0 1 0

0 0 1

_ _ _ _ _ _ _
_ _ _ _ _ _ _
_ _ _ _ _ _ _
_ _ _ _ _ _ _

a

b

c

s

s

s

a

b

c

ax

bx

cx

xg

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1

2

3

	

(10.46)

Equation 10.29 in condensed form:

	 [ ] [ ] [ ]= ⋅IP C Xs 	 (10.47)

Equation 10.47 can be solved for the unknowns in matrix [X]:

	 [ ] [ ] [ ]= ⋅−X C IPs
1

	 (10.48)

The blanks in the last four rows of the coefficient matrix in Equation 10.46 
are filled in with the known variables depending upon what type of fault 
is to be simulated. For example, the elements in the [C] matrix simulating a 
three-phase fault would be:

	

C C C

C C C

1

1

4,4 5,5 6,6

7,1 7,2 7,3

= = =

= = =

All of the other elements in the last four rows will be set to zero.



419Distribution Feeder Analysis

Example 10.5

Use the system in Example 10.2, and compute the short-circuit currents 
for a bolted (Zf = 0) line-to-line fault between Phases a and b at node 4.

The infinite bus balanced line-to-line voltages are 12.47 kV, which leads 
to balanced line-to-neutral voltages at 7.2 kV.

	

[ ] = −



















ELL

12, 470/30

12, 470/ 90

12, 470/150

Vs

	

[ ] [ ] [ ]= ⋅ −



















ELN W ELL

7199.6/0

7199.6/ 120

7199.6/120

Vs s

The line-to-neutral Thevenin circuit voltages at node 4 are determined 
using Equation 8.165.

	

[ ] [ ] [ ]= ⋅ =

−
−



















Eth A ELN

2400/ 30

2400/ 150

2400/150

Vt s4

The Thevenin equivalent impedance at the secondary terminals 
(node  3) of the transformer consists of the primary line impedances 
referred across the transformer plus the transformer impedances. Using 
Equation 8.165:

	 [ ][ ] [ ][ ] [ ]= ⋅ ⋅ +Zth A ZeqS d Ztt ABC t abc3

	

[ ] =
+ − − − −

− − + − −
− − − − +



















ΩZth

j j j

j j j

j j j

0.0366 0.1921 0.0039 0.0086 0.0039 0.0106

0.0039 0.0086 0.0366 0.1886 0.0039 0.0071

0.0039 0.0106 0.0039 0.0071 0.0366 0.1906
3

Note that the Thevenin impedance matrix is not symmetrical. This is a 
result, once again, of the unequal mutual coupling between the phases 
of the primary line segment.

The total Thevenin impedance at node 4 is:

	 [ ][ ] [ ][ ]= = +Zth ZTOT Zth ZeqLabc4 3

	

[ ] =
+ + +
+ + +
+ + +



















ΩZTOT

j j j

j j j

j j j

0.2273 0.6955 0.0568 0.2216 0.0559 0.1645

0.0568 0.2216 0.2305 0.6771 0.0575 0.1860

0.0559 0.1645 0.0575 0.1860 0.2287 0.6876
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The equivalent admittance matrix at node 4 is:

	 [ ] [ ]= −Yeq ZTOT4
1

	

[ ] =
− − + − +

− + − − +
− + − + −



















Yeq

j j j

j j j

j j j

0.5031 1.4771 0.1763 0.3907 0.0688 0.2510

0.1763 0.3907 0.5501 1.5280 0.1148 0.3133

0.0688 0.2510 0.1148 0.3133 0.4843 1.4532

S4

Using Equation 10.36, the equivalent injected currents at the point of 
fault are:

	

[ ] [ ][ ] = ⋅ =

−

















IP Yeq Eth

4466.8/ 96.3

4878.9/138.0

4440.9/16.4

A4 4

The sums of each row of the equivalent admittance matrix are computed 
according to Equation 10.40.

	

∑= =
−
−
−

















=

Ys Yeq

j

j

j

0.2580 0.8354

0.2590 0.8240

0.3008 0.8889

Si i k

k

,

1

3

For the a–b fault at node 4, according to Equation 10.43:

	

=

=

=

+ =

V

V

If

If If

0

0

0

0

ax

bx

c

a b

The coefficient matrix [C] using Equation 10.46:

	

[ ] =

− − + − + −
− + − − + −
− + − + − −





























C

j j j

j j j j
j j j j

1 0 0 0.5031 1.4771 0.1763 0.3907 0.0688 0.2510 0.2580 .8354

0 1 0 0.1763 .3907 0.5501 1.5280 0.1148 .3133 0.2590 .8240

0 0 1 0.0688 .2510 0.1148 .3133 0.4843 1.4532 0.3008 .8890

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
1 1 0 0 0 0 0
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The injected current matrix is:

	

[ ] =

−



























IP

4466.8/ 96.3

4878.9/138.0

4440.9/16.4

0
0
0
0

s

The unknowns are computed by:

	

[ ] [ ] [ ]= ⋅ =

−

−































−X C IP

4193.7/ 69.7

4193.7/110.3

0
0
0

3646.7/88.1

1220.2/ 91.6

s
1

The interpretation of the results are:

	

= = −

= =

= =

= =

= =

= =

= = −

If X

If X

If X

V X

V X

V X

V X
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1220.2/ 91.6

a

b

c

ax

bx

cx

xg

1

2

3

4

5

6

7

Using the line-to-ground voltages at node 4 and the short-circuit cur-
rents and working back to the source using the generalized matrices will 
check the validity of these results.

The line-to-ground voltages at node 4 are:

	

[ ] =

+
+
+


















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−
−



















VLG

V V

V V

V V

1220.2/ 91.6
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V
ax xg

bx xg

cx xg

4
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The short-circuit currents in matrix form are:

	

[ ] [ ]= =
−

















I I
4193.7/ 69.7

4193.7/110.3

0

A4 3

The line-to-ground voltages at node 3 are:

	

[ ][ ] [ ] [ ] [ ]= ⋅ + ⋅ =

−
−



















VLG a VLG b I

1814.0/ 47.3

1642.1/ 139.2

2405.1/89.7

V3 2 4 1 4

The equivalent line-to-neutral voltages and line currents at the primary 
terminals (node 2) of the transformer are:

	

[ ][ ] [ ] [ ] [ ]= ⋅ + ⋅ = −



















VLN a VLG b I

6784.3/0.2

7138.8/ 118.7

7080.6/118.3

Vt t2 3 3

	

[ ][ ] [ ]= ⋅ =

−

















I d I

1614.3/ 69.7

807.1/110.3

807.1/110.3

At2 3

Finally, the equivalent line-to-neutral voltages at the infinite bus can be 
computed.

	

[ ][ ] [ ] [ ] [ ]= ⋅ + ⋅ = −



















VLN a VLN b I

7201.2/0

7198.2/ 120

7199.3/120

V1 1 2 1 2

The source line-to-line voltages are:

	

[ ] [ ] [ ]= ⋅ = −



















VLL Dv VLN

12, 470/30

12, 470/ 90

12, 470/150
1 1

These are the same line-to-line voltages that were used to start the short-
circuit analysis.

10.2.3 � Backfeed Ground Fault Currents

The wye–delta transformer bank is the most common transformer con-
nection used to serve three-phase loads or a combination of a single-phase 
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lighting load and a three-phase load. With this connection, a decision has to 
be made as to whether or not to ground the neutral of the primary wye con-
nection. The neutral can be directly connected to the ground or grounded 
through a resistor or left floating (ungrounded wye–delta). When the neutral 
is grounded, the transformer bank becomes a grounding bank that provides 
a path for zero sequence fault currents. In particular, the grounded connec-
tion will provide a path for a line-to-ground fault current (backfeed current) 
for a fault upstream from the transformer bank. A method for the analysis of 
the upstream fault currents will be presented [6].

10.2.3.1 � One Downstream Transformer Bank

A simple system consisting of one downstream grounded wye–delta trans-
former bank is shown in Figure 10.24.

In Figure 10.24, the substation transformer is connected to a high-voltage 
equivalent source consisting of a three-phase voltage source and an equiva-
lent impedance matrix. The equivalent source and substation transformer 
bank combination can be represented as shown in Figure 10.25.

In Chapter 8, it was shown that the combination of the equivalent source 
and substation transformer could be reduced to a Thevenin equivalent cir-
cuit as shown in Figure 10.26.

2 1 mile

Fault point

3

Zg

41 2.0 miles
S

Substation XFMR Distribution XFMR

FIGURE 10.24
Simple system.

1
Source [Zsys123]

[ELG123] [VLGABC]

[I123]
[IABC]

FIGURE 10.25
Equivalent source and substation transformer.

1
[Eth] [ZthABC]

[Iabc]

FIGURE 10.26
Thevenin equivalent circuit.
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The Thevenin equivalent voltages and impedance matrix are given by:

	

[ ]

[ ] [ ]

[ ] [ ]

[ ]

= ⋅

=   ⋅   ⋅ +

Eth A ELG

Zth A Zsys d B

t

ABC t t t

123

123 	

(10.49)

where for the delta-grounded wye transformer:
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= ⋅
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
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









= ⋅
−

−
−

















  =
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
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








n
kVLL

kVLN

A
n

B
Zt

Zt
Zt

d
n

Zsys

Zl Zl Zl

Zl Zl Zl

Zl Zl Zl

1 1 0 1
1 1 0

0 1 1

0 0
0 0
0 0

1 1 1 0
0 1 1
1 0 1

t
primary
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t
t

t

a

b

c

t
t

123

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

Applying the Thevenin equivalent circuit, Figure 10.24 is modified to that of 
Figure 10.27.

In Figure 10.27, the equivalent impedance matrix is:

	 [ ] [ ] [ ]= +Zeq Zth Z 12ABC ABC 	
(10.50)

A question that comes up when a wye–delta transformer bank is to be 
installed is whether the neutral should be grounded. If the neutral is to be 

2

Fault node

3

Zg

41
[Eth] [Zeq] [Z23ABC]

[ItABC][IABC]

FIGURE 10.27
Modified simple system.
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grounded, it can either be a direct ground or be grounded through a resis-
tance. The other option is to just leave the neutral floating. Figure 10.28 shows 
the three-phase circuit for the modified simple system in Figure 10.27 when a 
line-to-ground fault has occurred at node 2 in Figure 10.27. Note the question 
mark on grounding of the neutral.

For future reference, the source voltages are [ ] [ ]=Es EABC th . When the neu-
tral is left floating in Figure 10.28, there is no path for the currents to flow 
from the transformer back to the fault. In this case, the only short-circuit 
current will be from the substation to the faulted node.

Figure 10.29 represents the transformer bank grounded neutral through a 
resistance.

Before getting into the derivation of the computation of the short-circuit 
currents in Figure 10.29, it is important to do a visual analysis of the circuit. 
The most important observation is that there is a path for the current It A to 
flow from the phase A transformer through the fault and back to the neutral 
through the grounding resistance (Zg). Note that this resistance can be set to 
zero for the direct grounding of the neutral. Because It A flows, there must be 
a current in the delta transformer secondary. This current is given by:

	 = ⋅I n Itab t A 	 (10.51)
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FIGURE 10.28
Three-phase circuit with floating transformer neutral.
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FIGURE 10.29
Three-phase circuit with grounded transformer neutral.
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Because the line currents out of the delta are zero, then all of the currents 
flowing in the delta must be equal.

	 = = = ⋅I I I n Itab bc ca t A 	 (10.52)

Because the delta currents are equal, define the currents out of the transformer:

	 = = =It It It ItA B C 	 (10.53)

The sum of the line-to-line secondary voltages must add to zero:

	 V V V 0ab bc ca+ + = 	 (10.54)

10.2.3.2 � Complete Three-Phase Circuit Analysis

A method to calculate the short-circuit currents is to apply basic circuit and 
transformer analysis to determine all voltages and currents. A three-phase 
circuit showing an A–G fault at node 2 is shown in Figure 10.29. There are 
28 unknowns, which will require 28 independent equations. Without going 
into detail, the 28 equations are:

•	 13 KVL
•	 6 basic transformer primary/secondary
•	 5 KCL
•	 4 unique to type of fault

The 28 independent equations will be reduced to 8 independent equations 
that will compute the voltages and currents in the fault and the backfeed cur-
rent from the transformer bank. All other system voltages and currents can 
be computed by knowing these eight variables.

In Figure 10.30, a node X has been installed to represent the fault at node 2. 
With the node X, there are four voltages defined as Vf Vf Vf Vf, , ,AX BX CX XG  
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FIGURE 10.30
Three-phase circuit with AG fault.
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and three fault currents defined as If If If, ,A B C . The different types of faults 
are modeled by setting the appropriate voltages and currents to zero. For 
example, for an A–G fault, the following conditions are set:

	

=

=

=

=

Vf

Vf

If

If

0

0

0

0

AX

XG

B

C 	

(10.55)

In Figure 10.30, three loop equations can be written between the source and 
the faulted node.

	

= + + ⋅ + ⋅ + ⋅

= + + ⋅ + ⋅ + ⋅

= + + ⋅ + ⋅ + ⋅

Es Vf Vf Zeq I Zeq I Zeq I

Es Vf Vf Zeq I Zeq I Zeq I

Es Vf Vf Zeq I Zeq I Zeq I

1 1 1

1 1 1

1 1 1

A AX XG A B C

B BX XG A B C

C CX XG A B C

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3 	

(10.56)

KCL can be applied at the faulted node point:

	

= −

= −

= −

I If It

I If It

I If It

1

1

1

A A

B B

C C 	

(10.57)

Substitute Equation 10.57 into Equation 10.56:

	

= + + ⋅ + ⋅ + ⋅ − ⋅

= + + ⋅ + ⋅ + ⋅ − ⋅

= + + ⋅ + ⋅ + ⋅ − ⋅

Es Vf Vf Zeq If Zeq If Zeq If Zx It
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A AX XG A B C

B BX XG A B C

C CX XG A B C

1,1 1,2 1,3 1

2,1 2,2 2,3 2

3,1 3,2 3,3 3 	

(10.58)

where for

	
∑=

=

i Zx Zeq= 1, 2, 3: i i k

k

,

1

3

The line-to-ground voltages at the transformer primary terminals are:

	

= + + + + ⋅

= + + + + ⋅

= + + + + ⋅
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31 32 33
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= + + ⋅

= + + ⋅
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V Vf Vf Zy It
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(10.59)

where

	
∑=

=

Zy Z 23i i k

k

,

1

3

	

also:

	 = + +Zy Zy Zy Zsum 1 2 3 	

The line-to-neutral ideal transformer voltages are:

	

= + ⋅ ⋅

= + ⋅ ⋅

= + ⋅ ⋅

V V Z It

V V Z It

V V Z It

3

3

3
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(10.60)

Substitute Equation 10.59 into Equation 10.60:

	

( )

( )

( )
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1
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(10.61)

From the currents flowing in the delta secondary are:

	

= = = ⋅

= = = ⋅

=

I I I n It

I I I n It

It Itsince:

ab bc ca t A

ab bc ca t

A 	

(10.62)
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The line-to-line secondary voltages are:

	

= + ⋅

= + ⋅

= + ⋅

V Vt Zt I

V Vt Zt I

V Vt Zt I

ab ab ab ab

bc bc bc bc

ca ca ca ca 	

(10.63)

In Equation 10.63:
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(10.64)

Substitute Equation 10.64 into Equation 10.63:
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(10.65)

but:

	 + + =V V V 0ab bc ca 	

therefore:

	
( )= ⋅ + + + ⋅ ⋅

n
V V V n Zt It0

1

t
AN BN CN t sum

	

where

	 = + +Zt Zt Zt Ztsum ab bc ca 	
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Substitute Equation 10.61 into Equation 10.65:
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(10.66)

where

	
( )= ⋅ + ⋅ + ⋅Z

n
Zy n Zt Z

1
9total

t
sum t sum g

2

Combining Equations 10.58 and 10.66 gives four equations with eight 
unknowns:
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(10.67)

where

	

( )= ⋅ + + ⋅

= + +

= + +

Z
n

Zy Zt Z

Zy Zy Zy Zy

Zt Zt Zt Zt

1
9total

t
sum sum g

sum

sum ab bc ca

1 2 3

Equation 10.67 gives four independent equations. The final four independent 
equations are unique for the type of fault to be modeled. The four equations that 
model each of the various types of faults are defined in Equations 10.41 to 10.45.
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A general matrix equation for modeling a B–C–G fault is shown in the forth-
coming. The first four rows in the coefficient matrix [C] come from Equation 
10.69, and the last four rows are for the B–C–G fault as specified in Section 10.2.2.
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(10.68)

Example 10.6

The system in Figure 10.29 is to be analyzed for a B–C–G fault at node 2. 
The given information for the system is as follows:

Equivalent system:
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Compute substation transformer matrices:
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Compute substation transformer Thevenin equivalent circuit relative to 
secondary (Chapter 8, Section 8.12):
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Given distribution line impedance matrices as follows:
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Grounded wye–delta transformer data:
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Compute impedance terms for Equation 10.50:
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Using the Thevenin source voltages and the numerical values from 
above, create the Equation 10.68 matrices for the B–C–G fault at node 2. 
Remember that the last four rows of the [C] matrix represent the type of 
fault as specified in Section 10.2.2.
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+ + + − −

+C

j j j
j j j j
j j j j

j

1.3462 6.2015 0.2518 0.8633 0.2470 0.5965 1.8450 7.6613 1 0 0 1
0.2518 0.8633 1.3643 6.1035 0.2560 0.7122 1.8722 7.6790 0 1 0 1
0.2470 0.5965 0.2560 0.7122 1.3539 6.1706 1.8569 7.4793 0 0 1 1

0 0 0 5.0209 3.6015 0.0667 0.0667 0.0667 0.2
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

Solve for the unknown matrix [X]:

	 X C Ex1[ ] [ ] [ ]= ⋅−

The computed short-circuit currents are:
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If
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X
X

It X
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I
I
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1194.6/40.15

81.5/143.53

For = 1,2,3

1
1
1

81.5/ 36.46

1267.2/167.24

1216.09/36.41

A

B

C

A

B

C

A

B

C

1

2

3

4

















=

















=

















= =

















=
















−

















=

−

















Note from above that each of the distribution transformer primary 
windings has a short-circuit current of 81.5 A flowing. The rated currents 
for the three transformers are:

	
Irated kVA

kVLN

6.94
13.89
6.94

Ai
i

hi
= =
















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The percentage overrated current for the transformers are:

	

= ⋅ =
















Iover
It

Ihi
100

1173.6
586.8

1173.6
%

i
i

Obviously, the fuses on the distribution transformers are going to blow 
because of the backfeed current.

This method of analysis for a grounded wye–delta bank with a ground 
resistance can be used to simulate an ungrounded wye–delta bank by 
setting the grounding resistance to a very large value. For example, use 
a grounding resistance of 99,999.

	

Z

If

It

I

99, 999

0
1257.4/167.5
1217.0/36.1

0

0
1257.4/167.5
1217.0/36.1

g

ABC

ABC

[ ]

[ ]

=

=














=

=














Note that for this case, the backfeed current from the transformer bank 
is zero.

10.2.3.3 � Backfeed Currents Summary

When a wye–delta transformer connection is used, the basic question is 
whether the neutral should be grounded. In this section, a method of ana-
lyzing a simple system was developed for analysis and then demonstrated 
with an example. It can be concluded that there is a very significant backfeed 
current when the neutral is grounded. The backfeed current is in the range 
of 1000% of the rated transformer currents; so the transformer fuses will 
blow for the upstream fault. It was also demonstrated that if the grounding 
resistance is set to a very large value, the backfeed current will be zero, thus 
simulating an ungrounded wye–delta transformer bank connection. The 
final conclusion is that the neutral should never be grounded either directly 
or through a grounding resistance.

10.3 � Summary

This chapter has demonstrated the application of the element models that are 
used in the power-flow analysis and short-circuit analysis of a distribution 
feeder. The modified ladder iterative technique was used for the power-flow 
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analysis. For a simple radial feeder with no laterals, the examples demonstrated 
that only the forward and backward sweeps were changed by adding the 
sweep equations for the new elements. A feeder with laterals and sublaterals 
will require the ladder forward and backward sweep for each lateral and sub-
lateral. In some cases, there is a need to model a feeder with a limited number 
of loops. A loop-flow method of modifying the ladder technique was devel-
oped, and an example was developed to demonstrate the loop-flow method.

For the short-circuit analysis of a feeder, using the symmetrical component 
analysis will not work because not all possible short circuits can be modeled. 
Rather, a method in the phase domain for the computation of any type of 
short circuit was developed and demonstrated.

The backfeed short-circuit currents due to a grounded wye–delta trans-
former bank were developed and demonstrated by way of an example. The 
final idea is to demonstrate that a grounded wye–delta transformer bank 
should never be used.

The examples in this chapter have been very long and should be used as 
a learning tool. Many of the interesting operating characteristics of a feeder 
can only be demonstrated through numerical examples. The examples were 
designed to illustrate some of these characteristics.

Armed with a computer program using the models and techniques of this 
text provides the engineer with a powerful tool for solving present-day prob-
lems and long-range planning studies.

Problems

The power-flow problems in this set require the application of the modified 
ladder technique. Students are encouraged to write their own computer pro-
grams to solve the problems.

The first six problems of this set will be based upon the system in 
Figure 10.31.

3

4

21

Infinite
bus

FIGURE 10.31
Wye homework system.
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The substation transformer is connected to an infinite bus with balanced 
three-phase voltages of 69 kV. The substation transformer is rated:

5000 kVA,  69 kV delta–4.16 grounded wye,  Z = 1.5 + j8.0%

The phase impedance matrix for a four-wire wye line is:

[ ] =
+ + +
+ + +
+ + +



















Ωz

j j j

j j j

j j j

0.4576 1.0780 0.1560 0.5017 0.1535 0.3849

0.1560 0.5017 0.4666 1.0482 0.1580 0.4236

0.1535 0.3849 0.1580 0.4236 0.4615 1.0651
/milewire4-

The secondary voltages of the infinite bus are balanced and being held at 
69 kV for all power-flow problems.

The four-wire wye feeder is 0.75 miles long. An unbalanced wye-connected 
load is located at node 3 and has the following values:

Phase a: 750 kVA at 0.85 lagging power factor
Phase b: 500 kVA at 0.90 lagging power factor
Phase c: 850 kVA at 0.95 lagging power factor

The load at node 4 is zero initially.

10.1 For the system as described earlier and assuming that the regulators are 
in the neutral position:

	 a.	Determine the forward and backward sweep matrices for the sub-
station transformer and the line segment.

	 b.	Use the modified ladder technique to determine the line-to-ground 
voltages at node 3. Use a tolerance of 0.0001 per-unit. Give the volt-
ages in actual values in volts and on a 120-V base.

10.2 Three Type B step-voltage regulators are installed in a wye connection 
at the substation in order to hold the load voltages (node 3) at a voltage level 
of 121 V and a bandwidth of 2 V.

	 a.	Compute the actual equivalent line impedance between nodes 2 and 3.
	 b.	Use a potential transformer ratio of 2400–120 V and a current trans-

former ratio of 500:5 A. Determine the R and X compensator settings 
calibrated in volts and ohms. The settings must be the same for all 
three regulators.

	 c.	For the load conditions in Problem 10.1 and with the regulators in 
the neutral position, compute the voltages across the voltage relays 
in the compensator circuits.
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	 d.	Determine the appropriate tap settings for the three regulators to 
hold the node 3 voltages at 121 V in a bandwidth of 2 V.

	 e.	With the regulator taps set, compute the actual load voltages on a 
120-V base.

10.3 A wye-connected three-phase shunt capacitor bank of 300 kvar per 
phase is installed at node 3. With the regulator compensator settings from 
Problem 10.2, determine:

	 a.	The new tap settings for the three regulators
	 b.	The voltages at the load on a 120-V base
	 c.	The voltages across the relays in the compensator circuits

10.4 The load at node 4 is served through an ungrounded wye–delta 
transformer bank. The load is connected in delta with the following 
values:

Phase a–b: 400 kVA at 0.9 factor power factor
Phase b–c: 150 kVA at 0.8 lagging power factor
Phase c–a: 150 kVA at 0.8 lagging power factor

The three single-phase transformers are rated as:

“Lighting transformer”: 500 kVA, 2400–240 V, Z = 0.9 + j3.0%
“Power transformers”: 167 kVA, 2400–240 V, Z = 1.0 + j1.6%

Use the original loads and the shunt capacitor bank at node 3 and this new 
load at node 4 and determine:

	 a.	The voltages on 120 V base at node 3 assuming the regulators are in 
the neutral position

	 b.	The voltages on 120 V base at node 4 assuming the regulators are in 
the neutral position

	 c.	The new tap settings for the three regulators
	 d.	The node 3 and node 4 voltages on 120 V base after the regulators 

have changed tap positions

10.5 Under short-circuit conditions, the infinite bus voltage is the only volt-
age that is constant. The voltage regulators in the substation are in the neu-
tral position. Determine the short-circuit currents and voltages at nodes 1, 2, 
and 3 for the following short circuits at node 3.
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	 a.	Three-phase to ground
	 b.	Phase b to ground
	 c.	Line-to-line fault on Phases a–c

10.6 A line-to-line fault occurs at node 4. Determine the currents in the fault 
and on the line segment between nodes 2 and 3. Determine the voltages at 
nodes 1, 2, 3, and 4.

10.7 A three-wire delta line of length 0.75 miles is serving an unbalanced 
delta load of:

Phase a–b: 600 kVA, 0.9 lagging power factor
Phase b–c: 800 kVA, 0.8 lagging power factor
Phase c–a: 500 kVA, 0.95 lagging power factor

The phase impedance matrix for the line is:

[ ] =
+ + +
+ + +
+ + +



















Ωz

j j j

j j j

j j j

0.4013 1.4133 0.0953 0.8515 0.0953 0.7802

0.0953 0.8515 0.4013 1.4133 0.0953 0.7266

0.0953 0.7802 0.0953 0.7266 0.4013 1.4133
/milewire3-

The line is connected to a constant balanced voltage source of 4.8 kV line-to-
line. Determine the load voltages on a-120 V base.

10.8 Add two Type B step-voltage regulators in an open-delta connection 
using phases A–B and B–C to the system in Problem 10.7. The regulator 
should be set to hold 121 ± 1 V. Determine the R and X settings and the final 
tap settings. For the open-delta connection, the R and X settings will be dif-
ferent on the two regulators.

10.9 The three-wire line of Problem 10.7 is connected to a substation trans-
former connected delta–delta. The substation transformer is connected to a 
69-kV infinite bus and is rated:

	 10,000 kVA,  69 kV delta–4.8 kV delta,  Z = 1.6 + j7.8%

Determine the short-circuit currents and substation transformer secondary 
voltages for the following short circuits at the end of the line:

	 a.	Three-phase
	 b.	Line-to-line between Phases a–b

10.10 Two three-phase systems are shown in Figure 10.32.
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In Figure 10.32, the solid lines represent three-phase lines, while the 
dashed lines represent phase C single-phase lines. The phase conductors are 
336,400 26/7 ACSR, and the neutral conductor is 1/0 ACSR. The impedance 
matrices are:

Three-phase lines:

	

z

j j j

j j j

j j j
3

0.5396 1.0978 0.1916 0.5475 0.1942 0.4705

0.1916 0.5475 0.5279 1.1233 0.1884 0.4296

0.1942 0.4705 0.1884 0.4296 0.5330 1.1122
[ ] =

+ + +
+ + +
+ + +



















Single-phase C line:

	

z
j

1
0 0 0
0 0 0
0 0 0.5328 1.1126

/mile[ ] =
+

















Ω

The two sources are 12.47 kV substations operating at rated line-to-line voltages.
The line lengths in feet are:

	 L L L L L2000, 2500, 1000, 6000, 750, L 500012 23 27 45 56 58= = = = = =

The loads are:

	

= =

= =

= =

= =

S

S

S

500 kW at 90% PF S 500 kW at 80% PF

600 kW at 85% PF S 400 kW at 85% PF

400 kW at 95% PF S 600 kW at 90% PF

S 500 kW at 80% PF S 450 kW at 90% PF

a a

b b

c c

c c

3 4

3 4

3 4

7 4

T1

I12

I22 I24

I27 I26

S4S3
S6S7 I25

 IT1  IT2

 IT3  IT4

Sub-1 Sub-2

SW-1

SW-2

T3 T4

1 2

3 4

5

67

8

T2

FIGURE 10.32
Loop-flow system.
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The base kVA = 5000, and the base line-to-line kV = 12.470.
The two switches are open.

	 a.	Determine the node voltages.
	 b.	Determine the line currents.

The two switches are closed.

	 c.	Determine the values of the injected currents at nodes 3, 4, 6, and 7.
	 d.	With the injected currents operating, determine the node voltages 

and the line currents.

10.11 The system in Figure 10.33 is to be studied for steady-state and short-
circuit analyses.

In Figure 10.33, the system is served from an equivalent source with bal-
anced line-to-line voltages of 12.47 kV. The equivalent source impedance 
matrix is:

	

  =
+ − − − −

− − + − −
− − − − +



















Z

j j j

j j j

j j j

0.4311 4.0454 0.0601 0.1400 0.0600 0.1734

0.0601 0.1400 0.4311 4.0071 0.0600 0.1351

0.0600 0.1734 0.0600 0.1351 0.4309 4.0405
eq

The three-phase four-wire line impedance matrix in ohms/mile is:

	

[ ] =
+ + +
+ + +
+ + +



















z

j j j

j j j

j j j

0.4576 1.0780 0.1560 0.5017 0.1535 0.3849

0.1560 0.5017 0.4666 1.0482 0.1580 0.4236

0.1535 0.3849 0.1580 0.4236 0.4615 1.0651
wire4-

The primary line is 5 miles long.

4321

Equivalent
source

F
[IABC]

[ZeqL][ZeqS]

[Iabc]

M

FIGURE 10.33
Small system.
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The three-phase three-wire open-wire secondary line impedance matrix 
in Ω/mile is:

	

[ ] =
+ + +
+ + +
+ + +



















z

j j j

j j j

j j j

1.0653 1.5088 0.0953 1.0468 0.0953 0.9627

0.0953 1.0468 1.0653 1.5088 0.0953 1.0468

0.0953 0.9627 0.0953 1.0468 1.0653 1.5088
sec

The secondary is 500 ft long.
The transformer bank is connected grounded wye–delta composed of 

three single-phase transformers each rated:

	 kVA kVLN kVLL Zpu j10, 7.2, 0.24, 0.016 0.014hi lo= = = = +

The wye-connected primary windings are connected directly to the ground.
A three-phase induction motor has the following data:

	

= +
= +
=

Z j

Z j

Z

150 Hp, 480 V

0.059 0.127 pu

0.046 0.112 pu

4.447 pu

s

r

m

The motor is operating with a slip of 0.035 with balanced three-phase source 
voltages of 12,470 V line-to-line. Determine the following:

	 a.	The primary and secondary line currents
	 b.	The line-to-line voltages at the motor
	 c.	The three-phase complex power at the source

The switch to the induction motor is open when a phase line-to-ground fault 
occurs on Phase c at the fault node (F), which is 2 miles from node 1.

	 d.	Determine the fault currents from the source and from the trans-
former bank.

WindMil Assignment

Figure 10.34 shows the one-line diagram of an unbalanced three-phase feeder.
The nonline data for the feeder are:

	 1.	Equivalent source
	 a.	 Balanced 115 kV line-to-line
	 b.	 Zpos = 1.48 + j11.6 Ω
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	 c.	 Zzero = 4.73 + j21.1 Ω
	 d.	 Bus voltage = 120
	 2.	Substation transformer
	 a.	 115 kV D–12.47 kV grd. Y
	 b.	 kVA = 10,000
	 c.	 Z = 8.026%, X/R = 8
	 3.	Regulator
	 a.	 CT rating = 600
	 b.	 % boost = 10
	 c.	 Step size = 0.625
	 d.	 Number of steps = 16
	 e.	 Nodes: 1–2
	 f.	 Voltage level = ?
	 g.	 R + jX = ?
	 4.	Single-phase transformer
	 a.	 Connection: Y–D one
	 b.	 kVA = 100

Source node

a b c

a b c a

3′

4′

1

2

3

4

8

c
ca

9 7 a
a

5

6

13

12

1110
c
a
b

b
c

FIGURE 10.34
Unbalanced three-phase feeder.
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	 c.	 Voltages: 7200 Y–240 D V
	 d.	 Z = 2.326%, X/R = 2.1
	 e.	 Nodes: 12–13

The line data are:

	 5.	Three-phase OH lines
	 a.	 Phase: 336,400 26/7 ACSR
	 b.	 Neutral: 4/0 6/1 ACSR
	 c.	 Phasing: a–b–c

	 d.	 Spacings:
	 i.	 Position 1: 0 + j29
	 ii.	 Position 2: 2.5 + j29
	 iii.	 Position 3: 7 + j29
	 iv.	 Neutral: 4 + j25
	 e.	 OH 1: Nodes 2–3, 2500 ft.
	 f.	 OH 2: Nodes 3–4, 3000 ft.
	 g.	 OH 3: Nodes 4–5, 2500 ft.
	 h.	 OH 4: Nodes 5–6, 1000 ft.
	 6.	Two-phase OH line
	 a.	 Phase: 336,400 26/7 ACSR
	 b.	 Neutral: 4/0 6/1 ACSR
	 c.	 Phasing: a–c

	 d.	 Spacings:
	 i.	 Position 1: 0 + j29
	 ii.	 Position 2: 7 + j29
	 iii.	 Neutral: 4 + j25
	 e.	 OH 5: Nodes 5–7, 1500 ft.
	 7.	Three-phase concentric neutral UG
	 a.	 CN cable: 1/0 AA, 1/3 neutral
	 b.	 No extra neutral
	 c.	 Phasing: c–b–a

	 d.	 Spacings:
	 i.	 Position 1: 0 – j40 in.
	 ii.	 Position 2: 6 – j40 in.
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	 iii.	 Position 3: 12 – j40 in.
	 e.	 UG 1: Nodes 4–10, 1500 ft.
	 8.	Two-phase concentric neutral UG
	 a.	 CN cable: 1/0 AA, Full neutral
	 b.	 No extra neutral
	 c.	 Phasing: c–b

	 d.	 Spacings:
	 i.	 Position 1: 0 – j40 in.
	 ii.	 Position 2: 6 – j40 in.
	 e.	 UG 2: Nodes 10–11, 1000 ft.
	 9.	Single-phase concentric neutral UG
	 a.	 CN cable: 1/0 AA, Full neutral
	 b.	 No extra neutral
	 c.	 Phase: c
	 d.	 Spacings:
	 i.	 Position 1: 0 – j40 in.
	 e.	 UG 3: Nodes 10–12, 500 ft.
	 10.	Single-phase tape shield cable
	 a.	 1/0 AA Tape Shield UG
	 b.	 Neutral: 1/0 7 Strand AA
	 c.	 Phase c–a

	 d.	 Spacings:
	 i.	 Position 1: 0 – j 40 in.
	 ii.	 Neutral: 6 – j 40 in.
	 e.	 UG 4: Nodes 7–8, 500 ft.
	 11.	Two-phase tape shield cable
	 a.	 1/0 AA Tape Shield UG
	 b.	 Neutral: 1/0 7 Strand AA
	 c.	 Phase c
	 d.	 Spacings:
	 i.	 Position 1: 0 – j40 in.
	 ii.	 Position 2: 6 – j40 in.
	 iii.	 Neutral: 12 – j40 in.
	 e.	 UG 5: Nodes 7–9, 750 ft.
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The load data are:
Distributed loads:

Wye-connected spot loads:

Delta-connected loads:

	 1.	Create this system in WindMil.
	 2.	Run voltage drop with the regulator set to “none.” Do this in the 

Voltage Drop Analysis Manager.
	 3.	Compute the R and X and voltage level for the voltage regulator.
	 a.	 Hand calculation
	 b.	 WindMil “Regulation Set”
	 c.	 Compare settings
	 4.	Run voltage drop with the regulators set to “step”
	 a.	 What are the final tap positions?
	 b.	 Are these appropriate?
	 5.	Add shunt capacitors so that the source power factor is no lower 

than 95% lag. Specify capacitors in multiples of 100 kvar.
	 6.	Run voltage with the final capacitors.
	 a.	 What is the power factor by phase at the source?
	 b.	 What are the final tap positions for the regulators?

Node A Node B Pa PFa% Pb PFb% Pc PFc% Model

2 3 100 90 150 90 200 90 Y–PQ
3 4 200 90 100 90 150 90 Y–Z

Node Pa PFa% Pb PFb% Pc PFc% Model

3 500 85 300 95 400 90 Y–Z
4 500 80 500 80 500 90 Y–I
6 1000 80 800 90 950 95 Y–PQ
8 200 95 Y–Z

Node Pab PFab% Pbc PFbc% Pca PFca% Model

9 350 90 D–I

11 350 90 D–PQ

13 100 95 D–I
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11
Center-Tapped Transformers and Secondaries

The standard method of providing three-wire service to a customer is from 
a center-tapped single-phase transformer. This type of service provides the 
customer with two 120-V circuits and one 240-V circuit. Two types of trans-
formers are available for providing this service. The first is where the sec-
ondary consists of one winding that is center-tapped as shown in Figure 11.1.

The secondary voltage rating of the transformer in Figure 11.1 would be 
specified as 240/120 V. This specifies that the full winding voltage rating is 
240 V, with the center tap providing two 120-V circuits.

A second type of transformer used to provide three-wire service is shown 
in Figure 11.2.

The transformer in Figure 11.2 is a three-winding transformer with the 
two secondary windings connected in series. The secondary on this trans-
former is specified as 120/240 V. The secondary windings can be connected 
in series to provide the three-wire 240- and 120-V service, or they may be 
connected in parallel to provide only 120 V. When connected in parallel, the 
transformer will typically be used in a three-phase connection. The second-
ary will be connected in wye and will provide three 120-V circuits.

For both connections, the ideal transformer equations are:

	

=

= =

n kVLN
kVLL

nexample: 7200
240

30

t
rated
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− −V n Vt

I
n

I I
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1
2

H H t X X

t

1 2 1 2

0 1 2

	 (11.2)

11.1 � Center-Tapped Single-Phase Transformer Model

The model of the center-tapped transformer in Figures 11.1 and 11.2 is shown 
in Figure 11.3.
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The model in Figure 11.3 can represent either the center-tapped secondary 
winding (Figure 11.1) or the two secondary windings connected in series 
(Figure 11.2). The impedances Z Z Z, , and0 1 2  represent the individual 
winding impedances.

The first step in developing the model is to determine the impedances 
Z Z Z, , and0 1 2 . These impedances can be determined with open-circuit 

H1

X1

X2

X3

H2

VH1−H2

VX1−X2

VX2−X3

I0

I1

I2
120

120

+
+

++

+

− −

−
−

−

FIGURE 11.2
Three-winding transformer with secondary windings in series.

Z1

Z2

Z0

Vt1

Vt2VS

+ + +

+ +

+

V1

V2

I1

I0
E0

I2

In

− − − −

−
−

FIGURE 11.3
Center tap transformer model.

H1 X1

X2

X3H2

VH1−H2

VX1−X2

VX2−X3

I0 I1

I2

120

120

+ +

+++

− −

−−

−

FIGURE 11.1
Center-tapped secondary winding.
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and short-circuit tests on the transformer. However, that is usually not 
practical. The per-unit impedance based upon the transformer rating is 
typically known on a transformer. Unfortunately, that usually does not 
include the angle. When that is the case, an approximation must be made 
for the angle, or a typical impedance value can be used. Typical values 
of transformer impedances in per-unit can be found in the text Electric 
Power Distribution System Engineering, by Turan Gonen [1]. Empirical 
equations commonly used to convert the per-unit transformer impedance 
to the per-unit winding impedances of an interlaced design are given in 
Equation 11.3.

	

= ⋅ + ⋅

= + ⋅

= + ⋅

Z R j X

Z R j X

Z R j X

0.5 0.8

0.4 per-unit

0.4

A A

A A
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0

1

2

	 (11.3)

The equations for the noninterlaced design are:

	

= ⋅ − ⋅
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1
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	 (11.4)

The interlaced design is the most common, and it should be used when in 
doubt. Note for this design that:
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+ = ⋅ + ⋅ + ⋅ ⋅ + ⋅
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(11.5)

The per-unit impedances of the three windings must be converted to 
ohms based upon the transformer rating. The base impedance for (Z 0) 
of the primary is based upon the rated primary voltage of the transformer 
(kVLN kVLLorhi hi). The center-tapped transformer secondary is modeled as 
two 120-V windings (kVLN lo). The two windings in series result in the rated 



452 Distribution System Modeling and Analysis

line-to-line voltage (kVLLlo). The base impedances for the primary winding 
connected line-to-neutral are:

	
= ⋅

Zbase
kVLN

kVA
1000

hi
hi

rated

2 	 (11.6)

For the primary winding connected line-to-line:

	
= ⋅
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1000

hi
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2
	 (11.7)

The base impedance for the two secondary windings is based upon the rated 
line-to-line voltage of the secondary:
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(11.8)

where

	
= ⋅

Zbase
kVLL

kVA
1000

lo
lo

rated

2

Example 11.1

A single-phase center-tapped transformer is connected to the line-to-neutral 
system voltage.

Transformer ratings

	

= = =

= =

kVA kVLN kVLL

Rpu Xpu

50 7.2 0.24

0.011 0.018

hi lo

A A

Compute primary and secondary per-unit impedances.
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Compute the transformer primary and secondary transformer impedances 
in ohms.
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11.1.1 � Matrix Equations

Referring to Figure 11.3, the ideal secondary voltages of the transformer are:
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(11.9)

The ideal primary voltage as a function of the secondary ideal voltages is:
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(11.10)

where
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The primary transformer current as a function of the secondary winding 
currents is given in Equation 11.11. The negative sign is due to the selected 
direction of the current I2.
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where
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Substitute Equation 11.9 into Equation 11.10:
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The source voltage as a function of the ideal primary voltage is:
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(11.13)

Substitute Equation 11.12 into Equation 11.13:

	 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]= ⋅ + ⋅ ⋅ + ⋅V av V av Z I Z Iss 12 12 12 00 00 	 (11.14)

Substitute Equation 11.11 into Equation 11.14:
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where
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Equation 11.15 is the backward sweep voltage equation for the single-phase 
center-tapped transformer when the secondary voltages and currents are 
known. The primary current as a function of the secondary voltages and 
currents is given by the backward sweep current equation as:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅I c V d It t00 12 12 	 (11.16)
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Equation 11.15 is used to compute the primary source voltage when the 
secondary terminal voltages and the secondary currents are known. It is also 
important to be able to compute the secondary terminal voltages when the 
primary source voltage and secondary currents are known (forward sweep). 
The forward sweep equation is derived from Equation 11.15.
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Example 11.2

The 50-kVA center-tapped transformer in Example 11.1 serves constant 
impedance loads as shown in Figure 11.4.

Transformer Rating: 50 kVA, 7200–240/120 V, RA = 0.011 pu, XA = 0.018 pu
Loads:

  S1 = 10 kVA at 95% lagging power factor
  S2 = 15 kVA at 90% lagging power factor
  S3 = 25 kVA at 85% lagging power factor

Source voltage: 7200/0 V
Determine:

	 1.	 [ ][ ] [ ]A B d, , andt t t  matrices
	 2.	 Load voltages, secondary currents, and load currents
	 3.	 Primary current

Z1

Z2

Z0

Vt1

Vt2

IL3

VS

+ + +

+

+

+
V1

V2 S2

S3

S1

I1

I0
E0

I2

In

− − −−

−
−

IL2

IL1

FIGURE 11.4
Center-tapped transformer serving constant impedance loads.
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The winding impedances from Example 11.1 are:
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The first forward sweep is computed by setting the secondary line 
current to zero.
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The three load voltages are:
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The load currents are:
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The secondary line currents are given by:
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The backward sweep computes the primary current:
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Using the computed secondary line currents, the second forward sweep is:
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The calculations above demonstrate the first and second forward sweeps 
and the first backward sweep. This process can continue, but it is much 
easier to write a Mathcad program to compute the final load voltages. 
The program is shown in Figure 11.5. The initial values are:

	
[ ] =









 =Start 0

0
Tol 0.00001

The Mathcad program follows the same general steps that all programs 
will follow.

	 1.	 Initialize
	 2.	 Set loop
	 3.	 Forward sweep
	 4.	 Check for convergence
	 a.	 If converged, output results
	 b.	 If not converged, continue
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start  :=
0

0 Tol := .00001

X  := start
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FIGURE 11.5
Mathcad program for Example 11.2.
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	 5.	 Compute new load and line currents
	 6.	 Backward sweep
	 7.	 End of loop

After four iterations, the final load voltages are:
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11.1.2 � Center-Tapped Transformer Serving Loads 
through a Triplex Secondary

Shown in Figure 11.6 is a center-tapped transformer serving a load through 
a triplex secondary.

Before the system in Figure 11.6 can be modeled, the impedance matrix for 
the triplex secondary must be determined. The impedances of the triplex are 
computed using Carson’s equations and the Kron reduction as described in 
Chapter 4. Applying Carson’s equations will result in a 3 × 3 matrix. Kron reduc-
tion method is used to “fold” the impedance of the neutral conductor into that 
of the two-phase conductors. A triplex secondary consisting of two insulated 
conductors and one uninsulated neutral conductor is shown in Figure 11.7.

The spacings between conductors that are applied in Carson’s equations 
are given by:
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(11.19)

where
dia = diameter of conductor in inches
T = thickness of insulation in inches

Applying Carson’s equations:
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where
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The secondary voltage equation in matrix form is:
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	 (11.21)

When the neutral is grounded at the transformer and the load, then:

	 = − =v V VL 0n ng ng 	 (11.22)

This leads to the Kron reduction equation in partitioned form:
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FIGURE 11.6
Center-tapped transformer with secondary.
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FIGURE 11.7
Triplex secondary.
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Solving Equation 11.22 for the neutral current:
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I t I

n nn ni
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	 (11.24)

where

	 [ ] [ ][ ] = − ⋅−t zp zpn nn ni
1

The Kron reduction gives the 2 × 2 phase impedance matrix:

	 [ ] [ ][ ] =  − ⋅ ⋅  
−zs zp zp zp zpij in nn nj

1 	 (11.25)

For a secondary of length L:
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	 (11.26)

Referring to Figure 11.6, the voltage backward sweep for the secondary is 
given by:
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(11.27)

where
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Because of the short length of the secondary, the line currents leaving the 
transformer are equal to the line currents at the load; so no current backward 
sweep is needed for the secondary. In order to remain consistent for the gen-

eral analysis of a feeder, the matrix [ ]dsec  is defined as:

	 [ ][ ] [ ]= ⋅I d Isec12 12 	 (11.28)

where

	
[ ] =









d 1 0

0 1sec

The voltage forward sweep equation for the secondary is determined by 
solving for the load voltages in Equation 11.27.

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅VL A V B Isec sec12 12 12 	 (11.29)

where

	 [ ]

[ ] [ ]

[ ] [ ]

=

= ⋅

−

−

A a

B a b

sec sec

sec sec sec

1

1

Example 11.3

The secondary in Figure 11.7 is 100 ft of 1/0 AA triplex. Determine the 
phase impedance matrix for the triplex secondary.

From the table for 1/0 AA: GMR = 0.111 ft. Diameter = 0.368″, r = 
0.973 Ω/mile

The insulation thickness of the phase conductors is 80 mil = 0.08 in.
The distance matrix with the diagonal terms equal to the GMR is com-

puted to be:

	

[ ] =

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











D
0.0111 0.0440 0.0373
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0.0373 0.0373 0.0111

ft

Applying Carson’s equations, the primitive impedance matrix is:
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/mile
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Define:
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The Kron reduction is:
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The secondary impedance matrix for a length of 100 ft is:
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The forward and backward sweep equations for the secondary are:
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The Mathcad program of Example 11.2 is modified so that:
Forward Sweep:
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In the program, the load voltages are:
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The remainder of the program stays the same. After five iterations, the 
final voltages are:
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Note that the voltage VL2 is greater than V2, indicating a voltage rise 
on that phase. This is not uncommon when the line currents are very 
unbalanced.

The secondary line currents are:
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








=
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






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I
I

190.9/ 26.2
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1

2

The primary line current is:

	
= −I 6.97/ 28.10

Using the neutral current transform matrix of Equation 11.23, the current 
flowing in the neutral conductor is:

	 [ ] [ ]= ⋅ = −I t I 28.8/ 15.8n n 12

The current flowing in the ground is:

	 ( )= − + + = −I I I I 20.8/ 93.1g n 1 2 	

It is always good to check the validity of the results. This is particularly 
true because there should be some question about the voltage rise on 
phase 2. The check can be done by using basic circuit and transformer 
theory to compute the source voltage using the load voltages and line 
currents output from the program.
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This is the first indication that the solution is correct, since the two ideal 
voltages on the secondary are equal. That is a must. Knowing the ideal 
voltages and the secondary line currents, the primary voltage and line 
current can be computed.

	

= ⋅ ⋅ = −

=
⋅

⋅ − = −

= + ⋅ =

E n Vt

I
n

I I

V E Z I

2 7116.3/ 0.59

1
2

( ) 6.97/ 28.1

7200/0

t

t

s

0 1

0 1 2

0 0 0

Because the original source voltage has been computed, the results 
of the program have been shown to be correct. Whenever there is 
a question about the validity of a program solution, it is good to use 
basic circuit and transformer theory to prove that the results are correct. 
Never assume that the results are correct just because they came from a 
computer program.

11.2 � Ungrounded Wye–Delta Transformer Bank 
with Center-Tapped Transformer

The most common transformer connection for providing service to a combi-
nation of three-phase and single-phase loads is the ungrounded wye–delta. 
In order to provide the usual three-wire service for the single-phase loads, 
one of the three transformers, the “lighting” transformer, will have a center 
tap. The other two transformers are referred to as the “power” transformers.

The connection diagram for the standard 30° ungrounded wye–delta center 
tap transformer on phase A connection is shown in Figure 11.8. The derivations 
will be in terms of primary phases A–B–C and secondary phases a–b–c–n.

11.2.1 � Basic Transformer Equations

The turn’s ratios for all transformers are given by:

	
=n

kVLN
kVLL

t
rated primary

rated ondarysec 	 (11.30)
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The basic transformer equations for the center tap transformer are:
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	 (11.31)

For the transformer bank, the basic “ideal” transformer voltage equations as 
a function of the turn’s ratio are:
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	 (11.32)

where
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FIGURE 11.8
Ungrounded wye–delta transformer center-tapped connection.
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where
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The basic “ideal” transformer current equations as a function of the turn’s 
ratio are:
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(11.34)

where
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Forward sweep:
Refer to Figure 11.8. In the forward sweep, the line-to-ground voltages at 

the terminals of the transformer bank will be known.
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In order to determine the voltages across the transformer, it is necessary to 
first determine the “ideal” primary voltages defined as:
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The first step is to determine the voltages of the “ideal” transformer to the 
ground.

	 [ ] [ ] [ ] [ ]= − ⋅VTLG VLG ZT IABC ABC ABC0 	 (11.37)

where
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The line-to-line “ideal” voltages are:

	 [ ] [ ] [ ]= ⋅VTLL Dv VTLGABC ABC
	 (11.38)

where
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With reference to Figure 11.8, the primary “ideal” voltages to ground as a 
function of the primary line-to-ground voltages are:

	 [ ] [ ] [ ]
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where
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The primary line-to-line voltages across the “ideal” transformer windings are:

	 [ ] [ ] [ ]= ⋅VTLL Dv VTLNABC ABC
	 (11.40)

Substitute Equation 11.39 into Equation 11.39:

	 [ ] [ ] [ ] [ ] [ ]= ⋅ − ⋅VTLL Dv VTLG Dv VNGABC ABC 	

however:		  [ ] [ ] [ ]⋅ =Dv VNG 0

therefore:		  [ ] [ ] [ ]= ⋅VTLL Dv VTLGABC ABC 	 (11.41)

In Equation 11.41, the “ideal” line-to-line voltages are known. The “ideal” 
line-to-neutral voltages are needed to continue the forward sweep. In 
Equation 11.40, it appears that the line-to-neutral voltages can be com-
puted by using the inverse of the matrix Dv[ ]. Unfortunately, that matrix 
is singular. Two of the equations in Equation 11.40 can be used, but a third 
independent equation is needed. The two equations from 11.40 that will be 
used are:

	

= −
= −

VT VT VT
VT VT VT

BC BN CN

CA CN AN
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The third independent equation comes from writing Kirchhoff’s Voltage 
Law (KVL) around the delta secondary. The sum of the secondary voltages 
around the delta must be equal to zero. With reference to Figure 11.8:
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(11.43)

where
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	 [ ] [ ]= ⋅ ⋅X n ZD IDt anbc anbc

It is important to know that in Equation 11.43 the secondary transformer 
currents will be set to zero during the first forward sweep. After that, the 
most recent secondary currents from the backward sweep will be used.

Equations 11.42 and 11.43 are combined in matrix form as:
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The ideal primary voltages are computed by taking the inverse of [DX]:

	 [ ] [ ] [ ]= ⋅VTLN Dx VXLLABC ABC
	 (11.45)

where
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With the “ideal” line-to-neutral voltages known, the forward sweep continues 
with the computation of the secondary “ideal” voltages:

	 [ ] [ ] [ ]





















= ⋅



















⋅

















= ⋅

Vt
Vt
Vt
Vt

n

VT
VT
VT

Vt BV VTLN

1
0.5 0 0
0.5 0 0
0 1 0
0 0 1

an

nb

bc

ca

t

AN

BN

CN

anbc ABC

	 (11.46)

The secondary transformer terminal voltages are given by:

	 [ ] [ ] [ ] [ ]





















=





















−





















⋅





















= − ⋅

V
V
V
V

Vt
Vt
Vt
Vt

Z
Z

Z

Z

I
I
I
I

V Vt Zt ID

0 0 0
0 0 0
0 0 0

0 0 0

an

nb

bc

ca

an

nb

bc

ca

y

z

na

bn

cb

ac

anbc anbc anbc anbc

1

2

	 (11.47)

In the first forward sweep, the secondary delta currents are assumed to be 
zero.

On the first backward sweep, the secondary line currents will be known. In 
order to determine the currents in the delta as a function of the line currents, 
only three Kirchhoff’s Current Law (KCL) equations can be used. The fourth 
independent equation comes from recognizing that the sum of the primary 
line currents must be equal to zero. The three KCL equations to use are:

	

= −

= −

= −

I I I

I I I

I I I

a na ac

b cb bn

c ac cb

	 (11.48)
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Because the sum of the line currents must equal zero, the fourth equation is 
given by:

	

I I I
n

I I
n

I I

I I I
n

I I I I

n I I I I I I I

I I I I

0
1

2
1

0
1

2
2 2

2 0 2 2

0 2 2

A B C
t

na bn
t

cb ac

A B C
t

na bn cb ac

t A B C na bn cb ac

na bn cb ac

( ) ( )

( )

( )

+ + = =
⋅

⋅ + + ⋅ +

+ + = =
⋅

⋅ + + ⋅ + ⋅

⋅ ⋅ + + = = + + ⋅ + ⋅

= + + ⋅ + ⋅

	 (11.49)

Combine Equations 11.48 and 11.49 into matrix form:

	 [ ] [ ] [ ]





















=

−
−

−



















⋅





















= ⋅

I
I
I

I
I
I
I

I X ID

0

1 0 0 1
0 1 1 0
0 0 1 1
1 1 2 2

1

a

b

c

na

bn

ca

ac

abc anbc0

	
(11.50)

The delta currents can now be computed by taking the inverse of [ ]X 1 :

	

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

= ⋅

= ⋅





















= ⋅ − − −
− −
−



















⋅





















= ⋅

−ID X I

ID x I

I
I
I
I

I
I
I

ID x I

1

1

1
6

5 1 3 1
1 5 3 1
1 1 3 1
1 1 3 1 0

1

anbc abc

anbc abc

na

bn

ca

ac

a

b

c

anbc abc

1
0

0

0

	

(11.51)

where

	

[ ] [ ]= = ⋅ − − −
− −
−



















−x X1 1 1
6

5 1 3 1
1 5 3 1
1 1 3 1
1 1 3 1

1
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Note in Equation 11.51 that the fourth column of the inverse is not needed, 
because the fourth term in the current vector is zero. Therefore, Equation 
11.51 is modified to:

	 [ ][ ] [ ]





















= ⋅ − − −
− −
−



















⋅

















= ⋅

I
I
I
I

I
I
I

ID Dd I

1
6

5 1 3
1 5 3
1 1 3
1 1 3

na

bn

cb

ac

a

b

c

anbc abc

	 (11.52)

where

	

[ ] = ⋅ − − −
− −
−



















Dd 1
6

5 1 3
1 5 3
1 1 3
1 1 3

Substitute Equation 11.52 into Equation 11.34:

	
[ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

= ⋅

= ⋅ ⋅

I AI ID

I AI Dd I

ABC anbc

ABC abc 	

(11.53)

define:

	

[ ] [ ]

[ ]

[ ]

[ ] [ ]

= ⋅

= ⋅

d AI Dd

I d I

t

ABC t abc

Equation 11.53 is the necessary equation used in the backward sweep to 
compute the primary line currents.

With the primary line currents known, the primary line-to-neutral voltages 
are computed as:

	

[ ]

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ]

= − ⋅

= ⋅

= − ⋅ ⋅

VTLN VLN ZT I

I d I

VTLN VLN ZT d I

but:

ABC ABC ABC

ABC t abc

ABC ABC t abc

0

0

	 (11.54)
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The secondary transformer voltages are computed by:

	

[ ]

[ ][ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

= − ⋅

= ⋅

= − ⋅ ⋅

V Vt Zt ID

ID Dd I

V Vt Zt Dd I

anbc anbc anbc anbc

anbc abc

anbc anbc abcanbc

	 (11.55)

Substitute Equation 11.46 into Equation 11.55:

	

[ ]

[ ][ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

= − ⋅ ⋅

= ⋅

= ⋅ − ⋅ ⋅

V Vt Zt Dd I

Vt BV VTLN

V BV VTLN Zt Dd I

anbc anbc anbc abc

anbc ABC

anbc ABC abcanbc

	 (11.56)

Substitute Equation 11.54 into Equation 11.56:

( )
( )

[ ]

[ ]

[ ] [ ]

[ ] [ ]

[ ][ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

= ⋅ − ⋅ ⋅

= − ⋅ ⋅

= ⋅ − ⋅ ⋅ − ⋅ ⋅

= ⋅ − ⋅ ⋅ + ⋅ ⋅

V BV VTLN Zt Dd I

VTLN VLN ZT d I

V BV VLN ZT d I Zt Dd I

V BV VLN BV ZT d Zt Dd I

anbc ABC abc

ABC ABC t abc

anbc ABC t abc anbc abc

anbc ABC t anbc abc

0

0

0

anbc

	
(11.57)

define:

	 [ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ]

=

= ⋅ ⋅ + ⋅

A BV

B BV ZT d Zt Dd

t

t t anbc0

	 [ ] [ ] [ ]= ⋅ ⋅V A VLN I– [B ] [ ]anbc t ABC t abc

Backward sweep:
The terminal line-to-neutral voltages are:

	 [ ] [ ] [ ] [ ]= + ⋅VLN VTLN ZT IABC ABC ABC0 	

(11.58)

but:

	 [ ] [ ] [ ]= ⋅VTLN AV VtABC anbc 	

and:

	 [ ][ ] [ ]= ⋅I d IABC t abc 	

therefore:

	 [ ][ ] [ ] [ ] [ ] [ ]= ⋅ + ⋅ ⋅VLN AV Vt ZT d IABC anbc t abc0
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The “ideal” secondary voltages as a function of the secondary terminal 
voltages are:

	 [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

= + ⋅

= + ⋅ ⋅

Vt V Zt ID

Vt V Zt Dd I

anbc anbc anbc abc

anbc anbc anbc abc
	 (11.59)

Substitute Equation 11.59 into Equation 11.58:

	

( )
( )

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

= ⋅ + ⋅ ⋅ + ⋅

= ⋅ + ⋅ ⋅ + ⋅ ⋅

VLN AV V Zt Dd I d I

VLN AV V AV Zt Dd ZT d I

ABC anbc anbc abc t abc

ABC anbc anbc t abc0 	

therefore:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅VLN a V b IABC t anbc t abc 	 (11.60)

where

	 [ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

=

= ⋅ ⋅ + ⋅

a AV

b AV Zt Dd ZT d

t

t anbc t0

It is important to know that normally on the backward sweep the node 
voltages are not computed using Equation 11.60. Only the currents are 
calculated back to the source. However, as a check to confirm the final results 
of the power-flow program, Equation 11.60 using the computed secondary 
voltages and currents is used to confirm that the source voltages are the 
same as that which were used in the forward sweep.

Example 11.4

Figure 11.9 shows an ungrounded wye–delta transformer bank servicing 
120/240 V single-phase loads and a three-phase induction motor.

The single-phase loads are rated:

	

SL

SL

SL

3 kVA, 120 V, 0.95 lagging power factor

= 5 kVA, 120 V, 0.90 lagging power factor

= 8 kVA, 240 V, 0.85 lagging power factor

1

2

3

=

The load vector is:

	

=
+
+
+



















i

SL kVA PF

j

j

j
jkvar

for = 1 to 3

/acos( ) =

2.85 0.9367

4.5 2.1794

6.8 4.2143
kW +i i i
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The three-phase induction motor data are:
25 HP, 240 V, impedances:

	

= + Ω

= + Ω

= + Ω

Zs j

Zr j

Zm j

0.0774 0.1843

0.0908 0.1843

0 4.8385

The motor is operating at a slip of 0.035.
The transformer data are:
Lighting transformer: 25 kVA, 7200–240/120 V, = +ZL j0.012 0.017pu

Power transformers: 10 kVA, 7200–240 V, = +ZP j0.016 0.014pu

Source voltages: Balanced line-to-neutral 7200 V
Determine:

	 a.	 Transformer impedances in ohms for the model in Figure 11.9
	 b.	 Transformer forward and backward sweep matrices
	 c.	 Motor phase admittance matrix
	 d.	 Operating currents

		  i.	 Single-phase loads
		  ii.	 Motor

	 e.	 Operating voltages

		  iii.	Single-phase loads
		  iv.	Motor

Compute the winding per-unit impedances for the lighting transformer:

	

( ) ( )

( ) ( )

= ⋅ + ⋅ = +

= = + ⋅ = +

Zpu Z j Z j

Zpu Zpu Z j Z j

0.5 Re 0.8 Im 0.006 0.0136

Re 0.4 Im 0.012 0.0068

L L

L L

0

1 2

A + + +

+

−

−
+

+

−

+

−

−

−−

+ + +

−− −

+ + +

−−
+−

B

C

G
N

Z0
IA Ina

Ibc
IMa

IMc

IMb

Ia
a

c

b

c

In

Ib

I1

I2

I3

Ic

Icb

Iac

IB

IC

VNG

VAN VTAN

Vtan

Vtab

VTBN Vtbc

Vbc

Van

Vnb

Vtca
VTCN

VBN

VCN

S1

S2

Motor

S3

Zc

Zb

Za

−

Z1

FIGURE 11.9
Ungrounded wye–delta bank serving combination loads.
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Convert the lighting transformer impedances to ohms:

	 ( )

= ⋅ = ⋅ =

= ⋅ + = +

Zbase kVLN
kVA

Z j j

1000 7.2 1000
25

2073.6

2073.6 0.006 0.0136 12.446 28.201

hi
hi

2 2

0

	
( )

= ⋅ = ⋅ =

= = ⋅ + = +

Zbase kVLL
kVA

Z Z j j

1000 0.24 1000
25

2.304

2.304
4

0.012 0.0068 0.0069 0.0039

lo
lo

P

2 2

1 2

Convert the per-unit impedances of the power transformers to ohms:

	 ( )

= ⋅ =

= = ⋅ + = +

Zbase

Z Z j j

0.24 1000
10

5.76

5.76 0.016 0.014 0.0922 0.0806

lo

b c

2

Compute the turn’s ratio:

	
= =n 7200

240
30t

Compute the forward sweep matrices:

	

[ ] [ ]= =



















A BV

0.0167 0 0
0.0167 0 0

0 0.0333 0
0 0 0.0333

t

	 [ ] [ ][ ] [ ] [ ] [ ]= ⋅ ⋅ + ⋅B BV ZT d Zt Ddt t anbc0

	

[ ] =

+ − − +
+ − − − −

− − + − −
− − + +





















B

j j j

j j j

j j j

j j j

0.0081 0.0085 0.0012 0.0046 0.0035 0.002

0.0012 0.0046 0.0081 0.0085 0.0035 0.002

0.0154 0.0134 0.0154 0.0134 0.0461 0.0403

0.0154 0.0134 0.0154 0.0134 0.0461 0.0403

t

Compute the backward sweep matrices:
where

	

[ ] [ ]= = ⋅
















=
















a AV n
2 0 0 0
0 0 1 0
0 0 0 1

60 0 0 0
0 0 30 0
0 0 0 30

t t
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[ ]

[ ] [ ] [ ]

[ ]

[ ] [ ] [ ]

⋅ ⋅
⋅ + ⋅ − ⋅ ⋅

− ⋅ ⋅ − ⋅
− ⋅ ⋅ ⋅





















= ⋅ ⋅ + ⋅

=
+ − − +

− − + − −
− − + +



















b n
Z Z

n
Z Z

n
Z

Z Z Z
Z Z Z

b AV Zt Dd ZT d

b

j j j

j j j

j j j

6

5 4 4 3

0.5 0.5 1.5
0.5 0.5 1.5

0.4838 0.5092 0.0691 0.2742 0.2074 0.1175

0.4608 0.4032 0.4608 0.4032 1.3824 1.2096

0.4608 0.4032 0.4608 0.4032 1.3824 1.2096

t
t t t

b b b

c c c

t anbc t

t

1
0
2 1

0
2 1

0

	

[ ] [ ][ ]= ⋅ =
−

− −
−

















d AI Dd
0.0111 0.0111 0
0.0056 0.0056 0.0167
0.0056 0.0056 0.0167

t

Motor admittance matrix:
Define the positive and negative sequence slips:

	

=

= − =

s

s s

0.035

2 1.965

1

2 1

Compute the sequence load resistances and input sequence impedances:

	

= − ⋅ =
−











= + ⋅ +
+ +

=
+
+













k

RL s
s

R

ZM Zs Zm Zr RL
Zm Zr RL

j

j

for = 1 and 2

1 2.5035
0.0446

( ) 1.9778 1.3434

0.1203 0.3622

k
k

k
r

k
k

k

Compute the input sequence admittances:

	
= =

−
−













YM
ZM

j

j
1 0.3460 0.2350

0.8256 2.4865k
k

The sequence admittance matrix is:

	

[ ] = ⋅
⋅

















= −
−

















YM t YM
t YM

j

j

1 0 0

0 0
0 0

1 0 0
0 0.1052 0.2174 0

0 0 1.1306 1.0049

*
012 1

2
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where

	
t 1

3
/30=

The phase admittance matrix is:

[ ] [ ] [ ] [ ]= ⋅ ⋅ =
+ − − +
+ − − −

− − + −



















−YM A YM A

j j j

j j j
j j

0.7453 0.4074 0.1000 0.0923 0.3347 0.4997

0.3547 0.4997 0.7453 0.4074 0.1000 0.0923

0.1000 0.0923 0.3547 0.4997 0.7453 0.4074
abc 012

1

where

	

[ ]

=

=

















a

A a a
a a

1/120

1 1 1
1
1

2

2

Set the source voltage vector:

	

[ ] = −



















VLG

7200/0

7200/ 120

7200/120
ABC

The Mathcad program to compute the voltages and currents is shown 
in Figure 11.10. The starting matrices and the KCL current matrix and 
tolerance are defined as:

	

  =
















  =



















=i start v start Tol
0
0
0

0
0
0
0

0.00001

Note in this program that at the start of each iteration, the transformer 
bank line-to-neutral voltages must first be computed. This is necessary 
because the primary of the wye connection is open and not grounded. 
The program in Figure 11.10 only shows the secondary voltages being 
output. That is done here to conserve space. The output can be increased 
by adding the other voltages and currents of interest to the list at the end 
of the program.
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X          Iabc istart

IDanbc Dd  Iabc

IABC istart

Vold vstart

VTLGABC VLGABC ZT0 IABC

VTLLABC Dv VTLGABC

XX      nt ZDanbc IDanbc

VXLLABC

XX

VTLLABC2

VTLLABC3

VTLNABC Dx VXLLABC

VLNABC VTLNABC ZT0 IABC

Vanbc At VLNABC Bt Iabc

Errorj Vanbcj
Voldj

j      1   4for

break  if  max(Error)     Tol

Vld

Vanbc1

Vanbc2

Vanbc1
Vanbc2

VM

Vld3

Vanbc3

Vanbc4

ILi

SLi 1000

Vldi

i     1   3for

IM       YMabc VM

Iabc DI IL IM

IDanbc Dd Iabc

IABC dt Iabc

Vold Vanbc

n     1   10for

Out1 Vanbc

Out

FIGURE 11.10
Mathcad program for Example 11.4.
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After four iterations, the results are:
Currents:

	

[ ]

[ ]

[ ]

[ ]

=
−
−
−

















=
−















=
−















=
−

−

















I

I

I

I

25.6/ 18.6
42.6/ 26.2
34.1/ 32.2

56.3/ 65.6
56.1/176.6
58.1/54.6

108.8/ 45.5
129.6/161.9

58.1/54.6

2.57/ 30.6
1.66/ 175.0
1.56/111.1

L

M

abc

ABC

Voltages:
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=
−
−
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

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−
−
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

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


VLN

V
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7227.8/120.4

117.4/ 0.39

117.3/ 0.38
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236.1/119.7

ABC

anbc

	

V

VM
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ld[ ]
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=

−
−
−



















=
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−











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
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



483Center-Tapped Transformers and Secondaries

For a check of the accuracy of the results, the backward sweep, using 
the computed secondary voltages and currents, is used to compute the 
primary terminal line-to-neutral voltages.

	

[ ][ ] [ ] [ ] [ ]

[ ]

= ⋅ + ⋅

=
−
−

















VLN a V b I

VLN
7140.8/ 0.02
7231.7/ 120.4
7227.8/120.4

ABC t anbc t abc

ABC

It is noted that these voltages exactly match the initially computed termi-
nal line-to-neutral voltages.

The motor voltage and current unbalances are computed to be:

	

=

=

V

I

0.3382%

2.2205%

unbalance

unbalance

11.2.2 � Summary

It is important to note that the turn’s ratio is given by:

	
=n kVLN

kVLL
t

hi

lo

	 (11.61)

In the derivation of the forward and backward matrices, it was found that 
all of the matrices can be defined by the combination of matrices based upon 
basic circuit theory. The definitions are as follows:

	

a AV

b AV Zt Dd ZT d

d AI Dd

A BV

B BV ZT d Zt Dd

t

t anbc t

t

t

t t anbc

0

0

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

[ ]

[ ] [ ]

[ ] [ ] [ ] [ ]

=

= ⋅ ⋅ + ⋅

= ⋅

=

= ⋅ ⋅ + ⋅

	 (11.62)

The individual matrices in Equation 11.62 define the relationship between 
parameters by:

	

[ ][ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

= ⋅

= ⋅

= ⋅

= ⋅

ID Dd I

VTLN AV Vt

I AI ID

Vt BV VT

anbc abc

ABC anbc

ABC anbc

anbc ABC

	 (11.63)
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The definitions of Equations 11.62 and 11.63 will be used to develop the 
models for the open wye-open delta connections.

11.3 � Open Wye–Open Delta Transformer Connections

Often, an open wye–open delta transformer consisting of one lighting trans-
former and one power transformer will be used to serve a combination 
single-phase and three-phase loads. For this connection, the neutral of the 
primary wye-connected windings must be grounded.

11.3.1 � The Leading Open Wye–Open Delta Connection

In the “leading” connection, the voltage applied to the lighting transformer 
will lead the voltage applied to the power transformer by 120°. The leading 
open wye–open delta connection is shown in Figure 11.11.

The voltage phasors at no-load for the leading connection in Figure 11.11 
are shown in Figure 11.12.

−
Vtbc

+

B

+ +

− − −

+
+

+

+
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N N

C
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IA z0

Zg

VAN
VTAN

VTBNVAG
IN

IC

+

+

+

++

−

−
−

−

a

b

c

n n

2

Vtan

Vca

Vtnb
Ibn

Ia

In

Ib

Ic

Ina

Icb

Vbc

Van

Vnb
z2

z1

zb

FIGURE 11.11
Leading open wye–open delta connection.

Vab

Vca

VbcVBG

VAG

FIGURE 11.12
Leading open wye–open delta voltage phasors.



485Center-Tapped Transformers and Secondaries

Notice in Figure 11.12 that there are three line-to-line voltages. Two of those 
voltages come directly from the primary voltages applied to the lighting and 
power transformers. The third voltage is a result of the three line-to-line 
voltages and must be equal to zero.

11.3.2 � The Lagging Open Wye–Open Delta Connection

In the “lagging” connection, the voltage applied to the lighting transformer 
will lag the voltage applied to the power transformer by 120°. The lagging 
open wye–open delta connection is shown in Figure 11.13.

The voltage phasors at no-load for the lagging connection in Figure 11.13 
are shown in Figure 11.14.

It is very important to note that for both connections, the phase sequence 
on the secondary is a–b–c. That will always be the assumption, but great care 
must be taken to ensure that the labeling of the phases results in the correct 
a–b–c sequence. Note for both connections the primary neutral is grounded 
through an impedance Zg.

B
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+

+

+

+

+

+

+

− −
−

−

−

−
−

+
+

+
A

N
N

a

b

c

n n

2

C

IB

IA z0

Zg

VAN
VTAN

Vtan

Vtca

Vtnb

Ibn

Ia

IR

Ib

Ic

Ina

Iac

VTCN

VXG

V23

V1n

Vn2IN

IC

z2

z1

zc

FIGURE 11.13
Lagging open wye–open delta connection.
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Vbc

VAG

VCG

FIGURE 11.14
Lagging open wye–open delta voltage phasors.
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11.3.3 � Forward Sweep

There will be a slight difference in the matrices for the leading and lagging 
connections. In order to define the matrices, the subscript L will be used on 
various matrices.

	

L

L

= 1 leading connection

= 2 lagging connection
	 (11.64)

The “ideal” primary transformer voltages for both connections are:

	

VT
VT
VT

V
V
V

Z Z Z Z

Z Z Z

Z Z Z

I
I
I

VTLN VTLG Z G I0

AN

BN
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g g g

g g g

g g g
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ABC ABC ABC
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[ ] [ ] [ ] [ ]

















=

















−

+

















⋅

















= − ⋅ 	

(11.65)

where

	

[ ] =

+

















Z G

Z Z Z Z

Z Z Z

Z Z Z

0
g g g

g g g

g g g

0

	

The “ideal” secondary transformer voltages are:

	 [ ] [ ] [ ]= ⋅Vt BV VTLNanbc L L ABC

Leading Connection

	

[ ] [ ]=

















= ⋅
















Vt
Vt
Vt
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BV
n
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0.5 0 0
0 1 0
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ab
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1 1

	

(11.66)

Lagging Connection

	

[ ] [ ]=

















= ⋅





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
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
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Vt
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Substitute Equation 11.65 into Equation 11.66:

	

( )[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

= ⋅ − ⋅

= ⋅ − ⋅ ⋅

Vt BV VLG Z G I

Vt BV VLG BV Z G I

0

0

anbc L L ABC ABC

anbc L L ABC L ABC

	 (11.67)

The transformer secondary currents are defined as:

	

[ ]

[ ]

=
















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














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I
I
I

ID
I
I
I

Leading connection:
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anbc
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anbc
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bn
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1

2

	 (11.68)

The primary line currents as a function of the secondary open delta 
currents are:

	 [ ] [ ] [ ]= ⋅I AI IDABC L anbc L
	 (11.69)

where

	

AI
n

AI
n

1 0.5 0.5 0
0 0 1
0 0 0

1 0.5 0.5 0
0 0 0
0 0 1

t
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1

2

[ ]

[ ]

= ⋅
















= ⋅
















The secondary open delta currents as a function of the secondary line 
currents are:

	 [ ][ ] [ ]= ⋅ID Dd Ianbc L L abcn  	 (11.70)
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where

	

I

I
I
I
I

Dd

Dd

1 0 0 0
0 1 1 0
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1 0 1 0
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0 0 1 0
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c
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





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
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
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Substitute Equations 11.69 and 11.70 into Equation 11.67:

	

[ ]

[ ]

[ ]

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]
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ID Dd I
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0

0

anbc L L abcn
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anbc L L ABC L ABC
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(11.71)

The transformer bank secondary voltages are:

	 [ ] [ ] [ ] [ ]= − ⋅V Vt Zt IDabc L anbc L sec anbc L 	 (11.72)

where:
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but:

	

[ ]
[ ]
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[ ] [ ] [ ] [ ]

=

= − ⋅

ID Dd I

V Vt Zt Dd I

.

.

anbc L L abcn
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Substitute Equation 11.71 into Equation 11.72:
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[ ]

[ ]
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[ ]
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(11.73)

The secondary line voltages are:
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where
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Substitute Equation 11.73 into Equation 11.74:
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(11.75)

Define:
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11.3.4 � Backward Sweep

Substitute Equation 11.70 into Equation 11.71.

	

[ ]

[ ]
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	 (11.76)

where

	 d AI Ddt L L L[ ] [ ][ ]= ⋅

Example 11.5

For the system in Example 11.4, the transformer bank is changed to open 
wye–open delta. Analyze the system using the leading and lagging 
connections. The Mathcad program for the analyses of the leading and 
lagging connections are shown in Figure 11.15.

Leading Connection with L = 1:
Appling Equations 11.75 and 11.76, the forward and backward sweep 

matrices are:
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The secondary load voltages are:

	

V
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FIGURE 11.15
Mathcad program for the leading and lagging connections.
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The secondary line currents are:
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The primary line currents are:
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The motor voltage unbalance is computed to be 0.96%.
The motor current unbalance is computed to be 5.47%.
The operating kVA of the lighting and power transformers are:
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Lagging connections L = 2:
Appling Equations 11.75 and 11.76, the forward and backward sweep 

matrices are:
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The secondary load voltages are:
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The secondary line currents are:

	

I

112.9/ 47.1

126.0/159.5

56.3/61.2

17.6/ 37.8

abcn[ ] =

−

−





















The primary line currents are:
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The motor voltage unbalance is computed to be 1.52%.
The motor current unbalance is computed to be 8.32%.
The operating kVA of the lighting and power transformers are:
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Note that the voltage and current unbalances for the lagging connection 
are greater than the voltage and current unbalances for the leading 
connection.

11.4 � Four-Wire Secondary

Typically, the combination single-phase and three-phase loads will not be 
directly connected to the transformer but rather will be connected through 
a length of open four-wire secondary or a quadraplex cable secondary 
(Figure 11.16).
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The first step in modeling the open four-wire or quadraplex cable secondary 
is to compute the self- and mutual impedances. As always, Carson’s equations 
are used to compute the 4 × 4 primitive impedance matrix. Because the 
secondary neutral is grounded at both ends, the Kron reduction method is 
used to eliminate the fourth row and column, which results in the 3 × 3 phase 
impedance matrix. Chapter 4 gives the details on the application of Carson’s 
equations and the Kron reduction.

The 3 × 3 phase impedance matrix gives the self-impedance of the three 
line conductors and the mutual impedance between those conductors. The 
voltage drops on the three line conductors are:

	

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

v Zs I Zs I Zs I

v Zs I Zs I Zs I

v Zs I Zs I Zs I

a aa a ab b ac c

b ba a bb b bc c

c ca a cb b cc c

	 (11.77)

The model of the four-wire secondary will again be in terms of the abcd and 
AB generalized matrices. The first step in developing the model is to write 
KVL around the three “window” loops and the outside loop in Figure 11.16.

	

= +

= −

= + −

= + −

V VL v

V VL v

V VL v v

V VL v v

an an a

nb nb b

bc bc b c

ca ca c a

	 (11.78)

Substitute Equation 11.77 into Equation 11.78.

A
H1 Van Ia

Ib

a
+

+

+

Motor

b

c

Ic

InVab

Vbc

Transformer
bank

H2

H3

B

C

G

[Zsaa]

[Zsbb]

[Zsab]

[Zsbc] [Zsca]

VIan
IL1 S1

S2

S3
IL2

IL3

IMb

IMc

IMaVIrb

VIbc

[Zscc]
−

FIGURE 11.16
Four-wire secondary serving combination loads.
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	[ ] [ ] [ ] [ ]





















=





















+
− − −

− − −
− − −





















⋅

















= + ⋅

V
V
V
V

VL
VL
VL
VL

Zs Zs Zs
Zs Zs Zs

Zs Zs Zs Zs Zs Zs
Zs Zs Zs Zs Zs Zs

I
I
I

V VL Zs I

an

nb

bc

ca

an

nb

bc

ca

aa ab ac

ba bb bc

ba ca bb cb bc cc

ca aa cb ab cc ac

a

b

c

anbc anbc abc abc 	
�

(11.79)

Equation 11.79 is in the form of:

	 [ ][ ] [ ] [ ] [ ]= ⋅ + ⋅V a VL b Ianbc s anbc s abc 	 (11.80)

where

	

[ ]

[ ] =



















=
− − −

− − −
− − −





















a

b

Zs Zs Zs
Zs Zs Zs

Zs Zs Zs Zs Zs Zs
Zs Zs Zs Zs Zs Zs

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

s

s

aa ab ac

ba bb bc

ba ca bb cb bc cc

ca aa cb cb cc ac

Because there are no shunt devices between the transformer and the loads, 
the currents leaving the transformers are equal to the line currents serving 
the loads. Therefore:

	

d
1 0 0
0 1 0
0 0 1

s[ ] =
















	 (11.81)

The matrices for the forward sweep are:

	

A a

B b

s s

s s[ ]

[ ] [ ]

[ ]

=

=
	 (11.82)
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Example 11.6

The configuration of a quadraplex secondary cable is shown in 
Figure 11.17.

The phase conductors for the quadraplex cable are 1/0 AA, and the 
grounded neutral conductor is 1/0 ACSR. The insulation thickness of the 
conductors is 80 mil.

Determine the phase impedance matrix and the a, b, d, and A and B 
matrices for the quadraplex cable where the length L is 100 ft.

From Appendix A:
1/0 AA: GMR = 0.0111 ft, Diameter = 0.368 in., Resistance = 0.97 Ω/mile
1/0 ACSR: GMR = 0.00446 ft, Diameter = 0.398 in., Resistance = 1.12 Ω/mile
The spacing matrix for this configuration with the GMRs on the 

diagonal is:

	

D

0.0111 0.0440 0.0440 0.0386
0.0440 0.0111 0.0440 0.0698
0.0440 0.0440 0.0111 0.0386
0.0386 0.0698 0.0386 0.0045

[ ] =



















Plugging these spacings into Carson’s equations yields the primitive 
impedance matrix:

	

zp

j j j j
j j j j
j j j j
j j j j

1.0653 1.5088 0.0953 1.3417 0.0953 1.3417 0.0953 1.3577

0.0953 1.3417 1.0653 1.5088 0.0953 1.3417 0.0953 1.2857

0.0953 1.3417 0.0953 1.3417 1.0653 1.5088 0.0953 1.3577

0.0953 1.3577 0.0953 1.2857 0.0953 1.3577 1.2153 1.6195

[ ] =

+ + + +
+ + + +
+ + + +
+ + + +





















The Kron reduction yields the phase impedance matrix:

b

c

n

a

FIGURE 11.17
1/0 quadraplex.
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z

j j j

j j j

j j j

1.5068 0.7076 0.5106 0.5811 0.5368 0.5405

0.5106 0.5811 1.4558 0.7868 0.5106 0.5811

0.5368 0.5405 0.5106 0.5811 1.5068 0.7076
abc[ ] =

+ + +
+ + +
+ + +



















The matrices for 100 ft of this quadraplex are:

	

= ⋅ =
+ + +
+ + +
+ + +



















Zs z L
j j j

j j j

j j j
5280

0.0258 0.0134 0.0097 0.0110 0.0102 0.0102

0.0097 0.0110 0.0276 0.0149 0.0097 0.0110

0.0102 0.0102 0.0097 0.0110 0.0285 0.0134
abc

	

  =   =



















  =   =

+ + +
− − − − − −
− + + − −
− − +





















  =
















a A

b B

j j j

j j j

j j j
j j

d

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.0285 0.01314 0.0097 0.0110 0.0102 0.0102

0.0097 0.0110 0.0276 0.0149 0.0097 0.0110

0.0005 0.0008 0.0179 0.0039 0.0189 0.0024

0.0184 0.0032 0 0.0184 0.0032

1 0 0
0 1 0
0 0 1

q q

q q

q

11.5 � Putting It All Together

Shown in Figure 11.18 is the IEEE 4 Node Test Feeder [2], which will be used 
to study each of the three-phase wye–delta (closed and open) transformer 
connections developed in this chapter.

11.5.1 � Ungrounded Wye–Delta Connection

The IEEE 4 Node Text Feeder consists of an infinite 12.47 kV source con-
nected to a 5-mile long primary overhead line serving a three-phase trans-
former bank. The secondary is 100 ft long and is a four-wire quadraplex cable 
serving single-phase 120 and 240 V loads and a three-phase induction motor. 
With the known source voltage, a complete analysis of the feeder is desired. 
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This will include the voltages at all nodes and the currents flowing on the 
primary and secondary lines.

Based upon the techniques presented in this text, the steps in the analysis 
are as follows:

	 1.	Determine the forward and backward sweep matrices [A], 
[ ][ ]B d, and  for the primary and secondary lines and the transformer 

bank.
	 2.	The induction motor is to be modeled using the equivalent motor 

admittance matrix. The matrix [ ]YMabc  should be computed based 
upon the slip.

The matrices for the overhead line are developed in Chapter 4. The matri-
ces for the transformer bank and quadraplex cable have been developed in 
this chapter.

Example 11.7

The system in Figure 11.18 is to be analyzed with the following data.
A 5-mile long overhead three-phase line is between nodes 1 and 2. This 

overhead line is the same as the line that is described in Problem 4.1. The 
generalized matrices for the primary line are computed to be:

	

  =   =   =
















  =
















  =   =
+ + +
+ + +
+ + +



















a d A c

b B

j j j

j j j

j j j

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

1.6873 5.2391 0.7674 1.9247 0.7797 2.5084

0.7674 1.9247 1.7069 5.1742 0.7900 2.1182

0.7797 2.5084 0.7900 2.1182 1.7326 5.0897

p p p p

p p

The transformer bank between nodes 2 and 3 is an ungrounded wye–
delta and is the same as in Example 11.4 where the parameter matrices 
are computed as:

Induction motor

Single-phase loads

100 ft

Four-wire, gr. wye

5 mile

Infinite bus

12,470 V

1/0 quadraplex

FIGURE 11.18
IEEE 4 Node Test Feeder.
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A

0.0167 0 0
0.0167 0 0

0 0.0333 0
0 0 0.0333

t[ ] =



















	

B

j j j

j j j
j j j

j j j

0.0081 0.0085 0.0012 0.0046 0.0035 0.002

0.0012 0.0046 0.0081 0.0085 0.0035 0.002

0.0154 0.0134 0.0154 0.0134 0.0461 0.0403

0.0154 0.0134 0.0154 0.0134 0.0461 0.0403

t[ ] =

+ − − +
+ − − − −

− − + − −
− − + +





















	

d
0.0111 0.0111 0
0.0056 0.0056 0.0167
0.0056 0.0056 0.0167

t[ ] =
−

− −
−

















The 100-ft quadraplex secondary is the same as in Example 11.6 where 
the parameter matrices are computed as:

	

  =



















  =

+ + +
− − − − − −
− + + − −
− − +





















  =
















A

B

j j j

j j j

j j j
j j

d

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.0285 0.01314 0.0097 0.0110 0.0102 0.0102

0.0097 0.0110 0.0276 0.0149 0.0097 0.0110

0.0005 0.0008 0.0179 0.0039 0.0189 0.0024

0.0184 0.0032 0 0.01840 0.0032

1 0 0
0 1 0
0 0 1

q

q

q

The single-phase loads at node 4 are:

	

S

S

S

3.0 kVA, 0.95 lag, 120 V

5.0 kVA, 0.90 lag, 120 V

8.0 kVA, 0.85 lag, 240 V

1

2

3

=

=

=

The three-phase induction motor is the same as in Example 11.4. With a 
slip of 0.035, the shunt admittance matrix was computed to be:

	

[ ] =
− − − +
+ − − −

− − + −



















YM

j j j

j j j
j j

0.7543 0.4074 0.1000 0.0923 0.3347 0.4997

0.3547 0.4997 0.7453 0.4074 0.1000 0.0923

0.1000 0.0923 0.3547 0.4997 0.7453 0.4074
abc
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The Mathcad program to perform the analysis is shown in Figure 11.19.
The source at node 1 is an ideal source of 12.47 kV line-to-line. The 

specified source line-to-ground voltages are:

	

[ ] = −



















ELG

7200/0

7200/ 120

7200/120
ABC

After the forward and backward sweep matrices are computed for each 
of the components, a Mathcad program is used to analyze the system. 
The Mathcad program of Example 11.4 is modified to include the pri-
mary line and the secondary quadraplex secondary voltage drops. After 
eight iterations, the voltage errors are less than the desired tolerance of 
0.00001. The final motor and load voltages are:

	

[ ]

[ ]

=
−

−

















= −
−

















VM

V

230.5/ 0.1
232.8/ 119.5
233.6/119.7

115.9/0.2
114.5/ 0.4
230.5/ 0.1

abc

L

The final motor and load currents are:

	

[ ]

[ ]

=
−















=
−
−
−

















IM

IL

53.8/ 66.0
55.8/178.8
58.7/54.7

25.9/ 18.0
43.7/ 26.2
34.7/ 31.9

abc

abc

The final transformer terminal line-to-neutral voltages and currents are:

	

[ ]

[ ]

=
−

−

















=
−
−

















VLN

I

7135.6/ 0.1
7226.6/ 120.4
7224.5/120.4

2.5643/ 29.7
1.6869/ 174.4
1.5355/110.9

ABC

ABC
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X           I.abc istart

ID.anbc Dd I.abc

I.ABC istart

V.old vstart

VLG.ABC A.p ELG.ABC B.p I.ABC

VTLG.ABC VLG.ABC ZT.0 I.ABC

VTLL.ABC Dv VTLG.ABC

XX        n.t ZD.anbc ID.anbc

VXLL.ABC

XX

VTLL.ABC2

VTLL.ABC3

VTLN.ABC Dx VXLL.ABC

VLN.ABC VTLN.ABC ZT.0 I.ABC

V.anbc A.t VLN.ABC B.t I.abc

VL.anbc A.q V.anbc B.q I.abc

Errorj V.anbcj
V.oldj

j      1   4for

break   if  max(Error)     Tol

VL

VL.anbc1

VL.anbc2

VL.anbc1
VL.anbc2

VM

VL3

VL.anbc3

VL.anbc4

ILi

SLi 1000

VLi

i     1   3for

IM       YM.abc VM

I.abc DI IL IM

ID.anbc Dd I.abc

I.ABC d.t I.abc

V.old V.anbc

n     1   10for

Out1 V.anbc

Out

FIGURE 11.19
Mathcad program for ungrounded wye–delta connection.
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The percent motor voltage unbalance is:

	

∑= =

= − =
















= ⋅ = ⋅ =

=

V VM

dV VM V

V
dV

V

232.3

1.8345
0.5258
1.3087

max( )
100

1.8345
232.3

100 0.7897%

avg k

k

i avg

unbalance
avg

1

3

The percent motor current unbalance is:

	

∑= =

= − =
















= ⋅ = ⋅ =

=

I VM

dI IM I

I
dI

I

56.1305

2.3035
0.2867
2.5902

max( )
100

2.5902
56.1305

100 4.6146%

avg k

k

i avg

unbalance
avg

1

3

The operating kVA of each of the transformers is:

	

( )

=

=
⋅

=



















i

kVA
VLN I

for: 1,2,3

1000

18.3/29.6

12.2/54.0

11.1/9.5

kVA
*

ABC ABCi i

If the input or output power of the motor had been specified instead of 
the slip, after each convergence of the modified ladder method a new 
value of slip would have to be computed for the motor. This is a double 
iterative process that works. The first step would be to use the initial 
motor voltages after the first forward sweep to compute the necessary 
slip. Once the slip has been determined, the backward sweep begins. 
The forward/backward sweeps would continue until convergence. The 
converged motor voltages would be used to compute the new required 
slip. Again, the forward/backward sweeps are used. This process 
continues until both the specified motor power and the specified source 
voltages are matched.

Example 11.7 is intended to demonstrate how the ladder forward/
backward sweep iterative method works. The example used an 
ungrounded wye–delta transformer bank.
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11.5.2 � Open Wye–Delta Connections

The same routine used in Example 11.7 can be used for the leading and 
lagging open wye–open delta connections by using the A, B, and d matri-
ces for each connection. In addition, the terminal line-to-neutral voltages 
are computed directly from the transformer bank terminal line-to-ground 
voltages. That eliminates the method of computing the line-to-neutral volt-
ages in Example 11.7.

The modified Mathcad program is shown in Figure 11.20.
Note in Figure 11.20 that L = 1 for the leading connection and L = 2 for the 

lagging connection.
The only matrix changes from the closed wye–delta connection are the 

matrices associated with the transformer connection.

Example 11.8

Compute the node voltages and line currents for the leading and lagging 
open wye–delta connections. The grounding impedance is 5 Ω.

Leading connection L = 1:

	

[ ]

[ ]

[ ]

=

− −



















=

+ − − − −
+ − − − −

− −
− − + +





















=
− −

−

















A

B

j j j

j j j

j j

d

0.0167 0 0
0.0167 0 0

0 0.0333 0
0.0333 0.0333 0

0.0118 0.0118 0.0048 0.0078 0.0076 0.0078 0

0.0048 0.0078 0.0118 0.0118 0.0145 0.0118 0

0.0028 0.0028 0.1005 0
0.0194 0.0196 0.0194 0.0196 0.1227 0.1002 0

0.0167 0.0167 0.0167 0
0 0 0.0333 0
0 0 0 0

t

t

t

After six iterations, the voltage errors are less than the desired tolerance 
of 0.00001. The final motor and load voltages are:

	

[ ]

[ ]

= −



















= −



















VM

V

229.3/0.1

234.2/ 121.2

230.5/119.2

115.4/0.4

113.8/ 0.1

229.3/0.1

abc

L
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X          Iabcn vstart

IDanbc DdL Iabcn

IABC istart

Vold vstart

VLGABC Ap ELGABC Bp IABC

VLNABC VLGABC Z0GI ABC

Vanbc At VLGABC Bt Iabcn

VLanbc Aq Vanbc Bq Iabcn

Errorj Vanbcj
Voldj

j      1   4for

break  if  max(Error)    Tol

VL

VLanbc1

VLanbc2

VLanbc1
VLanbc2

VM

VL3

Vanbc3

Vanbc4

ILi

SLi 1000

VLi

i     1   3for

IM       YMabc VM

Iabcn AIMIM AILL IL

IDanbc DdL Iabcn

IABC dt Iabcn

Vold Vanbc

n     1   20for

Out1 Vanbc

Out

FIGURE 11.20
Mathcad program for open wye–open delta connections.
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The final motor and load currents are:
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The final transformer terminal line-to-neutral voltages and currents are:
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The percent motor voltage unbalance is:
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The percent motor current unbalance is:
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The operating kVA of each of the transformers is:
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Lagging connection L = 2:

	
[ ]

[ ]

[ ]

=
− −

















=

+ − − +
+ − − +

− − + − −
− +



















=
− −











A

B

j j j
j j j

j j
j

d

0.0167 0 0
0.0167 0 0
0.0333 0 0.0333

0 0 0.0333

0.0118 0.0118 0.0048 0.0078 0.0145 0.0188 0
0.0048 0.0078 0.0118 0.0118 0.0076 0.0078 0

0.0194 0.0196 0.0194 0.0196 0.1227 0.1002 0
0.0028 0.0028 0.1005 0.0806 0

0.0167 0.0167 0.0167 0
0 0 0 0
0 0 0.0333 0

t

t

t

After six iterations, the voltage errors are less than the desired tolerance 
of 0.00001. The final motor and load voltages are:
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The final motor and load currents are:
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The final transformer terminal line-to-neutral voltages and currents are:
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The percent motor unbalance is:
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The percent motor unbalance is:
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The operating kVA of each of the transformers is:
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11.5.3 � Comparisons of Voltage and Current Unbalances

It is interesting to compare the induction motor voltage and current 
unbalances for the closed and open wye–delta connections where, for 
all connections, the lighting transformer is rated 25 kVA and the power 
transformer is rated 10 kVA.

Table 11.1 demonstrates why the Lagging connection should be selected 
if an open connection is going to be used. It has also been shown that the 
25-kVA lighting transformer and the 10-kVA power transformer in the open 
connection leads to overloading for both connections. If the open connec-
tion is changed to the lighting transformer being 37.5 kVA and the power 
transformer, 15 kVA, the overloading is avoided, but the voltage and current 
unbalances increase. The comparison is shown in Table 11.2.

11.6 � Summary

This chapter has developed the models for the single-phase center-tapped 
transformer and for the three-phase banks using the center-tapped trans-
former. Examples have demonstrated how the models can be analyzed. The 
most important feature is demonstrated in Example 11.7 where not only is 
the transformer bank modeled but also the primary and secondary lines 
along with the admittance matrix model of the induction motor.

The primary purpose of this chapter is to bring the total concept of 
distribution analysis to the forefront. Every element of a distribution feeder 
can be modeled using the generalized matrices. When all of the matrices 
are known, the modified ladder forward/backward sweep iterative routine 

TABLE 11.2

Voltage and Current Motor Unbalances

Connection Voltage Unbalance (%) Current Unbalance (%)

Closed wye–delta 0.3382 2.2205
Leading open wye–delta 1.3132 9.4592
Lagging open wye–delta 1.2559 3.5248

TABLE 11.1

Voltage and Current Motor Unbalances

Connection Voltage Unbalance (%) Current Unbalance (%)

Closed wye–delta 0.3382 2.2205
Leading open wye–delta 1.2557 9.7840
Lagging open wye–delta 1.2236 5.3684
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is used to compute all node voltages and line currents in the system. As 
demonstrated in the examples, a Mathcad program can be developed to do 
the analyses of a simple radial feeder with no laterals. For complex systems, 
the commercial program, such as Windmil, should be used.

Problems

11.1 A 25 kVA, center-tapped single-phase transformer is rated:

25 kVA, 7200–240/120, RA = 0.012 pu, XA = 0.017 pu
The transformer serves the following constant PQ loads:
5 kVA, 0.95 PF lag at nominal 120 V
8 kVA, 0.90 PF lag at nominal 120 V
10 kVA, 0.85 PF lag at nominal 120 V

Determine the following when the primary transformer voltage is 6900 V:

	 a.	The forward and backward matrices A B d, , andt t t[ ][ ] [ ]
	 b.	Load voltages, secondary transformer currents, and load currents
	 c.	Primary current

11.2 The transformer in Problem 11.1 is connected to the same loads through 
200 ft of three-wire open-wire secondary. The conductors are 1/0 AA, and 
the spacings between conductors are:

D12 = 6 in., D23 = 6 in., D13 = 13 in.

	 a.	Determine the secondary impedances and matrices.
	 b.	The primary source voltage is 7350 V; determine the load voltages.
	 c.	Determine the primary, secondary, and load currents.

11.3 Combination single-phase loads and a three-phase induction motor 
are served from an ungrounded wye–delta transformer bank as shown 
in Figure 11.9. The single-phase loads are to be modeled as constant 
impedance:

S1 = 15 kVA, 0.95 lag, S2 = 10 kVA, 0.90 lag, S3 = 25 kVA, 0.85 lag

The three-phase induction motor has the following parameters:

25 kVA, 240 V
Rs = 0.035 pu, Rr = 0.0375 pu, Xs = Xr = 0.10 pu, Xm = 3.0 pu

Slip = 0.035
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The transformers are rated:

Lighting transformer: 50 kVA, 7200–240/120 V, Z = 0.011 + j0.018 pu
Power transformers: 25 kVA, 7200–240 V, Z = 0.012 + j0.017 pu

The loads are served through 100 ft of quadraplex consisting of three 2/0 AA 
insulated conductors and one 2/0 ACSR conductor. The insulation thickness 
is 80 mil.

The transformer bank is connected to a balanced 12.47 kV (line-to-line) source.
Determine the following:

	 a.	The forward and backward sweep matrices for the transformer 
connection

	 b.	The forward and backward sweep matrices for the quadraplex
	 c.	The constant impedance values of the three-phase loads
	 d.	The single-phase load voltages
	 e.	The line-to-line motor voltages
	 f.	The primary and secondary line currents

11.4 Repeat Problem 11.3 if the loads are being served from a “leading” open 
wye–open delta transformer bank. The transformers are rated:

Lighting transformer: 75 kVA, 7200–240.120 V, Z = 0.010 + j0.021 pu
Power transformer: 37.5 kVA, 7200–240 V, Z = 0.013 + j0.019 pu

11.5 Repeat Problem 11.3 only rather than specifying the slip; the input real 
power to the motor is to be 20 kW. This will require a double iterative process.

	 a.	Determine the slip.
	 b.	Determine the same voltages and currents as in Problem 11.4.
	 c.	Determine the input kVA and power factor of the motor.

WindMil Homework Assignment

Use the system that was developed in Chapter 10.

	 1.	Add the single-phase center tap transformer of Example 11.1 to node 
8. The transformer serves single-phase loads through 100 ft of triplex 
as defined in Example 11.2. The loads are:

	 a.	 S1: 10 kW at 95% power factor lagging
	 b.	 S2: 15 kW at 90% power factor lagging
	 c.	 S12: 25 kW at 85% power factor lagging
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	 2.	Add the transformer, secondary, single-phase, and motor loads of 
Example 5 to node 9.

	 a.	 Specify a slip of 3.5% for the motor.
	 3.	Add an open wye–open delta transformer bank to node 11. The 

transformers are:
	 a.	 Lighting: 50 kVA, 7200–120/240 center tap, Z = 2.11, X/R = 1.6364
	 b.	 Power: 25 kVA, 7200, 240, Z = 2.08, X/R = 1.4167
	 c.	 The lighting transformer is connected to phase b.

	 d.	 The power transformer is connected to phase c.

	 e.	 The loads are served by 150 ft of 1/0 quadraplex as defined in 
part 1.

	 f.	 The motor is the same as part 2. The motor is to operate at 20 kW.
	 4.	At node 10, add a three-phase delta–delta transformer.
	 a.	 kVA = 500
	 b.	 Voltage = 12.47 kV line-to-line–0.480 kV line-to-line
	 c.	 Z = 1.28%, X/R = 1.818
	 d.	 Connect a “swing” generator to the transformer
	 i.	 Supply 350 kW
	 ii.	 Hold voltage at 1.02 per-unit
	 5.	Make whatever changes are necessary to satisfy all of the following 

conditions:
	 a.	 Phase power factor at the source to be not less than 95% lagging
	 b.	 The load voltages must not be less than:
	 i.	 Node: 120 V
	 ii.	 Transformer secondary terminal: 114 V
	 c.	 The voltage unbalance at either of the motors to not exceed 3%
	 d.	 Regulator must not be at tap 16 on any phase
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Appendix A: Conductor Data

Size Stranding Material
DIAM 

(in.)
GMR 

(ft)
RES 

(Ω/mile)
Capacity 

(A)

1 ACSR 0.355 0.00418 1.38 200
1 7 STRD Copper 0.328 0.00992 0.765 270
1 CLASS A AA 0.328 0.00991 1.224 177
2 6/1 ACSR 0.316 0.00418 1.69 180
2 7 STRD Copper 0.292 0.00883 0.964 230
2 7/1 ACSR 0.325 0.00504 1.65 180
2 AWG SLD Copper 0.258 0.00836 0.945 220
2 CLASS A AA 0.292 0.00883 1.541 156
3 6/1 ACSR 0.281 0.0043 2.07 160
3 AWG SLD Copper 0.229 0.00745 1.192 190
4 6/1 ACSR 0.25 0.00437 2.57 140
4 7/1 ACSR 0.257 0.00452 2.55 140
4 AWG SLD Copper 0.204 0.00663 1.503 170
4 CLASS A AA 0.232 0.007 2.453 90
5 6/1 ACSR 0.223 0.00416 3.18 120
5 AWG SLD Copper 0.1819 0.0059 1.895 140
6 6/1 ACSR 0.198 0.00394 3.98 100
6 AWG SLD Copper 0.162 0.00526 2.39 120
6 CLASS A AA 0.184 0.00555 3.903 65
7 AWG SLD Copper 0.1443 0.00468 3.01 110
8 AWG SLD Copper 0.1285 0.00416 3.8 90
9 AWG SLD Copper 0.1144 0.00371 4.6758 80
10 AWG SLD Copper 0.1019 0.00330 5.9026 75
12 AWG SLD Copper 0.0808 0.00262 9.3747 40
14 AWG SLD Copper 0.0641 0.00208 14.8722 20
16 AWG SLD Copper 0.0508 0.00164 23.7262 10
18 AWG SLD Copper 0.0403 0.00130 37.6726 5
19 AWG SLD Copper 0.0359 0.00116 47.5103 4
20 AWG SLD Copper 0.032 0.00103 59.684 3
22 AWG SLD Copper 0.0253 0.00082 95.4835 2
24 AWG SLD Copper 0.0201 0.00065 151.616 1
1/0 ACSR 0.398 0.00446 1.12 230
1/0 7 STRD Copper 0.368 0.01113 0.607 310
1/0 CLASS A AA 0.368 0.0111 0.97 202
2/0 ACSR 0.447 0.0051 0.895 270
2/0 7 STRD Copper 0.414 0.01252 0.481 360
2/0 CLASS A AA 0.414 0.0125 0.769 230

(Continued)
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Size Stranding Material
DIAM 

(in.)
GMR 

(ft)
RES 

(Ω/mile)
Capacity 

(A)

3/0 12 STRD Copper 0.492 0.01559 0.382 420
3/0 6/1 ACSR 0.502 0.006 0.723 300
3/0 7 STRD Copper 0.464 0.01404 0.382 420
3/0 CLASS A AA 0.464 0.014 0.611 263
3/8 INCH STE Steel 0.375 0.00001 4.3 150
4/0 12 STRD Copper 0.552 0.0175 0.303 490
4/0 19 STRD Copper 0.528 0.01668 0.303 480
4/0 6/1 ACSR 0.563 0.00814 0.592 340
4/0 7 STRD Copper 0.522 0.01579 0.303 480
4/0 CLASS A AA 0.522 0.0158 0.484 299
250,000 12 STRD Copper 0.6 0.01902 0.257 540
250,000 19 STRD Copper 0.574 0.01813 0.257 540
250,000 CON LAY AA 0.567 0.0171 0.41 329
266,800 26/7 ACSR 0.642 0.0217 0.385 460
266,800 CLASS A AA 0.586 0.0177 0.384 320
300,000 12 STRD Copper 0.657 0.0208 0.215 610
300,000 19 STRD Copper 0.629 0.01987 0.215 610
300,000 26/7 ACSR 0.68 0.023 0.342 490
300,000 30/7 ACSR 0.7 0.0241 0.342 500
300,000 CON LAY AA 0.629 0.0198 0.342 350
336,400 26/7 ACSR 0.721 0.0244 0.306 530
336,400 30/7 ACSR 0.741 0.0255 0.306 530
336,400 CLASS A AA 0.666 0.021 0.305 410
350,000 12 STRD Copper 0.71 0.0225 0.1845 670
350,000 19 STRD Copper 0.679 0.0214 0.1845 670
350,000 CON LAY AA 0.679 0.0214 0.294 399
397,500 26/7 ACSR 0.783 0.0265 0.259 590
397,500 30/7 ACSR 0.806 0.0278 0.259 600
397,500 CLASS A AA 0.724 0.0228 0.258 440
400,000 19 STRD Copper 0.726 0.0229 0.1619 730
450,000 19 STRD Copper 0.77 0.0243 0.1443 780
450,000 CON LAG AA 0.77 0.0243 0.229 450
477,000 26/7 ACSR 0.858 0.029 0.216 670
477,000 30/7 ACSR 0.883 0.0304 0.216 670
477,000 CLASS A AA 0.795 0.0254 0.216 510
500,000 19 STRD Copper 0.811 0.0256 0.1303 840
500,000 37 STRD Copper 0.814 0.026 0.1303 840
500,000 CON LAY AA 0.813 0.026 0.206 483
556,500 26/7 ACSR 0.927 0.0313 0.1859 730
556,500 30/7 ACSR 0.953 0.0328 0.1859 730
556,500 CLASS A AA 0.858 0.0275 0.186 560
600,000 37 STRD Copper 0.891 0.0285 0.1095 940

(Continued)
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Size Stranding Material
DIAM 

(in.)
GMR 

(ft)
RES 

(Ω/mile)
Capacity 

(A)

600,000 CON LAY AA 0.891 0.0285 0.172 520
605,000 26/7 ACSR 0.966 0.0327 0.172 760
605,000 54/7 ACSR 0.953 0.0321 0.1775 750
636,000 27/7 ACSR 0.99 0.0335 0.1618 780
636,000 30/19 ACSR 1.019 0.0351 0.1618 780
636,000 54/7 ACSR 0.977 0.0329 0.1688 770
636,000 CLASS A AA 0.918 0.0294 0.163 620
666,600 54/7 ACSR 1 0.0337 0.1601 800
700,000 37 STRD Copper 0.963 0.0308 0.0947 1040
700,000 CON LAY AA 0.963 0.0308 0.148 580
715,500 26/7 ACSR 1.051 0.0355 0.1442 840
715,500 30/19 ACSR 1.081 0.0372 0.1442 840
715,500 54/7 ACSR 1.036 0.0349 0.1482 830
715,500 CLASS A AA 0.974 0.0312 0.145 680
750,000 37 STRD AA 0.997 0.0319 0.0888 1090
750,000 CON LAY AA 0.997 0.0319 0.139 602
795,000 26/7 ACSR 1.108 0.0375 0.1288 900
795,000 30/19 ACSR 1.14 0.0393 0.1288 910
795,000 54/7 ACSR 1.093 0.0368 0.1378 900
795,000 CLASS A AA 1.026 0.0328 0.131 720
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Appendix B: Underground Cable Data

Concentric Neutral 15 kV Cable

Conductor 
Size (AWG 
or kcmil)

Diameter over 
Insulation 

(in.)

Diameter 
over 

Screen (in.)

Outside 
Diameter 

(in.)

Copper 
Neutral 

(No. × AWG)

Ampacity 
in UG 

Duct (A)

Full Neutral
2(7×) 0.78 0.85 0.98 10 × 14 120

1(19×) 0.81 0.89 1.02 13 × 14 135

1/0(19×) 0.85 0.93 1.06 16 × 14 155

2/0(19×) 0.90 0.97 1.13 13 × 12 175

3/0(19×) 0.95 1.02 1.18 16 × 12 200

4/0(19×) 1.01 1.08 1.28 13 × 10 230

250(37×) 1.06 1.16 1.37 16 × 10 255

350(37×) 1.17 1.27 1.47 20 × 10 300

1/3 Neutral
2(7×) 0.78 0.85 0.98   6 × 14 135

1(19×) 0.81 0.89 1.02   6 × 14 155

1/0(19×) 0.85 0.93 1.06   6 × 14 175

2/0(19×) 0.90 0.97 1.10   7 × 14 200

3/0(19×) 0.95 1.02 1.15   9 × 14 230

4/0(19×) 1.01 1.08 1.21 11 × 14 240

250(37×) 1.06 1.16 1.29 13 × 14 260

350(37×) 1.17 1.27 1.39 18 × 14 320

500(37×) 1.29 1.39 1.56 16 × 12 385

750(61×) 1.49 1.59 1.79 15 × 10 470

1000(61×) 1.64 1.77 1.98 20 × 10 550
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Tape-Shielded 15 kV Cable

Tape thickness = 5 mils

Conductor 
Size (AWG 
or kcmil)

Diameter over 
Insulation 

(in.)

Diameter 
over 

Screen (in.)

Jacket 
Thickness 

(mils)

Outside 
Diameter 

(in.)

Ampacity 
in UG 

Duct (A)

1/0 0.82 0.88   80 1.06 165
2/0 0.87 0.93   80 1.10 190
3/0 0.91 0.97   80 1.16 215
4/0 0.96 1.02   80 1.21 245
250 1.01 1.08   80 1.27 270
350 1.11 1.18   80 1.37 330
500 1.22 1.30   80 1.49 400
750 1.40 1.48 110 1.73 490
1000 1.56 1.66 110 1.91 565
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Index

A

Allocation factor (AF), 26
Approximate line segment model, 

155–160
Approximate method of analysis

“K” factors
Kdrop factor, 43–45
Krise factor, 45–47

line impedance, 41–42
lumping loads, geometric 

configurations
rectangle, 55–60
trapezoid, 65–71
triangle, 60–65

uniformly distributed loads
exact lumped load model, 52–55
power loss, 50–52
voltage drop, 47–50

voltage drop, 39–41
Average demand, 12

B

Backfeed ground fault currents
complete three-phase circuit 

analysis, 426–435
one downstream transformer bank, 

423–426

C

Carson’s equations, see also Modified 
Carson’s equations

concentric neutral cable, 100
overhead lines, 81–83
parallel distribution lines, 97
triplex secondary, 460

Center-tapped transformers

backward sweep, 490–493
forward sweep, 486–489
four-wire secondary, 493–497
IEEE 4 Node Text Feeder, 497–498
lagging open wye–open delta 

connection, 485
leading open wye–open delta 

transformer connection, 484
open wye–delta connections, 

503–507
secondary winding, 449–450
serving constant impedance 

loads, 456
single-phase transformer model 

diagram, 450
matrix equations, 453–460
transformer impedances, 451–453
triplex secondary, 460–466

three-winding, 449–450
ungrounded wye–delta connection, 

497–502
ungrounded wye–delta transformer 

bank with
basic transformer equations, 

466–483
transformer connection 

diagram, 467
voltage and current unbalances, 

comparisons of, 508
Closed delta–connected regulators, 

226–229
Concentric neutral 15 kV cable, 517
Concentric neutral cable, 100–106
Conductors, 513–515

D

Delta-connected capacitor bank, 
335–336
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Delta-connected loads
combination loads, 334
constant current loads, 333
constant impedance loads, 333
constant real and reactive power 

loads, 332
diagram, 332
line currents serving, 334
specified complex powers and 

voltages, 332
Delta–delta connection, three-phase 

transformer models, 299–309
Delta–grounded wye step-down 

connection
currents, 256–258
voltages, 251–256

Delta–grounded wye step-up 
connection

diagram for, 267
generalized matrices, 267–269

Demand, 11
Demand factor, 12, 19
Distribution feeder analysis

power-flow analysis
application, 381
general feeder, 386–387
ladder iterative technique, 382–386
load allocation, 398–399
loop flow, 399–412
modified ladder iterative 

technique, 389–390
unbalanced three-phase 

distribution feeder, 387–389
short-circuit studies

backfeed ground fault currents, 
422–435

general theory, 413–417
specific, 417–422

Distribution feeder map, 6–8
Distribution substations

layout, 4
major components, 2–4
one-line diagram, 2

Distribution system
distribution feeder map, 6–8
distribution substations

layout, 4
major components, 2–4
one-line diagram, 2

feeder electrical characteristics, 8–9
line models

approximate line segment model, 
155–160

electrically parallel lines, 172–177
equivalent Pi circuits, 163
exact line segment model, 141–149
modified “ladder” iterative 

technique, 160–162
modified line model, 150–155
neutral and ground currents, 

computation of, 152–155
parallel lines, general matrices 

for, 163–177
parallel three-phase lines, 

163–166
physically parallel lines, 166–172
three-wire delta line, 150–151

power system components, 1–2
radial feeders, 5–6

Distribution transformer loading
demand factor, 19
diversified demand, 16
diversity factor, 18–19
individual customer load 

characteristics, 16
load curves, 15–16
load diversity, 20
load duration curve, 17–18
maximum diversified demand, 

16–17
maximum noncoincident 

demand, 18
utilization factor, 20

Diversified demand, 12, 16
Diversity factor, 12, 18–19

E

Electrically parallel lines, 172–177
Equivalent T circuit, three-phase 

induction machine, 354–360
Exact line segment model, 141–149

F

Feeder
demand curve, 20–21
electrical characteristics, 8–9
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load allocation, 20–27
voltage drop calculations, 28–33

G

General voltage drop equation, 121–122
Grounded wye–delta step-down 

connection
diagram, 283
line-to-line voltages, 285–289
line-to-neutral voltages, 285
turn’s ratio, 284

Grounded wye–grounded wye 
connection, 296–298

H

High-side and low-side switching, 2

I

IEEE 13 Bus Test Feeder, 405–412
IEEE 4 Node Text Feeder, 497–498
Induction generator, 362–364
Induction machine Thevenin equivalent 

circuit, 365–368
Induction motor, phase analysis of, 

346–352

K

Kdrop factor
application of, 44–45
definition, 43
determination of, 43
voltage drop computation, 44

Krise factor, 45–47

L

Ladder iterative technique, 382–386
linear network, 382–383
modified, 389–390
nonlinear network, 383–386

Lagging open wye–open delta 
connection, 485

Leading open wye–open delta 
transformer connection, 484

Line drop compensator

analog circuit of, 209
current transformer turns ratio, 210
purpose of, 210
table of base values, 210–211

Line impedance, 41–42
Load diversity, 12, 20
Load factor, 12
Load models

delta-connected loads
combination loads, 334
complex powers and voltages, 332
constant current loads, 333
constant impedance loads, 333
constant real and reactive power 

loads, 332
diagram, 332
line currents serving, 334

shunt capacitors
delta-connected capacitor bank, 

335–336
wye-connected capacitor bank, 

334–335
three-phase induction machine

equivalent T circuit, 354–360
induction generator, 362–364
induction machine model, 

337–340
induction machine Thevenin 

equivalent circuit, 365–368
motor starting current, 354
phase analysis of induction motor, 

346–352
slip computation, 361–362
symmetrical component analysis 

of motor, 340–345
ungrounded wye–delta 

transformer bank with 
induction motor, 368–375

voltage and current unbalance, 
353–354

two-phase and single-phase loads, 
334

wye-connected loads
combination loads, 328–331
constant current loads, 327
constant impedance loads, 327
constant real and reactive power 

loads, 326
diagram, 326
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Loads
definitions, 11–12
distribution transformer loading

demand factor, 19
diversified demand, 16
diversity factor, 18–19
individual customer load 

characteristics, 16
load curves, 15–16
load diversity, 20
load duration curve, 17–18
maximum diversified demand, 

16–17
maximum noncoincident 

demand, 18
utilization factor, 20

feeder
demand curve, 20–21
load allocation, 20–27
voltage drop calculations, 28–33

individual customer, 13–14
lumping, in geometric 

configurations
rectangle, 55–60
trapezoid, 65–71
triangle, 60–65

uniformly distributed
exact lumped load model, 52–55
power loss, 50–52
voltage drop, 47–50

Lumping loads, geometric 
configurations

rectangle, 55–60
trapezoid, 65–71
triangle, 60–65

M

Maximum demand, 11
Maximum diversified demand, 12
Maximum noncoincident demand, 12
Maximum system voltage, 185
Metered feeder maximum demand, 

26–27
Metering, distribution substation, 3–4
Modified Carson’s equations

in grounded wye systems, 88
parallel overhead distribution 

lines, 97

series impedance of overhead lines, 
83–85

tape-shielded cables, 106
Modified “ladder” iterative technique, 

160–162
Modified line model

neutral and ground currents, 
computation of, 152–155

three-wire delta line, 150–151
Motor starting current, 354

N

Neutral and ground currents, 
computation of, 152–155

Node test feeder, 7
Nominal system voltage, 185
Nominal utilization voltage, 185

O

Open delta–connected 
regulators, 229–241

Open delta–open delta, three-phase 
transformer models, 309–314

Open wye–open delta, three-phase 
transformer models, 
290–296

Overhead lines
series impedance of

Carson’s equations, 81–83
magnetic fields, 77–78
modified Carson’s equations, 

83–85
mutual inductance, 78
parallel overhead distribution 

lines, 96–99
phase impedance matrix, 86–89
primitive impedance matrix, 86
self-inductance, 78
sequence impedances, 89–96
transposed three-phase lines, 

78–79
untransposed distribution 

lines, 79–81
shunt admittance of

conductors and images, 123
general voltage drop equation, 

123
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of overhead parallel lines, 
127–130

primitive potential coefficient 
matrix, 124–125

relative permittivity, 124

P

Parallel lines, general matrices for
electrically parallel lines, 172–177
equivalent Pi circuits, 163
parallel three-phase lines, 163–166
physically parallel lines, 166–172

Parallel overhead distribution lines, 
96–99

Parallel underground distribution lines, 
109–113

Phase analysis of induction motor, 
three-phase induction 
machine, 346–352

Phase frame admittance matrix, 349
Phase impedance matrix, for overhead 

lines, 86–89
Physically parallel lines, 166–172
Power-flow analysis

application, 381
general feeder, 386–387
ladder iterative technique

linear network, 382–383
nonlinear network, 383–386

load allocation, 398–399
loop flow

IEEE 13 Bus Test Feeder, 
405–412

single-phase feeder, 399–404
modified ladder iterative technique, 

389–390
unbalanced three-phase 

distribution feeder
one-line diagram, 388
shunt components, 388–389

Power system components, 1–2
Primitive impedance matrix, for 

overhead lines, 86
Protection, distribution substation, 3

R

Radial feeders, 5–6

S

Sequence admittance, three-phase line, 
136

Series impedance
overhead lines

Carson’s equations, 81–83
magnetic fields, 77–78
modified Carson’s equations, 

83–85
mutual inductance, 78
parallel overhead distribution 

lines, 96–99
phase impedance matrix, 86–89
primitive impedance matrix, 86
self-inductance, 78
sequence impedances, 89–96
transposed three-phase lines, 

78–79
untransposed distribution lines, 

79–81
underground lines

concentric neutral cable, 100–106
parallel underground distribution 

lines, 109–113
tape-shielded cables, 106–109
three-phase underground cables, 

99–100
Service voltage, 185
Shunt admittance

of overhead lines
conductors and images, 123
general voltage drop equation, 123
of overhead parallel lines, 127–130
primitive potential coefficient 

matrix, 124–125
relative permittivity, 124

of underground lines
concentric neutral cable 

underground lines, 130–134
of parallel underground lines, 

137–138
tape-shielded cable underground 

lines, 134–136
Shunt capacitors

delta-connected capacitor bank, 
335–336

wye-connected capacitor bank, 
334–335
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Single-phase step-voltage regulators
generalized constants, 208–209
line drop compensator, 209–216
type A step-voltage regulator, 

204–205
type B step-voltage regulator, 

206–208
Single-phase transformer model

diagram, 450
matrix equations, 453–460
transformer impedances, 451–453
triplex secondary, 460–466

Slip computation, three-phase induction 
machine, 361–362

Standard voltage ratings, 185–187
Step-voltage regulators

control circuit, 202, 203
settings, 202–204
single-phase

generalized constants, 208–209
line drop compensator, 209–216
type A step-voltage regulator, 

204–205
type B step-voltage regulator, 

206–208
three-phase

closed delta–connected 
regulators, 226–229

connections, 216
open delta–connected regulators, 

229–241
wye-connected regulators, 

216–226
type B, 202, 203
types, 187, 202

System voltage, 185

T

Tape-shielded 15 kV cable, 518
Tape-shielded cables, 106–109
Thevenin equivalent circuit

short-circuit currents, balanced 
three-phase system, 414–415

three-phase transformer models, 
314–317

Three-phase induction machine
equivalent T circuit, 354–360
induction generator, 362–364

induction machine model, 337–340
induction machine Thevenin 

equivalent circuit, 365–368
motor starting current, 354
phase analysis of induction motor, 

346–352
slip computation, 361–362
symmetrical component analysis of 

motor, 340–345
ungrounded wye–delta transformer 

bank with induction motor, 
368–375

voltage and current unbalance, 
353–354

Three-phase line
configuration, 41
line-to-neutral equivalent circuit, 

39, 40
phasor diagram, 39, 40
segment model, 142

Three-phase step-voltage regulators
closed delta–connected regulators, 

226–229
connections, 216
open delta–connected regulators, 

229–241
wye-connected regulators, 216–226

Three-phase transformer models
delta–delta connection, 299–309
delta–grounded wye step-down 

connection
currents, 256–258
voltages, 251–256

delta–grounded wye step-up 
connection

diagram for, 267
generalized matrices, 267–269

generalized matrices, 250–251
general three-phase transformer 

bank, 249–250
grounded wye–delta step-down 

connection
diagram, 283
line-to-line voltages, 285–289
line-to-neutral voltages, 285
turn’s ratio, 284

grounded wye–grounded wye 
connection, 296–298

open delta–open delta, 309–314
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open wye–open delta, 290–296
Thevenin equivalent circuit, 314–317
ungrounded wye–delta step-down 

connection
characterization, 269
generalized constant matrix, 

273–274
line currents, 272
line-to-line voltages, 271
positive sequence current phasor 

diagrams, 270
standard diagram, 270
voltage phasor diagrams, 270

ungrounded wye–delta step-up 
connection

diagram, 281
turn’s ratio, 281

Three-phase underground cables, 
99–100

Three-wire delta line, 150–151
Transformer load management 

program, 25–26
Transposed three-phase lines, 78–79
Two-phase and single-phase loads, 334
Two transformer substation, 4
Two-winding autotransformer

autotransformer ratings, 196–199
per-unit impedance, 199–202
step-down autotransformer, 194–196
step-up autotransformer, 192–193

Two-winding transformer theory
approximate equivalent circuit, 188
exact equivalent circuit, 187
input voltage and current, 189
total “leakage” impedance, 187

Type A step-voltage regulator, 
204–205

Type B step-voltage regulator, 206–208

U

Unbalanced three-phase distribution 
feeder, 387–389

Underground cables
concentric neutral 15 kV cable, 517
tape-shielded 15 kV cable, 518

Underground lines
series impedance of

concentric neutral cable, 100–106

parallel underground distribution 
lines, 109–113

tape-shielded cables, 106–109
three-phase underground cables, 

99–100
shunt admittance of

concentric neutral cable 
underground lines, 130–134

of parallel underground lines, 
137–138

tape-shielded cable underground 
lines, 134–136

Ungrounded wye–delta step-down 
connection

characterization, 269
generalized constant matrix, 273–274
line currents, 272
line-to-line voltages, 271
positive sequence current phasor 

diagrams, 270
standard diagram, 270
voltage phasor diagrams, 270

Ungrounded wye–delta step-up 
connection

diagram, 281
turn’s ratio, 281

Ungrounded wye–delta transformer 
bank

basic transformer equations, 466–483
with induction motor, 368–375
transformer connection diagram, 467

Uniformly distributed loads
exact lumped load model, 52–55
power loss, 50–52
voltage drop, 47–50

Untransposed distribution lines, 79–81
Utilization factor, 12, 20
Utilization voltage, 185

V

Voltage drop, 39–41
Voltage regulation, 2–3

standard voltage ratings
ANSI standards, 185–186
step-voltage regulators, 187

step-voltage regulators
control circuit, 202, 203
settings, 202–204
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single-phase, 204–216
three-phase, 216–241
types, 202

two-winding autotransformer
autotransformer ratings, 196–199
per-unit impedance, 199–202
step-down autotransformer, 

194–196
step-up autotransformer, 192–193

two-winding transformer theory, 
187–191

Voltage transformation, 2
Voltage unbalance, 146, 186, 353–354, 

508

W

Wye-connected capacitor bank, 334–335
Wye-connected loads

combination loads, 328–331
complex powers and voltage, 326
constant current loads, 327
constant impedance loads, 327
constant real and reactive power 

loads, 326
diagram, 326

Wye-connected regulators, 216–226
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