
W
ir

e
le

s
s a

n
d G

u
id

e
d W

a
v

e e
lec

t
r

o
m

a
G

n
e
t
ic

s

Wireless and Guided Wave electromaGnetics

Fundamentals and Applications

ISBN: 978-1-4398-4753-4

9 781439 847534

90000

K12109

Binh

“This book gives a detailed overview of the main application areas of electro-
magnetics especially tailored for electrical engineering students. In particular, 
the book covers a wide range of topics in electromagnetics ranging from guided 
waves to radiated waves.”
               —Malin Premaratne, Monash University, Clayton, Victoria, Australia

“This book merges a systematic rigorous mathematical approach with a solid 
and clear physical view of the electromagnetic phenomena. The book is struc-
tured in a very student-oriented way: the chapters can be introduced in different 
order according to the needs of students and/or instructors. ... an essential 
guide for engineers and/or practitioners.”
               —Antonio Orlandi, University of L’Aquila, Rome, Italy

Wireless communications allow high-speed mobile access to a global Internet 
based on ultra-wideband backbone intercontinental and terrestrial networks. 
Both of these environments support the carrying of information via electro-
magnetic waves that are wireless (in free air) or guided through optical fibers. 
Wireless and Guided Wave Electromagnetics: Fundamentals and 
Applications explores the fundamental aspects of electromagnetic waves in 
wireless and wired guided media. This is an increasingly important area for engi-
neers and physicists working with next-generation communication technologies, 
mobile networks, and optical communications.

The book builds from the basics to modern topics in electromagnetics for wireless 
and optical fiber communication, with a focus on applications. Throughout, the 
author emphasizes issues commonly faced by engineers, and MATLAB® and 
Simulink® models help simulate and illustrate the electromagnetic fields. The 
text’s modular structure makes it suitable for a variety of courses, for self-study, 
or as a resource for research and development. Going a step beyond traditional 
electromagnetics textbooks, this book highlights specific uses of electromag-
netic waves with a focus on the wireless and optical technologies that are 
important for high-speed transmission over very long distances.
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Preface
In the 19th century, Maxwell combined the laws of electricity and magnetism to 
speculate on the evolution of and intertwining between the time-variant electric and 
magnetic fields to form the foundation of electromagnetism (EM). Hertz, in 1885, 
conducted the first experiment on the radiation of such electromagnetic waves to test 
Maxwell’s equations and concept of time-dependent excitation of electromagnetic 
waves, the Hertz dipole antenna. Thus, he conclusively proved the existence of elec-
tromagnetic waves by engineering instruments to transmit and receive radio pulses 
using experimental procedures that ruled out all other known wireless phenomena. 
Thus began the science of generation and radiation of electromagnetic waves for 
communication, especially during the Second World War, when extensive use of EM 
waves was employed by both sides to track, code, and decode information.

Radiation of EM waves was also detected from the creation of stars and galaxies in 
the universe. Extensive research and development work were pursued to achieve such 
generation, transmission, and detection of EM waves, with frequencies increasing 
with time, even to the terahertz region currently, for example, tera-waves.

EM waves are considered to extend from less than 1 Hz to several hundred tera-
hertz, the visible, near- and central-infrared, and infrared spectral regions. Not until 
1960, when the laser was invented, could optical waves be considered the carrier 
for communications. Charles Kao and George Hockham* first proposed a structure 
of dielectric waveguides for guiding lightwaves, using the evolutionary concept of 
metallic waveguides. Guiding EM waves at ultra-high and microwave frequency 
was also extensively investigated at the same time. The invention of semiconduc-
tor junctions, and then devices, allowed tremendous development of microwave and 
millimeter-wave technologies, as well as lightwave sources in the visible and near-
infrared regions.

Since the 1970s, the tremendous investments of several traditional glass corpora-
tions, such as Corning, Schott Glass, and Sumitomo Cement Company, developed 
techniques for a fabrication optical guiding medium, the circular optical waveguides, 
and optical fibers. From a very high propagation loss of 100 dB/m, the attenuation 
coefficient was reduced to 0.2 dB/km, and today’s fiber attenuation coefficient in 
the 1550 nm wavelength window was achieved in 1970. Initially the circular wave-
guides supported several hundred guide modes, until the diameter of the fibers was 
reduced, along with the refractive index difference between the core and cladding 
regions. Single-mode optical fibers can be produced and proven to the best-guided 
media for ultra–high-speed, ultra–long-reach transmission. Only one guided mode 
of lightwaves is propagated in such fibers; however, it is composed of two polarized 
modes—hence, they are not a monomode type.

* K.C. Kao and G.A. Hockham, “Dielectric-Fibre Surface Waveguides for Optical Frequencies,” Proc. 
IEEE, 113(7), 1151–1156, 1966.
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In parallel with the development of optical communications, wireless technolo-
gies have been progressing and penetrating into almost everyone’s lives. Information 
capacity has reached its maximum limit in the frequency bands for mobile networks. 
Smart antennae have been employed with multiple sources and multiple detection 
devices; hence, multiple-input multiple-output (MIMO) techniques further increase 
transmission capacity.

Thus in modern communication technologies, both wireless and guided wave tech-
nologies dominate global societies with the employment of EM waves in ultra-high fre-
quency to microwave to millimeter wave to lightwave. At the same time, tremendous 
progress has been made in digital signal processing with ultra-dense and ultra–high-
speed digital electronic processors. This digital technology has pushed processing 
techniques to all-time complex algorithms for wireless communication systems and 
increased the channel capacity with spectral efficiency of several tens of bits per Hertz. 
These algorithms have been extensively applied to ultra–high-speed optical communi-
cations employing coherent detection techniques in which the polarization and phase 
of the optical carriers can be recovered. Thus, the roles of the optical fields in terms of 
electric and magnetic components of the lightwaves are very important.

This book proposes to introduce the concept of EM waves with applications 
oriented to wireless and guided waves in both electrical and optical domains. The 
contents are appropriate for students at the senior level of electrical and electronic 
engineering after some introduction to electromagnetism, but before introduction to 
communication techniques and systems, especially the wireless and optical trans-
mission technologies.

Thus, we give a brief introduction to the mathematical relationships between the 
electric and magnetic fields, which are time varying, and the intertwining between 
them to radiate EM waves in free space or bounded under certain boundary con-
ditions. In Chapter 2 we introduce transmission lines in the electrical domain; in 
modern days this topic is commonly faced by engineers in transmission systems 
operating from the ultra–high-frequency to microwave and millimeter-wave ranges 
and optical frequency with line rates reaching several Gbits/s. The excitation of time-
varying currents into conducting elements to produce radiation of EM waves into 
free space—the antennae—is introduced in Chapter 3. Only fundamental issues of 
some basic antennae are given, with a brief introduction of electrical waveguides, in 
which the high-frequency waves can be confined and vanished at the electric con-
ducting walls.

In the 1960s, when lasers in the visible range, specifically the HeNe gas laser, were 
invented, the thought of using such waves for ultra-wideband communications was 
proposed. The concept of guiding such EM waves was first developed and proposed 
for guiding optical waves propagated by the zigzag ray model. This was later proven 
to be impossible for propagation over very long distances. Thence, all dielectric 
waveguides were introduced, leading to present-day optical communication technol-
ogies, even though the fibers were to be theoretically analyzed and numerically con-
firmed with manufactured fibers. The applications of Maxwell’s equations to arrive 
at the wave equations, and then the eigenvalue equation due to boundary conditions, 
offer the conditions for the number of guided modes. However, if only one mode can 
be guided, the interference between the guided modes would be eliminated, thus the 
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wideband response of the transmission medium. When single-mode optical fibers 
were proven to be practical, several measurements of the distribution profile of the 
field intensity were made, and conclusions were obtained that the field profile of the 
single mode follows that of a Gaussian shape when the refractive index difference 
between the core guiding region and the cladding region is very small. This known 
empirical function leads to the simplification of the application of electromagnetism 
in the understanding of lightwave confinement and guiding in optical fibers, the gen-
tle or weakly guiding phenomena for extremely long-reach transmission and detec-
tion of modulated optical signals. These conceptual developments are still holding 
and playing critical roles in modern optical fiber communication systems and net-
works. We thus introduce the phenomena of guided wave optical transmission lines 
in Chapter 7, followed by Chapter 8, which introduces the eventual applications of 
such guided waves in the transmission or propagation of modulated lightwave sig-
nals over long-reach optical transmission lines, especially the attenuation, disper-
sion, and broadening of modulated signals due to the interference of lightwaves of 
different spectral components of the sidebands of the passband signals.

However, the basic concept of lightwave guiding in optical waveguides is intro-
duced in Chapter 4, and planar and three-dimensional structures in Chapter 5, which 
are commonly employed in the design and implementation of guided media for lasers 
and optical modulators, hence the term lightwave circuit technology.

Chapter 9 introduces somewhat more advanced applications of guided waves 
in the optical domain, for example, the Fourier guided wave optics in which the 
uses of Fourier transformation can be implanted by using guided wave compo-
nents. This chapter concludes this book on the introduction of guided waves using 
electromagnetics.

Lecturers can elect to introduce these chapters in different sequences after intro-
ducing the fundamental parts of electromagnetism with time-varying fields. Guided 
waves in optical fibers can be introduced, bypassing the EM mathematical concept, 
but with the weakly guiding phenomena (Chapters 7 and 8), interest can be created 
for students to appreciate the importance of guiding lightwaves. Formal mathemati-
cal analyses (Chapter 1) can be introduced regarding radiation of EM waves and the 
confinement of lightwaves in optical devices (Chapters 4 and 5). After the introduc-
tion in Chapter 1, the introduction of electrical and guided wave optical sections 
(Chapters 2 and 4) can be taught in parallel, if preferred.

There are several textbooks that introduce courses in time-varying EM waves, 
but not one, to my best knowledge, gives specific uses of EM waves focusing on 
wireless and optical guided waves, which I think are very important for electrical 
engineers to appreciate for practical purposes, thus reducing the possible boredom 
that modern engineers may face in practice. Hence, the title and contents of this book 
are proposed.

The traditional teaching of electromagnetics must evolve toward technological 
applications, especially under the transmission of modulated optical signals over 
very long distances, the weakly guiding and confinement of the EM phenomena.

Le Nguyen Binh
Munich, Germany
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1 Electric and Magnetic 
Fields and Waves

1.1 BRIEF OVERVIEW

Electromagnetic waves always consist of two orthogonal vectorial components, the 
electric and magnetic fields, whether they are in wireless or guided media. They are 
normally induced by the excitation from a time-varying source. Thus, in this chapter 
the time-varying electric and magnetic (EM) fields are described. That means the 
interdependence and dynamics of the electromagnetic fields and the formation and 
propagation of plane waves are assumed, which is important for the radiation, guid-
ing, and propagation through either wireless or guided media. Essential fundamental 
understandings of the vector analyses are given.

The word field has been commonly used in several textbooks and published works 
since the generalization works by Maxwell. It indicates the strength of the electric or 
magnetic force and the spatial region under its influence.

1.2 WAVE REPRESENTATION

1.2.1 Overview

EM radiation is the electrodynamics of the electric and magnetic fields. Both com-
ponents obey the principle of superposition when the medium in which they behave 
is linear. Thus, a field due to the time-varying electric or magnetic field will influ-
ence the property of the EM field strength of the medium. So what is the relationship 
between the variations of these two fields under the time-varying condition?

Maxwell derived a waveform of the electric and magnetic equations that con-
stitute the wave-like nature of the electric and magnetic fields and their symmetric 
property. The speed of EM waves concurs with that of the measured speed of light; 
thus Maxwell concluded that the light itself is an EM wave. This conclusion has 
been extensively employed over the last century and currently is used in the guiding 
of lightwaves in optical fibers for ultra-high-speed optical communications. Later 
sections of this chapter will give insight into the derivation of the wave propagation 
equations and Maxwell’s equations.

Accordingly, based on Maxwell’s equations a spatially varying electric field will 
enforce the variation of the magnetic field over time. Likewise for the change rela-
tionship, when there exists a spatial change of the magnetic field leading to time 
variation in the electric field. In an EM wave, the electric field component under 
an influential change would shift the magnetic field in one direction, which in 
turns shifts the electric field in the same direction. Together these fields form the 
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propagation mechanism of an EM wave that moves into space and never again 
affects the sources. However, this would be true in a vacuum or free space. If the EM 
waves are propagating in a charged medium, then depending on the impedance of 
the line, the waves can be reflected or absorbed or confined in a waveguide traveling 
at a reduced speed. The issues of confinement of EM waves in an optical or electrical 
waveguide will be dealt with in later chapters.

1.2.2 General PrOPerty

We consider in this book the continuous and time-harmonic waves represented by 
sine waves under steady-state conditions. An electric field propagating in the z-direc-
tion can be represented by

 
� �

= ω − β + φ−αz t E e t z( , ) cos( )z
z0E a  (1.1)

where ω is the angular frequency of the wave (ω = 2πf), where f is the frequency 
of the wave, β is the propagation of the waves along the z-direction, ϕ is the initial 
phase, and α is the attenuation constant of the propagation medium. It is noted here 
that the propagation/phase constant β can be estimated very straightforwardly if 
the waves propagating in a wireless medium are assumed to be air or in a vacuum. 
However, this is more complex if the waves propagate in a guided medium in which 
the propagation/phase constant depends on the modes of the waves confined in the 
transverse directions, and how tight the waves are confined in this plane. We will 
deal with these issues in the chapters following. Thus, this constant indicates how 
fast or how slow the waves are propagating through the medium. Sometimes this is 
called the wavenumber.

Assuming that the initial phase can be adjusted to zero and at the initial instant, 
i.e., at t = 0, in a lossless (α = 0) medium the waves can be rewritten as

 
� �

= −βz E z( ,0) cos( ) z0E a  (1.2)

This indicates that the phase/propagation constant β is related to the EM wavelength 
λ of such a wave in the propagation media by

 β = π
λ

2  (1.3)

with the wavelength taking the value in vacuum if the EM waves propagate in air or 
vacuum, and a lower value when under a guiding condition by an effective permit-
tivity or refractive index.

Note that when the EM waves propagate in a medium, the frequency of the waves 
remains unchanged, and only the wavelength changes as the propagating velocity 
is slowed down by the permittivity constant of the medium. Thus, the wavelength 
varies accordingly. If in a guided medium, the wave velocity is slowed down by the 
effective permittivity of the medium, as seen by the waves under a guiding condition.
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Under an attenuated medium with the coefficient along the z-direction, the elec-
tric field vector at the initial instant t = 0 can be represented as

 
� �

= −β−αz E e z( ,0) cos( )z
z0E a  (1.4)

Thus, we could see that the amplitude of the wave is exponentially decreased with 
respect to the propagation distance z, indicating an oscillatory wave as a function of 
time, with its amplitude multiplied by the exponentially decreased coefficient e–αz.

Exercise

Plot the amplitude of an EM wave as a function of time represented by

 
� �
E az t E e t z( , ) cos( )z

z0= ω − β + φ−α

under the following conditions:

 a. E0 = 1.0; α = 0 dB/km; ω = 2π · 109 Hz, λ = 1000 nm; initialphase = 0
 b. E0 = 10; α = 0 dB/km; ω = 2π · 109 Hz, λ = 1000 nm; initialphase = π/2
 c. E0 = 10; α = 1 dB/km; ω = 2π · 109 Hz, λ = 1000 nm; initialphase = 0

with the total traveled distance of 10 km.

1.2.3 waves by PhasOr rePresentatiOn

The wave represented in (1.1) can be rewritten, in the case where the attenuation 
constant is negligible, as

 
� �

�

�

�

� �

E a

E a

E a

=

=

=

−α φ ω −β

ω

φ

z t E e e e

z t E e

E e

( , ) Re( )

( , ) Re( )

Re( )

z j j t z
z

s
j t

z

s
j

z

0
( )

0

 
(1.5)

This uses the property of the polar form representation of the sinusoidal wave 
as follows:

 ≺= φ + φ = φφre r jr rcos sinj  (1.6)

In general form we have

 
� �

= φE x y z e( , , )s
j

r0E a  (1.7)

where 
�
ar  is the unit vector along the radial direction of the phasor. That means that 

the sinusoidal representation is now transformed to complex form and taking the real 
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part. This complex representation assists the manipulation of the waves using vectorial 
operation and, hence, simplifies the algebraic steps. The waves expressed in (1.5) can 
be represented in vector form as shown in Figure 1.1, in which the initial phase and 
angular frequency are represented by a vector of an initial angle ϕ. This vector is rotat-
ing around the circle of amplitude E0 with an angular frequency of ω. The projection of 
this vector to the real horizontal axis of the complex plane is the sinusoidal wave. The 
attenuation factor can be incorporated according to the length of the propagation along 
the z-direction. This vector representation allows us to add or subtract several other 
wave vectors provided that they are oscillating at the same frequency.

1.2.4 Phase velOcity

Now consider a traveling wave in a lossless medium expressed by

 
� �

= ω − β + φz t E t z( , ) cos( ) z0E a  (1.8)

This wave is propagating in the +z-direction with a constant phase of

	 ωt − βz = C (1.9)

in which we assume a zero initial phase.
Then the phase velocity or the speed of the wave propagating along the z-direc-

tion is given by differentiating (1.9):

 = = ω
β

= λv dz
dt

fp  (1.10)

Now if the wave angular frequency is not a single frequency but composed of sev-
eral other spectral components, such as in the case that the wave is modulated by a 
pulse envelope, then these spectral components are propagated along the z-direction 
with a group velocity of

E0E0 cos φ

Phasor 

φ
ω

FIGURE 1.1 Phasor representation of the wave of amplitude E0 and frequency ω with 
amplitude E0. The vector rotates around the circle with an angular frequency ω.
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 =
ω

v dv
dg

p  (1.11)

Indeed, this group velocity allows us to evaluate the dispersion of carrier-modu-
lated signals after propagating through a distance L in a wireless or guided medium, 
which will be described in later chapters of the book.

1.3 MAXWELL’S EQUATIONS

Maxwell’s equations are formed with the unity of four equations, Ampere’s circuital 
law, Faraday’s law, and Gauss’s laws for electric and magnetic fields, as listed in 
Table 1.1.

1.3.1 Faraday’s law

Faraday’s law is a fundamental relationship between a generated voltage and the 
electric field in a changing magnetic field. The induced electromotive voltage Vemf is 
related to the electric field 

�
E  and the magnetic field strength 

�
B  by

 � �� � � �∫ ∫∫= = − ∂
∂

d V
t

d· ·emf

S

E L B S  (1.12)

where 
�

dL  is the vectorial differential length within a close loop and 
�

dS  is the dif-
ferential area perpendicular to the surface. This equation involves the interaction of 
charges and magnetic field. Note that the vectorial directions of the fields and the 
surface and differential lengths must follow the right-hand rule.

1.3.2 amPere’s law

The continuity of the current flowing is the original form of Ampere’s circuital law. 
This represents the relationship between the electric current source and the magnetic 
field. The law can be written in integral form, and its equivalent differential form via 
the Stokes’ theorem is as follows:

 � � ��
i

� � � � � � �
�∫ ∫∫ ∫∫= + ∂

∂
⇔ ∇ × = + ∂

∂
d d

t
d

t
· ·

C

c

S S

cH L J S D S H J
D

 (1.13)

where

• �∫
C

 is the closed line integral around the closed curve C.
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TABLE 1.1
Fundamental Electromagnetic Equations

Equations
Differential 

Form Integral Form

Gauss’s law: Divergence of the 
displacement vector 

�
D  equals the 

charge density per unit volume ρ, or the 
total charge enclosing the product of the 
vector and the differential surface 
vector

�
D∇ ⋅ = ρ � � �

D S∫∫ ⋅ =d Qenc

S

Gauss’s magnetic law: Likewise for the 
magnetic field density �

B∇ ⋅ = 0 � � �
B S∫∫ ⋅ =d 0

S

Faraday’s law: Differential variation of 
the electric field and temporal evolution 
of the magnetic field

�
�E
B

∇ × = −
∂
∂t � �� � � �

E L B S∫ ∫∫⋅ = − ∂
∂

⋅d
t

d
S

Ampere’s circuital law: Relationship 
between magnetic field density and the 
charge flow rate and temporal variation 
of the electric field displacement

� �
�H J
D

∇ × = +
∂
∂tc � � �� � � � � �

H L J S D S∫ ∫∫ ∫∫⋅ = ⋅ + ∂
∂

⋅d d
t

dc

S S

Other EM Equations
Lorentz force equation

� � � �
F E v B= + ×q( )

E is the electric field, B is the magnetic field intensity, 
and q is the electronic charge moving with a velocity v 
through a magnetic field.

Constitutive equations: Electric/magnetic 
field density and the field with 
permittivity/permeability

� �

� �

� �

D E

B H

J E

= ε
= µ
= σ










ε, μ, σ = permittivity, permeability, and conductivity of 
the medium

Current continuity equation: 3D current 
density and rate of change of volume of 
charges

�
J∇ ⋅ = − ∂ρ

∂t
v
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• 
�
B  is the magnetic field in Weber.*

• The dot • is the vector dot product.
• 

�
dL is an infinitesimal element (a differential) of the curve C (i.e., a vector 
with magnitude equal to the length of the infinitesimal line element, and 
direction given by the tangent to the curve C).

• �∫∫
S

 denotes an integral over the surface S  enclosed by the curve C  (the 

double integral sign is meant simply to denote that the integral is two-

dimensional in nature.
• 

�
CJ  is the free current density through the surface S enclosed by the curve C.

• 
�

dS  is the vectorial differential area of an infinitesimal element of the sur-
face S (that is, a vector with magnitude equal to the area of the infinitesimal 
surface element, and direction normal to surface S). The direction of the 
normal must correspond with the orientation of C by the right-hand rule. 
Ienc is the net free current that penetrates through the surface S.

• � � �∫∫ • dc

S

J S  represents the conduction current and � � �∫∫∂
∂

⋅
t

d
S

D S  the dis-

placement current.

1.3.3 Gauss’s law FOr electric Field and charGes

The electric flux through any closed surface is proportional to the enclosed electric 
charge Qenc.

 � � �∫∫ ⋅ =d Q
S

encD S  (1.14)

1.3.4 Gauss’s law FOr maGnetic Field

The divergence of the magnetic field 
�
B  equates to zero; in other words, it is a solenoi-

dal vector field. It is equivalent to the statement that magnetic monopoles do not exist.

 
�

∇ ⋅ = 0B  (1.15)

1.4 MAXWELL EQUATIONS IN DIELECTRIC MEDIA

1.4.1 maxwell equatiOns

The general Maxwell equations can be written as

* The unit of the magnetic field intensity 
�

=
Kg m
C s

 is 1 Weber
·
·

2

B .
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	 ∇ × E = −jωμH (1.16)

	 ∇ × H = J + jωεE (1.17)

 ∇ ⋅ = σ
ε0

D  (1.18)

	 ∇	⋅	B = 0 (1.19)

Note that in the above equations = −j 1; μ ≅ μ0 is the magnetic permeability 
for nonmagnetic materials, which normally constitute an optical waveguide; ε = ε0n2 
is the dielectric constant of the material, where eo¬ is the dielectric constant of free 
space and n is the refractive index of the materials; J is the current density; and σ is 
the surface charge density, which is a possible source. The displacement vector D is 
related to the electric field via D = εE, and the magnetic field induction B is related 
to the magnetic field via B = μH.

The first is Faraday’s law of induction, the second is Ampere’s law as amended 
by Maxwell to include the displacement current ∂D/∂t, and the third and fourth are 
Gauss’s laws for the electric and magnetic fields. The displacement current term 
∂D/∂t in Ampere’s law is essential in predicting the existence of propagating elec-
tromagnetic waves. Its role in establishing charge conservation is discussed in the 
previous section. The quantities E and H are the electric and magnetic field intensi-
ties and are measured in units of V/m and A/m, respectively. The quantities D and 
B are the electric and magnetic flux densities and are in units of Coulomb/m2 and 
Weber/m2, or Tesla. D is also called the electric displacement, and B the magnetic 
induction. The quantities ρ and J are the volume charge density and electric cur-
rent density (charge flux) of any external charges (that is, not including any induced 
polarization charges and currents). They are measured in units of Coulomb/m3 and 
A/m2. The right-hand side of (1.19) is zero because there are no magnetic monopole 
charges. The charge and current densities ρ, J may be thought of as the sources of 
the electromagnetic fields. For wave propagation problems, these densities are local-
ized in space; for example, they are restricted to flow on an antenna. The generated 
electric and magnetic fields are radiated away from these sources and can propagate 
large distances to the receiving antennas—away from the sources, that is, in source-
free regions of space.

In practice, problems of optical waveguide and couplers are often analyzed in the 
regions that are free of the above sources, i.e., J = 0 and σ = 0. In these cases, we have

	 ∇ × E = −jωμH (1.20)

	 ∇ × H = jωεE (1.21)

	 ∇	⋅	(εE) = 0 (1.22)

	 ∇	⋅	H = 0 (1.23)



9Electric and Magnetic Fields and Waves

1.4.2 wave equatiOn

With the usual expression of the time-dependent lightwave carrier-modulated sig-
nals ejωt, the wave equation can thus be obtained as

 � �
∇∇ ∇∇ − ε ω ω =Ex x E

c
( ) 0

2

2
 (1.24)

The refractive index of the medium can be related to the permittivity, including 
the nonlinear third-order effects. Using the relation:

 

� � � �

∵
�

� �

∇∇ ∇∇

∇∇

= ∇ ∇ − ∇ = −∇

=

∇ − ω ω =

x x E E

D

E E

E E

then the wave equation

n
c

( . )

. 0

_ _ _

( ) 0

2 2

2 2
2

2

 (1.25)

1.4.3 bOundary cOnditiOns

In the regions free of the sources, we have the following boundary conditions:

• Continuity of the magnetic field and the component of the electric field 
tangential to the interface, i.e.,

 
� �= =,(1) (2) (1) (2)H H E E  (1.26)

• Continuity of the normal component of the displacement vector, i.e.,

 = =⊥ ⊥ ⊥ ⊥n nor(1) (2)
1
2 (1) (2)D D E  (1.27)

1.4.4 reciPrOcity theOrems

1.4.4.1 General Reciprocity Theorem
From the above source-free Maxwell equations, we have for two optical media of 
dielectric constants ε1 and ε2:

 ∇ × ∇ × = ω εµ( ) 2E E  (1.28)

 ∇ × ∇ × = ω εµ( ) 2H H  (1.29)
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Using the above equations and the identity ∇⋅(A × B) = B ⋅	(∇ × A) − A ⋅	(∇ × B), 
we have

 ∇ ⋅ × − × = ω ε − ε ⋅j( ) ( )2 11 2 2 1 1 2E H E H E E  (1.30)

and its integral equivalence

 
∫∫ ∫∫∂

∂
× − × ⋅ = ω ε − ε ⋅

∞ ∞z
z dA j x y x y dA( ) ˆ [ ( , ) ( , )]

A A
2 11 2 2 1 1 2E H E H E E  (1.31)

1.4.4.2 Conjugate Reciprocity Theorem
Conjugate reciprocity theorem can be obtained in a similar way as above, except 
using the conjugate form of field expressions. This is particularly convenient in con-
structing the formulation for the lossless waveguides or couplers, in particular the 
expression of the power conservation. Following some algebra, we have

	 ∇ ⋅ × + × = − ω ε − ε ⋅µ µ µ ν µν ν νj( ) ( )* * *E E E H E E  (1.32)

 
∫∫

∫∫

∂
∂

× + × ⋅ =

− ω ε − ε ⋅

µ ν ν µ
∞

µ ν µ ν
∞

z
z dA

j dA

( ) ˆ

(  )

A

A

*

*

*E H E H

E E

 (1.33)

1.5 CURRENT CONTINUITY

Consider a volume of charge Q enclosed in a volume surface S, which is varying 
as a function of time. If the volume is reduced, then the only possibility is that the 
charges are flowing through the surface. This flow of charges under the conservation 
of charges or energy is the current that must be equal to the rate of change of the 
contained charge. The flowing current I can be expressed in terms of the differential 
charge and the current density as

 � � �∫= ⋅ = − ∂
∂

I d Q
t

S

J S  (1.34)

where 
�
J  is the vectorial current density and t is the time variable 

�
dS, whose normal 

direction is the direction of the surface vector in the infinitesimal surface element 
and S is the surface area of the volume.

Using the divergence theorem1 we can write

 �� � � � �∫∫∫ ∫∫ ⋅ = − ∇ ⋅ = ∇ ⋅d dV dV( ) ( )
V VS

J S J J  (1.35)
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and

 �∫∫∫− ∂
∂

= − ∂
∂

ρ
t t

dVV

V

Q
 (1.36)

in which ρV is the charge density enclosed within the surface under consideration. 
Thus, comparing (1.34) to (1.36) we obtain

 
�

∇ ⋅ = − ∂ρ
∂t
VJ  (1.37)

This is the point form of the current continuity equation, which indicates that the 
divergence of the current density equates to that of the differential changes of the 
charges flowing out of or into the volume under consideration. In the steady-state 
condition, when there is no change in the charge density, the conservation of charges 
leads to the fact that the total currents flowing into a node equate to the total current 
flowing out of a node. This is Kirchoff’s current law, which is valid for transient or 
phasor steady-state conditions.

1.6 LOSSLESS TEM WAVES

Consider an x-polarized wave propagating along the +z-direction in a medium char-
acterized by the material constants μ, ε and lossless; that is, the attenuation constant 
is zero. The field can be represented by

 
� �

= ω − βz t E t z( , ) cos( ) x0E a  (1.38)

Then applying the Faraday’s law given in Table 1.1, we have

 

�
� �

� � �

�
�

∇ × = − ∂
∂

= −µ ∂
∂

∂
∂

∂
∂

∂
∂

ω − β

= β ω − β = −µ ∂
∂

t t

a a a

x y z
E t z

E t z
t

cos( ) 0 0

sin( )

x y z

y

0

0

E
B H

a
H

 (1.39)

Then by taking the integral of the differential component of the magnetic field flux 
we arrive at

� � �

� �
∵

∫ = = β
ωµ

ω − β +

∴ = β
ωµ

ω − β =

d E t z C

E t z C initial condition

cos( )

cos( ) 0 _

y

y

0
1

0
1

H H a

H a

 (1.40)
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where C1 is the integral constant that turns out to be nil by using the initial condition. 
It is from (1.40) and (1.38) that the 

� �
 and H E  fields are orthogonal to each other, and 

their magnitudes differ by a scaling factor due to the characteristic of the medium 
and the propagation constant and radial frequency of the EM waves.

Now we can use the other Maxwell’s equations to find the relationship between 
the propagation constant and the velocity of light = µ εc 1/ 0 0  and the medium 
characteristic μ, ε, the permeability and permittivity.

 

� � �

C∇ × = + ∂
∂

= ε ∂
∂

→

∂
∂

∂
∂

∂
∂

β
ωµ

ω − β

= − β
ωµ

∂
∂

ω − β

= − β
ωµ

ω − β

t t

a a a

x y z

E t z

E
z

t z

E t z

0 cos( ) 0

cos( )

sin( )

x y z

x

x

0

0

2
0

H J
D E

a

a

 
(1.41)

therefore leading to

 

∵

→ ∂
∂

= − β
ωµ

ω − β

→ = − β
ω µ

ω − β ∂
∂

= ω

t
E t z

E t z
t

sin( )

sin( )

x

x

2
0

2
0

2

E
a

E a

 (1.42)

The additional parameters of the amplitude of the electric field must be equal to 
top unity in order to satisfy the field expression assumed from the beginning. Thus 
we have

 β = ω µε  (1.43)

And it follows that the phase velocity of the EM wave is given by

 = ω
β

=
µε

=
µ µ ε ε

=
µ ε

v c1 1
p

r r r r0 0
 (1.44)

Or the phase velocity of an EM wave is that of the velocity of light reduced by a fac-
tor related to the relative permeability and permittivity of the medium. It is noted in 
(1.44) that the propagation constant β is not restricted by the guiding condition but 
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assumed as a plane wave in a medium. Under the guiding condition this propagation 
constant would be restricted by the confinement of the electric and magnetic com-
ponents by the boundary conditions of the guided medium. We will describe these 
guiding conditions and the propagation constant or relative refractive indices as seen 
by the EM waves in such guided media in later chapters on guided waveguides.

Example

A y-polarized plane wave propagating along the x-direction and the medium is 
air. The frequency of the wave is 10 GHz, with a magnitude of 1.0 V/m. Write the 
expression for the electric field of this wave.

SOLUTION

 
� �

c rad s E t x a V m/ 2 10 / 3.10
2
3

/ , 1.0cos 2 10
2
3

/y
10 8 10β = ω = π × = π = π × − π





Example

A wave is propagating in a nonmagnetic medium whose magnitude and time-
oscillating characteristic are given by

 
� �
E x t t x a V m( , ) 10cos 10

10 3
/y

8= π + π + π





Identify the frequency of the wave, its phase velocity, and the permittivity and 
permeability of the medium. Then, sketch the fields 

� �
B H and the flux .

SOLUTION

Inspecting the expression of the wave we have

 
f

10
2

5 10 Hz 50 MHz
8

7= π
π

= × =

The propagation constant and the phase velocity of the wave are related by

 
v

v f f
2
3

3
2

2 3 3 50 10 1.5 10  m/s
p

p
6 8β = π = ω → =

π
π → = × ⋅ = ×

Thus, for the nonmagnetic medium (μr = 1), we have

 

v
c c

v
3 10

1.5 10
2p

r

r
p

2 8

8
=

ε
→ ε = = ×

×
=
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The magnetic field density is then given as

 

� �

� �

�

H a

H a

a

x t
E

t x

x t t x

t x A m

( , ) cos 10
10 3

( , )

2
3

10

2 5 10
cos 10

10 3

2
3

cos 10
10 3

/

r
z

z

z

0

0

8

7
0

8

0

8

= β
ωµ µ

π + π + π





=

π

π × µ
π + π + π





=
µ

π + π + π





(c) The field vectorial directions can be sketched. They are straightforward and 
spatially orthogonal to each other.

1.7  MAXWELL’S EQUATIONS IN TIME-HARMONIC 
AND PHASOR FORMS

Given that the time-varying field is sinusoidal, substituting ∂/∂t = jω we have 
Maxwell’s equations in differential form in which the subscript s stands for the pha-
sor representation:

Equations Differential Form

Gauss’s law
�

∇ ⋅ = ρsD

Gauss’s magnetic law
�

∇ ⋅ = 0sB

Faraday’s law
� �

∇ × = − ωjs sE B

Ampere’s circuital law � � �
∇ × = + ωjs c sH J D

1.8 PLANE WAVES

EM waves can be radiated from a source. Far away from the source the waves resem-
ble a uniform phase front; this is called plane waves. In the uniform wave field the 
electric and magnetic components of the waves are orthogonal to the propagation 
direction—thus the name transverse electric and magnetic (TEM) waves.

1.8.1 General wave equatiOns

In this section it is assumed that the simple medium is linear, isotropic, and time 
invariant. Then Maxwell’s equations can be written for this medium as

 
�

∇ ⋅ = 0E  (1.45)

 
�

∇ ⋅ = 0H  (1.46)
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�

�∇ × = −µ ∂
∂t

E
H  (1.47)

 ∇ × = σ + ε ∂
∂t

H E
E  

(1.48)

Taking the curl of both sides of (1.47) and the property of an isotropic medium 
we have

 E∇ × ∇ × = −µ ∂
∂

∇ ×
t

( ) ( )H  (1.49)

Then using the identity

 i∇ × ∇ = ∇ − ∇2A A A  (1.50)

and combining (1.48) and (1.49) we arrive at

 i∇ − ∇ = −µσ ∂
∂

− µε ∂
∂t t

2
2

2E E
E E  (1.51)

Under the condition of charge-free, the divergence of is zero and (1.51) becomes

 ∇ = +µσ ∂
∂

+ µε ∂
∂t t

2
2

2E
E E  

(1.52)

This is the Helmholtz wave equation for the electric field component E. The 
medium is operating in the linear region; that is, the permittivity does not vary with 
the strength of the intensity of the field. We will see this in later chapters dealing 
with the nonlinear medium, especially in the case of guided waves in optical fibers 
with high power of the guided modes.

A similar equation can be derived for the magnetic component H without much 
difficulty.

Example

Write the wave equation for an EM wave whose field is expressed by

 

E z t
E z t

( , )
( , )

0
0

x

=
















propagating in a charge-free medium.
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ANSWER

 
E

E E

t
z t

z t
t

z t

t
( , )

( , ) ( , )
x

x x
2

2

2

2

∂
∂

= +µσ ∂
∂

+ µε ∂
∂

1.8.2 time-harmOnic wave equatiOn

When the wave is time harmonic, the wave equation can be written in term of the 
phasor of the electric field component as

 ∇ = ωµσ − ω µεj( )s s
2 2E E  (1.53)

Or, alternatively, as

 ∇ − γ = 0s s
2 2E E  (1.54)

γ = ωµσ − ω µε → γ = α + βj jwith 2 2

For the magnetic field component, we can similarly obtain

 ∇ − γ = 0s s
2 2H H  (1.55)

Equations (1.54) and (1.55) are the well-known Helmholtz equations for time-
harmonic fields propagating either in free space or in a confined and guided struc-
ture in the linear regions. When the waves propagate under the nonlinear regime 
of the medium, these equations would be modified to include a number of terms 
on the right-hand side (RHS). These equations would be termed as the nonlinear 
Schrodinger equations (NLSEs), which are described in later chapters on optical 
waveguiding in integrated and circular structures. These equations would then be 
subject to the boundary conditions, so that eigenvalue equations can be obtained, 
and thence the eigenvalues can be obtained. These values correspond to the propa-
gation constant or wave vector that determines the speed of propagating in such 
guided structures.

Let us assume an x-polarized plane wave traveling in the z-direction whose elec-
tric field is given as

 =z E z( ) ( )s xs xE a  (1.56)

The wave amplitude is solely dependent on the z-direction only. Then substituting 
this into the Helmholtz equation (1.54) we have

 

∂
∂

− γ =
z

0xs
xs

2

2
2E E

 (1.57)
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This equation is a linear second-order and homogeneous differential equation. A 
possible solution for this equation is

 Exs = Aeλz (1.58)

where A and λ are arbitrary constants. It is straightforward to prove that the differ-
ential equation can now be written as

 ∂
∂

= λ λ

z
exs

xs
x

2

2
2E AE  (1.59)

Thence,

 λ2 – γ2 = 0 (1.60)

The only physical value of γ must be negative so that the wave does not grow to 
infinitive when the propagation distance becomes very large—thus with the time-
dependent factor and the frequency component ejωt. Both waves propagating in the 
forward and backward directions are possible. For the forward propagating waves 
with = −A E0  we have

 = → = ω − β−γ −Ae E t zcos( )xsF
z

xsF 0E E  (1.61)

Thus, we have

 = ω + β− −αE e t zcos( )xsF
z

0E  (1.62)

The waves in the backward direction take the form

 = ω + β+ αE e t zcos( )xsB
z

0E  (1.63)

Thence, the superposition of the two waves in the forward and backward directions 
arrives at

 = ω − β + ω + β− −α + αE e t z E e t zcos( ) cos( )xs
z z

0 0E  (1.64)

By applying Faraday’s law to the electric field the magnetic field can be found as

 ∇ × = − ωµ = −γ + γ− −γ + γj E e E e( )s s
z z

y0 0E H a  (1.65)

Thus, we can obtain the magnetic field vector by expanding the curl of Equation 
(1.65) to give
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�

= γ
ωµ

− γ
ωµ







= −
+

−γ
−

+γ + −γ − +γE
j

e E
j

e H e H e( )s
z z

y
z z

y
0 0

0 0H a a  (1.66)

Hence, we can define the intrinsic impedance as

 η = = ωµ
γ

= −
+

+

−

−
E
H

j E
H

0

0

0

0

 (1.67)

with

 
η = ωµ

σ + ωε
j

j

when the expression of γ given by (1.54) is used.
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2 Electrical 
Transmission Lines

In this chapter the transmission of waves at high frequency through transmission 
lines is studied. Transmission and reflection coefficients along transmission lines are 
important in the excitation of wire lines in transmission and receiving circuitry of 
radio frequency (RF) waves.

2.1  MODEL OF TIME-HARMONIC WAVES 
ON TRANSMISSION LINES

A transmission line is critical for waves to propagate from the source to the radia-
tion devices, or from the receiving devices to the receiver. When the wavelength 
of the waves, the carrier, is compatible with the size of the transmission line, then 
lumped circuit treatment can no longer be valid. Both transmission and reflection 
of the waves can occur. This section gives an introduction to transmission lines and 
the characteristics related to the consideration of waves propagating through them.

2.1.1 distributed mOdel OF transmissiOn lines

Consider a transmission whose dimension is compatible with the wavelength of the 
waves propagating through it, as shown in Figure 2.1. A differential distance Δz can 
be represented with its distributed parameters consisting of an inductor in series with 
a resistance and a shunt capacitance in parallel with a resistance. The inductor rep-
resents the effects of the induced magnetic field by the current flowing through the 
line, and its serial resistance represents the resistance of the line. The shunt admit-
tance results from the charges, and hence potential, distributed on the positive- and 
negative-going lines of the transmission line. A capacitance is established due to the 
differential charges and the property of the insulator placed between them.

By applying Kirchoff’s voltage law to the loop, we can write the relation between 
the voltages and current dropped and through the differential element and the cur-
rents and voltages at the terminals of the equivalent circuit of Figure 2.1 as follows:

 − + ∆ = ∆ + ∆ ∂
∂

v z t v z z t i z t R z L z i z t
t

( , ) ( , ) ( , ) ( , )
d d

 (2.1)

where the distributed capacitance, conductance, and inductance of the differential 
element of a coaxial transmission line (see Figure 2.1(c)) are given as
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= πε = πσ = µ

π
C b

a

F m G b
a

S m L b
a
H m2

ln
/ ; 2

ln
/ ;

2
ln /d d d

 (2.2)

Then by reducing the distance Δz → 0, we obtain the differential equation

 ∂
∂

= − − ∂
∂

v z t
z

i z t R L i z t
t

( , ) ( , ) ( , )
d d

 (2.3)

Similarly, by applying Kirchoff’s current law at the node of the output voltage we 
have

 ∂
∂

= − − ∂
∂

i z t
z

v z t G C v z t
t

( , ) ( , ) ( , )
d d

 (2.4)

Wire pair transmission line ∆z i+

d

z
(a)

i(z, t)

v(z, t)

i(z + ∆z, t)

v(z + ∆z, t)
C∆z(z + ∆z, t)

+

– –

+Rd∆z Ld∆z

Gd∆z

(b)

i–

(c)

2a

2b

Dielectric
material

ε

FIGURE 2.1 (a) Differential model of a distance Δz of a two-wire line, (b) its equiva-
lent distributed parameters, and (c) geometrical cross section of the transmission line of a 
coaxial line.
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Equations (2.3) and (2.4) are commonly known as the transmission line equa-
tions, representing the relationship between the current and voltages and the resis-
tance, inductance, and capacitance of a differential element of the lines.

2.1.2 time-harmOnic waves On transmissiOn lines

The voltage applied to the transmission line is normally a data envelope modulating 
a carrier, e.g., in telecommunication microwave systems; thus we can represent the 
voltage as

 = ω + φv z t V z t( , ) ( )cos( )  (2.5)

Or in terms of phasors:

 
∵ �

=

=

ω

φ

v z t V z e

V z V z e V V z

( , ) Re[ ( ) ]

( ) ( ) ( )
2

j t

RMS
j

RMS

 (2.6)

where VRMS is the root mean square value of the voltage V(z). This means that the 
signal envelope can be represented by a vector with the root mean square (RMS) 
voltage amplitude and a phase ϕ, which is rotating with an angular frequency ω.

Thus the transmission line equations can be written in phasor forms as

 �

�

�
�∂

∂
= − − ∂

∂
= − + ωV z t

z
I z t R L I z t

t
R j L I z t( , ) ( , ) ( , ) ( ) ( , )d d d d

 (2.7)

 �
�

�
�∂

∂
= − − ∂

∂
= − + ωI z t

z
V z t G C V z t

t
G j C V z t( , ) ( , ) ( , ) ( ) ( , )d d d d

 (2.8)

Instead of solving these two equations, let us save some time by comparing them 
with the equations that arose from Maxwell’s equations, 

� �
∇ × = − ωµjE H  and 

� �
∇ × = σ + ωµj( )H E, and assuming that only components in the z-direction exist in 
the electric field and magnetic field density. These equations result in exact expres-
sion, as given in Equations (2.7) and (2.8).

2.1.2.1 Characteristic Impedance
The characteristic impedance of a transmission line is defined as the ratio of the 
amplitudes of positive traveling voltage over that of the current of the waves, or

 = = −
+

+

−

−Z V
I

V
I0

0

0

0

0

 (2.9)
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With the voltage relation with the propagation parameters expressed in terms of 
the distributed parameters as

 

= +

= +

γ = ωµ σ + ωε = + ω + ω

+ −γ − +γ

+ −γ − +γ

V z t V e V e

I z t I e I e

j j R j L G j C

( , )

( , )

( ) ( )( )

z z

z z

d d d d

0 0

0 0  (2.10)

we have

 + = − + ω ++ −γ − +γ + −γ − +γd
dz

V e V e R j L I e I e( ) ( )( )z z
d d

z z
0 0 0 0

 (2.11)

Then by substituting this differentiation with respect to z, we obtain

 = = + ω
+ ω

+

+Z V
I

R j L
G j C
d d

d d
0

0

0

 (2.12)

Practical transmission lines are made of highly conducting materials, such as 
copper; thence the resistance becomes negligible. The insulating layer is also made 
of good dielectric materials such as Teflon, so that the conductance G is also very 
small. Thus we could see that the propagation constant is

 
γ = α + β = β

β = ω

j j

L Cd d

 (2.13)

The propagation group velocity delay is

 = ω
β

=v
L C
1

p
d d

 (2.14)

The characteristic impedance becomes

 = =
+

+Z V
I

L
C
d

d
0

0

0

 (2.15)

The phase velocity is also commonly known for a transmission line or plane wave 
propagating in a medium with permittivity ε and permeability μ as
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 =
µε

v 1
p  (2.16)

Thus for a nonmagnetic medium we have μr , and thence

 =
ε

v c
p

r
 (2.17)

Then the characteristic impedance in (2.15) for a nonmagnetic medium is given as

 = = =
π

µ
ε







=
ε







+

+Z V
I

L
C

b
a

b
a

1
(2 )

ln 2 60 ln 2d

d
0

0

0
2 1/2

 (2.18)

Example

A 1.0 mm diameter copper wire coaxial line has 1.0 mm thick Teflon and is jack-
eted by copper mesh wire. Assuming that this coaxial line is lossless, find (a) the 
propagation phase velocity and (b) the characteristic impedance of the line. (c) 
If the characteristic impedance is not equal to 50 Ω, what is the diameter of the 
Teflon to make it equal to 50 Ω?

SOLUTION

(a) For Teflon εr = 2.1; thus the propagation phase velocity is

 

v
c 3.10

2.1
2.1 10  m/sp

r

8
8=

ε
= = ×

(b) The characteristic impedance is

 
Z

b
a

60
ln

2 60

2.1
ln

2 1.5
0.5

460 1/ 2 1/ 2
=

ε






= ×





= Ω

For (c) we can use these equations, but with known characteristic impedance of 
50 Ω, the radius a and thence diameter can be found.

2.2 TERMINATED TRANSMISSION LINES

2.2.1 terminated line

In practice transmission lines are terminated, connected to loads; such termi-
nated transmission lines operating under the propagation of waves would create 
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transmitting and reflecting waves similar to any other waves of propagation phenom-
ena, such as sounds in acoustic media, as shown in Figure 2.2.

At the load we have

 = =
=

= +
+

+ −γ − +γ

+ −γ − +γZ V z
I z

V e V e
I e I e

( 0)
( 0)L
s

s

z z

z z
0 0

0 0

 (2.19)

or

 = +
+

+ −

+ −Z V V
I IL
0 0

0 0

 (2.20)

Thence using the definition of the characteristic impedance Z0, we arrive at

 = +
−

+ −

+ −Z Z V V
V VL 0

0 0

0 0

 (2.21)

which can be rearranged as

 = −
+

− +V Z Z Z
Z Z

VL

L
0 0

0

0
0  (2.22)

2.2.2 reFlectiOn cOeFFicient

It is useful if one can define the reflection and transmission coefficient of EM waves 
propagating at the load. The reflection coefficient, Γ, is a complex quantity, including 
both amplitude and phase, and is given as

 Γ = = −
+

−

+
V
V

Z Z
Z Z
L

L

0

0

0

0

 (2.23)

This equation is directly derived from (2.22). In general the reflection at any point 
z along the transmission line can be written as

Wire pair transmission line
z i+

i– d

Input terminal
z = –l

ZL

FIGURE 2.2 Transmission line loaded with the load ZL. Note the origin is located at the load.
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 Γ = = Γ
− +γ

+ −γ
+ γz V e

V e
e( )

z

z L
z0

0

2  (2.24)

The reflection coefficient varies from 0 to 1. The reflected wave can be superim-
posed on the incident wave, and thus form a standing wave whose voltage standing 
wave ratio (VSWR) is defined as

 =
+ Γ
− Γ

VSWR 1
1

 (2.25)

VSWR varies from 1 to infinity.

2.2.3 inPut line imPedance

At any point along the transmission line one can find the input impedance looking into 
the line by finding the ratio of the total voltage to the total current at the point con-
sidered. The input impedance at the input, i.e., at z = −l, as indicated in Figure 2.2, is

 = = +
−

=−

=−

+ +λ − −λ

+ −λ − +λZ V
I

Z V e V e
I e I ein

z l

z l

l l

l l0
0 0

0 0

 (2.26)

Alternatively, we can manipulate the expression (2.26) to arrive at

 = = + γ
+ γ

=−

=−
Z V

I
Z Z Z l

Z Z l
tanh( )
tanh( )in

z l

z l

L

L
0

0

0

 (2.27)

If the line is lossless, we have

 = = + β
+ β

=−

=−
Z V

I
Z Z Z l

Z Z l
tanh( )
tanh( )in

z l

z l

L

L
0

0

0

 (2.28)

The use of this equation is that we can replace the line and the load with an equiv-
alent input impedance looking into the line, or at a particular distance from the load 
we can replace the line and the load with equivalent impedance. This is particularly 
important when the load is not equal to the standard impedance of 50 Ω; then one 
can move away from this load a distance z such that the input impedance at this point 
reaches the standard level.

Examples

Consider a lossless transmission line with a characteristic impedance of 50 Ω. A 
load of 100 Ω is connected to the line and a voltage source is connected to the 
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input line, the phasor of which is represented by Vs = 10ej(π/3) V. (a) Represent the 
circuit diagram of the source, transmission line, and load. (b) Find the equivalent 
impedance of the line and the load. (c) Hence find the voltage dropped across the 
input of the line.

SOLUTION

Considering the equivalent circuit given in Figure 2.3, we can represent the full 
circuit by an equivalent circuit with the characteristic impedance, the load, and 
the generator source. Thus,

 
� � �
V V

Z
Z Z

Vin s
in

s in
s z l( )=

+
= = −

 (2.29)

Then at the input z = –l we have

 
�

V z V e V e V e e

atz l V
V

e e

( ) ( )

(input)

s
z z z

L
z

in
l

L
l

0 0 0

0

= + = + Γ

= − → =
+ Γ

+ −γ − +γ + −γ +γ

+
−γ +γ

 (2.30)

At z = 0 (at the load end) we have V V(0) (1 )s L0= + Γ+ ,

 Z Z
Z Z

100 50
100 50

1/ 3L
L

L

0

0

Γ = −
+

= −
+

=  (2.31)

Wire pair transmission line

Input terminal
z = –l

V~S

z i+

i–Z0 ZLd

V~S

V~in

Z0

Zin

FIGURE 2.3 Source, transmission line, and load for a full circuit (top) and equivalent cir-
cuit (bottom) with Zin as the equivalent load and line impedance.
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Thus, the input impedance is

 
Z

V
I

Z
Z Z l
Z Z l

l l Z
Z
Z

tanh( )
tanh( )

2
4

/ 2 tanh( ) 25

in
z l

z l

L

L

in
L

0
0

0

0
2

= = + β
+ β

β = π
λ

λ = π → β = ∞ → = = Ω

= −

= −  (2.32)

Thus, we have

 

� � � �

�

V V
Z

Z Z
V V e

V
V

e e

e

e e
e

V V e e

v t volts

25
25 25

1/ 2 5

5
1
3

7.5

(1 ) 7.5 (1 1/ 3) 10

10cos
3

in s
in

s in
s z l s

j

in
l

L
l

j

j j

j

L L
j j

L

( )
/ 3

0

3

/ 2 / 2

/ 3

0
_ / 3 _ / 3

=
+

= =
+

= =

=
+ Γ

=
+

=

∴ = + Γ = + =

→ = ω − π





= −
π

+
−γ +γ

π

− π + π

− π

+ π π

 (2.33)

2.3 SMITH CHART

The Smith chart is a graphical tool for use with transmission lines of RF and micro-
wave components and circuits. It has been used for many years as a display on micro-
wave measurement equipment, charts for student calculations, etc.

For use of the Smith chart, a number of steps must be conducted:

 a. The line impedance must be normalized with respect to the characteristic 
impedance of the line.

 b. Admittance can be used, but all the notations indicated in Figure 2.4 must 
be corrected (reverse).

 c. The line impedance can be located on the chart by finding the intersection 
between the circles representing the normalized resistance and susceptance 
of the line impedance.

 d. To find the input impedance to the line at a distance L, one must calculate 
the length of the line in terms of the wavelength of RF waves propagating 
in the line. Then the impedance is rotated by a distance equivalent in the 
Smith chart and the given impedance is read at the intersection point after 
the rotation. This is the normalized impedance looking into the line at a 
distance L from the load. One should make sure that the rotation direction is 
correct. Clockwise direction is for rotating toward the load, and anticlock-
wise is for rotating toward the generator.

 e. Moving a full circle is equivalent to a half-wavelength distance or a quarter-
wavelength for half-circle rotating.
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The circles of the Smith chart are defined by the following equations.1 The reflec-
tion coefficients at any point along the transmission line given in (2.27) or (2.28) 
consist of a real part and imaginary parts. If normalized with respect to the charac-
teristic impedance, this reflection coefficient at the load can be represented as

 Γ = =
−

+
= −

+
=

−

+
V
V

Z
Z
Z
Z

z
z

V
V

1

1

1
1

L

L

L

L

0

0

0

0

0 max

0 min

 (2.34)

The reflection coefficient can also be given as the ratio between the maximum and 
minimum voltage levels of the standing wave formed by the forward and reflected 
waves along the transmission line. This is why the name VSWR is used to indicate 
the standing ratio.

e.g.,
1+j1 Ω

Point circle
resistance of

1 and
admittance

of 1Ω
(normalized)

Re

Toward
generator

Toward load
ImShort circuit

impedance

Resistance
circles

(normalized)

Normalized 50
Ω zL = 1 =

Reactance circles
(normalized)

Open circuit
impedance

FIGURE 2.4 The Smith chart or transmission line calculator.
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In general, any point z = l along the line can be written as

 Γ = Γ = −
+= =

βe z
z

1
1z l z

l
0

2  
(2.35)

where

 
= = +=z Z

Z
r jxz l

0

and the factor of 2βl indicates the total phase of the waves transmitting and reflecting 
from the load.

Thus, we can display the loci of the normalized impedances along the transmis-
sion lines by a number of circles for pure resistance and reactance as follows.

For resistance circles,

 Γ −
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2

1
4Re

2
2
Im

 (2.36)

with Γ Γ and Re
2
Im  being real and imaginary parts of the reflection coefficients.

For the reactance circles,

 Γ − + Γ − =( 1) ( 1) 1Re
2

Im
2  

(2.37)

The illustration of these reactance and resistance curves on the Smith chart is 
given in Figure 2.5, also identified as the point of the normalized impedance 1 + j1 Ω.

Example

A transmission line of a characteristic impedance of 50 Ω is loaded with a load 
whose impedance is 50 + j100 Ω.

 a. Sketch the load and the transmission line with normalized values. Using the 
Smith chart, find the reflection coefficient at the load in terms of magnitude 
and phase.

 b. Find the location on the transmission line from the load where the input 
impedance is a pure resistance. You can also extend the line to achieve this 
at the load location.

 c. If moving from the load to a distance equivalent to ¼ wavelength, what is 
the impedance looking into the line at this point?

2.4 IMPEDANCE MATCHING

In circuit theory, for maximum power transfer and according to Thevenin’s theorem 
on load matching, the load must be a complex conjugate of the source equivalent 
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impedance. In transmission lines we can consider that the source impedance includes 
the source and the line, ZS, Zl, respectively, as shown in Figure 2.6. The impedance 
matching is a uniform generation of resistivity for alternating current; the quantity is 
a complex measure in term of ohms and is a function of frequency. A transmission 
line in circuit theory is dependent on the length and self-impedance, i.e., the per unit 
length resistance and capacitance or inductance. The transmission can be tuned so 
that the line impedance, together with the source, can be matched to that of the load 
impedance, which is normally varied with respect to frequency. The line impedance 
can be tuned by a parallel or series connection, shown as Zline in Figure 2.6. The 
line impedance is adjusted so that the equivalent source and line impedance are the 
conjugate of the load impedance. Once the impedance is determined, the length of 

Open circuit
point

Reactance
circles
x = 1/2

Resistance
circles

Normalized
impedance

1 + j1
(around plus

sign)

Circle of r = 1
Centered at

R = 1/2

Short circuit
location

FIGURE 2.5 Illustration of reactance and resistance circles of the Smith chart. Also, the 
normalized impedance 1 + j1 is identified as the intersection of two circles.
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the line can be found by using the Smith chart as described in the previous section, 
depending on whether serial or parallel lines are employed, as shown in Figure 2.6.

In integrated optical devices, transmission lines (see Chapter 5 on 3D optical wave-
guides and optical modulation) are commonly used in order to guide the electrical 
microwave signals along the electrodes so that a traveling wave electric field can be 
generated, and hence the interaction with the guided lightwaves, modulation of its 
phase, and then the interference or electroabsorption effects to change the intensity 
or phase based on some code, such as Gray code. The impedance matching is essen-
tial in order to avoid any reflection of the electrical waves, hence minimizing the 
interfering effects to the signal sources, especially when the microwave is amplified 
to a significant magnitude for maximum modulation level.

The traveling wave electrodes are sometimes called the microstrip lines and play 
a major role in the modulation of the lightwaves and the quality of the optical signals, 
depending on the matching of the microwave signals, especially when the frequency 
and bandwidth operation are very wide, reaching the order of several gigahertz, e.g., 
30 GSymbols/s.

The reflection coefficient can be calculated using

 Γ =
−

+

Z
Z

Z
Z
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1

2
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2
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where Z1, Z2 are the impedances of the first and second elements in cascade con-
nection, respectively. An impedance mismatching would create a reflected wave 
and form a standing wave with the forward wave. Then a VSWR can be derived to 
indicate the degree of mismatch of the transmission line by the ratio between the 
maximum and minimum levels of the voltage levels of the standing wave along the 
transmission line. The higher the reflection, the larger the difference between the 
maximum and minimum levels, and thus the VSWR, defined as

 = =
+ Γ
− Γ

VSWR V
V

1
1

max

min

 (2.39)

(a) (b)

Zload
V~L V~L

V~s

Z0 + Zl Zline

V~s

Z0 + Zl
Z

FIGURE 2.6 Equivalent load and internal plus line impedance for maximum power transfer 
or matching: (a) serial tuning line and (b) parallel tuning line.
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Example 1: A 50 Ω transmission line is terminated with a load of 30 Ω. Estimate 
the reflection coefficient and thence the VSWR.

Example 2: Continuing from Example 1, if the load is 30 + j30 Ω, then estimate 
the VSWR and the magnitude and phase of the reflection coefficient using 
an analytical or Smith chart. Hint: Use Equations (2.38) and (2.39).

When the series impedance =Z Z Zline o L
2 , then the length of the line for match-

ing must be equal to a quarter of the wavelength of the RF wave. This follows from 
Equation (2.35) with the phase coefficient βl = π/4.

Example

For a single-section quarter-wavelength transformer, determine the impedance of 
the line that would be placed in series with the line so that it could match to a load 
of 200 Ω at 100 MHz and a VSWR on the line remain less than 1.5. Given that the 
velocity of wave traveling in the RF cable is about 2 × 108 m/s, state the condition 
for matching and then the length of the cable required for no reflection.

Hint: The quarter-wavelength section has impedance Z Z Z Z50.200 100line o L line
2 = = → = Ω

Z Z Z Z50.200 100line o L line
2 = = → = Ω . Using Equation (2.39) for VSWR gives a value of less than 

1.5. Using the condition that the product of the propagation constant and the 
length of the RF cable equals π/4 at 100 MHz, one can find the length of the cable 
without much difficulty.

2.5 EQUIPMENT

This section gives a brief experimental setup for the study of transmission lines using 
different loads. The equipment is simple, using an RF signal generator, a stub as an 
RF transmission line, loads of different values, including open and short load imped-
ance, and a spectrum analyzer for measuring the power of monitored RF points.

2.5.1 aPParatus

The elements of the apparatus are as follows:

• A DC power supply and unit oscillator (or an RF synthesizer) capable of 
generating a sinusoidal output with a variable frequency range in the region 
of 1000 MHz.

• An attenuating pad to improve the matching between the synthesizer and 
the slotted line.

• A slotted line equipped with an RF diode detector and a tuning stub.
• A millivolt meter to measure the rectified output from the diode detector.
• A high-frequency terminator, which at different stages of the experiment 

will be a matched 50 Ω termination, a short circuit, or a load under test 
(LUT).

• A quarter-wave λ/4 transformer.
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2.5.2 exPerimental setuP

It is the responsibility of experimenters to note the details of the setup, including 
the dimensions and other related parameters. Please note that since 2006 newer and 
more accurate slotted lines have been used. You must note the model number and 
types of slotted lines. (See Figure 2.7.)

2.5.3 nOtes On the slOtted lines

The slotted line is designed to measure accurately the voltage standing wave pattern 
produced by any load. Basically, it is a rigid coaxial cable whose outer conductor is 
split by a narrow longitudinal slot approximately 500 mm long. The characteristic 
impedance of the line is approximately 50 Ω in the frequency region of interest.

A small shielded probe extends through the slot into the space between the inner 
and outer conductors. Its purpose is to capacitively couple to the transmission line 
and produce a voltage proportional to that existing between the inner and outer con-
ductors of the line at the probe position. The probe is mounted on a carriage that 
slides along the outer conductor to any desired position.

Furthermore, on the carriage is a detector tuning stub whose purpose is to increase 
the sensitivity of the detector. Why and how?

2.5.4 exPeriment

• Tune the unit oscillator to 1250 MHz. With a 50 Ω termination element 
connected to the slotted line, adjust the detector tuning stub to maximize 
the millivolt meter reading or the reading on the spectrum analyzer.
• Connect the short-circuit termination to the slotted line and adjust the 

probe until the millivolt meter indicates a maximum or the spectrum 
analyzer indicates at maximum.

• Adjust the output level control on the unit oscillator so that the millivolt 
meter reading lies between 1.0 and 3.0 mV. Note: Below 3 mV the diode 
detector operates in its square-law region. Above 3 mV the detector law 
changes, leading to difficulty for performing the measurements quanti-
tatively. (Why?) On the other hand, if the reading is too low, the accu-
racy with which the voltage minima can be measured is compromised.
The output of the detector, VDC, in the square-law region of operation is 
related to the transmission line voltage phasor 

�
V  by 

�
=  V const VDC

2 , 

Signal
generator

Attenuator pad

RF detector

Detector

Power meter
(spectrum analyzer)

Load termination

FIGURE 2.7 Experimental setup for transmission line study.
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where const = the constant dependent on the location and phasor volt-
ages and is unimportant if the ratios of the phasor voltages are used.

• To plot the voltage standing wave (VSW) patterns and calculate the 
VSWR it is only necessary to use VDC .

• With the short-circuit termination still connected, record the millivolt 
meter readings as a function of the probe position, starting from the load 
end. Continue the readings until at least two nulls are passed.
• Plot the VSW pattern that is the transmission line voltage magnitude as 

a function of the probe position.
• In your laboratory book you should note and compare your experimen-

tal results and those obtained from the theoretical expression as dis-
cussed in the above section.

• Determine the wavelength λ from the VSW pattern and compare it with 
that predicted from the unit oscillator frequency. By measuring multiples 
of a half-wavelength toward the short circuit from the voltage null positions 
on the slotted line scale, locate the electrical position of the short circuit.
• Note: According to the manufacturer (General Electric), for the WN3 

termination it lies 32 mm beyond the connector reference plane, as 
shown in Figure 2.8.

• Repeat the VSWR measurements with the WO3 open-circuit termination 
connected to the slotted line. Plot the results on the same graph, confirm 
the wavelength, and check that the electrical position of the open circuit is 
32 mm beyond the connector reference plane as stated by the manufacturer.

• Fit the 25 Ω termination by connecting in parallel two 50 Ω termination 
elements to the branches of a 50 Ω T-piece. Determine the VSWR:

 

=VSWR
V

V
~ max

~ min

• Compare your result with the theoretical value for resistive terminations:

 
= >VSWR Z
Z

Z
Z

or whichever is 1
L

L0

0

32 mm

Short-circuit termination

32 mm

Open-circuit termination

FIGURE 2.8 Typical short circuit and open loads with N-type connectors.
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• Again use the location of the voltage maxima and minima to find the 
electrical location of the 25 Ω load.

• A quarter-wavelength, λ/4, of transmission line of characteristic impedance 
terminated in the impedance ZL presents at its input an impedance Z Z/l L

2 . 
Thus, a quarter-wave transformer of impedance 35.55 Ω will match the 25 
Ω load to the 50 Ω impedance of the slotted line.
• Now use the supplied λ/4 transformer as shown in Figure 2.9. For most 

of its length this device is a transmission line with a characteristic 
impedance of 50 Ω. Within a small adjustable section labeled λ/4, the 
outer diameter is reduced to produce a characteristic impedance close 
to 35 Ω.

• Measure the length of the adjustable section and calculate the fre-
quency at which it is λ/4. Adjust the unit oscillator to this frequency 
and repeat the measurements. That is, retune the detector and set the 
signal level again.

• Connect the 25 Ω to the λ/4 transformer. Use the support provided to 
avoid straining the connector.

• Adjust the sliding λ/4 section so that the edge nearest to the load is 
approximately λ/4 from the electrical location of the 25 Ω load. Observe 
the VSWR, and by carefully moving the sliding section back and forth 
slightly, determine the minimum VSWR that you can achieve.

2.5.5 time-dOmain reFlectOmetry

A time-domain reflectometer (TDR) is an electronic instrument used to characterize 
and locate faults in metallic cables (for example, twisted wire pairs, coaxial cables). 
It can also be used to locate discontinuities in a connector, printed circuit board, or 
any other electrical path. The equivalent device for optical fiber is an optical time-
domain reflectometer. The operation principle is based on the propagation time and 
reflection of short pulses generated at the sources and detection of reflected pulses 
from any discontinuities or impedance mismatches along the transmission lines.

A typical setup of TDR is shown in Figure 2.10, consisting of a short pulse signal 
generator. The output of the generator is split into two parts. One is to be launched 
into the transmission line under test, and the other is fed to a signal processor, also 
triggering an oscilloscope. A number of different loads can be placed at the other end 
of the transmission line. We consider the following cases of loads.

Consider the case where the far end of the cable is shorted (that is, it is terminated 
into 0 Ω impedance). When the rising edge of the pulse is launched down the cable, 

32 mm

FIGURE 2.9 A slotted line transmission piece.
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the voltage at the launching point “steps up” to a given value instantly, and the pulse 
begins propagating down the cable toward the short. When the pulse hits the short, 
no energy is absorbed at the far end. Instead, an opposing pulse reflects back from 
the short toward the launching end. It is only when this opposing reflection finally 
reaches the launch point that the voltage at this launching point abruptly drops back 
to zero, signaling the fact that there is a short at the end of the cable. That is, the 
TDR has no indication that there is a short at the end of the cable until its emitted 
pulse can travel down the cable at roughly the speed of light and the echo can return 
back up the cable at the same speed. It is only after this round-trip delay that the 
short can be perceived by the TDR. Assuming that one knows the signal propagation 
speed in the particular cable under test, the distance to the short can be measured. 

LoadShort pulse
generator

Power
splitter Electrical transmission line

Oscillo-
scope

Signal
processor

(d) Capacitive load (1.0 nF)   (e) Matched load

(b) Open circuit load

(a)

(c) Short circuit load

FIGURE 2.10 Typical setup of TDR measurement: (a) schematic and (b)–(e) typical oscil-
loscope traces under different loads s indicated.
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The propagation speed of electrical waves along coaxial cable is about c/1.5, with c 
the speed of light in vacuum. This is due to the fact that the electrical of the TEM 
mode traveling along the cable sees an effective permittivity of about two-thirds that 
of air.

A similar effect occurs if the far end of the cable is an open circuit (terminated 
into infinite impedance). In this case, though, the reflection from the far end is polar-
ized identically with the original pulse and adds to it rather than cancelling it out. So 
after a round-trip delay, the voltage at the TDR abruptly jumps to twice the originally 
applied voltage.

Note that a theoretical perfect termination at the far end of the cable would 
entirely absorb the applied pulse without causing any reflection. In this case, it would 
be impossible to determine the actual length of the cable. Luckily, perfect termina-
tions are very rare, and some small reflection is nearly always caused.

The magnitude of the reflection is referred to as the reflection coefficient Γ, as 
described in Section 2.2.2. The coefficient ranges from 1 (open circuit) to –1 (short 
circuit). The value of zero means that there is no reflection. The reflection coefficient 
can be calculated using Equation (2.34). Different loads would give different reflec-
tions of waves. The incident and reflected waves are superimposed on each other and 
standing waves are formed. However, due to the width of the pulses being short, there 
is no overlapping of the waves, and hence there are traces of incident and reflected 
pulses, as shown in Figure 2.10(c)–(e). It is obvious that when the load is matched to 
the transmission line, no reflection at all can be observed from (e). For a short-circuit 
load the reflection coefficient is negative, and thus the inverse of the pulse on the oscil-
loscope trace. Similarly for an open circuit, we see the positive reflected pulses. There 
are some differences for capacitive load compared to other passive load. Under the 
case of a capacitive load, it depends on how large the capacitance is. What happens 
here is that when the incident pulse has not arrived at the capacitive load, the capacitor 
is not yet charged, and thus it looks like an open circuit and has no trace at all. When 
the pulse arrives the capacitor is charging and it looks like a short circuit, hence the 
negative-going part of trace (d), until it is fully charged, when it again looks like an 
open-circuit load (the last part of the trace indicates the charging transient time).

The time distance between the incident and reflected pulses is determined by the 
length of the transmission line, the coaxial cable.

2.6 CONCLUDING REMARKS

This chapter has described the behavior of electromagnetic waves, the transverse 
electromagnetic waves when they are excited into electrical transmission lines whose 
cross section or length is shorter than the wavelength of the waves. This is the case 
when transmission lines are employed to connect different subsections of systems 
that operate at high-frequency regions, e.g., antenna transmission lines, traveling 
wave electrodes excited by ultra-broadband signals in integrated optical modulators. 
Various operation parameters of such transmission lines are given and should be 
sufficient background to allow readers to use in practice. The estimations and calcu-
lations can be done by hand or using the Smith chart.
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2.7  PROBLEMS

2.7.1 PrOblem On tdr OPeratiOn On transmissiOn and reFlectiOn

The TDR response measured for a 50 Ω characteristic impedance coaxial line termi-
nated with a 50 Ω load is shown below.

 

ZL = 50 Ω

t = 0
µsec

t = 1
µsec

The line is 100 m long and is lossless. The velocity of propagation on the line is 
200 m/μs.

 a. What do the letters TDR stand for?
 b. On each of the following accurately draw the TDR response that would be 

seen if the load was changed to those indicated on the plots.
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ZL = ∞ ZL = 0 

ZL = 25 Ω ZL = 100 Ω

Load is a 4 nF capacitor Load is a 20 uH inductor

2.7.2 PrOblem On transmissiOn line

 a. What is the relationship between the DC voltage measured by the detector 
probe and the RF voltage in the slotted line at the point where the probe 
is inserted?

 b. If the detector measured a maximum voltage of 50 mV (DC) and a mini-
mum voltage of 25 mV (DC) when measuring the voltages along the slotted 
line, what was the VSWR on the line?

 c. When using the quarter-wave transformer to match the 25 Ω load to the 50 
Ω slotted line, how far (in cm) did the closest end of the quarter-wave trans-
former need to be from the 25 Ω load?

 d. Why could the quarter-wave transformer not be placed at the 25 Ω load?
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 e. Could we have matched the 25 Ω load by using a quarter-wave transformer 
of 12.5 Ω impedance at a different point on the line, and if so where should 
this be?

2.7.3 PrOblem On slOtted transmissiOn line exPeriment

 a. What is the relationship between the DC voltage measured by the detector 
probe and the RF voltage in the slotted line at the point where the probe 
is inserted?

 b. If the detector measured a maximum voltage of 50 mV (DC) and a mini-
mum voltage of 25 mV (DC) when measuring the voltages along the slotted 
line, what was the VSWR on the line?

 c. When using the quarter-wave transformer to match the 25 Ω load to the 50 
Ω slotted line, how far (in cm) did the closest end of the quarter-wave trans-
former need to be from the 25 Ω load?

 d. Why could the quarter-wave transformer not be placed at the 25 Ω load?
 e. Could we have matched the 25 Ω load by using a quarter-wave transformer 

of 12.5 Ω impedance at a different point on the line, and if so where should 
this be?

2.7.4 PrOblems On transmissiOn lines

 1. Uniform TEM mode transmission lines:
 a. If in the experiment shown in Figure 2.7 the voltage probe measured a 

maximum voltage of 2 V and a minimum voltage of 1 V, what would be 
the VSWR in the slotted line?

 b. What are the maximum and minimum VSWRs you measured on the 
line?

 c. What load impedance gave you the maximum VSWR, and what load 
impedance gave you the minimum VSWR?

 d. What was the wavelength you measured in the slotted line?
 e. What was the free space wavelength?
 f. When the matching was successful, how far from the load reference 

position was the end of the quarter-wave transformer closest to the load?
 g. What were the impedances of the resistive load that was matched and 

the quarter-wave transformer that matched it?
 h. What is the function of the short-circuit stub, and why did it need to be 

tuned at each new frequency of measurement?
 2. Sketch the schematic of an experimental setup that you may use for the 

study of slotted line transmission property with an operating frequency of 
900 MHz. Describe the principles of operation of the setup. Indicate in your 
schematic the power level of the signals at the input of the slotted line, at the 
load, and at the detection system.

 3. If the detector measured a maximum voltage of 50 mV (DC) and a mini-
mum voltage of 25 mV (DC) when measuring the voltages along the slotted 
line, what was the VSWR on the line?
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 4. When using the quarter-wave transformer to match the 25 Ω load to the 
50 Ω slotted line, how far (in mm) did the closest end of the quarter-wave 
transformer need to be from the 25 Ω load?

 5. Why could the quarter-wave transformer not be placed at the 25 Ω load?

Refer to the above diagram to answer the following questions.

 

Zs

Zo

l

A

A'

B

B '

ZLVs

 6. A lossless transmission line has a series inductance of 100 nH/m and a 
characteristic impedance of 75 Ω.

 a. What is the value of the line’s shunt capacitance per meter?
 b. What is the propagation velocity of signals on the transmission line?
 7. Write the formula for the voltage reflection coefficient in terms of charac-

teristic impedance and load impedance.
  A transmission line with a source impedance of 50 Ω and characteristic 

impedance of 50 Ω is terminated in an impedance ZL.
  What is the reflection coefficient at the load if:

 a. ZL = 10 Ω
 b. ZL = 100 Ω
 c. ZL = 50 Ω
 d. ZL = 1 MΩ
 e. ZL = 1 mΩ
 f. ZL = 0 Ω
 8. A lossless transmission line with a source impedance of 50 Ω, a character-

istic impedance of 50 Ω, and a length of 1500 m is terminated at an imped-
ance of 50 Ω.

  The line has a forward traveling voltage wave V+(x – vpt) on it such that

 V+(0, t) = 0 V, t ≤ 0

 V+(0, t) = 5 V, 0 < t < 2 μs

 V+(0, t) = 0 V, t ≥ 2 μs

 vp = 200 m/μs is the propagation velocity in the line

 a. Sketch the voltage on the line at times t = 2, 4, 6, 8, and 10 μs.
 b. Sketch the voltage at the source of the line and at the load end of the line 

over the time period 0 ≤ t ≤ 20 μs.
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 c. Sketch the source voltage VS as a function of time.
 9. A lossless transmission line with a source impedance of 50 Ω, a character-

istic impedance of 50 Ω, and a length of 1500 m is terminated in a 25 Ω 
impedance. The source impedance is 50 Ω.

  The line has a forward traveling voltage wave V+(x – vpt) on it such that

 V+(0, t) = 0 V, t ≤ 0

 V+(0, t) = 5 V, 0 < t < 2 μs

 V+(0, t) = 0 V, t ≥ 2 μs

 vp = 200 m/μs is the propagation velocity in the line

 a. Sketch the voltage on the line at times t = 2, 4, 6, 8, and 10 μs.
 b. Sketch the voltage at the source of the line and at the end of the line over 

the time period 0 ≤ t ≤ 20 μs.
 c. Sketch the source voltage Vs as a function of time
 10. A transmission line with ZS = Z0 = 50 Ω has a length of 1000 mm. The 

velocity of propagation in the line is 200 m/μs.
  Its source voltage Vs is a step function VS(t) = 12u(t).
  Draw the voltage waveform seen at the terminals AA′ and BB′ if:

 a. ZL = 50 Ω
 b. ZL = ∞
 c. ZL = 0
 d. ZL = 75 Ω
 e. ZL = 25 mΩ
 11. Draw the current variation for the previous problem with time at the termi-

nals AA′ and BB′.
 12. Write the expression for the input impedance seen by looking into a lossless 

line of length l that has a characteristic impedance Z0 and is terminated in 
a load impedance ZL.

 13. What is the input impedance at 300 MHz of a lossless line of length l, which 
has a propagation velocity equal to that of free space, has a characteristic 
impedance Z0 = 50 Ω, and is terminated in a load impedance ZL if:

 a. l = 750 mm and ZL = 50 Ω
 b. l = 250 mm and ZL = 50 Ω
 c. l = 650 mm and ZL = 50 Ω
 d. l = 750 mm and ZL = 100 Ω
 e. l = 1000 mm and ZL = 100 Ω
 f. l = 500 mm and ZL = 100 Ω
 g. l = 250 mm and ZL = 100 Ω
 h. l = 600 mm and ZL = 100 Ω
 i. l = 300 mm and ZL = 100 Ω
 j. l = 1000 mm and ZL is a short circuit
 k. l = 500 mm and ZL = is a short circuit
 l. l = 250 mm and ZL = is a short circuit
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 m. l = 350 mm and ZL = is a short circuit
 n. l = 150 mm and ZL = is a short circuit
 o. l = 1000 mm and ZL is an open circuit
 p. l = 500 mm and ZL = is an open circuit
 q. l = 250 mm and ZL = is an open circuit
 r. l = 350 mm and ZL = is an open circuit
 s. l = 150 mm and ZL = is an open circuit

  Note how long the line is in wavelengths in each case.
 14. Given the results of question 8, what conclusions can you draw regarding
 a. The input impedance of a transmission line terminated with its own 

characteristic impedance.
 b. The input impedance of a half-wavelength long line.
 c. The input impedance of a wavelength long line.
 d. The input impedance of a quarter-wavelength long line.
 e. The input impedance of a quarter-wavelength long line terminated in a 

short circuit.
 f. The input impedance of a quarter-wavelength long line terminated in 

an open circuit.
 15. A lossless line with a characteristic impedance of 100 Ω is 25 m long. It is 

fed from a 600 MHz sinusoidal source that has a source impedance of 100 
Ω. The open-circuit voltage of the source is 60 mV. The line is terminated 
in an impedance of (50 + j50)Ω.

  Assume a wavelength in the line is 67% of a wavelength in free space.
 a. What is the voltage reflection coefficient seen at the load?
 b. What is the magnitude of the forward traveling voltage wave?
 c. What is the magnitude of the reverse traveling voltage wave?
 d. What is the maximum voltage on the transmission line?
 e. What is the minimum voltage on the transmission line?
 f. What is the relationship between voltage maxima and voltage minima 

and the VSWR on the line?
 g. What is the relationship between forward traveling voltage magnitude 

and reverse traveling voltage magnitude and the VSWR on the line?
 h. What is the VSWR on the transmission line?
 i. What is the relationship between VSWR and the reflection coefficient?
 j. How much power (in dBm) could have been delivered to the load if the 

load was matched to the line characteristic impedance?
 k. What power (in dBm) will be delivered to the load?
 l. What is the relationship between the power in part (j), the power in part 

(k), and the reflection coefficient?
 16. Give three common reasons an engineer may need to impedance match a 

load to a transmission line’s characteristic impedance.
 17. A load impedance of (150 + j25) Ω terminates a transmission line that has 

a characteristic impedance of 75 Ω. The load is to be impedance matched 
to the line using a single shunt-connected stub. The stub is to comprise a 
short-circuited length of 75 Ω coaxial line. Determine:
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 a. The position (in wavelengths relative to the load) at which to attach the 
stub.

 b. The length (in wavelengths) of the stub.
 c. How long should the stub be if it was terminated in an open circuit 

rather than a short circuit?
 18. A load impedance of (150 + j75) Ω terminates a transmission line with a 

characteristic impedance of 75 Ω.
 a. What is the reflection coefficient at the load?
 b. A 145 MHz signal is applied to the line. If the minimum voltage mea-

sured at any point on the line is 100 mV (RMS), what is the maximum 
voltage that would be measured on the line?

 c. What VSWR will occur on the line?
 d. Where (in terms of wavelengths from the load) will the voltage max-

ima occur?
 e. What will the impedance on the transmission line be at these points?
 f. What will the impedance be at points where there is a voltage minimum?
 19. Give three common reasons why an engineer may need to impedance match 

a load to transmission line’s characteristic impedance.
 20. A load impedance of (150 + j25) Ω terminates a transmission line that has 

a characteristic impedance of 75 Ω. The load is to be impedance matched 
to the line using a single shunt-connected stub. The stub is to comprise a 
short-circuited length of 75 Ω coaxial line. Determine

 a. The position (in wavelengths relative to the load) at which to attach the 
stub.

 b. The length (in wavelengths) of the stub.
 c. How long should the stub be if it was terminated in an open circuit 

rather than a short circuit?
 21. A 900 MHz plane wave is propagating in the +x-direction of a rectangular 

Cartesian coordinate system. It is polarized in the y-direction. The electric 
field has an RMS magnitude of 50 mV/m.

 a. What is the wavelength of the plane wave?
 b. What is the magnitude of the magnetic field component of this electro-

magnetic wave?
 c. What is the power density carried by the wave?
 d. An antenna with an effective area of 0.5 m2 is pointing in the negative 

x-direction and is polarized in the y-direction. How much power will it 
pick up from the plane wave?

 e. The plane wave is normally incident on an infinite, lossless wall that 
has one face in the yz-plane at x = 0. The other face of the wall is in the 
yz-plane at x = d.

  The wall has a relative permeability of 4 and a relative permeability of 1.
  What percentage of the incident power is reflected back from the wall if

 i. d = 83.25 mm
 ii. d = 41.625 mm
 22. A section of rectangular waveguide has internal dimensions of 12.5 × 25 mm.
 a. What modes will propagate in this guide at 9 GHz?
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 b. What is the range of frequencies for which only one mode will propa-
gate in the waveguide, and what is that mode?

 c. Sketch the electric field distribution of the TE10 mode in the waveguide.
 d. Sketch the magnetic field distribution of the TE10 mode in the waveguide.
 e. Sketch the electric field distribution of the TE21 mode in the waveguide
 f. What is the guide wavelength at 9 GHz?

REFERENCE
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3 Antennae

3.1 INTRODUCTION

In wireless communications, the antenna is commonly known as an aerial, a trans-
ducer converting electrical energy into radiation energy and designed to transmit or 
receive electromagnetic (EM) waves. TV antennae or mobile antennae are designed 
specifically for reception of broadcast television signals or transmitting, propagating, 
and receiving of mobile signals that can be in either analog or digital form.

In practice the antennae need to be installed in a place that is sufficiently high 
for telecommunications and broadcasting, commonly known as antennae towers. 
There are a number of basic antenna structures, such as the dipole antenna, which 
is a simple structure constructed by two straight wires in opposite phase end-to-
end, directional antennae. Alternatively, a beam antenna radiates greater energy/
power directed toward some specific directions. A horn antenna is a type of direc-
tional antenna whose shape follows that of a horn. A meta-material antenna is a class 
of antenna incorporating meta-materials to enhance the performance of miniature 
antenna systems. An omnidirectional antenna is an antenna system radiating EM 
waves uniformly in all directions in one plane. A parabolic antenna has a radiating 
or reception area that follows the shape of a parabola in one or both planes. A typi-
cal parabolic antenna disk is shown in Figure 3.1. It is located in a remote area of 
Western Australia in order to avoid interference from human mobile communication 
signals so it can detect weak EM radiation from deep space or the outer boundary of 
the universe. All communications and data transfer works are implemented via fiber 
optical communication lines and systems.

Typically an antenna consists of an arrangement of metallic conducting elements, 
electrically connected through a transmission line to the receiver or transmitter. An 
oscillating electric current forced through the antenna by a transmitter will create 
an oscillating magnetic field around the antenna elements, while the flowing electric 
current also creates an oscillating electric field along the conducting elements. Hence 
the mutually orthogonal magnetic and electric fields are coupled with each other and 
propagate a long way. This is electromagnetic radiation.

There are a number of structures of antennae, depending on the geometrical 
arrangement, including linear loop antennae, monopole and dipole antennae, radia-
tion aperture antennae, horn antennae, disk antennae, array antennae, etc. These 
antennae can act as reception or radiation systems. Figures 3.1, 3.3, 3.4, and 3.7 
show the typical structures of these antennae. Figure 3.2 shows a typical pattern of 
radiating electric and magnetic field components, which are always orthogonal to 
each other. In this chapter, as an introduction to antennae for wireless applications, 
monopole and dipole antennae are treated as linear types for illustration of the prin-
ciples of radiation and receiving. Further details of other types can be found in the 
literature, especially in reference books.
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FIGURE 3.2 (a) A parabolic antenna as an element of an antenna radio array of (b) the square 
kilometer antenna (SKA) constructed in a remote region in Pilbarra, Western Australia, to 
avoid any wireless EM interference so that it can detect very weak EM radiation from stars 
located in deep outer space to determine the boundary of the universe. (Artist image of SKA 
for radio astronomy. See http://www.skatelescope.org/the-technology.)

FIGURE 3.1 A parabolic antenna as an element of an antenna radio array, the square kilo-
meter antenna (SKA), constructed in a remote region in Pilbarra, Western Australia, to avoid 
any wireless EM interference so that it can detect very weak EM radiation from stars located 
in deep outer space. (Artist image of SKA for radio astronomy. See http://www.skatelescope.
org/the-technology.)
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An antennae tower is a tall structure to support antennae as aerials for telecom-
munication and broadcasting. The first tower was constructed in Munich Olympic 
Park for the television broadcasting purposes of the 1972 Olympics. A dipole antenna 
is a simple antenna usually constructed from two wires in opposite phases positioned 
end to end with respect to each other. A horn antenna is a type of directional antenna 
shaped like a horn. An omnidirectional antenna is an antenna system that radiates 
power uniformly in all directions in one plane. A parabolic antenna is an antenna 
shaped like a parabola in one or both planes.

This chapter describes a number of fundamental understandings of antenna the-
ory and illustrates the technological aspects of antennae. A number of essential for-
mulae for estimating antenna performance are given. They can be understood from 
the theory of electromagnetic waves, such as the field is an inverse proportional 
with distance. We will state these equations without proof in order to simplify the 
mathematics, but we will enhance the physical understanding of EM radiation and 
reception for engineering applications.

3.1.1 diFFerential dOublet and diPOle antenna

Consider an elementary doublet consisting of two unconnected minute in-line ele-
ments located at the referenced center of the Cartesian coordinate system as depicted 
in Figure 3.4. The length of the doublet is δL, which is much shorter than the wave-
length of the EM waves radiating from it. The doublet carries an alternating current 
I expressed as

 I(t) = I0ejωt (3.1)

(a) (b)

FIGURE 3.3 (a) Mobile antenna at a mobile base station. (b) VHF antenna tower.
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where ω = 2πf is the angular frequency and I0 is the excitation current at the origin. 
Thus I represents the phasor of the current I, that is, the magnitude of a wave rotat-
ing at an angular frequency. Normally this rotating frequency is too fast and can 
be considered “stationary” by vision. Any additional phase carried by the current I 
would be represented by an angle on a phasor plane equal to the phase radial angle.

This differential doublet is indeed considered an elementary element of a dipole 
antenna that consists of two wire lines coming from the center and connected to the 
positive and negative terminals, excited by an alternating current source as shown in 
Figure 3.4(b). Thus the total field considered at the point P can be found by integrat-
ing (3.1) over the entire length of the dipole antenna as shown in Figure 3.4(a).

3.1.2 Far Field

If the point P is far away from the antenna, then the field is a far field. That is, the 
distance of consideration is much longer than the wavelength of the radiating EM 
waves. The imaginary part of this differential far field strength is given by

 δ = − θ
ε

δ
λθ

ω −
θj I

cr
L esin

2
j t kr0

0

( )E a  (3.2)

This differential field strength is inversely dependent on the radial distance r, 
the angle θ, the velocity of light c, and the EM wave propagating velocity. ε0 is 
the permittivity of the air medium. λ is the wavelength of the radiation EM waves; 
indeed, it is the wavelength of the excitation signal applied to the antenna. This field 
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FIGURE 3.4 Coordinate and fields of a dipole antenna: (a) Exciting current I(t) into the 
dipole antenna; (b) its differential antenna element.
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is projected onto the direction of the angular variable θ. The field is in the plane of 
the antenna and perpendicular to the radial direction. 

�
θa  is the unit vector in the 

θ-direction. k = 2π/λ is the EM propagation constant (or wavenumber) in free air.

3.1.3 near Field

For completeness the near field of the E and H components in a spherical coordinate 
system is as indicated in Figure 3.4. Such fields of the radiation antenna, that is, the 
field in the distance less than one wavelength of the radiating wave divided by 2π, 
are given by
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where

 
= µ

ε
=

ε
= µ = µ µZ

c
c c1

r0 0

is the characteristic impedance of the medium with permittivity ε = εrε0 and perme-
ability μ = μrμ0. The characteristic impedance of free air is 120π or 377 Ω.

Exercise

Confirm the characteristic impedance of free air or vacumm by substituting the 
permittivity of vacuum and the velocity of light in such a medium.

3.1.4 linear antenna current distributiOn

The radiation angular pattern of antennae is completely determined by the trans-
verse component = θ + φ⊥ θ φF F Fˆ ˆ  of the radiation vector; θ φF̂, ˆ, ˆ  are the unit vectors. 
A transverse plane of the radiation is determined as the plane perpendicular to a 
particular direction. In this case, if the antenna element is along the z-direction, then 
the transverse plane is in the xOy of a Cartesian coordinate system and θ φ(ˆ, ˆ )  in a 
spherical coordinate. The current density J determines this field distribution. Here, 
we consider some examples of current densities describing various antenna types, 
such as linear antennae, loop antennae, and linear arrays.
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For linear antennae, we may choose the z-axis to be along the direction of the 
antenna. Assuming an infinitestimally thin antenna, the current density along the 
z-direction will take the form

 � � �= ∂ ∂J r zI z x y( ) ( ) /  (3.4)

where ∂x;∂y are the differential elements in the x- and y-directions, respectively, 
I(z) is the distribution of the excitation current along the z-direction of the antenna 
conducting elements, and is the unit vector in the z-direction. This current satisfies, 
approximately, the Helmholtz’s equation:

 + =d I z
dz

kI z( ) ( ) 0
2

2
 (3.5)

where k0 = 2π/λ is the wavenumber of the radiating wave in free air. This second-
order differential equation (3.5) represents the relationship of the current distribu-
tion along the conducting antenna element that may form by the resonanting of the 
currents to generate a standing wave—hence a maximum field induced to radiation 
when a resonance condition is satisfied. We will see later that this resonating phe-
nomenon is the maximum condition for radiation EM fields.

The current I(z) can be stated for different types of antenna elements with the 
excitation current at the origin of I0 as a Hertzian dipole:

 I(z) = I0l∂z (3.6)

A Hertzian antenna is made up of two small spherical disks connected by a wire, 
and the electric charge flows periodically back and forth between the spheres. The 
first antennae were built in 1888 by German physicist Heinrich Hertz in his pioneer-
ing experiments to prove the existence of electromagnetic waves as predicted by the 
theory of Maxwell (the Maxwell equations) at the time.

Uniform line element, monopole:

 I(z) = I0 (3.7)

Small linear dipole:

 = −I z I z l( ) (1 2 / )0  (3.8)

Standing wave antenna:
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 = −





I z I k l z( ) sin
20 0

 (3.9)

If the length of the antenna elements is equal to half the wavelength of the radiat-
ing frequency, we have a half-wave antenna. The electric oscillating current can be 
written as

 I(z) = I0 cos(k0z) for half-wave antenna (with l = λ/2) (3.10)

Traveling wave antenna:

 = −I z I e( ) jk z
0

0  (3.11)

where l is the length of the antenna element and the expressions are valid for −l/2 ≤ z 
≤ l/2, and k0 is the wavenumber of the radiating wave field. The term traveling wave 
is used when the length of the antenna is compatible with or longer than that of the 
wavelength of the radiating EM waves.

3.1.4.1 Loop Antenna
A loop antenna may be formed by a thin-wire circular loop that lies on the xy-plane 
and is centered at the origin. For a circular loop of radius a, the current flows azimuth-
ally, as shown in Figure 3.5. The corresponding current density can be expressed in 
cylindrical coordinates r = (ρ, φ, z) as

 � � = φ ∂ ρ − ∂J r I a z( ) ˆ ( )0
 (3.12)

3.1.4.2 Array Antenna
An array antenna is formed by a group of antenna elements, such as Hertzian or 
half-wave dipoles, that are arranged in particular geometrical configurations, such as 
along a particular direction. Some examples of antenna arrays composed of identical 

x

I0
a y

z

FIGURE 3.5 Loop antenna.
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antenna elements whose current density can be written as a superimposition of each 
individual element referring to the same coordinate system follow:
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3.2 RADIATING FIELDS

The radiation angular pattern of antennae is completely determined by the trans-
verse component, which is defined as the plane perpendicular to the antenna element 
of the radiation vector, �F , which in turn is determined by the current density, �J .

For an antenna element of length l excited by a current I(z) the radiation field is 
given by

 � ∫= = ′ ′
−

F zF I z e dzˆ ( )z
jk z

l

l

/2

/2

z  (3.14)

where kz is the propagation constant of the radiation vector along the z-direction. The 
propagation vector can be represented in either spherical or Cartesian coordinate 
systems as

 � = + + = φ θ + φ θ + θk xk yk zk x k y k z kˆ ˆ ˆ ˆ cos sin ˆ sin sin ˆ cosx y z
 (3.15)

Thus (3.14) can be rewritten as

 � ∫= = ′ ′′ θ

−

F zF I z e dzˆ ( )z
jkz

l

l
cos

/2

/2

 (3.16)

This vectorial field can be resolved into the transverse plane as

 � ∫= = ′ ′θ

−

F zF I z e dzˆ ( )z
j k z

l

l
cos

/2

/2

 (3.17)
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which can be resolved into the (θ,ϕ) directions as

 � = = θ − θ θ θ = θ θ − θ θ θF zF r F rF Fˆ [ ˆ cos ˆ sin ] ( ) ˆ ( )cos ˆ ( )sinz z z z
 (3.18)

Hence, the transverse component of the radiation field is the part involved, θ̂, and 
is written as

 � = −θ θ θ⊥F Fˆ ( )sinz
 (3.19)

Thus with an integration of the field component along the whole length l of the 
antenna element of the current I, we have the electric and magnetic fields � �E H( , ), 
which are orthogonal to each other, as
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 (3.20)

The radiation field intensity of linear antennae would thus be given as

 θ =
π

θ θU Z k F( )
32

( ) sinz

2 2

2
2 2  (3.21)

By taking the real component of the cross-product of the electric and magnetic 
fields given in (3.20), we can define the real part of the Poynting vector, which is 
explained next.

The principal aims of constructing antennae and their uses are for transmitting 
energy and receiving radiated energy, namely, the transmitting antenna and receiving 
antenna, respectively. Thus in order to justify the performance of an antenna, the flux 
of the radiating field, then the radiating power, is very important. The radiating power 
is indeed the real part of the cross-product of the EM field components, � �E H, , which 
are radiating from the excitation of the oscillating current to the antenna element 
and are mutually orthogonal. Indeed, wireless communication signals are the low-
frequency data sequence represented by the envelope of the high frequency carriers 
to be carried or transported over an air medium by this transmitting field. The carrier 
frequency is the oscillating frequency of the exciting current applied to the antennae. 
Thus the radiating power, the real part of the Poynting vector, can be written as

 � �= ×P E H1
2

Re( )  (3.22)

Thus (3.21) can be derived from substituting (3.20) into (3.22).
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3.2.1 radian Field OF hertzian antenna

After the formation of Maxwell’s equations involving time variants and radiation, 
Hertz of Kiel University in Nothern Germany initiated an experiment to create the 
generation of EM waves—thus the Hertzian antenna, which is a very small linear 
radiating element located at the origin of a coordinate system. The distribution of the 
excitation current is given as I0/∂z. By substituting into (3.16) and (3.21) and taking 
the integration over the length of the Hertzian antenna we obtain

 ∫= = ′ ′ =θ

−

F zF I z e dz I lˆ ( )z
j k z

l

l
cos

/2

/2

0
 (3.23)

Then the radiation power can be found, by using (3.21), as

 θ =
π

θP Z k I l( )
32

sinrad

2 2

2 0
2 2  (3.24)

The gain of an antenna, G(θ), can be defined as

 θ = θ = θG P
P

( ) ( ) sinrad

rad ,max

2  (3.25)

where

 =
π

Z k I lP
32rad ,max

2 2

2 0
2

This antenna gain and radiation pattern are plotted as shown in Figure 3.6(a) 
and (b). It is very obvious that this radiation pattern is maximum at an angle of 
π/2, that is, at the direction perpendicular to the Hertzian antenna element. The 
half-power point can be estimated to be π/4, i.e., at which the amplitude reaches 
the factor 0.7076 of the maximum of the field radiating pattern and 50% in the 
power distribution curve. The radiation pattern is thus fairly wide and not highly 
directional.

In order to achieve a more directional radiation pattern and, hence, control of the 
radiating beam to our target position, it is necessssary to design the arrangement 
of the antenna element. The solid beam angle can be derived by taking the integra-
tion over the entire beam distribution or estimating the half-power solid angle and 
multiplying by a scaling factor to get

 ∆Ω = π8
3

 (3.26)
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Having found the electric field one can compute the emitted power and thence 
the resistivce part of the series impedance of the antenna due to this radiating field, 
which is known as the radiation resistance, given as

 = → = 





P R I R P
I

1
2

2
rad rad rad

rad2
0

0

1/2
 (3.27)

Indeed, we can consider the resistance or impedance to be that of a free air 
medium into which the radiation is entering, or this free air is the load of the antenna 
radiation source.

3.2.2 standinG wave antenna: the halF-wave diPOle antenna

The most popular antenna structure is the standing wave type, especially the half-
wave structure. A half-wave antenna structure is shown in Figure 3.7 whose length 
is equal to half of the wavelength of the radiating electromagnetic wave, that is, the 
ratio between the velocity of light in vacuum and the operating frequency. The main 
reason for the value of a half-wavelength is that a quarter of the wave is distributed 
to half of the antenna and the half to the other side. Thus a standing wave can be 
formed by the superposition of the forward wave and backward wave from the ends 
of the antenna elements. So the EM radiation forms a standing wave pattern with 
“close” ends, as shown in Figure 3.7; maximum field radiation is achieved due to the 
resonance of the fields over the length of the antenna. The current distribution of the 
half-wave antenna is given in (3.9). Thus the field radiation vector is given as

 � ∫= = − ′
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FIGURE 3.6 (a) Radiation and (b) gain in dB patterns of Hertzian antenna in polar coordi-
nate system.
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By substituting (3.28) into (3.21) we obtain the normalized gain for the standing 
wave antenna as

 θ = θ −
θ







G c kh kh( ) cos( cos ) cos( )
sinn

2
 (3.29)

where is chosen such that the maximum value of the gain is unity at the maximum 
value of the angle θ.

For a half-wave antenna the length l corresponds to half of the wavelength of the 
radiating EM wave, or kl = π; thus the normalized gain (3.29) becomes
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π θ





θ
G( )

cos
2

cos

sin

2
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(3.30)

The plots of the distribution of the field and the normalized gain with respect to the 
angle θ are shown in Figure 3.8. We can see that the 3 dB point of the power radiation 
is at about 40° of arc. The radiating patterns of the resonance antennae having differ-
ent lengths are shown in Figure 3.9. It is obvious that the radiation patterns would now 
exhibit multiple lobes, especially when the length is twice the wavelength.

3.2.3 mOnOPOle antenna

The monopole antenna with length of a quarter-wave can be considered the version of 
a half-wave antenna whose second half is the image of the first. Thus the power radi-
ating from the monopole antenna equals half of that of a dipole resonance antenna. 

(a) (b)
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current ends
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+ –

2
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4
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FIGURE 3.7 A half-wave dipole antenna consisting of two equal-length monopole wires: 
(a) structure image of 1–4 GHz operating frequency; (b) schematic.
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FIGURE 3.8 (a) Field pattern and (b) power distribution of the half-wave antenna.
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FIGURE 3.9 Field pattern and power distribution of resonance antenna with different total 
lengths, as indicated.
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The simplicity of the monopole antenna and its “imaging” equivalence shown in 
Figure 3.10 gives tremendous advantage in modern mobile devices currently used in 
mobile networks. We have the radiating power given as

 =P P1
2monopole dipole

 (3.31)

3.2.4 travelinG wave antenna

The standing wave antenna considered in the previous section can be considered the 
superposition of forward and backward waves. If the end of the antenna has a load 
whose impedance matches that of the antenna, then all forward waves are matched, 
there is no reflection of waves, and there are zero backward waves. In this case the 
antenna is called a traveling antenna type. An example of this type of antenna is the 
traveling wave electrode integrated on the surface of an optical modulator substrate 
so that the electric fields generated across the optical waveguide can be established 
to modulate the change of the refractive index of the optical wave by the radiat-
ing field dropped across the guiding region via the electro-optic effects—hence the 
modulation of the phase of the lightwaves.

A schematic of a traveling wave is shown in Figure 3.11. The traveling wave 
looks like a wire excited from one end and matched with a load whose impedance 
equates that of the antenna—hence no reflection of the radiation wave and thus it 
is a traveling wave.
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FIGURE 3.10 Structure of a monopole antenna and its equivalent image model using a 
half-wave antenna.
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FIGURE 3.11 Schematic traveling wave antenna.
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The current along the element of the antenna is given as

 = ≤ ≤−I z I e z l( ) , 0jkz
0

 (3.32)

Thus, the radiation field can be found as

 � ∫= ′ = −
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− ′ θ ′
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F z I e e dz z
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 (3.33)

The transverse component of the field in the θ-plane is given as

 � �= − θ = − θ −
− θθ
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Similarly, the radiation intensity can be found as
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Hence, the antenna gain of the traveling wave type is given by

 θ =
θ π
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where Cn is an arbitrary normalization constant. The radiation pattern plotted in 
Figure 3.12 represents the gain equation (3.36) for two typical lengths of 5 and 10 
times the operating wavelength.

3.2.5 OmnidirectiOnal antenna

An omnidirectional antenna radiates radiowaves with power that is uniform over all 
directions, with an elevation angle above or below the plane and dropping to null at 
the antenna’s axis. This radiation is often described as doughnut shaped, as shown 
in Figure 3.13(a) and (b). The radiated power is maximum in the horizontal plane, 
which is perpendicular to the antenna axis, and drops to zero at its axis. An omnidi-
rectional antenna is commonly used in radio broadcasting and mobile devices that 
use radio waves, such as cell phones, FM radios, walkie-talkies, and cordless phones. 
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FIGURE 3.12 Radiation pattern plotted using the antenna gain equation of a traveling wave 
antenna with (a) l = 5λ and (b) l = 10λ.
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FIGURE 3.13 Computer-generated image of a doughnut-shaped radiation pattern of an 
omnidirectional antenna. (a) Radiation pattern. (b) Installed antenna on a ceiling and radiat-
ing pattern for indoor communication. (c) Omni antenna as a composite of dipole elements.
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These omnidirectional antennae are useful for indoor communications, especially in 
underground transport networks for mobile transmitting and receiving signals.

Omnidirectional antennae can take the form of the simplest practical types of 
monopole and dipole structures, as shown in Figure 3.13(c).

3.2.6 hOrn waveGuide antenna

A horn antenna or microwave horn is an antenna that consists of a planar metal 
waveguide shaped like a horn, as shown in Figure 3.14. It consists of a metallic thin 
wall opening at the end and following a pyramidal shape with a narrow end where 
the signal is feeding through an N-type connector. The radiation coming out of the 
horn antenna follows a beam form. Horn antennae are commonly used as antennae at 
UHF frequencies above 300 MHz and microwave frequencies above 10 GHz. They 
are also commonly used as feeders to larger antennae, such as the parabolic antennae 
shown in Figure 3.1. The appendix at the end of this chapter gives a brief introduc-
tion to a metallic hollow waveguide, which can be used to feed the radiation waves 
at a distance to the radiating antenna system.

The horn antenna operates like an acoustic horn employed in music; electromag-
netic waves are radiating within the walls of the horn, following a gradual transi-
tion to match the impedance of the waveguide to that of the free-space impedance 
(~377 Ω) so as to maximize the radiation. The horn acts as an impedance matcher 
that is gradual so that it can match to that of the free air and avoid reflection back 
to the waveguide and, thus, inefficiency. The length of the horn is longer than one 
wavelength; otherwise, the radiation is inefficient.

The EM waves traveling down a horn have a spherical wavefront whose origin is 
located at the apex of the horn. The pattern of the electric and magnetic fields at the 
aperture is a scaled image of the fields confined in the waveguide. However, due to 
the spherical wavefronts the phase increases gradually and smoothly from the center 

�in
metallic walls 

Signal feed
N-type connector 

FIGURE 3.14 Structure of a pyramidal horn antenna with a typical bandwidth of 0.8 to 18 
GHz, commonly used as a police antenna gun to measure the speed of a moving car by radia-
tion and reflection from a metallic object (car).
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of the aperture to its edges. The phase difference between the waves at the center of 
the aperture and those at its edges is the phase error, which increases with respect 
to the size of the horn aperture. Normally the radiation intensity is about –20 dB (or 
only 1% of that at the ecnter) at the edge compared to that at the center.

There are several common types of horn antennae. The flare angle of the horn and 
the gradient curve from the narrow end to the opening end determine their differ-
ences; that is, the shape of the opening end will allow either the electric component 
E or the magnetic component H radiating into some specific directions.

A pyramidal horn is a horn antenna whose shape follows that of a pyramid (see 
Figure 3.14). This type is very common, with the radiating frequency determined by 
the length of the rectangular metallic waveguide at the narrow end.

A sectorial horn is a pyramidal horn shape where only one side is a wide planar 
and the other is very thin, thus it looks like a fan. This leads to the cutting off the 
radiating of either an E- or H-field.

A conical horn has the shape of a cone, that is, a circular cross section of different 
sizes at the two ends and a gradual increase in diameter. Other horns include the cor-
rugated horn, ridge horn, septum horn, and aperture-limited horn. Details on these 
horn structures can be found in numerous references.

Typical dimensions for an optimum pyramidal horn can be estimated as1
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and likewise for a conical horn, the optimum condition is

 = λd L3  
(3.38)

where
 aE = width of the aperture in the E-Field direction
 aH = width of the aperture in the H-Field direction
 LE = slant length of the side of the E-field direction
 LH = slant length of the side of the E-field direction
 d = diameter of cylindrical horn aperture
	 λ = wavelength of radiating EM waves

3.3 ANTENNA FIGURE OF MERIT

In electromagnetics, an antenna’s power gain is a figure of merit (FoM) that com-
bines the antenna directivity and electrical efficiency. As a transmitting antenna, this 
FoM describes how well the antenna converts input power into radiowaves radiated 
in a specified direction. On the contrary, as a receiving antenna, the FoM describes 
how well the antenna induces radiowaves arriving from a specified direction into 
electrical power. When no direction is specified, the gain is understood to refer to 
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the peak value of the gain. A plot of the gain as a function of direction is called the 
radiation pattern.

Antenna gain is usually defined as the ratio of the power produced by the antenna 
from a far-field source on the antenna’s beam axis to the power produced by a hypo-
thetical lossless isotropic antenna, whose sensitivity to signals is uniform for waves 
from all directions. Usually this ratio is expressed in decibels, and these units are 
referred to as decibels-isotropic (dBi).

An alternate definition compares the antenna to the power received by a lossless 
half-wave dipole antenna, in which case the units are written as dBd. Since a lossless 
dipole antenna has a gain of 2.15 dBi, the relation between these units is the gain 
in dBd equals the gain in dBi minus 2.15 dB. For a given frequency the antenna’s 
effective area is proportional to the power gain. An antenna effective length is pro-
portional to the square root of the antenna gain for a particular inspecting frequency 
and radiation resistance. Due to reciprocity, the gain of any antenna when receiving 
is equal to its gain when transmitting.

Directive gain or directivity is a different measure that does not take an antenna’s 
electrical efficiency into account. This term is sometimes more relevant in the case 
of a receiving antenna where one is concerned mainly with the ability of an antenna 
to receive signals from one direction while rejecting interfering signals coming from 
a different direction.

The antenna gain is thus given as

 θ φ = η θ φG D( , ) ( , )  (3.39)

where
	 η = conversion efficiency from current radiating power
 D(θ, ϕ) = gain directivity

With the azimuthal and elevation angles ϕ, θ, as indicated in the spherical coordi-
nate systems of the antenna given in Figure 3.4, the directive gain, D(θ, ϕ), signifies 
the ratio of radiated power in a specified direction relative to that of an isotropic 
radiator radiating the same total power as the antenna under test but uniformly in 
all directions, the isotropic property. It should be noted that a practical true isotropic 
radiator does not exist. On the other hand, the power gain defines the ratio of radiated 
power in a given direction relative to that of an isotropic radiator that is radiating 
the total amount of electrical power received by the antenna under test. This is in 
contrast to the directive gain, which ignores any reduction factor in the efficiency.

The radiation intensity can be found by integrating the radiation over the entire 
volume of the solid angle, and thus we can write

 θ φ =

θ φ
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where Pant(θ, ϕ); Piso(θ, ϕ) are the power radiation over the surface or intensity dis-
tribution dependent on the solid angle of the antenna under consideration and the 
isotropic antenna, respectively. G(θ, ϕ) is the gain and relies on the intensity term 
and radiation pattern. Normally the intensity is calculated over the entire angle of 
the radiation pattern, from the peak to the half-power point (the full width at half 
maximum, FWHM).

Published figures for antenna gain are almost always expressed in decibels (dB), a 
logarithmic scale. From the gain factor G, one finds the gain in decibels as

 =G G10 logdBi  (3.41)

As an isotropic antenna cannot be constructed; a dipole antenna may be used, and 
hence this can be referred to as the referenced antenna, so the antenna gain can be 
rewritten as

 =G G10 log
1.64dBd 10

 
(3.42)

Example

Find the antenna gain factor in dBd with respect to that of a dipole antenna when 
its gain G is equal to 5.

ANSWER

Substituting the value of 5 as the gain into (3.42) gives the gain factor of 4.48 dBd.

In general the relationship between the gain of the isotropic antenna and that of 
a dipole is given by

 GdBd = GdBi – 2.15 dB (3.43)

Note that dB is dimensionless, as it indicates the ratio of two same unit terms in a 
logarithmic scale. Partial gain of an antenna can also be used sometimes, especially 
when a certain plane is to be considered, for example, G(θ);G(ϕ).

3.4 EXPERIMENT

3.4.1 backGrOund

Maxwell’s equations predict the radiation of EM energy from time-varying current 
sources. Although radiation occurs at all frequencies, its relative magnitude is signif-
icant until the size of the source region is compatible to a wavelength, hence its cor-
responding frequency in a certain medium. A transmitting or receiving antenna is a 
structure designed to transfer EM energy from or to a transmission line or waveguide 
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to or from free space or an essentially bounded medium. The characteristics of an 
antenna used for transmitting and the characteristics of the same antenna used for 
receiving are closely related, a fact that is expressed in the reciprocity theorem.1 
Some important antenna characteristics are the directive gain and effective area, 
polar radiation pattern, polarization, radiation efficiency, power gain, impedance, 
and frequency response.

In this experiment the complex admittance (reciprocal of the complex imped-
ance) of a monopole antenna is measured over a band of frequencies. Such monopole 
antennae are widely used on vehicles for mobile communications, and generally con-
sist of a quarter-wavelength (λ/4) vertical whip above a conducting ground plane that 
has large dimensions compared with a wavelength. At resonance their input resis-
tance is around 37 Ω, so that the input conductance is around 27 mS at the base of 
the whip. Typically a monopole antenna is connected to a coaxial transmission line, 
and then to a source or a receiver. If a standard coaxial cable having a characteristic 
impedance of Z0 = 50 Ω (20 mS) is used, some mismatch will result, particularly at 
frequencies away from resonance, and there will be reflection loss.

A convenient measure of the mismatch is given by the voltage standing wave ratio 
(VSWR) in a transmission line defined by
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where the reflection coefficient of the load is related to the normalized load zL and 
yL (= 1/zL) as
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and the normalized load impedance (or admittance) is the actual load impedance 
(admittance) divided by the characteristic impedance (admittance) of the transmis-
sion line, given as

 = =z Z
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y Y
Y

;L
L

L
L

0 0

 (3.46)

The normalized impedance, or its reciprocal, the normalized admittance, is conve-
niently plotted on a Smith chart, which can display all complex values within a circular 
area, the center representing 1 + j0 (a matched load). The VSWR of any point on the 
Smith chart is found by constructing a circle centered on 1 + j0 and passing through 
the point; the VSWR is then the intercept of this circle on the normalized resistance or 
conductance axis between 1.0 and ∞, while the radius of the circle compared with the 
full radius of the Smith chart is the magnitude of the reflection coefficient.
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3.4.2 measurement OF the mOnOPOle antenna admittance

The monopole antenna to be measured has a finite 300 × 300 mm square aluminum 
ground plane and a whip length of 84.5 mm (not centered). It has been designed to 
operate over the mobile telephone band of 825–890 MHz, but is not claimed to be 
optimally tuned.

• Measure the antenna input admittance in steps of 10 MHz from 780 to 950 
MHz using the radio frequency (RF) sensor included in an RF spectrum 
analyzer.
• This instrument makes use of a null indication when comparing the 

unknown admittance with a standard conductance and susceptance (an 
adjustable stub), although it is not a true bridge.

• For each frequency record the conductance and susceptance values 
indicated on the dials of the admittance meter as well as the multiply-
ing factor used.

• Normalize the complex admittance to 20 mS and plot it on a Smith 
chart.

• Display the antenna input admittance over a similar frequency band using 
HP Network Analyzer type 8410B (or equivalent Agilent or Rhode Schwartz 
or Anritsu products).
• This instrument uses a sweep frequency oscillator and displays the 

results directly on a Smith chart.
• Details of the operations of the setup will be explained during lab 

sessions.
• Make a careful sketch of the displayed results on another hardcopy 

Smith chart.
• Compare the two sets of results.

• For each set of results, what is the minimum VSWR and at what fre-
quency does it occur?

• What is the VSWR at 825 MHz and at 890 MHz?
• From the admittance meter results plot the VSWR against the frequency 

on linear graph paper. Does the antenna seem to be correctly tuned to 
the mobile telephone band evenly?

• If not, what whip length should have been chosen?
• Assume that the frequency value of a particular point on the admit-

tance versus frequency curve (or the VSWR versus frequency curve) 
scales inversely with the length of the monopole whip (that is, ignore 
any tuning effect of the finite ground plane, which should really be 
finite in extent).

Note and comment: One may experience some difficulty in obtaining consistent 
admittance readings because the antenna itself is radiating close to the experimental 
bench, other apparatus, and human bodies. This uncontrolled and changing environ-
ment causes small but detectable changes to the readings. Try to remain in a fixed 
position while adjusting the admittance meter to give a null indication.



69Antennae

3.5 CONCLUDING REMARKS

An antenna (or aerial) is an electrical device that converts electric currents into 
radio EM waves, and vice versa. It is usually used with a radio transmitter or radio 
receiver. In transmission, a radio transmitter applies an oscillating radio frequency 
electric current to the antenna’s terminals, and the antenna radiates the energy from 
the current as electromagnetic waves (radiowaves). In reception, an antenna inter-
cepts some of the power of an electromagnetic wave in order to produce a tiny volt-
age at its terminals, which is applied to a receiver to be amplified. An antenna can be 
used for both transmitting and receiving.

Antennae are essential components of all equipment that use radios. They are 
used in systems such as radio broadcasting, broadcast television, two-way radio, 
communications receivers, radar, cellphones, and satellite communications, as well 
as other devices, such as garage door openers, wireless microphones, Bluetooth-
enabled devices, wireless computer networks, baby monitors, and radio frequency 
identification (RFID) tags on merchandise. For RFID, both transmitting and receiv-
ing antennae are integrated into one device that can receive interrogating RF sig-
nals and then transmit a response to integrating sources for identification. The 
design of such an RFID device requires transfer of power from the source to the 
receiving antenna, and uses this power for radiating at the transmitting antenna. 
These topics currently attract significant research for applications in modern-day 
complex supermarket systems and parcel transport and deliveries, as well as cur-
rency identification.

The treatment of antennae in this chapter is given a minimum level, which is nec-
essary as an introduction for readers at the undergraduate level; further details can 
be found in several specialized textbooks on antennae.

3.6 APPENDIX: METALLIC WAVEGUIDE2

3.6.1 brieF cOncePt

Microwave waveguides are used to couple the sources to the radiation antenna, for 
example, a large parabolic antenna with a feeder size larger than that of the wave-
guide. This appendix thus gives an introduction to the metallic waveguide, including 
the principles of operation and some resonance conditions, so that an introduction 
to such a waveguide can be appreciated. Depending on the frequency, waveguides 
can be constructed from either conductive or dielectric materials. Waveguides can 
be less than a millimeter in width. An example might be those that are used in 
extremely high-frequency (EHF) communications. The fundamental mode can be 
guided and estimated with a simple relationship between the depth b and the width 
a of a rectangular waveguide, as shown in Figure 3.15(a).

EM metallic waveguides can be analyzed by forming the wave equation using 
Maxwell’s equations, or their reduced form, the electromagnetic wave equation. 
The solutions of such equations are subject to boundary conditions determined by 
the properties of the materials, and their interfaces give the conditions for physical 
solutions, the eigenvalue equations. The eigenvalue equations give the number of 
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solutions that are oscillating, thus waves, and eigenvalues that can be related to the 
effective propagation constant of the waves’ guide in the waveguide. These equa-
tions have multiple solutions, or oscillating modes, that are the eigenfunctions of the 
equation system. Each mode is characterized by a cutoff frequency below which the 
mode cannot exist in the guide. Note that this cutoff condition is the reverse of the 
definition of the cutoff condition for a dielectric waveguide, optical fibers, or planar 
optical waveguides, which are described in later chapters. For the optical waveguide 
we say the cutoff condition involves the wavelength that is usually proportional to 
the inverse of the frequency.

Waveguide propagation modes depend on the operating wavelength and polariza-
tion, and the shape and size of the guide, as shown in Figure 3.15 for an air-filled 
rectangular metallic waveguide. The longitudinal mode of a waveguide is a particu-
lar standing wave pattern formed by waves confined in the cavity. The transverse 
modes are classified into different types: (a) TE (transverse electric) modes have no 
electric field in the direction of propagation, (b) TM (transverse magnetic) modes 
have no magnetic field in the direction of propagation, (c) TEM (transverse electro-
magnetic) modes have no electric or magnetic field in the direction of propagation, 
and (d) hybrid modes have both electric and magnetic field components in the direc-
tion of propagation.

In hollow waveguides (single conductor), TEM waves are not possible, since 
Maxwell’s equations will show that the electric field must then have zero divergence 
and zero curl and vanish to zero at metallic boundaries, resulting in a zero field, or 
equivalently, ∇2ϕ = 0, with boundary conditions guaranteeing only the trivial solution. 
However, TEM waves can propagate in coaxial cable because there are two conductors.

The mode with the lowest cutoff frequency is termed the fundamental or domi-
nant mode of the guide, as shown in Figure 3.15(b). It is usual to choose the size of 
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FIGURE 3.15 (a) Cross section of a rectangular metallic waveguide of dimensions a, 
b. (b) Coordinate and field distribution of the fundamental mode inside the rectangular 
waveguide.
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the guide such that only this one mode can exist in the frequency band of operation, 
with no interferences due to higher-order modes and this mode can occur, hence 
radiating pure EM waves. In rectangular and circular (hollow pipe) waveguides, the 
dominant modes are designated the TE1,0 and TE1,1 modes, respectively.

In the microwave region of the EM spectrum, a waveguide normally consists of a 
hollow metallic conductor. These waveguides can take the form of single conductors 
with or without a dielectric coating. Hollow waveguides must be one-half wavelength 
or more in diameter in order to support one or more transverse wave modes at the 
operating frequency band. This is similar to the half-wave antenna condition. Table 
3.1 gives the size and type number of a number of air-filled rectangular waveguides 
that can operate from the gigahertz range (L-band) to the millimeter wave range 
(V- and W-bands). The frequency passband of the waveguide depends on the relative 
ratio between the depth and the width of the waveguide, as shown in Figure 3.16. 
The guide mode can be illustrated by the zigzag ray model, as shown in Figure 3.17.

Waveguides may be filled with pressurized gas to inhibit arcing and prevent 
multipaction, allowing higher-power transmission. Conversely, waveguides may be 
required to be evacuated as part of evacuated systems, for example, the electron 
beam systems. A slotted waveguide is generally used for radar and other similar 
applications. The waveguide structure has the capability of confining and supporting 

b ≤ 2a

≤ b ≤ a

f10 f01 f20

f10 f01 f20

Bandwidth

Bandwidth

2
a

FIGURE 3.16 Operating frequency range or bandwidth of metallic rectangular waveguide 
is dependent on the relative dimension of the depth and width of the waveguide.

TABLE 3.1
Characteristics of Some Standard IR-Filled Rectangular Waveguides

Type
a 

(inches)
b 

(inches)

Cutoff 
Frequency, 
fc (GHz)

fmin 
(GHz)

fmin 
(GHz) Band

Power 
MW

Attenuation 
Coefficient 

dB/m

WR-510 5.1 2.55 1.16 1.45 2.2 L 9 0.007

WR-284 2.84 1.34 2.08 2.6 3.95 S 2.7 0.019

WR-159 1.59 0.795 3.71 4.64 7.05 C 0.9 0.043

WR-90 0.90 0.40 6.56 8.2 12.5 X 0.25 0.110

WR-62 0.622 0.311 9.49 11.90 18.60 Ku 0.140 0.176

WR-42 0.42 0.17 14.05 17.6 26.7 K 0.027 0.583

WR-28 0.28 0.074 21.08 26.4 40 Ka 0.027 0.583

WR-15 0.148 0.074 39.87 49.80 75.80 V 0.0075 1.52

WR-10 0.10 0.05 59.01 73.80 112.00 W 0.0035 2.74
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the energy of an electromagnetic wave to a specific relatively narrow and control-
lable path.

A close waveguide is an electromagnetic waveguide (a) that is tubular, usually 
with a circular or rectangular cross section, (b) that has electrically conducting walls, 
(c) that may be hollow or filled with a dielectric material, (d) that can support a large 
number of discrete propagating/guided modes, though only a few may be practical, 
(e) in which each discrete mode defines the propagation constant for that mode, (f) 
in which the field at any point can be described in terms of the supported modes, (g) 
in which there is no radiation field, and (h) in which discontinuities and bends cause 
mode conversion but not radiation.

The dimensions of a hollow metallic waveguide (see Figure 3.15) determine which 
wavelengths it can support, and in which modes. Typically the waveguide is operated 
so that only a single mode is present. The lowest-order mode possible is generally 
selected. Frequencies below the guide’s cutoff frequency will not propagate. It is 
possible to operate waveguides at higher-order modes, or with multiple modes pres-
ent, but this is usually impractical. Waveguides are almost exclusively made of metal 
and mostly rigid structures. There are certain types of “corrugated” waveguides that 
have the ability to flex and bend, but they are only used where essential because 
they degrade propagation properties. Due to propagation of energy in mostly air or 
space within the waveguide, it is one of the lowest loss transmission line types and 
is highly preferred for high-frequency applications where most other types of trans-
mission structures introduce large losses. Due to the skin effect at high frequencies, 
electric current along the walls penetrates typically only a few micrometers into the 
metal of the inner surface. Since this is where most of the resistive loss occurs, it is 
important that the conductivity of the interior surface be kept as high as possible. For 
this reason, most waveguide interior surfaces are plated with copper, silver, or gold.

The VSWR can be measured to determine that a waveguide is contiguous and no 
leaks or sharp bends exist. If such bends or holes in the waveguide surface are pres-
ent, this may diminish the performance of both transmitter and receiver equipment 
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FIGURE 3.17 Equivalent ray model of waves propagating through the metallic rectangular 
waveguide.
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connected at either end. Poor transmission through the waveguide may also occur 
as a result of moisture buildup, which corrodes and degrades conductivity of the 
inner surfaces and is crucial for low loss propagation. For this reason, waveguides 
are nominally fitted with microwave windows at the outer end that will not interfere 
with propagation but will keep out the elements. Moisture can cause fungus buildup 
or arcing in high-power systems such as radio or radar transmitters. Voltage standing 
waves occur when impedance mismatches in the waveguide cause energy to reflect 
back in the opposite direction of propagation. In addition to limiting the effective 
transfer of energy, these reflections can cause higher voltages in the waveguide and 
damage equipment. In practice, waveguides act as the equivalent of cables for super-
high-frequency (SHF) systems. For such applications, it is desired to operate wave-
guides with only one mode propagating through the waveguide.

With rectangular waveguides, it is possible to design the waveguide such that the 
frequency band over which only one mode propagates is as high as 2:1, that is, the 
ratio of the upper band edge to lower band edge is 2. The relationship between the 
longest wavelengths that will propagate through a rectangular waveguide is a simple 
one. Given that the width, b, as shown in Figure 3.15, is the greater of its two dimen-
sions, and lambda is the wavelength, then lambda equals twice the width b of the 
waveguide section, that is, the resonance condition with the two ends vanishing the 
EM waves. For circular metallic waveguides, the highest possible bandwidth allow-
ing only a single mode to propagate is only 1.3601:1.

Because rectangular waveguides have a much larger bandwidth over which only 
a single mode can propagate, standards exist for rectangular waveguides, but not for 
circular waveguides, as both the � �− −E H and  fields can be guided and no distinct 
polarization direction can be determined. In general, but not always, it is essential that 
standard waveguides are designed such that (1) one band starts where another band 
ends, with another band that overlaps the two bands; (2) the lower edge of the band is 
approximately 30% higher than the waveguide’s cutoff frequency; (3) the upper edge 
of the band is approximately 5% lower than the cutoff frequency of the next higher-
order mode; and (4) the waveguide height is half the waveguide width, a = 2b.

For the resonance of the oscillating TE waves along both sides of a rectangular 
waveguide the propagation wavenumbers kx;ky in these directions must satisfy the 
following conditions:

 = π = π → = π = πk a n k b m k n
a

k m
b

; ;x y x y
 

(3.47)

with n, m taking integer values, hence the order of the transverse electric-guided 
modes is abbreviated TEnm. The cutoff wavenumber and hence the cutoff frequencies 
and wavelength of the modes take on quantized values given as
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3.6.2 exPeriment On waveGuide

3.6.2.1 Introduction
Propagation of electromagnetic (EM) waves may be either guided or unguided. 
Coaxial lines and waveguides are examples of transmission lines that guide waves 
from the source to the destination along a clearly defined path.

Free-space propagation of EM waves from a broadcast transmitter may serve as 
an example of unguided propagation resulting from radiation. The two cases are not 
mutually exclusive, and in some instances propagation along a clearly defined path 
may be accompanied by significant radiation in many directions.

The term waveguide is normally reserved for hollow metallic pipes, and in prac-
tice EM waves are wholly confined to their interior. Uniform rectangular and circu-
lar waveguides having the same cross section throughout their length are used most 
frequently (a pyramidal horn radiator being an example of a nonuniform waveguide).

All uniform waveguides are structured with no inner conducters and the same 
cross section shape, along the propagation direction of the guided electromagnetic 
waves. The phenomenon of cutoff is valid, and the waveguide behaves as a high-pass 
filter. Accordingly, the waveguide walls may have very small, and for many purposes 
negligible, losses below a certain frequency (known as the cutoff frequency). Thus 
the EM waves launched into the waveguide are subject to very high attenuation, 
whereas above that frequency their attenuation is normally exceedingly small. The 
attenuation below cutoff is essentially reflective and unrelated to wall losses, while 
the small attenuation above cutoff depends primarily on wall conductivity.

While the wavelength in free space is normally only a function of the velocity of 
the propagation (vp) and frequency f(λ = vp/f; vp = phase velocity), it can be shown 
that the wavelength inside the waveguide is additionally a function of the cross sec-
tion geometry as well as the field pattern of the wave—the mode order.

The relationship between the cutoff wavelength λc, the wavelength in free space 
λ, and the guide wavelength takes the form

 
λ

=
λ

+
λ

1 1 1
g c

2 2 2  (3.50)

where λ = vp/f, λc = vp/fc, and f and fc are the excitation (variable) frequency and fixed 
cutoff frequency, respectively. We note that at cutoff the guide wavelength is infinite.

Equation (3.10) suggests a straight-line relationship between 1/λ2 and λ1/ g
2, 

making it possible to determine λ1/ c
2  and hence the cutoff wavelength λc from the 
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appropriate intercept on the 1/λ2 axis. The origin must be included. Use the same 
scale for both axes with units of m–2. Perform a full error analysis.

With reference to Figure 3.18, λg represents twice the distance between the 
two minima of the field distribution displayed by the detector of the waveguide 
slotted line. On the other hand, the wavelength in free space λ can be deducted as 
twice the distance (outside the waveguide) between the two minima of the stand-
ing wave pattern when the slotted line probe is kept stationary and the reflecting 
sheet moved.

3.6.2.2 Experiment
An RF signal generator can be used as the source of microwave power, and in this 
experiment it is capable of delivering up to 15 dBm of power. At each frequency the 
reflector voltage must be adjusted for a maximum power output, and hence stable 
operation within each mode (there are several such modes, separately by a range of 
reflector voltages, at which oscillations are not possible).

Referring to Figure 3.18, note that as the waves leave the horn, they are reflected 
from the metallic target sheet and produce a standing wave. As the reflected waves 
reenter the waveguide, a standing wave will be produced as well, although the 
wavelengths of the two standing waves are not equal. The distance between the horn 
and the metallic reflecting sheet should not be less than about 100 mm.

 a. Adjust the frequency to its upper limit, which is attained when the two 
bowed springs adjusting the screw come together.

 b. Leaving the slotted line probe fixed in one position, move the reflecting 
sheet until the detector reading is at minimum. Make sure that the axis of 
the waveguide is at right angles to the plane of the sheet.

 c. Make a record of the sheet position and then move it along a straight 
line coincident with the axis of the waveguide until the detector reading 
passes through another minimum. Repeat, noting that the average distance 
between the two minima represents half the wavelength in free space.

 d. Leave the metal sheet fixed in a suitable position and obtain a few suc-
cessive detector reading minima by moving the slotted probe instead. The 

Signal
generator
0–10 GHz

Microwave
waveguide

Microwave antenna horn
RF transmission line feed

(rectangular waveguide and
connectors) 

Aluminum
plate

Base

Incident and
reflected

waves

Sensor spectrum 
Analyzer power 

Spectrum
analyzer

FIGURE 3.18 Experimental setup for the study of a microwave waveguide.
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average between the two minima is now equal to half a waveguide wave-
length λg.

 e. Make a record of λ and the corresponding λg. Repeat for other frequencies 
up to the lower limit. Typically a frequency range of 8500–9500 MHz can 
be covered, the exact range varying somewhat from one unit to another.

 f. Hence deduce with full error analysis of your measurements. Note that λc 

theoretically should equal twice the broad a dimension of the rectangular 
waveguide measured internally, that is, λc = 2a.

 g. Measure the a and determine if your measured range of λc includes the 
theoretical λc.

3.7 PROBLEMS

3.7.1 waveGuide measurements

 a. What waveguide fundamental mode can be supported in an air-filled metal-
lic waveguide with a width of 60 mm and height of 30 mm?

 b. If the waveguide has been changed to 50 × 25 mm internal dimensions, 
what would the cutoff frequency for this mode be?

 c. What was the cutoff frequency for the waveguide you used in this experiment?
 d. Draw a schematic diagram of the equipment arrangement used to measure 

the cutoff frequency of the metallic waveguide above.

3.7.2 antenna admittance

Draw a schematic diagram of the equipment you might use to measure the input 
impedance of a horn antenna with waveguide excitation at 800 to 900 MHz. If you 
were measuring the antenna admittance at 900 MHz, show on the schematic dia-
gram the frequency of the signal being carried by each coaxial cable interconnecting 
the subsystem equipment.

3.7.3 waveGuide

A section of rectangular waveguide has internal dimensions of 12.5 × 25 mm.

 1. What modes will propagate in this guide at 9 GHz?
 2. What is the range of frequencies for which only one mode will propagate in 

the waveguide, and what is that mode?
 3. Sketch the electric field distribution of the TE10 mode in the waveguide.
 4. Sketch the magnetic field distribution of the TE10 mode in the waveguide.
 5. Sketch the electric field distribution of the TE21 mode in the waveguide.
 6. What is the guide wavelength at 9 GHz?



77Antennae

REFERENCES

 1. T. Teshirogi and T. Yoneyama, Modern Millimeter-Wave Technologies, Wave Summit 
Course, Ohmsha, Ltd., Tokyo, 2001.

 2. Institute of Electrical and Electronics Engineers, The IEEE Standard Dictionary 
of Electrical and Electronics Terms, 6th ed., Institute of Electrical and Electronics 
Engineers, New York, 1997.





79

4 Planar Optical 
Waveguides

4.1 INTRODUCTION

The term integrated optics was first coined by Miller in 1969,1 as an analogy of light-
wave to the electronic integrated circuits. Indeed, the present term used in indus-
try is planar lightwave circuits (PLCs). Since that term was proposed, tremendous 
progress has been made. Various integrated optical devices have been researched, 
developed, and deployed in practical optical transmission systems and networks. 
Extensive surveys have been given over the years,2,3 and even defined and described 
on the Internet.4,5 Both linear and nonlinear integrated optics6 have been exploited.

Recent experimental demonstrations have pushed the information transmission 
bit rate per channel to 100 Gb/s,7–9 with the multiplexing of several wavelength chan-
nels reaching to tens of terabits/s.10–12 At such speed there are needs of high speed 
modulations, switching, routing, etc. Thus the demands for optical modulators, 
switches, and optical preprocessors employing nonlinear integrated optical devices 
and the compensation devices for equalization of dispersion effects in single-mode 
optical fibers. Furthermore, integrated optic amplifiers are required for equaliza-
tion of the propagation losses in fibers, the amplification of lightwave signals in the 
optical domain. Prior to the availability of erbium-doped fiber amplifiers (EDFAs), 
attempts were made to increase the span distance between repeaters of amplitude-
modulated single-fiber transmission systems by employing coherent techniques,13,14 
in which a narrow linewidth and high power are used to mix with the received signals 
to improve the receiver sensitivity. This linewidth requirement on the local oscillator 
laser limits the deployment of such coherent transmission in real practice. Not until 
recently have coherent optical communications attracted much interest, once again 
as a possible technique to further increase the transmission spans.15,16 Naturally the 
modulation formats, such as amplitude shift keying, phase shift keying, and fre-
quency shift keying, are employed to reduce the effective signal bandwidth in order 
to minimize the dispersion effects in single-mode optical fibers. The detection of 
ultra-high-speed optical signals can thus be direct or coherent. This attracts the 
employment of integrated optical devices in the optical transmitters, receivers, and 
online components.

The basic component of these integrated photonic devices is the optical wave-
guide formed by a thin film or diffused waveguiding layer structure on some sub-
strate. From the mode propagation point of view, design optimization requires 
accurate estimation of the propagation constant, and thence dispersion characteris-
tics, mode size, and group velocities, depending on the types of applications. These 
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requirements led us to develop simple, accurate, and efficient methods of analysis 
of single-mode waveguides. This is the motivation of the first chapter of the book.

Most optical waveguides with graded index profile, especially lithium niobate 
types, are fabricated by a diffusion process that is commonly formed by diffusion 
of impurities into various substrate ferroelectric materials, such as lithium niobate 
and lithium tantalate. On the other hand, the proton exchange process can also be 
used so that the Li ions can be exchanged with the hydrogen ion. In both processes, 
diffusion and ion exchange, a crystal stress is established and a change of the refrac-
tive index is created, resulting in a graded index profile distribution. Complementary 
error function is usually used to represent the distribution of the impurity from the 
surface of the substrate to the depth of the substrate17 and the time of diffusion of 
the metallic impurities. A Gaussian profile is expected when the diffusion time is 
sufficiently long18 and is used to fit the experimental values of Se into CdS crystal. 
In addition, various profiles can be used to form optical waveguides using molecular 
beam epitaxy (MBE) and metallic organic chemical vapor deposition (MOCVD) 
techniques, as in the waveguiding structures for laser diodes of separate confinement 
of the heterojunction.19

Exact analytical solutions are available for the step,20 exponential,21 hyberbolic 
secant,22 clad linear,23 clad parabolic,24 and Fermi25 profiles. In general, approxi-
mate analytical or exact numerical methods are required to analyze general classes 
of profiles. For some practical profiles, universal charts describing the mechanism 
of waveguiding have already been presented by several authors. These have been 
obtained by variational analysis,26 Wentzel–Kramers–Brilluoin (WKB),27 and multi-
layer staircase.28 However, these curves are only accurate for multimode waveguides, 
with the exception of the last two references. Single-mode planar optical waveguides 
are very important for integrated optic circuits for applications in advanced ultra-
high-speed optical communications; see, for example, the pioneering works by 
Korotky et al.29 However, methods of analysis are confined predominantly to those 
originally used in multimode waveguides. In the single-mode regime, the variational 
and WKB methods are expected to perform poorly. In the former, the solutions are 
strongly affected by the choice of trial fields. In the latter, more accurate prediction 
of the phase changes at the turning point is required. In the Runge–Kutta method 
outward integration methods, instability is caused by the solution and error increas-
ing at large x.17 This problem is resolved by approximating the fields at sufficient 
depth in the waveguide by an evanescent field.30 However, this requires the knowl-
edge of the location of solution matching. Thus this chapter recognizes that any 
general technique of analysis must be numerical in nature due to stringent accuracy 
requirements for single-mode waveguides. If the single-mode waveguide is used as 
a nonlinear interaction medium, the phase matching is very important, and thus an 
accurate estimation of the dispersion curves plays a very important part in the con-
version efficiency.6,31

This chapter is organized as follows: Section 4.2 gives the formation of the 
problems for solving single-mode optical waveguides in which all parameters are 
expressed in terms of normalized quantities. A novel relationship between a newly 
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defined mode spot size and the normalized waveguide parameter is described. This 
is very much close to the definition of the mode spot size as defined for single-
mode optical fibers commonly specified. Section 4.3 describes the simplest method 
for calculating the propagation constant and the model field. The stepping function 
recurrence method of integration originally developed by Killingbeck32,33 can be 
used. The method is thence applied for asymmetrical optical waveguide structures. 
For diffused waveguides or graded index profile distribution of the refractive index 
from the surface of the waveguide to the deepest position, two widely used methods 
for waveguide modal analysis are given.

The variational method with a simple Hermite–Gaussian field was first intro-
duced by Korotky et al.29 to calculate the mode spot size in a diffused channel wave-
guide. In Section 4.4 we show that the method to estimate the modal characteristics 
of all diffused waveguide profiles is inaccurate and computationally intensive for the 
calculation of the dispersion characteristics, but a very close estimation of the mode 
spot size.

The equations required for the derivation of the wave equations, as well as an 
exact analysis of an asymmetric waveguide structure, are given in Appendix A.

4.2  FORMATION OF PLANAR SINGLE-
MODE WAVEGUIDE PROBLEMS

A planar dielectric waveguide with the geometry shown in Figure 4.1 can support 
modes with two polarizations: TE and TM field-guided modes. In practice, either 
polarized mode can be excited. Provided certain boundary conditions are met, these 
modes are bounded and propagate along the z-axis, each with a unique effective 
phase velocity. If we allow for the uniformity of the refractive index and geometrical 
dimension in the propagation direction, the phase velocity is only a function of the 
transverse index profile. In this section we consider the simplest configuration with 
an index variation only in the –x-direction. Note that the notation of the coordinate 
system follows the right-hand side (RHS).

–x

y

O

Z - Prop direction
Guiding layer 

Substrate 

FIGURE 4.1 Schematic structure of a planar dielectric waveguide.
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4.2.1 te/tm wave equatiOn

The wave equation for the guided modes stems from the Maxwell equations given 
in the Chapter 1, together with the associated constituent relations. We consider the 
steady-state solutions in the dielectric medium free from any sources and losses. By 
omitting the common factor ej(ωt–βz) from the equations, we can write, for a medium 
characterized with the refractive index n(x), the well-known wave equations:
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where k0 = wavenumber in free space, β = propagation constant of the wave along the 
z-axis, Ey(x) = transverse electric field, and Hy = transverse magnetic field.

4.2.1.1 Continuity Requirements and Boundary Conditions
In practical waveguides, it is common to expect that at least one region of dielectric 
continuity is encountered by the optical fields. At the location of the discontinuity, 
the wave equations are not valid. However, the identity of the modes is preserved by 
matching the fields and their derivatives on either side of the dielectric discontinu-
ity. For the TE modes these boundary conditions impose the continuity Ey;dEy/dy 
across the interface. For the TM modes we require the continuity Hy;1/n2(x) × dHy/
dy. In addition, the bound modes satisfy the conditions that Ey, Hy vanishes at x = 
∞. Together they give rise to the eigenvalue equation from which the propagation 
constant can be calculated.

Note that the principal object of the eigenvalue equation is to estimate the maxi-
mum value of the propagation constant so that the dependence of this propagation 
parameter on the optical frequency/wavelength is minimum and there is minimum 
dispersion of the waves at different wavelengths, which are normally found for the 
other spectral components of a modulated lightwave channel in an optical commu-
nication system. A maximum value of the propagation constant along the z-direction 
means that the direction of the wave vector is close to the propagation axis.

4.2.1.2 Index Profile Construction
For the purpose of computation and analysis it is customary to write the refractive 
index profile in the general form as
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where

 ∆ = −n n
n2

s

s

0
2 2

2

Δ is the profile height and nc, n0, and ns are the refractive indices of the cover, the 
guiding layer, and the substrate, respectively. S(x) is the profile shape function and 
d is the diffusion depth of a graded index distribution. Figure 4.2 shows a typical 
representation of the graded index profile. It turns out that further normalization of 
the shape profile can be represented as
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This definition of the profile shape is unaffected by the symmetry of the wave-
guide. In a symmetric waveguide structure with an axis of symmetry at x = 0, these 
equations are equally valid.

4.2.1.3 Normalization and Simplification
The presence of the nonzero term in the RHS of Equation (4.1) complicates the anal-
ysis. It is identically zero for a step index profile. The exact solutions of this equa-
tion are available for the exponential, hyperbolic secant, and an inverted x profile.34 
However, for smooth profiles normally encountered in practice, several authors35 
found by perturbation analysis that the RHS of the equation can be neglected. 
However, the fundamental mode of an infinite parabolic profile faces a 44% error in 
the group velocity of the guided mode.

Following Kolgenik and Ramaswamy38 we can introduce the normalized param-
eter for the waveguide as follows:

x/d

2
cn

2
sn

2
0n n2(x)

Substrate
Guiding region

FIGURE 4.2 Square of the refractive index distribution profile for an asymmetrical 
waveguide.
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where A is defined as the asymmetry factor, b is the normalized propagation con-
stant, ne = β/k0 is the effective refractive index of the guided mode along the propaga-
tion axis, and V is the normalized frequency.

Guided mode requires

 ns < ne < n0 (4.5)

Thus the normalized propagation constant must satisfy B < 1. The real advan-
tages of the normalization are the analysis and design optimization points of view. 
Substituting the normalized parameters into the wave equation (4.3) we obtain

 ϕ + − ϕ =d
dx

V S X b[ ( ) ] 0
2

2
2  (4.6)

where

 ϕ ≡X E H( ) ;y y

for the TE and TM modes, respectively. The propagation for the TM modes is accu-
rately represented by that of the TE modes, except at cutoff or for a waveguide at 
large symmetry.6 However, if extreme accuracy or mode splitting is required, then 
(4.6) can be modified to the changes involving only a slight modification of the 
boundary condition.

4.2.1.4 Modal Parameters of Planar Optical Waveguides
The solution of the wave equation (4.6) subject to the boundary conditions enables 
the determination of various optical parameters. The following are the most com-
monly used for the design of single optical guided wave devices.

4.2.1.4.1 Mode Size
The mode size Γa for an asymmetrical field is defined as the full width at half maxi-
mum (FWHM) power intensity. For a full description of the field, the peak position 
of intensity Ip and the field asymmetrical factor Γ1/Γ2, defined with respect to Ip, 
are required, as shown in Figure 4.3. The knowledge of the mode size is critical to 
match with that of the single-mode optical fiber for in-line integration with fiber 
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transmission systems. These parameters are defined in terms of the optical power of 
the field due to practical reasons because the mode size is normally monitored using 
a CCD camera through which the intensity of the mode field is converted into the 
charge current and displayed or digitized for data processing.

4.2.1.4.2 Propagation Constant and Effective Refractive Index
The variation of the normalized propagation constant b as a function of the normal-
ized frequency parameter V is normally required for the design and characterization 
of an optical waveguide. For example, this relationship specifies the diffusion depth 
required once the mode index at a specific operating wavelength is given. The purpose 
of this section is to present the relation of the modal field to the propagation constant.

If we integrate Equation (4.6) with respect to X then we have
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where the dashes denote the derivative with respect to X. If we further impose the 
condition that φ(−∞) = φ(+∞) = 0, the integral on the left becomes zero, and thus 
we obtain

 
∫

∫
=

ϕ

ϕ

−∞

+∞

−∞

+∞b
S X X dX

X dX

( ) ( )

( )

 (4.8)

Γa

Γ2Γ1

x/d

xp

1

0.5

2(x)
2(xp)

FIGURE 4.3 The minimum set of parameters required for characterization of a fundamen-
tal mode field in an asymmetrical planar waveguide.
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This equation indicates that the dispersion characteristics for an arbitrary index pro-
file must be a smooth curve. The rule of refractive index was used by Tien37 to explain 
a host of new wave phenomena in integrated optical waveguides—that light tends to 
propagate in the region where the refractive index is largest. In the context of planar 
optical waveguides with arbitrary index profiles, this rule suggests that for a given 
profile at a given frequency, the mode field adjusts itself so that the maximum value of 
b is achieved. This corresponds to the minimum phase velocity allowed for the mode. 
This rule is indeed a direct statement of Fermat’s law in ray optics and is a special case 
of a generalized rule in quantum mechanics formulated in the form of a well-known 
Feymann’s path integral, of which Maxwell’s equations are also satisfied.38

4.2.1.4.3 Waveguide Dispersion and Spot Size
A second and potentially useful relation between b and the modal field can be estab-
lished from the stationary expression for b. This can be obtained from Equation 
(4.6) after multiplication by ϕ and taking the integration with respect to X from 
negative to positive infinity. After integrating the results by parts and imposing the 
boundary conditions ϕ −∞ ′ϕ −∞ = ϕ +∞ ′ϕ ∞ =( ) ( ) ( ) ( ) 0, we obtain the well-known 
stationary relation:
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This is the basic equation for the variational analysis. It possesses the unique property 
that for any trial fields that satisfy the boundary conditions above, the quotient remains 
stationary provided the mismatch between the trial and actual fields is small.39

Thus we can write
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or
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Taking the derivative a second time and using Equations (4.9) and (4.11), we obtain
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where we have to define a new spot size parameter as
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Further algebraic manipulation leads to the simple relationship
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This relation is analogous to the relation between Petermann’s spot size and the 
waveguide dispersion in single-mode optical fibers.40 The preceding analysis was 
first performed by Sansonetti,41 which inspired Petermann to define a new spot size 
in the characterization of single-mode optical fibers from spot size measurement.

The relation (4.14) can be found for an optical waveguide with a profile following 
the Hermite–Gaussian variational field of

 ϕ = α ≥
<







−α
X A e X

X
( ) ; 0

0; 0

X
0 0

1/2 /20
2

 (4.15)

 =
α

= ΓW 4
m a
2

0
2

2  (4.16)

where α0 is the variational spot size parameter and A0 is a constant. The RHS of 
(4.16) corresponds to Γa

2 	as defined by Korotky et al.,29 and has been defined above. 
Although α0 is an approximate mode spot size, several experiments show excellent 
agreement between the theoretical and experimental values Wm and Γa.

4.3 APPROXIMATE ANALYTICAL METHODS OF SOLUTION

Despite the availability of direct numerical integration methods for the analysis of 
optical waveguides, approximate analytical solutions are still being used, improved 
upon, and sought after. We have to strike the balance between accuracy and 
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simplification. Three well-known methods of analysis are described in this section. 
They are valid for single-mode planar optical waveguides.

The variational method29 is applicable only to the fundamental mode of the asym-
metrical waveguide due to the form of the trial field. The equivalent profile method 
is valid only for symmetrical waveguides because it requires the field to be monoto-
nously decreasing. The WKB method can be used in both cases (see Appendix B). 
We group the methodological approaches into symmetry and asymmetry. In Section 
4.3.1 the analytical formulae for a number of widely used profiles are obtained. We 
explore the improvements to the WKB method and limitations. In Section 4.3.2 we 
compare the accuracy of the equivalent profile moment methods using a step and a 
cosh reference profile.42,43 The WKB method may not work at all for the analysis of 
the single-mode optical waveguides.

4.3.1 asymmetrical waveGuides

4.3.1.1 Variational Techniques
The variational method is based on the substitution of a TE0 mode look-alike trial 
field into the stationary expression of the normalized propagation constant b given 
in Equation (4.8). The shape of the field is then adjusted to maximize b for all values 
of V (see Equation (4.9)). The mathematical procedure is given in Snyder and Love.24

Following Korotky et al.29 and Riviere et al.28 a trial solution can be proposed that 
closely fits the form of the TE0 field:
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Note that one drawback of the form of this field is that it vanishes at X = 0. For 
single-mode optical waveguides, this condition is very nearly so only for guides with 
very large asymmetry. However, only a single parameter needs to be optimized; 
thus, the optimization scheme is simple. In the following sections it is shown that 
there exist closed-form formulae for several profiles.

4.3.1.1.1 Eigenvalue Equation
If we substitute (4.17) and the derivative of this trial field into (4.9) a simpler expres-
sion is obtained, after some tedious algebra:
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is the only profile-dependent expression. The correct value of α0 is obtained by not-
ing that b must be stationary with respect to α0; thus,
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Substituting this α0 into (4.18) we obtain the eigenvalues given in Table 4.1.

4.3.1.1.2 Fundamental Mode Cutoff Frequency
The lowest-order mode in an asymmetric optical waveguide has a nonzero cutoff 
frequency for A ≠ 0. Thus we can set b = 0 and V = Vc in (4.18) and (4.19) to obtain 
the desired cutoff frequencies. Since Vc appears in both equations, one can solve 
simultaneously for α0 initially before substituting back to obtain the cutoff value for 
the V-parameter, Vc. It happens that the cutoff Vc for a Gaussian profile is given as Vc 
= 1.9741. Table 4.2 tabulates the analytical expressions for the cutoff frequency of the 
exponential and complementary error function profiles.

The computation of the propagation constant and the mode cutoff frequency for 
the TE0 requires numerical integration that would be tedious. Fortunately, the com-
monly encountered graded profile waveguide shown in Table 4.1 involves only a root 
search for the estimation of α0. There is no existing method to estimate the probable 
range of α0 as a function of V. Thus, the consuming process in the computation is 
the correct estimation of the interval for a root search algorithm. Nevertheless, one 
would be interested in the instigation of the accuracy of the results over a selected 
range of V. The estimated values of the propagation constant b are calculated and 
tabulated for a number of profile distributions with a set of specific parameters: nc = 
1.0, ns = 2.177, and Δ = 0.043. This is a typical profile structure for an air cover dif-
fused waveguide profile in LiNbO3 or LiTaO3 substrate. The trial field distribution 
is Hermite–Gaussian. The corresponding cutoff frequencies at the cutoff limit are 
given for TE0 in Table 4.4.

The values of the propagation constants are as expected. The accuracy of the 
variational field fits to the actual field improves with increasing frequency. At large 

TABLE 4.1
Optimum Value of Selected Asymmetrical Clad-Diffused Waveguide

Profile/Distribution S(X) α0

Gaussian e X2− V( 1) ( 1) 00
0

0

1/2

α + α +
α







− =

Exponential e–X V4 3 ( 1) 02
0 0

2α − π α + =

Complementary error 
function erfc

erfc(X) erfc e
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2(4 1) (1 6 ) 1 1
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0
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1
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2
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π
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V, the field in the cover decreases rapidly. Similarly, the evanescent field in the sub-
strate follows a similar trend. Thus the mode field is confined within the guiding 
region, and its shape is accurately modeled by a Hermite–Gaussian function. This 
behavior was first observed experimentally by Kiel and Auracher.44 This observation 
leads to the motivation of the Korotky et al. pioneering work in the use of this simple 
trial field. An earlier method by Taylor requires up to 21 terms in the variational 
field involving parabolic cylinder functions.26 A simple relationship between and the 
mode spot size Γa can be obtained as28

 Γ =
α

1.555
a

0
 (4.20)

Thus the mode size Γa can be obtained directly without using numerical com-
puting. However, Korotky et al. found good agreement between experimental and 
theoretical results29; our analytical results given in Table  4.3 show that there are 
substantial discrepancies in the propagation constant for single-mode optical wave-
guides. This means that the mode spot size Γa may not be so dependent on the fre-
quencies. Experimentally speaking, the variation of the wavelength of the guiding 
waveguide and detection is due to the sensitivity of the spot size image monitoring 
device. This must be taken into account for the measurements of the full width half 
mark of the image. To investigate this possibility, Γa is plotted versus the normalized 
frequency V-parameter shown in Figure 4.4. This step is also taken to examine the 
behavior of α0 near the cutoff frequency of the fundamental mode. The difficulty 
in the calculation of the cutoff frequencies given in Table 4.4 can be observed. This 
is due to the volatility of the confinement of the mode near cutoff. This is a well-
known phenomenon in optical fibers.45 Figure 4.4 shows the variation with respect 

TABLE 4.2
Optimum Value of Fundamental Cutoff Normalized Frequency 
Parameters of exp and erfc Profiles

Profile/Distribution Parameter Equation

Exponential α0 erfc e(2 5 2)
16 (2 1)

1 1
2

1 00
2

0

0 0 0

1
4 0

α + α −
α α +

−
α













+ + =α

Vc e erfc V3
2

1 1 1
2

1 1
2 c
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0
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FIGURE 4.4 Mode spot size calculated using Hermite–Gaussian trial field for different 
profiles.

TABLE 4.3
b-V Data for Selected Profiles Calculated with a 
Hermite–Gaussian Trial Field

V

Exponential Gaussian
Complementary 
Error Function

b (var.) b (exact) b (var.) b (exact) b (var.) b (exact)

2 0.066 0.105 — — — —

3 0.193 0.299 0.216 0.275 0.015 0.068

4 0.289 0.321 0.370 0.413 0.121 0.169

5 0.362 0.390 0.476 0.510 0.213 0.255

10 0.560 0.578 0.719 0.732 0.477 0.497

100 — 0.897 0.970 0.971 0.883 0.885

Note: Variational method, exact = analytical expression.

TABLE 4.4
Cutoff Frequencies of the TE0 Mode

Profile

Exponential Gaussian
Complementary 
Error Function

Vc (var.) Vc (exact) Vc (var.) Vc (exact) Vc (var.) Vc (exact)

1.563 1.087 1.974 1.433 2.839 2.085

α0 at Vc 0.143 0.500 0.697
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to V over a range of frequencies, including at V = Vc for the profiles of exponential, 
Gaussian, and complementary error shapes. Two sets of data and curves are given so 
as to notice the method of using the root search algorithm to compute the optimum 
spot size parameters α0. More than one root can exist in the search interval. The 
smooth set of curves given in Figure 4.3 is obtained by choosing only the negative-
going crossover of the curves given in Figure 4.4. The kinks observed in Figure 4.5 
are obtained when choosing smaller and incorrect root. The propagation constant 
computed from this false zero is much smaller and can be negative. Thus, it is pre-
ferred to operate the waveguide far from the cutoff region so that the mode spot size 
is not strongly dependent on the V-parameter, as seen in Figure 4.6. This scenario 
is important for the case when planar optical waveguides are used as an optical 
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FIGURE 4.5 Multiple roots of the root search function of the variational method.
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FIGURE 4.6 Mode spot size of TE0 mode as a function of V for profiles of exponential, 
Gaussian, and complementary error functions estimated using the variational method.
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amplifier,46–47 e.g., Er-doped LiNbO3 waveguide. The wavelength of the pump beam 
is far from the operating wavelength region and may be close to the cutoff. This 
must be taken into account. If not, then the fluctuation of the mode spot size would 
alter the amplification gain of the amplifier. In practice, the refractive index profile 
could never be modeled by any form of analytical function and an equivalent pro-
file may be used. The correct spot size behavior computed numerically using the 
numerical algorithm given here follows a trend similar to that shown in Figures 4.7 
and 4.8. The variational spot size is superimposed on these curves for comparison; 
the agreement is remarkable. The wavy curves in Figure 4.8 are caused by numeri-
cal noises. The tolerance on each plot is 1%. Such accuracy is achieved due to the 
definition described here for the spot size that does not take into account the tails of 
the field. This is where serious agreement between the exact and Hermite-Gaussian 
occurs. This explains the discrepancies in the normalized propagation constant b as 
estimated by this method.
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FIGURE 4.7 Spectral variation of mode spot size: accuracy of Hermite–Gaussian trial field 
fitting for single-mode diffused clad profiles. Single-mode diffused clad profiles with nc = 1.0, 
ns = 2.177, and Δ = 0.043 (A = 20).
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profiles. Single-mode clad power-law profiles with nc = 1.0, ns = 2.177, and Δ = 0.043 (A = 20).
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4.3.1.2 WKB Method
The WKB method was first developed by Jeffery48 and applied to the calculation of 
energy eigenvalues in quantum mechanics by Wentzel,49 Kramers,50 and Brilluoin.51 
Due to the similarities between problems involving the quantum mechanical poten-
tial well and the refractive index profiles of optical waveguides,37 the method can be 
easily adapted for use in guided wave optics. Marcuse first used the method for prov-
ing the eigenvalue equation of asymmetrical graded index optical waveguides.23 A 
simplified derivation by Hocker and Burns27 based on ray optics confirmed Marcuse’s 
results. This is due to the equivalence of the WKB and ray optics formalism.52

The central problem involved in the techniques lies with the connection of oscil-
latory and evanescent fields at the turning point where the original WKB solutions 
are singular. Langer solved the problem by approximating the actual fields by Airy 
functions.53 This is equivalent to replacing the actual profile locally by a linear seg-
ment. Its slope and position are implicitly related to the propagation constant in the 
eigenvalue equation. We have examined the turning point phenomena in detail (see 
Appendix A). We thus can state that the WKB method is not limited by the inac-
curate phase prediction at the turning point. A more serious limitation is caused by 
the neglect of the cladding. Coupling effects between the turning point and cladding 
have been studied in detail by Arnold.54 He found that the cladding effects can be 
isolated and built into the eigenvalue equation. However, the corrections involve a 
complicated nest of Airy functions, and the analytic simplicity of the method is lost.

We took a simpler and more practical approach to account for cladding effects 
and study the behavior of the WKB errors which are minute for asymmetrical wave-
guides provided that a simple correction is added. More discussions on the improve-
ment of the method presented will be given in appropriate sections.

4.3.1.2.1 Derivation of WKB Eigenvalue Equation
An asymmetrical of the WKB eigenvalue equation is obtained by matching the field 
and its derivative at the dielectric interfaces. For the WKB method this is complicated 
by the fact that the solutions must be matched correctly at the turning point. Jeffery’s 
solution can be referred to as the 0th-order WKB method, and Langer’s method with 
the turning point correction as the first-order WKB method (see Figure 4.9). Following 
Gordon55 and Marcuse,23 one can write a graded index asymmetrical waveguide as
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where

 

X V S X b dX p X S X b
b

( ) ( ) and ( ) ( )
1

X

X 1/2t

∫φ = − = −
−







a0 is a constant, and I and J are the Bessel functions’ representation of the Airy solu-
tions at the turning point, Xt.

The turning point is defined such that

 S(Xt) = b (4.22)

A general proof is given in the Appendix B, which shows that at a turning point, 
the approximation of the exact field by the Airy function is extremely good if

 S X S X( ) 0 and ( ) 0t t′ ≈ ′′ ≈  (4.23)

Furthermore, the oscillatory solution for X X0 t≤ < −  and the evanescent field for 
X Xt> +  are just asymptotic expansions of Bessel’s solutions for ϕ(X) >> 1; i.e., V >> 1 
>. These are just the 0th-order WKB solutions (see Appendix B). They have to be used 
in these forms with the correct phase arguments to ensure uniformity of the WKB 
solutions in both the guide and the substrate, that they are already correctly matched.

The eigenvalue equation follows by ensuring the smooth matching of the WKB 
solution and the exact evanescent field at X = 0. The continuity of ϕ(0) and ϕ′(0) gives, 
after some algebraic manipulations,

0 Xt X

φ(X)

Exact

Exact

Oscillatory Evanescent

0th-order WKB
1st-order WKB

FIGURE 4.9 An illustration of regions of validity of the WKB solutions. The turning point 
is given by S(Xt) = B. The WKB eigenvalue equation is obtained by ensuring that the WKB 
solutions in the guide are matched to the exact field in the cover (superstrate).
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 V S X b dX m A b
b

( ) 1
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where

 

S
V b

(0)
4 1
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−

If setting d = 0, then the WKB eigenvalue equation becomes

 V S X b dX A b
b

m2 ( )
2

2 tan
1

2
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= π−  (4.25)

as obtained by Marcuse.23 For practical multimode waveguides, Hocker and Burn27 
claimed that

 A b
b

Atan
1

/ 2 since 11 +
−







≈ π >>−

This led to the following relationship:

 V S X b dX m( ) 3
4

X

0

t

∫ − = +





π  (4.26)

The third term of the RHS of (4.25) exists due to the phase shift undergone by 
the modal field by the discontinuity at X = 0. Indeed, Equation (4.25) is just the 
mathematical statement of the similar phase resonance condition of ray optics,56 
which states that the phase accumulated along the ray path over one period, includ-
ing reflection as it traverses the guide from X = 0 to X = Xt, must be a multiple of 
2π if constructive interference is to occur. Constructive interference is essential for 
maintaining a stable modal pattern. In fact, the phase changes at the turning point 
and the dielectric discontinuity are just

 

A b
b2

and 2 tan
1

1− π − +
−







−

Figure 4.10 illustrates the ray path of the process. To solve b for a given V, the 
turning point is tuned until the phase resonance condition is met. These results have 
been derived by Hocker and Burns without the use of WKB formalism.27
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4.3.1.2.2 Limitations of the WKB Method
Three sources of errors are inherent in the eigenvalue equation (4.25). It can be 
easily shown that Equation (4.24) can reduce to the eigenvalue equation for the TE 
modes of a step index profile waveguide provided the phase changes can be obtained 
correctly. For a graded index profile, this may not be the case, as described in the 
next section. Thus the phase accumulated in the guide as predicted by the WKB is 
only an approximation. This is due to the representation of the field by an equivalent 
cosine-like field.

Is the change at a dielectric interface dependent on the slope of the refractive 
index profile in the second medium at the interface? It is believed that in general δ ≠ 
0 judging from the exact analysis of the linear clad profile. This factor was omitted 
from the results of Marcuse.23 Furthermore the phase change at the turning point 
is estimated from (4.23) without resorting to the correctness of the evanescent field 
representation of the actual field beyond X = Xt. The question is whether one can 
lump together all sources of errors in the phase into a single-error parameter. Thus it 
is possible to propose, in general,

0

–A

0.0

Turning point

φ(o)

φ(o)

– π
2

–2tan–1

b
1.0

Xt X

S(X)

GuideCover Substrate

A + b
1 – b

One-ray period

FIGURE 4.10 Ray optic derivation of the WKB eigenvalue equation.
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 V S X b dX m( ) ( )
X

0

t

∫ − ⋅ = + γ π  (4.27)

where γ is the total accumulated phase change at the turning point; γ is normally 
equal to 3/4.

4.3.1.2.3 Profiles with Analytical WKB Solutions
The WKB integral given in Equation (4.26) is integrable for the step, clad linear, 
clad parabolic, exponential, and cosh graded index profiles. With the help of the 
integration formulae given in Gradshteyn and Ryzhik,57 the results for the normal-
ized propagation constant b and mode cutoff frequencies are presented in Table 4.5. 
For other profiles, the integral has to be integrated numerically. Although modern 
computing facility is done with ultra-high-speed processors, analytical solutions 
give us some insight into understanding the behavior of the wave solution. If numer-
ical integration is conducted, then for each trial value of the normalized propagation 
constant b, the turning point change of b, especially when V becomes very small, 
approaches zero and the turning point value becomes very large. Thus the WKBs 
were not popular previously, but they are especially not now with modern and ultra-
high-speed computing systems.

4.3.1.2.4 Ordinary WKB Results
We are now faced with two forms of the WKB eigenvalue equation, given by (4.24) 
and (4.27). This section studies the performance of this equation over a wide variety 

TABLE 4.5
Equations for Calculating b and Vc via the WKB Method

Profile b Vc
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of profiles for representative values of V. The effect of the asymmetry factor on the 
dispersion was identified by Ramaswamy and Lagu,17 who found that for A > 10, 
the error is negligible. However, their conclusion is only valid for multimode wave-
guides. In modern optical waveguides for advanced optical communication systems, 
single-mode optical waveguides are mainly the guided wave media for applications. 
The results obtained for single-mode optical waveguides prove otherwise when A = 
20 is employed with the waveguide parameters ns = 2.177 (lithium niobate as sub-
strate), cover layer nc = 1.0 (air), and Δ = 0.043. Equation (4.26) reaches its asymptotic 
value when A → ∞. The exact numerical results have been obtained with an integra-
tion step of 0.01. The profile truncation point is set at X = 10 for diffused profiles and 
X = 1 for the clad power-law profiles. The values of b and V for different profiles are 
calculated and tabulated in Tables 4.6 and 4.7. The improvement of the values of the 
normalized propagation constant and the V-parameter can be observed and is self-
explaining. The value of V is set at a region close to that of the cutoff of the guided 
mode TE0.

4.3.1.2.5 Enhanced WKB
There are serious drawbacks of both the variational and WKB methods in com-
puting the dispersion characteristics of the diffused clad single-mode planar wave-
guides. The cosine-exponential trial field can substantially improve the accuracy of 
the variational analysis.58 However, it requires optimization.

For a good field distribution and immunity to the bending of the waveguide, it is 
anticipated that the waveguide is operating in the region close to the cutoff of the 
TE1 mode. Figures 4.11 and 4.12 show the range of applicability of each method for 
diffused clad as well as clad power-law profiles. Except for the Gaussian profile, all 
other profiles show that the enhanced WKB method is sufficiently accurate if the 
operating point lies in the range 0.75 <V/Vc < 1.0. The discrepancies in the Gaussian 
profile are caused by the steepness of the profile. Errors caused by the presence 
of the uniform substrate index should taper off in the stated range of validity. The 
variational method with a Hermite–Gaussian field cannot be used for the calcula-
tion of b for any of these profiles due to the poor overlapping between the trial field 
and the actual field. The waveguide designs should use an appropriate method for a 
particular application.

4.3.2 symmetrical waveGuides

In this section we deal mainly with symmetrical optical waveguides and dwell 
mainly on the equivalent moment methods described above. The WKB method is 
also treated briefly. It involves only a slight modification of the previous equations 
and the entries given in Table 4.8. As presented, the WKB performs poorly in this 
kind of waveguide. On the other hand, the moment method (based on the cosh–2 pro-
file) is accurate in the range of frequencies for single-mode operation.

4.3.2.1 WKB Eigenvalue Equation
For a symmetrical optical waveguide (4.27) becomes
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V S X b dX m2 ( ) ( )

1
2

 diffused waveguides

X

s

s

0

t

∫ − ⋅ = + γ

γ =

 (4.28)

If the turning point coincides with a dielectric discontinuity, the correct phase 
shift formula is to be used. For buried modes the complicated expression is given in 
Appendix B. This section is limited to the profiles following diffused or clad power 
shape. The factor of 2 in (4.28) is accounted for by the WKB-defined effective guide 
width, now extended from –Xt to Xt, the turning points on both sides of the guiding 
region. Thus the formulae in Table 4.5 for the estimation of b and V can be translated 
to a symmetrical optical waveguide by transforming V → 2V and γ → γs.

4.3.2.2 Two-Parameter Profile Moment Method
The profile moment method is related to the variational formalism of optical wave-
guide problems.42 The trial field is derived from that of a reference profile where 
an exact analytical expression is available. It is known that the field distribution 
of the fundamental mode follows a bell-shape-like trend. Thus by adjusting the 
V-parameter, a close match to the modal field can be obtained. This condition can be 
satisfied by monotonously varying the variational parameters.

4.3.2.2.1 Theoretical Basis
The starting point is that for two symmetrical waveguides having the same substrate 
index, normalized mode propagation constants are related by59

TABLE 4.8
WKB Calculated Cutoff Frequencies for 
the Two Lowest-Order Modes, TE0 and TE1

Profile

Vc1, Vc2 (WKB)
Vc1, Vc2 
(exact)Enhanced Ordinary

Clad linear 3.2
7.92

3.53
8.24

2.46
7.15

Clad parabolic 2.72
6.72

3.0
7.0

1.96
6.01

Exponential 1.07
2.64

1.18
2.75

1.09
2.65

Gaussian 2.14
5.28

2.56
5.96

1.43
4.04

erfc 2.32
5.72

2.56
5.96

2.09
5.55

Cosh–2 1.36
3.36

1.50
3.50

1.24
3.32
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( ) ( )
r

r r

r

2 2

0
2 2 2∫

∫
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ϕ ϕ
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∞

−∞

∞
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where the subscript r indicates that the quantities belong to the reference waveguide. 
Then the condition for the two waveguides to be equivalent is β = βr; thus, we have

 n x n x x x dx[ ( ) ( )] ( ) ( ) 0r r
2 2∫ − ϕ ϕ =

−∞

∞

 (4.30)

One can express the product of the field of this equation as a series:

 x x c k x( ) ( ) ( )r l
l

l
0

2

0
∑ϕ ϕ =

=

∞

 (4.31)

where cl are the frequency-dependent coefficients of the series. Thus (4.30) becomes

 c k n x n x x dx( ) [ ( ) ( )] 0l
l

r
l

0
0

2 2 2

0
∑ ∫ − =

=

∞ ∞

 (4.32)

Since we impose the condition that these waveguides have the same substrate 
index, we can write (4.32) in terms of the profile shape function S(X), leading to

 c k N N( )[ ] 0l
l

l lr0
0

2 2∑ − =
=

∞

 (4.33)

in which N2l can be identified by

 N n n d2[ ] 0l s
l

l2 0
2 2 2( 1)

2= − Ω =+  (4.34)

where Ω2l is defined as

 S X X dX( ) 0l
l

2
2

0
∫Ω = =
∞

 (4.35)

For profiles that are nearly identical, one can assume that for β = βr over the range 
of k0, for which the fields are slowly varying, it is sufficient to retain only two terms 
in the series. Thus we have
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Expanding these two terms we have

 
n n d n n d

n n d n n d

[ ] [ ]

[ ] [ ]

s r s r r

s r s r r

0
2 2

0 0
2 2

0

0
2 2 3

2 0
2 2

2

− Ω = − Ω

− Ω = − Ω
 (4.37)

which can also be expressed in terms of the normalized frequency V-parameter as

 V
Vr r r

0 2

0 2

1/4

= Ω Ω
Ω Ω









 (4.38)

4.3.2.2.2 Estimation of Normalized Propagation Constant
The normalized propagation constant b can be expressed in terms of V and β as

 b V d
V

n n
k

( ) e s
2 2 2

0
2= 





−  (4.39)

where ne = β/k0 is the effective refractive index of the guided mode or the refractive 
index of the guided medium as seen by the mode along the z-direction. Since ne = 
ner , then

 b V
b V

( )
( )r r r r

0

0

0 2

0 2

1/2

= Ω
Ω

Ω Ω
Ω Ω









 (4.40)

This equation states that the propagation b(V) of an arbitrary waveguide can be 
derived from that of a reference waveguide provided that the profile moments and the 
dispersion relation for br(Vr) are known. Table 4.9 lists the three lowest moments of pro-
files having analytical forms of their shape functions. The profiles listed in this table, 
having step, clad linear, exponential, and cosh, have exact analytical solutions for their 
propagation constant. Thus any of these profiles can be employed as a reference profile.

We select two profiles, the step and cosh profiles, for two case studies that follow.

4.3.2.2.2.1  Step Reference Profile20

 V b m b
b

m1
2

tan
1

0,1,2r r
r

r

1 …− = π −
−







=−  (4.41)

where
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4.3.2.2.2.2  Cosh Reference Profile59
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where

 

V V

b b

12

2 3

r

r

0 2
2

1/4

0
3

2

1/2

= Ω Ω
π







= π Ω
Ω











 (4.44)

These equations are required for the calculation to obtain the dispersion relation 
characteristics.

4.3.2.2.3 Estimation of TE1 Mode Cutoff
The next higher-order mode is TE1. The cutoff frequency of this mode is the upper 
limit of the single-mode operation. We can write the product of the guided waves of 
the reference waveguide and the one to be analyzed as

 x x c k x( ) ( ) ( )r l
l

l
0

2 2

0
∑ϕ ϕ = +

=

∞

 (4.45)

TABLE 4.9
Profile Moments of Selected Profile Shape

Profile Ω0 Ω2 Ω4 Ω4/Ω2

SDF
(see Taylor26)

Step 1 0.333 0.2 0.6 1.0

Clad linear 0.5 0.0833 0.0033 0.40 0.67

Clad parabolic 0.667 0.133 0.571 0.43 0.72

Exponential 1 2 24 12 10.08

Gaussian 0.866 0.443 2.659 6 5.04

erfc(x) 0.564 0.188 0.226 1.2 1.01

Cosh–2(x) 1 0.693 0.823 1.19 1.00
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and similarly

 
N N

N N
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2 2
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=
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Thus, the relationship between the profile moments and the refractive index can be 
obtained as

 
n n d n n d

n n d n n d

[ ] [ ]

[ ] [ ]

s r s r

s r s r

0
2 2 3

2 0
2 2 3

2

0
2 2 5

4 0
2 2 5

4

− Ω = − Ω

− Ω = − Ω
 (4.47)

The estimation of nonprofile moment terms using the definition of V for each 
guide gives the desired mode cutoff relation after setting b = 0.

4.3.2.2.3.1  Step Reference Profile20

 V
2

5
27c

4

2
= π Ω

Ω






 (4.48)

4.3.2.2.3.2  Cosh Reference Profile

 V 2 5
252c

2
4

2
3

1/4

= π Ω
Ω







 (4.49)

where the cutoffs for the reference profiles have been derived from (4.41) and (4.43).
The propagation constant and the cutoff frequency Vc are tabulated in Tables 4.10 

and 4.11 for two typical profiles of the step and clad linear types, and Tables 4.12 
to 4.15 are for clad parabolic, exponential, Gaussian, and erfc(x) profiles, respec-
tively. Note that the moments of the complementary error function are not listed in 
Table 4.9, as there are no closed-form solutions.

TABLE 4.10
b-V Data for Step Profile

V

b (moment)

b (WKB) b (exact)Step Reference Cosh Reference

0.5

b = b (exact) for 
all V

0.192 <0 0.189

1.0 0.481 0.383 0.454

1.5 0.697 0.726 0.628

2.0 0.848 0.846 0.725

3.0 >1 0.931 0.849

4.0 >1 0.961 0.902
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4.3.2.2.4 Choice of Methods
There are some interesting insights as observed from Tables 4.10 to 4.15.

In the clad power-law profiles, the moment-ESI method consistently gives bet-
ter results for both the propagation constant and the cutoff frequencies of the TE0 
mode. On the other hand, diffused waveguides characterized by nondecreasing 

TABLE 4.11
b-V Data for Clad Linear Profile

V

b (moment)

b (WKB) b (exact)Step Reference Cosh Reference

0.5 0.0560 0.0563 <0 0.0561

1.0 0.173 0.177 <0 0.174

1.5 0.286 0.300 0.149 0.290

2.0 0.375 0.404 0.297 0.384

3.0 0.491 0.558 0.464 0.515

4.0 0.558 0.660 0.557 0.579

TABLE 4.12
b-V Data for Clad Parabolic Profile

V

b (moment)

b (WKB) b (exact)Step Reference Cosh Reference

0.5 0.0951 0.0959 <0 0.0952

1.0 0.270 0.280 <0 0.272

1.5 0.419 0.448 0.333 0.423

2.0 0.525 0.580 0.500 0.535

3.0 0.653 0.762 0.667 0.673

4.0 0.721 0.877 0.750 0.751

TABLE 4.13
b-V Data for Exponential Profile

V

b (moment)

b (WKB) b (exact)Step Reference Cosh Reference

0.5 0.142 0.148 0.0205 0.152

1.0 0.263 0.294 0.205 0.317

1.5 0.320 0.387 0.337 0.424

2.0 0.350 0.431 0.426 0.498

3.0 0.377 0.491 0.539 0.593

4.0 0.389 0.525 0.609 0.653
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higher-order moments of Table 4.9 are more accurately modeled as y in the cosh 
profile. At low frequencies both approaches are asymptotically exact.

The eigenvalue equation (4.41) can be reduced to

 b V
V V

( 0) 1 1
4

1
22

1/2 2

→ = +





−












 (4.50)

which is just the eigenvalue equation for the cosh profile. This comparison is valid 
only when the profiles have equal volume Ω0.

For large values V their dispersion curve split and higher-order moment scaling 
factors in Equations (4.41) and (4.43) have to be used. However, due to different prop-
erties of the higher-order moments of the step and cosh profiles, neither one can be 
used to predict each other’s dispersion characteristics accurately.

The WKB method gives consistently better results at large frequencies. To give 
an idea of the asymptotic range of applicability of the WKB and moment methods, 
the dispersion curves for the diffused as well as clad power-law profiles are plotted 
in Figures 4.13 to 4.16.

TABLE 4.14
b-V Data for Gaussian Profile

V

b (moment)

b (WKB) b (exact)Step Reference Cosh Reference

0.5 0.146 0.148 <0 0.147

1.0 0.342 0.363 0.207 0.354

1.5 0.466 0.520 0.421 0.498

2.0 0.541 0.628 0.549 0.594

3.0 0.620 0.763 0.688 0.709

4.0 0.657 0.842 0.762 0.774

TABLE 4.15
b-V Data for erfc(x) Profile

V

b (moment)

b (WKB) b (exact)Step Reference Cosh Reference

0.5 0.0672 0.0679 <0 0.0678

1.0 0.187 0.194 0.0281 0.193

1.5 0.286 0.306 0.177 0.304

2.0 0.355 0.394 0.293 0.391

3.0 0.436 0.512 0.443 0.509

4.0 0.479 0.586 0.534 0.584
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4.3.2.2.5 A New Method for Profile Classification
Table 4.15 and Figure 4.16 indicate that the dispersion characteristic of the comple-
mentary error function profile is well above the expected accuracy of the moment 
method as calculated from a cosh reference profile. Even at V = 4.0, a near-perfect 
agreement is obtained. To account for such observations a shape derivation factor 
(SDF) can be proposed as

 =
Ω

Ω
Ω

Ω
SDF

r
r

4
2

4
2

 (4.51)
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FIGURE 4.13 Dispersion characteristics: range of applicability of WKB method and 
moment method. Symmetric clad linear profile with A = 20; (mode) = 2.7995.
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FIGURE 4.14 Dispersion characteristics: range of applicability of WKB method and 
moment method. Symmetric clad parabolic profile with A = 20; (mode) = 2.330, nc = 2.177, 
Δ = 0.043.
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where the subscript r refers to the reference profile. For clad profiles one can choose 
the step profile as a reference, whereas for diffused waveguides the cosh profile offers 
a much better fit. This SDF parameter is thus entered Table 4.10. We could see the 
benefit of this factor for the erfc(x) profile, which has an SDF factor of 1.01, compared 
to 10 for the exponential profile. Thus the former method offers better accuracy.

4.3.2.2.6 A New Equivalence Relation for Planar Optical Waveguides
By sketching the spatial distribution of the modal field of the TE1 mode in a sym-
metrical waveguide and the TE0 field in an asymmetrical waveguide, one can find 
out why the profile moment method does not work in both cases. However, there 
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FIGURE 4.15 Dispersion characteristics: range of applicability of WKB method and 
moment–cosh method. Symmetric exponential profile with A = 20; (mode) = 1.2024, nc = 
2.177, Δ = 0.043.
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FIGURE 4.16 Dispersion characteristics: range of applicability of WKB method and 
moment–cosh method. Symmetric erfc(x) profile with A = 20; (mode) = 2.3187, nc = 2.177, 
Δ = 0.043.
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is some surprise when X ≥ 0: the distribution is similar if A → ∞, as shown in 
Figure 4.17. For the same profile, if the field distributions are identical, then there 
exists a relation between the dispersion curves of both structures. Figure 4.18 illus-
trates the correspondence between the modes of both waveguide structures. One 
can postulate that

 
=

=

V V

V V

ca cs

ca cs

1 2

2 4

 (4.52)

where the left-hand side denotes the cutoffs of the TE0 and TE1 modes in the asym-
metrical waveguide. V Vcs cs2 4�  are the cutoffs of the TE1 and TE3 modes of the cor-
responding symmetrical waveguide.

Furthermore, it is noted that the separation of the b-V characteristic curves at 
cutoff of the symmetrical waveguide is nearly uniform. For the step profile, this 
separation equals π/2, whereas for graded profiles, this is only approximately true. 
Thus we can write

 V V3cs cs4 2�  (4.53)

Combining (4.52) and (4.53) leads to

Field

0

m = 0

X

Field

Asymmetrical Waveguide

0

m = 1

X

Field

0

m = 1

X

Field

Symmetrical Waveguide

0

m = 3

X

FIGURE 4.17 Correspondence between the modal fields of asymmetrical and symmetrical 
waveguides with the field distribution of odd modes.
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 V
V

3ca

ca A

2

1
�

→∞

 (4.54)

This equation allows us to conduct preliminary tests on the postulation above. 
Table 4.16 tabulates the ratio of the V-parameters at cutoff of the modes TE0 and 
TE1 for A ~ 20 and A → ∞ for the listed profiles. It shows that (4.54) does not satisfy 
for step profile. This may be contributed by the error in the assumptions about the 
separation of the b-V curves at cutoff in Equation (4.53). To see if (4.52) can be satis-
fied one can compare the TE0 mode cutoffs of the symmetrical waveguide as A → 
∞. The cutoffs are so close in the last two columns of the table, allowing them to be 
considered exactly equal. Thus this is the new corresponding relationship between 
the m-modes of an asymmetrical waveguide and the odd (2m + 1)th modes of the 
corresponding symmetrical waveguide. Table 4.17 tabulates the cut-off conditions 
for oddguided modes of planar waveguides.

4.3.2.2.7 Solution of a Simple Symmetric Waveguide
4.3.2.2.7.1  Structure A symmetric slab or planar optical waveguide consists of 
a slab (or core) of dielectric “transparent” material of refractive index n1, embedded 

b

m = 0
m = 1

Vcs2 Vcs4 V

m = 2

m = 3

0

b

m = 0
m = 1

Vca1 Vca2 V0

FIGURE 4.18 The m-mode dispersion curves of asymmetrical and symmetrical waveguides 
from the (2m + 1)th mode dispersion curve of the corresponding symmetrical waveguide.
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TABLE 4.16
Ratio of TE0 and TE1 Mode Cutoff 
V-Parameter in Asymmetrical 
Waveguides

Profile

V
V

ca

ca

2

1

A ~ 20 A → 20

Step 3.33 3.0

Clad linear 2.91 2.67

Clad parabolic 3.07 2.78

Exponential 2.43 2.30

Gaussian 2.83 2.57

erfc(x) 2.65 2.47

Cosh–2 2.68 2.45

Note: Obtained for profiles without ana-
lytical solutions by forward recur-
rence algorithm with 0.01 step size.

TABLE 4.17
Prediction of Odd Mode Cutoffs in Symmetrical 
Waveguides from the Mode Cutoffs of the 
Corresponding Waveguides

Profile

Vca1

(Asymmetrical 
Waveguide TE0) Vca4

(Symmetrical TE1)A ~ 20 A → 20

Step 1.35 1.57 1.57

Clad linear 2.46 2.80 2.80

Clad parabolic 1.96 2.26 2.25

Exponential 1.09 1.20 1.20

Gaussian 1.43 1.64 1.64

erfc(x) 2.09 2.35 2.37

Cosh–2 1.24 1.41 1.41
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between two layers of materials of index n2 acting as the substrate and superstrate 
layers, as shown in Figure 4.19. The refractive index of the core is higher than those 
of the substrate and superstrate in order for lightwaves to be guided.

Assuming that the structure is extended to infinity in the y- and z-directions, and 
a guiding thickness of 2a, the materials are isotropic and lossless (i.e., the permittivi-
ties are real and scalar) and nonmagnetic.

4.3.2.2.7.2  Numerical Aperture If we assume at the moment that total internal 
reflections at the boundaries are required for guiding, what is the acceptance angle 
such that lightwaves can be launched? The ray path entering the optical fiber core 
(in axial plane) or a slab waveguide for total internal reflection is shown in Figure 4.20.

Applying Snell’s law at the air-core and core-cladding boundaries of the dielectric 
waveguide, the total internal reflection can take place only if

Cladding n2

Core n1

FIGURE 4.19 Cross section of a slab optical waveguide. The optical waveguide is assumed 
to be confined in the vertical direction x and extended infinitely in the lateral direction y. 
Lightwaves are guided and propagated along the z-direction.

X

Z
Cladding

Core n1

n2

θcθo

FIGURE 4.20 Numerical aperture of a dielectric waveguide. Lightwaves are approxi-
mated as light rays. This is true for the case when there are several lightwaves propagating 
in the waveguide. Light rays enter the waveguide interface and are refracted and then totally 
reflected at the core-cladding boundaries. The numerical aperture can be determined by cal-
culating the maximum angle of the incident ray at the entry face of the fiber and air.
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 n nsin cos c0 0 1θ ≤ θ  (4.55)

where θc is the critical angle such that

 n c n nsin sin 901 2 2θ = =  (4.56)

Thus the numerical aperture (NA), which is defined as the maximum value of sin θo, 
is given by (4.55)

 NA n(sin ) cos c0 max 1= θ = θ

Thus we have

 NA n n( )1
2

2
2 1/2= −  (4.57)

4.3.2.2.7.3  Modes of the Symmetric Dielectric Slab Waveguides Consider a 
monochromatic (i.e., single ω or λ) wave propagating in the z-direction with its elec-
tric field:

 E x y z E x e( , , ) ( ) j t z( )= ω −β  (4.58)

i.e., field dependent on x, and uniform along the y-direction. β is the propagation con-
stant along the z-direction, then, in the absence of charges and currents. Maxwell’s 
equations representing the fields of the optical magnetic waves of the optical guided 
modes following a wave equation are given as

 E
c

E
t

1 02
2

2

2∇ + ∂
∂

=  (4.59a)

With the time dependent of the electric field, as in Equation (4.59a), we have

 

d
dt

d
dz

and
2

2
2

2

2
2= −ω = β

and substituting into Equation (4.59a) and using

 c
n k( )

2

2
2

0
2ω = ω

we have the wave equation:

 E n k E( ( ) ) 0t
2 2 2

0
2∇ + β − ω =  (4.59b)
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where

 
x yt

2
2

2

2

2∇ = ∂
∂

+ ∂
∂

 (4.59c)

Therefore for a planar optical waveguide with an infinite extension in the y-direction 
we have d/dy, and for TE modes only Ey is significant; the wave equation becomes

 d E
dx

E( ) 0y
y

2

2
2 2+ β − ω µε =  (4.60a)

where μ and ε are the permeability and permittivity of medium n1 or n2. [μ = μ0 and 
ε = εrε0] are the nonmagnetic and (glass) dielectric materials. Similarly, a wave equa-
tion involving is given by

 d H
dx

H( ) 0y
y

2

2
2 2+ β − ω µε =  (4.60b)

The relationship between the lightwave angular frequency and the velocity of 
light are given as

 

k
c

cand 1
0 0

= ω =
µ ε

is the light velocity in vacuum and k is the wavenumber in vacuum) as

 d E
dx

k n E( ) 0y
j y

2

2
2 2 2+ β − =  (4.60c)

 d H
dx

k n H( ) 0y
j y

2

2
2 2 2+ β − =  (4.60d)

where nj = n1, n2, depending on whether the equations are applied in the core or clad-
ding regions; n1 = (εr1)1/2, n2 = (εr2)1/2 with εr1 and εr2 are the relative permittivities of 
the core and cladding, respectively. From (4.60a) and (4.60d) we observe the varia-
tion of the fields along Ox as:

• Sinusoidal behavior when k nj2 2 2> β  or guided waves inside the core
• Exponential (decay) behavior when k nj2 2 2< β , i.e., no radiation in the clad-

ding region

In other words, for a properly designed optical waveguide the optical field is 
oscillating in regions where the longitudinal propagation constant is smaller than 
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the plane-wave propagation constant and “evanescent” with an exponential-like 
behavior elsewhere. Thus the lightwaves are “trapped” in the core region and guided 
through the waveguide length. In the next section we analyze the wave equation so 
that conditions for guiding lightwaves are established.

4.3.2.2.7.4  Guided Modes
4.3.2.2.7.4.1  General Solutions and the Eigenvalue Equation Optical 
waves are guided along the waveguide when their EM fields are oscillatory in the 
slab waveguide region and exponentially decay in the cladding region, that is,

 kn kn2 1≤ β ≤  (4.61)

We now define a transverse propagation constant u/a and transverse decay con-
stant v/a as

 u
a

k n
2

2
2

1
2 2= − β  (4.62a)

 v
a

k n
2

2
2

2
2 2= − + β  (4.62b)

Adding Equations (4.62a) and (4.62b) gives

 u
a

v
a

k n n( )
2

2

2

2
2

1
2

2
2+ = −  (4.63)

or alternatively,

 V u v k a n n( )2 2 2 2 2
1
2

2
2= + = −  (4.64)

We observe that Equations (4.62a) and (4.62b) represent the propagation constant 
in the transverse direction, as illustrated in Figure 4.21.

In order for the lightwaves to be guided or effectively oscillating in the transverse 
direction, we can see that the transverse propagation constant u/a must be positive in 
the core region and negative in the cladding region.

cladding

cladding

kn1 u/a core

β

FIGURE 4.21 Representation of the propagation constant along the “ray” direction, the 
propagation direction z, and the transverse direction.
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The parameter V is defined as the normalized frequency (V), which is dependent 
only on the guide thickness and light frequency (i.e., wavelength) and the refractive 
index difference between the core and cladding regions (the slab and superstrate or 
substrate regions for planar optical waveguides).

The fields Ey for TE modes and Hy for TM modes are a linear combination of 
cos(ux/a) and sin(ux/a) inside the core layer (i.e., when |x| ≤ a), and exponential decay 
forms on the outside of the core or in the cladding layer (that is, when |x| > a) with 
exp(–vx/a) and exp(+vx/a) in the superstrate or substrate. We therefore have a con-
tinuum of optical guided modes, depending on whether the solution function follows 
a symmetrical or antisymmetric pattern (e.g., cosine or sine functions).

Mathematically the general solution of the wave equations given in (4.60c) and (4.60d) 
would be a combination of the sine and cosine or even and odd functions, respectively. 
In the following sections we split the solution into two parts, the even and odd modes 
corresponding with the even and odd functions. We can write a combination of these 
solutions, as we have seen done usually in the mathematics of differential equations.

4.3.2.2.7.4.2  Even TE Modes (for Modes with Solution Function 
Cosine) For |x| ≤ a, that is, inside the core region, the only significant components 
for the TE mode are Ey and Hx:

 E x A ux
a

( ) cosy =  (4.65a)

 H H A ux
a

and siny z =  (4.65b)

For |x| > a, that is, the field portion of the lightwaves in the cladding region,

 
E Cey

v
a
x a( )

=
− −  

(4.66)

The arbitrary constants A and C can be found by applying the boundary condi-
tions as follows.

The value of Ey at x = a+ and x = a– must be equal; using (4.65a) and (4.65b):

 

A u Cecos
v
a
x a( )

=
− −

 
(4.67)

Evaluated at x = a+ this equality becomes

 C = A cos u (4.68)

The coefficient A (thus C) can then be found by using Hz and one of Maxwell’s 
equation as Hz (at core x = a+) = Hz (at cladding x = a–). Then at x = a+ in the core 
we have
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 H
j

dE
dz j

u
a
A u

a
x1 1 sinz

y

0 0
=

ωµ
=

ωµ
−





 (4.69)

and in cladding at x = a–:

 H
j

C v
a
e1

z

v
a
x a

0

( )
=

ωµ
−







− −  (4.70)

Therefore, equating the boundary conditions in (4.69) and (4.70), we obtain

 C A u
v

usin=  (4.71)

The eigenvalue equation for the even modes can be achieved by equating (4.68) 
and (4.71):

 v = u tan u (4.72)

This equation is called the eigenvalue equation and can be solved to find the propa-
gation constant β along the z-direction. The number of guided modes that can be 
supported by the slab optical waveguide can then be easily determined. The number 
of possible values of β gives the number of guided even TE modes. Thus, whether 
the waveguide is single mode or multimode depends on the number of odd modes 
possibly supported by the waveguide. This is investigated in the next section.

4.3.2.2.7.4.3  Odd TE Modes Similarly for odd TE modes, we have the solution 
function following a sine function. Writing the solution for Ey in the core region and 
the evanescent field in the cladding regions, and then applying the boundary condi-
tions at the core-cladding interface, we obtain the eigenvalue equation for odd modes:

 v u
utan

= −  (4.73)

4.3.2.2.7.4.4  Graphical Solutions Combining Equations (4.72) and (4.73) we 
observe that the waveguides can support only discrete modes, and the propagation 
constant β related to u- and v-parameters can be found by solving graphically the 
intersection between circles of V and curves representing Equations (4.64), (4.72), 
and (4.73). These solutions are illustrated in Figure 4.22.

4.3.2.2.7.4.5  Cutoff Properties From Figure 4.22 we observe that

• V = 0: Zero optical frequency or λ is zero; that is, there exist no lightwaves. 
Thus, we observe that we always have at least one guided (even) mode, TEo.

• V < π/2: There exists only one guided mode (fundamental even mode).
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• V > π/2: An odd mode appears (second mode—fundamental odd mode).
• V = π: Third mode (TEe1, first order even mode).

That is, each time V reaches a multiple integer of π/2, a new TE mode reaches its 
cutoff. The fundamental TE even mode is cut off only when V = 0, that is, when there 
is no waveguide.

4.3.3 cOncludinG remarks

The variational method incorporating a Hermite–Gaussian trial field is inaccurate 
for calculating the b–V dispersion characteristics of single-mode optical waveguides. 
However, it is an accurate and convenient tool for mode spot size calculations pro-
vided that the mode is well confined in the single spectral range.

The WKB approach is numerically straightforward without any divergence. The 
enhanced WKB formulae with the correct phase connection at the dielectric inter-
faces yield very accurate results even for single-mode optical waveguides. This is in 
contrast with a number of published works.

The profile moment method is applicable only to symmetrical profiles. An SDF is 
defined to allow a decision on the choice of reference profile to obtain optimum per-
formance of this method. For diffused profiles, the hyperbolic cosh reference profile 
is required to yield accurate results. For clad profiles, the step reference profile offers 
accurate results and is significantly better when SDF → 1.

However, the profile moment method does not cover the entire single-mode 
region for all profiles. At larger V its accuracy deteriorates significantly. Neither do 
the WKB formulae cover the single-mode region; a hybrid profile moment-WKB 
method has to be considered. A simple profile characterization factor is presented to 
assess the applicability of the profile moment method.

Solution 1

Solution 2

6

5

4

3

2

1

0

−1

−2

−3

Circle representing
V from Equation (4.73)

Equation (4.64)

Equation (4.72)

−2 20 4 6

FIGURE 4.22 Graphical solution of (4.64), (4.72), or (4.73): ________ v = utan(u), __ _ __  
v = –u/tan(u), and— — — - V2 = u2 + v2.
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From the analysis of the mode field distribution and numerical computation, the 
m-modes of an asymmetrical waveguide and the (2m + 1) odd modes of its corre-
sponding asymmetrical waveguide are directly related. Computations of their mode 
cutoffs allow us to establish the exact correspondence for an asymmetrical wave-
guide with an infinite asymmetrical factor.

4.4  DESIGN AND SIMULATIONS OF PLANAR 
OPTICAL WAVEGUIDES: EXPERIMENTS

4.4.1 intrOductiOn

As we have outlined above on planar optical waveguides, we have treated slab opti-
cal waveguides as an extension of an optical fiber (see also Chapter 6 on circular 
optical waveguide or optical fibers) where the structure is restricted to one dimen-
sion, and the other dimension of its cross section has been extended to infinity. The 
optical waveguides considered in this experiment are not a step index slab type, as 
considered in the theoretical section above, but rather they are graded indexed; i.e., 
the refractive index is gradually decreased from the core to the cladding region.

This section can be used as an introductory experiment of optical waveguides 
and aims to familiarize potential optical communications engineers with the struc-
tures and behavior of the optical field distribution in a number of optical guided 
wave structures, such as straight, bend, and Y-junction. The computer experiment 
is written in such a way that you can read and perform the preliminary work and 
experiment in stages. Software packages, including executable files and sources for 
different types of waveguides, are provided for downloading. The web address can 
be obtained from the publisher at CRCPress.com, or by contacting the author at 
lnbpbc69@gmail.com.

The objectives of this section are

• To design parameters of slab optical waveguides so that they can support a 
certain number of guided modes in the single- or multimode regions.

• To use the fundamental mode of the optical waveguide for observation and 
measurement of optical fields of several waveguide composite structures.

• To propagate the fundamental optical field through a number of optical 
waveguide structures, such as straight, bend, and Y-junction optical guided 
wave structures.

4.4.2 theOretical backGrOund

4.4.2.1 Structures and Index Profiles
Optical waveguides are the fundamental elements in modern optical communications 
and photonic signal processing systems. Optical fibers are the guiding medium for 
optical signal transmission and are formed by a circular core inside a circular cladding 
region. The mathematics required to represent the electric and magnetic field com-
ponents of the guided waves in optical fibers involve Bessel functions. These wave-
guides are treated in detail in most fourth-year courses of optical communications 
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engineering. A simplified version of optical fibers is the slab optical waveguide, 
whose structure is shown in Figure 4.23. The cladding regions are the superstrate and 
substrate and have identical constant refractive indices. The guiding region is a slab 
or thin-film layer sandwiched between the cladding regions. The refractive index of 
the slab region must be higher than that of the cladding, and its thickness must be suf-
ficiently thick to support confined (bound) optical guided modes.

The refractive index profile of the step-slab region can be uniform, i.e., constant 
throughout, or graded where n(x) decreases gradually from the center of the slab to 
the cladding. For the sake of simplicity to obtain an analytical solution to the wave 
equation representing the guided field, the index profile of our slab structures would 
have a “cosh–2” distribution (graded index profile) given by

 
n x n n n

x
h

( ) 2

cosh 2s
s2 2

2
= + ∆

 (4.74)

or approximately

 
n x n n

x
h

( )
cosh 2s

2
= + ∆

 (4.75)

where ns = cladding refractive index (for both the superstrate and substrate), Δn = 
refractive index difference between the cladding and slab regions, and h is the total 
thickness of the guiding layer (slab thickness). It is convenient to define a normalized 
parameter V as

 V kh ns n   (2 � )1/2= ∆  (4.76)

where k = 2π/λ, with λ being the operating wavelength of the optical waves in 
vacuum. It is noted that the expression of parameter V is identical with that of the 
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z
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Cladding
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FIGURE 4.23 Schematic structure of the slab optical waveguide: the guiding layer is sand-
wiched between the superstrate (upper cladding region) and substrate (lower cladding region) 
of identical refractive indices.
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circular optical fiber described in Chapter 6. However, in this experiment we are 
dealing with planar optical waveguide structures.

4.4.2.2 Optical Fields of the Guided TE Modes
Normally the optical fields in a slab waveguide would consist of two quasi-polar-
izations TE (transverse electric) and TM (transverse magnetic) where the nonzero 
electromagnetic field components are (Ey, Hx, Hz) and (Ex, Ez, Hy) for TE and TM 
modes, respectively. In this experiment we consider only the behavior of TE modes 
in slab optical waveguides.

The wave equation for TE modes can be derived from Maxwell’s equations; in 
the case where the refractive index difference is small, the wave equation can be 
approximated to have a scalar form as

 d E
dx

n k E( ) 0y
y

2

2
2 2 2− β − =  (4.77)

When the refractive index distribution of the waveguide structure n(x) has a cosh–2 
profile in the slab region and constant in the cladding regions, the field solution of 
Equation (4.77) would have an analytical form of

 = −E x u x h
x h

( ) (2 / )
cosh (2 / )y

v
2

 (4.78)

where υ = 0, 1, 2, 3, …. Equation (4.78) is subject to the boundary condition that the 
field must vanish at a distance very far from the slab-cladding interface. The function 
uv(x/h) would take the following forms.

4.4.2.2.1 For Even TE Modes, ν = 0, 2, 4, …

 
u x h s x h

s s x h

(2 / ) 1 1
2

(2 ) sinh (2 / )
1.1!

1
4

( 2)(2 )(2 2) sinh (2 / )
(1.3.2!)

2

4
…

= − υ − υ

+ υ υ − − υ − υ − +

υ

 (4.79)

with s = 1/2{(1 + V2)0.5 – 1} being the total number of guided even modes that this 
kind of optical waveguide can support.

4.4.2.2.2 For Odd TE Modes, ν = 1, 3, 5, …

= ⋅
− υ − − υ −

+ υ − υ − − υ − +
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with s = 0.5[(1 + V2)1/2 – 1] being the maximum number of guided odd modes.
For lower-order modes, we have

 u0 = 1 (4.81a)

 u x
h

sinh 2
1 =  (4.81b)

 u s x
h

 1 2( 1)sinh 2
2

2= − −  (4.81c)

 u x
h

s x
h

�sinh 2  1 2
3

( 2)sinh 2 ���� 3
2= − −





 (4.81d)

The propagation constant βυ and the effective indices, neff = βυ/k, of the υth order 
modes are given by

 n k s h4( ) /s
2 2 2 2 2β = + − νν

 (4.82)

 n n s( ) ( / )eff s
2 2 2 2= + − ν λ βν

 (4.83a)

and the normalized propagation constant b is defined as

 b n n
n n
eff s

s

2 2

2 2=
−
−

 (4.83b)

where n is the refractive index at the center of the guide, or approximately

 b n n
n n2

eff s

s

2 2

=
−
∆

 (4.83c)

Thus, the optical field of a slab optical waveguide can be found if we can specify 
the following parameters: the slab thickness h, the cladding refractive index, the 
refractive index difference Δn, and the operating wavelength.

4.4.2.3 Design of Optical Waveguide Parameters: Preliminary Work
Choose the parameters ns, Δn, and h of your waveguide. Some typical refractive indices 
of certain transparent materials for superstrate and substrate of optical waveguides are

• ns = 1.447 for silica glass at the operating wavelength of 1310 nm. This also 
is the base material for modern telecommunication optical fibers.

• ns = 3.6 for GaAs semiconductor waveguide at 1300 nm. This is the base 
material for optical waveguides formed in the resonant cavity and wave-
guide of semiconductor lasers for optical fiber communications.
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• ns = 2.2 for lithium niobate crystal at a certain crystal axis, as seen by the 
TE waves. This is also the base material for optical modulators for optical 
communications.

Make sure that the chosen parameters would form an optical waveguide that 
would support no more than four guided modes at the operating wavelength of 1300 
nm. Can you design an optical waveguide such that it supports only one guided mode, 
which is the only fundamental mode of the optical waveguide? In fact, we can plot 
the b–V curve for υ = 0, 1, 2, …, and from this diagram we can design monomode, 
two-mode, etc., optical waveguides. Notice that only TE modes are considered here.

4.4.3  simulatiOn OF OPtical Fields and PrOPaGatiOn 
in slab OPtical waveGuide structures

A number of computer simulation programs have been written (available for down-
load from crcpress.com; contact the publisher for details) to study the evolution of 
optical fields in slab optical waveguides that form the basic component for several 
optical waveguiding devices.

To numerically study the behavior of optical waves, particularly the fundamental 
mode field, in these structures, the whole waveguide region, including the slab and 
cladding regions, i.e., W and L, is sliced into several intervals along the propagation 
direction z as well as in the vertical direction for numerical calculations.

The field in the first plane, i.e., at z = 0, can be found by (4.80). This field would 
then be propagated to the next plane through a discredited equation by applying the 
finite difference method to the wave equation with the z-dependence in Maxwell’s 
equation. This para-axial wave propagation equation is given by

 jkn E
z

E
dx

k n x y n E2 [ ( , ) ]s
y y

s y

2

2
2 2 2∂

∂
=

∂
+ −  (4.84)

which can be written using the center finite difference technique as

 jkn E E
z

E E E
x

k n x y n E2 [ ( , ) ]s
i k i j i i i

i s i
, 1 , 1 1

2
2 2−

∆
= − +

∆
+ −+ − +  (4.85)

where j 1= − , and the subscripts i and j denote the variation of E with respect 
to the x- and z-directions, respectively. The cross section plane that is partitioned 
into several layers with order ith and the propagation steps along the z-direction are 
assigned with order jth. The obtained results of the field at location j would then be 
used as the field initial distribution for propagating through the structure to obtain 
the optical field of the next plane j + 1 and so on. Thus, we can employ an analyti-
cal method to obtain the field solution for the optical field in the transverse plane. A 
numerical method (the finite difference) is used to study the evolution of the optical 
field propagating along the optical waveguide structure.
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In this section (or experiment) we are not going to study the finite difference 
method but the evolution of the optical field in optical waveguides. In the follow-
ing parts we will examine the optical field behavior in the structures illustrated in 
Figure 4.23. An additional dimension, the z-axis, is now added to the optical wave-
guide devices. These structures are shown in Figures 4.24 to 4.27.

4.4.3.1 Lightwave Propagation in Guided Straight Structures
Do not hesitate to seek assistance from the author (email: lnbpbc69@gmail.com) for 
procedures in running the simulation package. Typical steps for simulation are run 
MATLAB®; go to directory Straight (see Figure 4.24); run FD1, the program for the 
beam propagation method; and choose parameters as prompted by the program, such 
as (1) waveguide region to be analyzed, (2) operating wavelength, (3) slab thickness, 
(4) the number of x intervals for the optical field and number of propagation steps in 
the z-direction, (5) the refractive indices of slab and cladding, i.e., cladding index and 
the index difference, and (6) propagation distance.

 a. After successfully obtaining the guiding of optical waves, keep one or two 
parameters constant (such as the waveguide thickness) and vary stepwise 
other parameters, e.g., index difference, wavelength. Observe the evolu-
tion of the optical field and plot the 3D guided wave field profile and the 
field contour. Note: When specifying the number of planes to be plotted 
by MATLAB the product of the number of intervals in x- and z-directions 
must not exceed the MATLAB limit, which is 8188, depending on the avail-
able computer memory and MATLAB version.

 b. Observe the field evolution with respect to the change in refractive index 
difference, waveguide thickness, etc.

h (thickness) W

Propagation length (to be divided into steps)
L

Substrate (cladding)

Guiding slab

Superstrate (cladding)

z

x

y

FIGURE 4.24 Side view of a slab optical waveguide in a straight optical device structure. h 
is the waveguide thickness, W is the total width of the structure in the transverse plane to be 
specified for numerical simulation, and L is the total length of the device. W is to be divided 
into several equispacing layers for numerical simulation. The length L along the propagation 
direction is also split into several steps for propagation from one plane to the other, and so on.
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An example of the waveguide and propagation in a straight waveguide is shown 
in Figure 4.28.

Note: The graphical facilities are dependent on the computer networking at the time 
of the experiment.

4.4.3.2 Lightwave Propagation in Guided Bent Structures
Similar to the steps as above: (1) Choose the most suitable optical waveguide struc-
tures of the straight structure to enter into the bend structure parameters. (2) The 
Bend directory (Figure  4.25) is to be evoked. (3) Additional parameters for this 
structure are the bend angle θ and the length l of the straight section. Start with a 
bend angle of about 0.5° of arc. (4) Now vary the bend angle in steps of 0.5° or 1° of 
arc to about 10° of arc. (5) Observe the radiation of the guided field at the bend sec-
tion and report the guided and radiated optical fields. (6) Vary the refractive index 
difference and run the program for the bend angle of about 2–4° and observe the 
confinement and radiation of the optical field at straight and bend sections.

4.4.3.3  Lightwave Propagation in Y-Junction (Splitter) 
and Interferometric Structures

As illustrated in Figure 4.27, the Y-junction or optical splitter is considered a com-
bination of two identical bend sections. Note that the section right of the Y-junction 
has a width that is wider than that of the straight section. Thus the number of guided 
modes would be higher for this very short section: (1) Choose the half-angle θ of 
the Y-junction from 0.5 to 5° of arc, run the appropriate program to observe the field 
evolution, and measure the field strength, i.e., intensity or optical power, distribution 
across the whole device. (2) You can vary the refractive index difference for a small 
half-angle at the Y-junction to observe the splitting effect. Report the field behavior 
at these Y-junctions. (3) If time permits, use the facility provided for simulation of the 

h (thickness) w

L

superstrate (cladding)

substrate (cladding)

guiding slab

y
z

x

θ

Initial propagation length

FIGURE 4.25 Side view of the optical waveguide device using a slab waveguide in bend 
structure. Notice the bending section. θ is the bend angle; L is the length of the straight section.
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propagation of lightwaves through an interferometric optical waveguide structure, 
the Mach–Zhender, in which the input lightguide is split into two paths and then 
combined into one output port. A typical evolution of the guided optical field in a 
planar straight waveguide is shown in Figure 4.28, with the following parameters: 
cladding refractive index of 2.2, refractive index difference of 0.02, propagation 
length of 100 μm, step size of 0.5 μm, and step size in the x-direction of 0.02 μm.

4.5  APPENDIX A: EXACT ANALYSIS OF CLAD 
LINEAR OPTICAL WAVEGUIDES

The exact analysis of TE modes guided in an optical waveguide whose refractive 
index profile follows linear shape is described in this section. The profile was first 
analyzed exactly by Marcuse,23 then treated in full by Adams60 and applied to the 
study of a low-threshold current laser diode. The results presented here are different 
from the published formulae, as they are expressed in terms of Bessel functions of 
real positive order. Starting with the eigenvalue equation we derive the propagation 
constant and the cutoffs of the waveguide. The treatments of symmetrical and asym-
metrical profiles are given separately.

4.5.1 asymmetrical clad linear PrOFile

4.5.1.1 Eigenvalue Equation
The eigenvalue equation is given by23

 Ai V A bAi
Bi V A bBi

Ai V bAi
Bi V A bBi

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0
1/3

0

0
1/3

0

1
1/3

1

1
1/3

1

′ α − + ′ −α
′ α − + ′ −α

= ′ α − α
′ α − + −α

 (4.86)

h (thickness) w

superstrate (cladding)

substrate (cladding)

guiding slab

y
z

x

θ

L
Initial propagation length

FIGURE 4.26 Side view of the Y-structure using slab optical waveguide. θ is the half 
Y-junction angle; L is the straight initial section before splitting.
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where b V bV(1 )0
2/3

1
2 /3�α = − α = ; Ai and Bi are Airy functions and the dash 

denotes the derivatives with respect to the argument.
Using the relations between the Airy and Bessel functions of Abramowitz and 

Stegun,61 we can convert (4.86) into an immediate form:

 

J J Q J J
J J Q J J

I I I I
I I I I
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 (4.87)

where the arguments γ0;γ1 of the Bessel functions and Q are given as
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 (4.88)

In arriving at Equation (4.87) we have also used*

* Note: Equation given in Abramowitz and Stegun (1972) does not have the negative sign (–), a vital 
error.
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FIGURE 4.28 Typical evolution of the guided mode field propagating through a straight 
slab optical waveguide. Waveguide parameters: cladding refractive index = 2.2, refractive 
index change = 0.02, propagation length = 100 μm, step size = 0.5 μm, step size in x-direction 
= 0.02 μm.
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 Ai I I( )
3

( )1
1

2/3 2 /3′ α = − α −−
 (4.89)

Finally, using the recurrence relations for the J and I functions results in the required 
version of the eigenvalue equation:

 Q J J
Q J J

Q I I
I I

(2 3 ) ( ) 3 ( )
(4 3 ) ( ) 3 ( )

(2 3 ) ( ) 3 ( )
(4 3 ) ( ) 3 ( )

0 1/3 0 0 4 /3 0

0 2 /3 0 0 5 /3 0

1 1/3 0 1 4 /3 1

1 2 /3 1 1 5 /3 1

+ γ γ − γ γ
+ γ γ − γ γ

= + γ γ − γ γ
+ γ γ − γ γ

 (4.90)

4.5.1.2 Mode Cutoff
At cutoff we have b = 0 and Q = [A]1/2γ0 = 2/3V; γ1 = 0. The RHS of (4.90) → ∞ and 
a substitution of the asymptotic formula for the Bessel functions gives the mode cut 
off for modes with large Vc:

 +





π − =−V m A m2
3

~ 1
12

tan ( ) 0,1,2c
1 …  (4.91)

4.5.2 symmetrical waveGuide

4.5.2.1 Eigenvalue Equation
The eigenvalue equations for the odd and even modes are given in Adams60 and can 
be derived from (4.86). Only the LHS (left-hand side) is affected, and the eigenvalue 
equations for these modes are given as

 

Ai
Bi

Ai V bAi
Bi V A bBi

Ai
Bi

Ai V bAi
Bi V A bBi

( )
( )

( ) ( )
( ) ( )

even mode

( )
( )

( ) ( )
( ) ( )

odd mode

0

0

1
1/3

1

1
1/3

1

0

0

1
1/3

1

1
1/3

1

′ −α
′ −α

= ′ α − α
′ α − + −α

−α
−α

= ′ α − α
′ α − + −α

 (4.92)

Similarly, using the relations between the Airy and Bessel functions of Abramowitz 
and Stegun,61 we can convert (4.92) into an immediate form:

 

J J
J

I I I I
I I I I

J
J J

I I I I
I I I I

2 ( ) 3 ( )
3 ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 ( )
3 ( ) 4 ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2/3 0 0 4 /3 0

0 2 /3 0

2 /3 1 2 /3 1 1/3 1 1/3 1

2 /3 1 2 /3 1 1/3 1 1/3 1

0 1/3 0

0 5 /3 0 2 /3 0

2 /3 1 2 /3 1 1/3 1 1/3 1

2 /3 1 2 /3 1 1/3 1 1/3 1

− γ + γ γ
γ γ

= − γ + γ + γ − γ
γ + γ + γ + γ

− γ γ
γ γ − γ

= − γ + γ + γ − γ
γ + γ + γ + γ

− − −

− −

− −

− −

 (4.93)

4.5.2.2 Mode Cutoff
The RHS of (4.90) goes to infinity at cutoff, so we have
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J V m

J V V J V m

2
3

0 0,2 even modes

2
3

2
3

0 1, 3 odd modes

C

C
C

C

2/3

2 /3 5 /3

…

…







= =







− 





= =

 (4.94)

Alternatively these equations can be obtained from (4.91).

4.6  APPENDIX B: WKB METHOD, TURNING 
POINTS, AND CONNECTION FORMULAE

4.6.1 intrOductiOn

Consider the scalar wave equation:

 d x
dx

K x( ) ( ) 0
2

2
2ϕ + ϕ =  (4.95)

where K k n x( )2
0
2 2 2= − β  is the transverse propagation constant and φ(x) is the 

modal field in the transverse plane. The characteristic mode factor ej(ωt–βz) is omit-
ted. This version of the wave equation is selected to present the turning points in the 
subsequent analysis. The turning point is defined by xt → K(xt) = 0.

When the refractive index function n(x) has certain simple forms, (4.95) can be 
solved explicitly for φ(x), the good behavior of this function restricting the axial 
propagation constant β to discrete values. These are the characteristics of the bound 
modes. However, in most practical optical waveguides, explicit solutions of the fields 
are not available and approximation methods of solutions must be developed.

The WKB method is based on an asymptotic expansion in k0
1− , the first term of 

which leads to geometrical optic results, or the 0th-order WKB solutions, and higher-
order terms lead to exact modal solutions. The principal concern of this method 
lies in the transitional region, which connects the oscillatory fields and its evanes-
cent neighbors. These are the turning points of the problem where the semiclassical 
approximation breaks down. The way in which the WKB solutions are valid on 
either side of the turning point connects remains the central problem of the method.

Before proceeding to derive the WKB solutions we assign the following symbols: 
ϕ(x), φ(x), and Φ(x) = exact modal field, WKB solution, and approximate modal field 
valid at the turning point, respectively.

4.6.2 derivatiOn OF the wkb aPPrOximate sOlutiOns

Following established tradition, we postulate a solution of (4.95) in the form of

 
x Ae

j A

( )

1; constant

jk S x( )0φ =

= − =
 (4.96)
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Thus Equation (4.95) can be transformed into the Riccati equation:

 
j
k
d S x
dx

dS x
dx

n x n

n

1 ( ) ( ) ( ( ) ) 0

effective index of waveguide mode

e

e

0

2

2

2
2 2− 





+ − =

≡

 (4.97)

Now let y = S′ and assume that y admits of a formal series expansion of the form

 y k yn n
n

0

0
∑= −

=

∞

 (4.98)

Thence

 y S k yn n
n

0
0

∑′ = ′′ = ′−

=

∞
 (4.99)

and

 y S k y y k y
y

k y
y

y
y

1 2 2n
n

n

2 '2
0

0

2

0
2

0
1 1

0
0

2 1

0

1
2

0
2 …∑= = ′












= + + +







+











−

=

∞
− −  (4.100)

Therefore, substituting (4.99) and (4.100) into (4.97) and equating the coefficients 
of the like power of k0 leads to the following recurrence relations:

 
y n n K

k

jy y y

jy y y y

2

2

e0
2 2 2

2

0
2

0
1

1 0

1 2 0 1
2

= − =

=

′ = +

 (4.101)

Thus, we can obtain

 

y K
k

j K
k

K
k

y2

0
0

0 0
1

′ = ±

± ′ = ±

 (4.102)

which can be integrated into the form
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 j
k

K C
k

y dx
2

ln 1

x

x

0 0
1

0

∫+ =  (4.103)

where C is the integration constant.
Hence,

 

x Ae Ae Ae

A e

x A K e

( )

( )

jk S x
jk k y dx jk y dx k y dx k y dx

j Kdx jk C

j K dx

( )

1/2

n
n

nx

x

x

x

x

x

x

x

x

x

x

x

0
0 0

00

0 0
0

0
1

1
0

0
2

2
0

0
0

0

…

φ = =
∑∫

=
∫ ∫ ∫

=
∫

→ ϕ =
∫

+ + +












±

± +

±
−

±

−

=

∞
− −

 

(4.104)

where A± denotes the constants corresponding to the ± solutions, respectively.
For K2 > 0 we have

 
x DK j K dx

D

( ) cos

, arb. constants

x

x

1
1/2

0

∫ϕ = ± + δ












δ ≡

−

 (4.105)

For K2 < 0 we have

 

x B K e( )
K dx

2
1/2 x

x

0ϕ =
∫

±
−

±












 
(4.106)

Clearly at the turning point defined by K2(x) = 0 both the oscillatory and evanes-
cent fields diverge. Hence neither form can be retained during the transition from one 
interval to the other, where K2 changes sign.

Furthermore, a back substitution of the WKB solutions, for example, φ, into the 
original equation (4.95) produces an inhomogeneous equation:

 

d x
dx

K x W x

W x K
K

K
K

( ) ( ) ( )

( ) 3
4

1
2

2

2
2

2

ϕ + ϕ =

= ′





− ′′
 (4.107)
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For this equation, any point where K2(x) vanishes is singular. However, far from 
the singularity, a higher-order WKB solution can be obtained with (4.107) as the start-
ing point and incorporating XW(x) into K2. This method contrasts with the straight-
forward idea using a high-order recurrence relation to obtain higher-order terms.62

4.6.3 turninG POint cOrrectiOns

4.6.3.1 Langer’s Approximate Solution Valid at Turning Point
For a refractive index profile that is unbounded we can write, for an nth-order zero 
at x0 = 0,

 K x x x f x( ) ( ) ( )n
n2 = −  (4.108)

where

 

f x C x x( ) ( )i i
i

i 0
∑= −

=

∞

is a nonvanishing polynomial of x at x0 = 0. For simplicity and without loss of gener-
ality, let x0 = 0. Thus, for values of x close to zero we can write

 K x C x( ) ( )n2
0=  (4.109)

In the vicinity of the turning point, we can represent the wave equation by an approx-
imate differential equation:

 d x
dx

C x x( ) ( ) 0n
2

2 0
φ + φ =  (4.110)

where

 x at 0φ ≡ ϕ =

The solutions to (4.110) are Bessel functions. Thus, it would be necessary to trans-
form the wave equation before setting the condition (4.109). We can now introduce 
the Liouville transform:

 K x dx K x v( ) and ( )
x

1/2

0∫ξ = φ =  (4.111)

After some algebra the equation becomes
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 d v
d

K d K
dx

K d K
dx

v3
4

1
2

1 0
2

2
4

2

2

2
3

2

2ξ
+







− +











=− −  (4.112)

Now using the form of the approximate transverse propagation constant in 
Equation (4.109) and evaluating the terms in the bracket reduces Equation (4.112) to 
the required intermediate form

 d v
d

C x n n v1 4
16

0n
2

2 0
1 ( 2)

2

ξ
+ + +
















=− − +  (4.113)

Then using (4.111) we obtain

 C x n1 2
2

n
2 0

1 ( 2)
2 2

ξ
= +





− − +  (4.114)

Substituting into (4.113) we arrive at

 d v
d

n n
n

v1 1 ( 4)
4( 4)

0
2

2 2 2ξ
+ +

ξ
⋅ +

+

















=  (4.115)

Now changing the variable ν → ξ1/2W leads to

 d v
d

d W
d

dW
d

W1
4

2

2
1/2

2

2
1/2 3/2

ξ
= ξ

ξ
+ ξ

ξ
− ξ− −  (4.116)

Finally substituting (4.116) back into (4.115) and multiplying by ξ3/2 throughout, the 
resultant equation is transformed to the desired canonical form:

 d W
d

dW
d n

W1
( 2)

0
2

2
2

2ξ
+ ξ

ξ
+ ξ −

+








=  (4.117)

This is the Bessel equation of order 1/(n + 2) with independent solutions denoted by 
plus and minus signs.

 
W A J

m
n

4
( )

with 1
2

m

2
= π








ξ

=
+

± ±

 (4.118)
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Thus, from ν → ξ1/2W and (4.111) we can recover the solutions of the original form 
(4.110) at the turning point as

 K W A
K

J( )
2

( )m
1/2 1/2

1/2

1/2

1/2

φ = ξ ξ = π







ξ





ξ−
± ±

 (4.119)

where A± is an arbitrary constant and ξ is related to K(x) via the Liouville transforma-
tion. The relationship between Equations (4.117) and (4.110) can be found in standard 
textbooks on Bessel’s function.57 We include it here for interested readers.

To study the behavior of the approximate solutions at the turning point, we 
obtain the differential equation (DE) satisfied by ϕ. To do this we represent (4.119) 
in the form

 

G x J

G x A K x

( ) ( )

with ( )
2

( )

m
m

m
1/2

1/2
1/2 1/2

φ = ξ ξ

= π







ξ

±

±
− −

 (4.120)

Differentiating (4.120) with respect to x we obtain

 
d x
dx

A

G x
J m J G x J( ) 2

( )
{ } ( )

m

m
m

m
m

m
m

1/2

1/2
1/2

φ =

π







ξ
ξ ′ + ξ ′ + ′ ξ

±
−

± ± ±

 
(4.121)

and

 

d x
dx

J G x A G x J( ) ( )
4

( )m
m

m
m

2

2

2
4 3 2 3φ = ξ ′′ − π ξ± ±

− −
±

Using (4.120) we can write in more compact form

 d x
dx

G x
G x

x K x( ) ( )
( )

( ) ( )
2

2

"
2φ = φ − φ  (4.122)

Thus, we have the relation

 K x d x
dx

A G x( ) ( )
2

( )m2 1 2 2= ξ = π ξ±
− −  (4.123)

and the Bessel identity
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 ξ ′′ + ξ ′ = − ξ ξJ J m J( ) ( )2 2 2  (4.124)

4.6.3.2 Behavior of the Turning Point
Equation (4.122) can be recast into

 d x
dx

K x x x( ) { ( ) ( )} ( ) 0
2

2
2φ + − θ φ =  (4.125)

where

 x G x
G x

( ) ( )
( )

θ = ′′

This is the DE that satisfies the approximate Langer’s solution ϕ at the turning 
point. To prove the validity of ϕ, we only have to show that G(x) is bounded at x = 0, 
so that the coefficient of ϕ does not possess singularity. To do this we write

 

G x

A
K x x f x I x( )

2

( ) ( )[ ( )]m n m
1/2

1/2

1/2 1/2 /4 1/2
1

1/2

π







= ξ =
±

− − − − −

 
(4.126)

Then, using the expression for K in (4.109),

 I x x f x dx( ) ( )n
x

1
/2 1/2

0
∫=  (4.127)

Thence integration by parts gives the expanded form

 I x x f
n

x f x f x dx

x f x
( )

/ 2 1
1

( ) ( )

2 ( )

n

n
x

n1

/2 1 1/2

/2 1 1/2

0
/2 1 1/2

∫
=

+
− −

′


























+

+ −

+
 (4.128)

Substituting Equation (4.128) into (4.126) we obtain

 

G x

A

f
n

I x( )

2
/ 2 1

[1 ( )]
m

m
m

1/2

1/2

/2

1/2 2
1/2

( )π







=
+

−
±

−

−
−

 (4.129)
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where the intermediate integral is given by

 

I x
x f x f x dx

x f x
( )

( ) ( )

( )

n
x

n2

/2 1 1/2

0
/2 1 1/2

∫
=

′+ −

+

 

(4.130)

Applying the l’Hospital rule shows that

 x G x
G x

K
K

K
K

m K( ) ( )
( )

3
4

1
2

( 1 / 4)
2 2

1/2θ = ′′ = ′





− ′′





+ −
ξ

 (4.131)

while we observe that f(0) ≠ 0 by definition. Hence G(x) ≠ 0 at the turning point, and 
the proposition has been proved.

4.6.3.3 Error Bound for ϕ Turning Point
To investigate the accuracy with which the DE for an error bound for ϕ represents 
the exact wave equation at the turning point, one only has to compute the value of 
θ(x) at x = 0. Thus, we find

 x G x
G x

K
K

K
K

m K( ) ( )
( )

3
4

1
2

( 1 / 4)
2 2

1/2θ = ′′ = ′





− ′′





+ −
ξ

 
(4.132)

Note that the first two terms of this equation are the function W(x) defined earlier. 
For m = 1/2 (i.e., n = 0) we have the turning point of order zero and ϕ → φ. Therefore, 
it can be concluded that in a region removed from any turning point the WKB solu-
tions are of the same form as Φ and vice versa. This observation is substantially 
proven by investigations of the asymptotic behavior of ϕ away from the turning 
point. The proof of this result paves the way for the important connection formulae, 
which is the eventual purpose of this exercise.

Now, using the form of K2(x) given in Equation (4.108), we can put θ(x) in terms 
of f(x) as

 

K
K

f
f

n
x

f
f

n
x

K
K

f
f

n n x n f
f

x f
f

3
4

3
16

2 1
2

1
8 4 2

1
4

1
4

2 2 2

2

2
2 1

′





= ′





+ ′





+











− ′′





= ′





− −





− ′





− ′′





− −

 (4.133)

and
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 m K m x f x
I x

1
4

1
4

( ) 1
( )

n2 2 2 2

1
2−





ξ = −





−  (4.134)

Thus we can rewrite (4.128) in a more suitable form as

 I x x f x f x f x dx n( ) 1
2

( ) ( ) ( / 2 1)n
x

1
/2 1 1/2 /2 1 1/2

0

1∫= − ′











+π + + − −  (4.135)

Since the integral → 0 in the limit of x → 0, we can expand I1
2−  in a binomial series 

as

 = +











+












+
































+− +
−

+ − +
I n x f I

x f

I

x f
2

1 1 3
4

n

n n
1

2
2

2
1 1/2

2
3

2
1 2

3
2

2
1 1/2

2 …  (4.136)

∫− ′
+

I f f x dxwith 
nx

3
1/2 2

1

0

Integrating by parts again, we can expand into the form as

 

I n x f f x f f f f f dx

I n x f f x f f I I

1

2
2

1
2

( )

2
2 ( ) 2 ( )

n nx

n n

3
2

2 1/2 2
2 1 1/2 2 1/2

0

3
2

2
2

4 1 2 2
2 1/2

4 4
2 …

∫=
+





′ − ′′ − ′

















∴ = +



 ′ − ′ + +













+ − + − −

−
+ − + −

 (4.137)

where I4 is the integral expression given in (4.136). Finally, substituting (4.137) and 
(4.136) into (4.133) we obtain

 

m K n
x

n
x

f
f

n
n

f
f

n
x

f
f

n
n x

f
f

I x
x f x

1
4 16

4
2

2
8

1 3
16 4

8
1 3

8 4
1 ( )

( )n

2 2 2
2

2

2

2
4

/2 1 1/2 …

−





ξ = − +





−
′







−
+

′





+
′







+
+

′

















+

−

+

 (4.138)
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Substituting (4.138) and (4.133) into (4.132) we arrive at

 x
n

n
n

f
f

f
f

x( ) 3
2

1
6

5
4

terms in  and higher
2

θ =
+

+
+







′





− ′





+  (4.139)

Equation (4.139) shows that if f(x) is a relatively slowly varying function at x = 
0, then θ(0) → 0 and the Langer’s approximate solution Φ is a good approximation 
of the actual mode field at the turning point. This is a general result, of which the 
expression obtained by Marcuse23 is a special case.

4.6.4 cOrrectiOn FOrmulae

It is shown above that the DE satisfied by Langer’s approximate solution Φ is non-
singular. Therefore, unlike the WKB solution, Φ is single-valued. It is not restricted 
to yield representations of the solution of the wave equation (4.95) in the intervals 
on one to the other side of the turning point. Therefore, in problems involving a 
single tuning point no question of connection formulae arises in association with 
it. However, in actual waveguides, the simplest scalar wave equation contains two 
turning points at the minimum. Thus, a single function such as Langer’s approximate 
solution, Φ, valid at a turning point, cannot possibly describe the modal fields since 
essentially there are two regions of evanescent field behavior connected by a region 
where the field is oscillatory.

As a first step to obtain a connection formulae, we introduce a new variable,

 
t K x dx j

j

( )

1

x

0∫= − = ξ

= −

 (4.140)

so that we can express Φ as ϕ1 or ϕ2 to denote the solutions in regions in which K2 > 
0 and K2 < 0, respectively. We now have

 

A
K

J x

B t
K

I x

2
( ); 0

2
( ); 0

m

m

1

1/2 1/2

2

1/2 1/2

φ = π





ξ
















ξ ≥

φ = π






















ξ <

± ±

± ±

 (4.141)

The asymptotic solutions of the Bessel functions of large argument are well 
known, and we can write61
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A K m

B K e

cos
2 4

as

as
t

t j m

1 1
1/2

2 2
1/2 2 1

4

∓

∓

φ = φ = ξ π − π





φ = φ =

ξ→∞ ±
−

→∞ ±
− − + π −





 (4.142)

These relations confirm our earlier hypothesis that ;as as
1 2φ φ  are just linear combina-

tions of the WKB solutions A K e B K e and | |j t
1

1/2
2

1/2ϕ = ϕ =±
− ± ξ

±
− − .

We consider the case in which the two turning points are sufficiently far apart so 
that we can use a turning point of order n = 1. Now the solutions for the linear turning 
point are just the Airy functions or Bessel functions of order 1/3. These are

 

A
K

J x

B t
K

I t x

2
; 0

2
( ); 0

1

1/2 1/2

1/3

2

1/2 1/2

1/3

( )Φ = π





ξ





ξ ≥

Φ = π











<

± ±

± ±

 (4.143)

These expressions are just alternative ways of writing the same solutions. They 
must be identical. Continuity requirements at x = 0 give

 
B A

B A

= −

=

+ −

− −

 (4.144)

Thus, the asymptotic forms can be written as

 

A K

A K e

cos
6 4

2

as

as
t j

1
1/2

2

1/2 1
2

2
3

∓

∓
∓

φ = ξ π − π





φ =

±
−

±
− − − π





 (4.145)

To derive the first connection formula we follow the procedure

 

φ + φ + φ + φ

=

→ → ξ − π





+ − + −

+ −

− − −

A A

K e Kthus 2 cos
4

as as as as

t

2 2 1 1

1/2 1/2

 (4.146)
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The arrow indicates that the asymptotic solution on the left goes into the expres-
sion on the right as one crosses the turning point. These arrows are irreversible, or a 
small error in the phase of the cosine would be magnified by the positive exponential 
on the LHS of Equation (4.146).

Similarly we can write another set of connection formulae:

 K e K2 cos
4

t1/2 1/2← ξ + π





− −  (4.147)

These formulae suffice for applications involving two turning points.

4.6.5 aPPlicatiOn OF cOrrectiOn FOrmulae

There are three distinct categories of problems encountered in wave propagation in 
slab dielectric waveguides where the connection formulae obtained above can be 
applied to yield eigenvalue equations for bound modes. In the WKB context, a bound 
mode corresponds to a solution that is oscillatory between two turning points beyond 
which the solution is evanescent. These are treated separately.

4.6.5.1 Ordinary Turning Point Problem
The refractive index profile is illustrated in Figure 4.29(a) where the turning points 
are at x and x2. For x1 < x ≤ x2, K2 > 0, and the field is oscillatory. Elsewhere, the field 
is evanescent. The connection formulae connect solutions on both sides of a turning 
point, and these must be applied at both x1 and x2. Correct phase matching of the 
oscillatory fields yields the WKB eigenvalue equation. This equation contains the 
implicit prescription of the required propagation constant.

Thus in regions 2a and 2b as noted in Figure 4.29,
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By virtue of the first connection formulae given by (4.146), the solution in region 
1 that connects with region 2a is
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And that which connects the solution in region 2b is
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Now φ1a and φ1h represent one and only one solution in 1. Thus this consistency 
condition implies that

 

A A

4 4
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1 2
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 (4.151)

The RHS of (4.151) can be written, taking the minus sign, as

ne

ne

ne

#2a #2b

#2a

#2a

#2b

nb–

x1

x1

x1

x2

x2

x2

#2b

nx2+

nx2–

#1

(c)

(b)

(a)

FIGURE 4.29 (a) Ordinary turning point with caustics at x = x1 and x2, where n2(x) = ne. 
(b) Step discontinuity at x = x2. (c) Buried modes with mode index ne close to step discontinu-
ity at x = b.
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= ξ − π − η

η = − π
 (4.152)

which must be a multiple of π to ensure correct phase matching of the WKB oscil-
latory solution. Equation (4.152) is expanded to give the familiar form of the WKB 
eigenvalue equation

 k n x m m[ ( ) ] 1
2

; 0,1,2
x

x

0
2 2 2 1/2

1

2

…∫ − β = +





π =  (4.153)

This result fails when x1 = x2 or when there is an index discontinuity in the vicinity 
of the turning point.

4.6.5.2 Effect of an Index Discontinuity at a Turning Point
Figure 4.29(b) illustrates a typical example of a thin-film waveguide deposited on 
a substrate. The turning point at x = x2 coincides with the film–air interface. At x = 
x2, it is erroneous to apply the connection formulae, since they are derived on the 
assumption of a linear variation of K2(x2). We resort, instead, to the boundary condi-
tions imposed on the fields at x = x2.

If we denote n(x2–) and n(x2+) as the values of the refractive index just before and 
after the step, then the standard phase shift at the discontinuity60 is proportional to 
δx2

 given by

 k n x
k n x

tan ( )
( )x

1
2

0
2 2

2
2

0
2 2

2
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− +
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and the WKB eigenvalue equation transforms to

 k n x m m[ ( ) ] 1
4

; 0,1,2
x

x

x0
2 2 2 1/2

1

2

2 …∫ − β = +





π + δ =
−
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Note that in the large step, δx2
 → π/2, as in the case of a strongly asymmetrical 

waveguide.

4.6.5.3 Buried Modes Near an Index Discontinuity at a Turning Point
The analysis in the previous subsection treats only the turning point at x = x2 fails 
directly on top of the index discontinuity. Thus strictly speaking, Equation (4.155) is 
only accurate for certain order modes (value of m) that satisfy this condition.
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We denote the refractive index just before and after the step at x = b by n(b–) and 
n(b+), respectively. In the region x2 < x < b the step at x = b causes significant reflec-
tion of energy. It is no longer accurate to represent the fields in the region by a single 
decay exponential. Therefore, we include both decaying and growing exponentials 
and write
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where A is a constant. The coefficients of the growing and decaying fields in (4.156) 
have been chosen to satisfy the connection formulae at x = x2. Thus, the equation of 
φ1 in (4.156) is redundant as far as the eigenvalue equation is concerned. Continuity 
requirements on φ2a and φ2b at x = b give the required eigenvalue equation:

 k n x m m[ ( ) ] 1
4
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where
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which is the corrected overall phase shift of the buried modes.

4.7 PROBLEMS

4.7.1 PrOblem 1

A slab optical waveguide has a symmetrical refractive index based on pure silica as 
the substrate material. The core refractive index is 1.50 and its thickness is 4.00 μm. 
The cladding thickness is 20 μm. The refractive index difference is 0.09. The operat-
ing wavelength is 1300.0 nm.

 a. Is the operating wavelength in the UV, visible, near-infrared, infrared, or 
far-infrared region?
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 b. Is the silica material less lossy at 1300 nm than at 1550 nm? Give reasons.
 c. Find the normalized frequency parameter V for the planar optical wave-

guide. Thence find the number of odd and even guided modes. If possible 
write a procedure in MATLAB to calculate the propagation constants of 
these guided modes.

 d. If the cladding refractive index is 1.515, would the optical waveguide sup-
port any guided mode at 1300 nm wavelength? If it does, find the number of 
guided modes for this structure. Sketch the field and intensity distribution 
of these modes across the waveguide cross section.

 e. Using the refractive index profile as in (d), design the geometrical structure 
of the waveguide so that it can support only one TE-even mode.

4.7.2 PrOblem 2

Assuming that the refractive indices at 1550 nm wavelength are the same, repeat 
problem 1 with an operating optical wavelength of 1550 nm.

4.7.3 PrOblem 3

The structure of an optical planar waveguide splitting junction Y is shown in 
Figure 4.26. The requirement is that the output of optical fields at the output ports of 
the Y-junction must be a single even TE mode. Using silica as the substrate material 
wih a refractive index of 1.500 at 1530 nm wavelength in vacuum, design the planar 
optical waveguide sections of the Y-junction. Assume that the splitting tilted junction 
area would support the same guided modes as that of the output straight branches.

4.7.4 PrOblem 4

 a. A slab optical waveguide has a symmetrical step refractive index profile 
based on pure silica as the cladding material with a refractive index of 1.480 
at 1550 nm free-space wavelength.

 i. Write Maxwell’s equations for lightwaves propagating in this medium. 
The wave equation for the electric field component of the electromag-
netic lightwaves is given by

 E n k E( ( ) ) 0t
2 2 2

0
2∇ + β − ω =

 where

 x yt
2

2

2

2

2∇ = ∂
∂

+ ∂
∂

 ii. For a planar optical waveguide with an infinite extension in the y-direc-
tion, show that the scalar wave equation for the TE modes is given by
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d E
dx

k n E( ) 0y
j y

2

2
2 2 2+ − β =

 where nj ( j = 1 or 2) represents the refractive index in either the core or 
the cladding regions, k = 2π/λ is the free-space wavenumber, λ is the 
free-space wavelength, and β is the propagation constant of the light-
waves along the z-direction.

 b. Write the wave solutions for both the even and odd TE-guided modes in the 
core and cladding regions. The corresponding two eigenvalue equations of 
these guided modes are given by

 

=

= −

v u u

v u
u

tan for even TE-guided modes

tan
for odd TE-guided modes

 where u and v are defined by

 

u a k n

v a k n

( )

( )

2 2 2
1
2 2

2 2 2
2
2 2

= − β

= − + β

 Prove just one of the above eigenvalue equations (either one of your choice). 
Give a physical interpretation of u and v.

 i. Obtain an expression for the normalized frequency V-parameter, and 
design a slab optical waveguide so that it can guide two TE optical-
guided odd modes at an operating free-space wavelength of 1550 nm. It 
is recommended that the following parameters of the optical waveguide 
be specified: the slab core thickness, cladding thickness, relative refrac-
tive index difference between the core and cladding regions, and cutoff 
wavelength of TE modes of a order higher than the two TE odd modes.

 ii. Sketch the electric fields and intensity distributions of the guided modes 
in the transverse plane of the designed waveguide in part (i).
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5 Three-Dimensional 
Optical Waveguides

In modern optical communication systems, almost all optical devices, from passive 
to active components, such as lasers and waveguides, are in three-dimensional (3D) 
form. They ensure that the lightwaves are effectively trapped in planar structures, 
i.e., optical integrated circuit form, as shown in Figure 5.1, and thence manipulation 
of the lightwaves properties occurs by splitting, coupling, diffraction, and modula-
tion by electro-optic, acousto-optic, or magneto-optic effects.

Therefore, following the fundamentals of planar optical waveguides, this chap-
ter describes the 3D optical waveguides in which the waveguide is restricted in the 
transverse (x, y) plane, which is perpendicular to the propagation direction z-axis. 
A simplified analysis of these waveguides, the effective index method, and numeri-
cal techniques, the finite difference method (FDM), is described and examples are 
given. In this chapter we analyze the modes guided by 3D waveguides with rectan-
gular geometries using mainly Marcatilli’s method, and the effective index method 
as analytical techniques.

On the numerical method we select the FDM as the principal technique because 
it is simple and gives accurate results for optical waveguides operating in the linear 
region. We chose the FDM to study the quasi-TE- and quasi-TM-polarized wave-
guide modes due to its simplicity and plausible accuracy. We have employed the 
semivectorial analysis, which automatically takes full account of the discontinuities 
in the normal electric field components across any arbitrary distribution of internal 
dielectric interfaces. The eigenmodes of the Helmholz equation are solved by the 
application of the shifted inverse power iteration method. This method warrants the 
mode size and its relevant propagation constant, both of which are important param-
eters to the design of an optical waveguide. The grid size is nonuniform to maximize 
the accuracy of the optical guided modes and their propagation constants. Diffused 
waveguides and rib waveguides are designed with different parameters to demon-
strate the effectiveness of the method, leading to an optimum design of waveguides 
of optical modulation and micro-ring resonators.

5.1 INTRODUCTION

To achieve efficient design of high-speed modulators and switches, especially 
micro-ring resonators, the fabrication of rib waveguides and Ti:NbO3 waveguides 
with suitable mode sizes is essential to minimize waveguide insertion loss and also 
to maximize the overlap integral between the guided optical field and the applied 
modulating field. Furthermore, the bending or radius of curvature is so important for 
the ring resonator to keep the ring size as small as possible. Extensive studies have 
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been devoted in recent decades to fabricating Ti:diffused LiNbO3 waveguides that 
couple efficiently to single-mode fibers.1,2–5 A major milestone was achieved when 
a total fiber–waveguide–fiber insertion loss of 1 dB was achieved for z-cut LiNbO3 
at 1.3 μm.4 Such low loss was achieved by choosing fabrication parameters to yield 
a relatively deep, clean diffusion, which simultaneously minimized the fiber wave-
guide mode mismatch loss and the propagation loss. Suchoski and Ramaswamy6 
have reported on the optimization of fabrication parameters to obtain Ti:LiNbO3 
single-mode waveguides that exhibit both minimum mode size and low propagation 
loss in the 1300 nm wavelength region. All these design requirements have led to the 
significance of the analysis of polarized modes in channel waveguides.

In general, the optical mode of the waveguide is acquired by solving the Helmholtz 
equation. However, only a few simple waveguide structures can be solved analytically. 
Extensive attempts have been made to obtain numerical solutions for a two-dimen-
sional cross section of optical waveguides.7–23 One method is the approximate mod-
eling of a two-dimensional slab waveguide solution successively in both directions, 
following either the method of Marcatilli5 or the effective index method (EIM).24 
However, these methods are not applicable to arbitrarily shaped optical waveguides, 
and neither do they handle waveguide mode near the cutoff region efficiently. A signif-
icant number of numerical methods have been proposed to obtain rigorous solutions 
to the wave equation with pertinent boundary conditions. The popular techniques 
by far are the finite difference method (FDM),10 finite element method (FEM),22 and 
beam propagating method (BPM).14 The application of different techniques based 
on the above methods, such as semivectorial E-field FDM,12 semivectorial H-field 
FDM,25 and Rayleigh quotient solution,26 has been studied and reported. These meth-
ods are applicable to arbitrarily shaped optical waveguides. In FEM and FDM, par-
tial differential equations are discretized and then transformed to matrix equations. 
The calculations of mode indices and optical field distributions are then equivalent to 
obtaining eigenvalues and eigenfunctions of the coefficient matrices.

In this chapter, we first treat the 3D optical waveguide from an analytical point of 
view with the representation of a two distribution of the refractive index profile by 

Optical
waveguide

region

Semiconductor
chip

Electrodes

FIGURE 5.1 Laser structure with optical waveguide as the gain and guided medium and 
electrodes placed at its two sides.
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two effective planar profiles. The propagation and mode guiding conditions obtained 
for these planar waveguides are then combined for the 3D waveguide.

Sections 5.2 and 5.3 describe the analytical estimation of a guided mode using 
Marcatilli’s method and the effective index method. Section 5.4 then outlines the 
numerical formulation of the nonuniform finite difference scheme. Both quasi-TE- 
and quasi-TM-polarized modes are addressed. We also assess the accuracy of the 
numerical result of this scheme by computing the effective refractive index of rib and 
slab dielectric waveguides. The effect of grid spacing is also investigated. The effec-
tiveness of the variable grid spacing in dealing with a waveguide mode near the cut-
off region is also given. Sections 5.4 and 5.5 then give the treatment of the 3D optical 
waveguides by the FDM for uniform index regions, the rib waveguide, diffused index 
profiles, and diffused optical channel waveguides. Section 5.4 describes the model-
ing of a 3D optical waveguide with a graded index profile such as the Ti:LiNbO3 
channel waveguides. The effects of various waveguide fabrication parameters, such 
as the diffusion time, diffusion temperature, and thickness and width of the titanium 
strips, are studied. The accuracy of the numerical model is assessed by comparing 
our simulations with experimental and simulation results that are reported in litera-
ture. Section 5.5 describes the modeling of rib optical waveguides using the same 
finite difference method.

5.2 MARCATILLI’S METHOD

The cross section of typical 3D waveguides is shown in Figure 5.2, including raised 
strip or channel waveguide, strip loaded, rib or ridge, and embedded structures with 
a substrate and an overlay region.

Usually the raised channel waveguide is formed by depositing a thin-film layer, 
e.g., by molecular chemical vapor deposition (MOCVD) or by sputtering; then if we 
remove the film material in the outer regions by some means such as dry reactive 
etching, while keeping the film layer in the central portion intact, we have the raised 
strip or channel waveguides. The ridge or rib waveguides are similar to the raised 
strip waveguides except that the film layer on the two sides is partially removed, 
as shown in Figure 5.2(b). If we place a dielectric strip on the top of the film layer, 
as shown schematically in Figure 5.2(c), we have the strip-loaded waveguides. By 
embedding a high-index bar in the substrate region, we have the buried or embedded 
strip waveguides shown in Figure 5.2(d). Channel, ridge, strip-loaded, and buried 
strip waveguides are 3D waveguides with rectangular boundaries. Circular and ellip-
tical fibers, 3D waveguides with curved boundaries, are discussed in Chapters 4 and 
5. The refractive index of the 3D waveguide can vary with respect to the distance 
of depth. In this case we have a graded index channel waveguide, such as diffused 
channel optical waveguides formed by diffusion of impurity into LiNbO3 substrate 
at a temperature around 1000°C.

In this section, we analyze the modes that are guided by 3D waveguides with 
rectangular geometries using mainly Marcatilli’s method and the effective index 
method. The chapter consists of five sections. Since fields of 3D waveguides are 
complicated and difficult to analyze, we begin with a qualitative description.
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5.2.1 Field and mOdes Guided in rectanGular OPtical waveGuides

5.2.1.1 Mode Fields of Hx Modes
In 2D waveguides, one of the dimensions transverse to the direction of propagation 
is very large in comparison to the operating wavelength. This is the y-direction in 
Figure 5.1. The waveguide width in this direction is treated as infinitely large. As 
a result, fields guided by 2D dielectric waveguides can be classified as transverse 
electric (TE) or transverse magnetic (TM) modes, as discussed in Chapter 3. For 
TE modes, the longitudinal electric field component, Ez, is zero, and all other field 
components can be expressed in terms of Hz. For TM modes, Hz vanishes and all 
other field components can be expressed in terms of Ez. In 3D optical waveguides, 
the waveguide width and height are comparable to the operating wavelength. Neither 
the width nor height can be treated as infinitely large. Thus, neither Ez, Hz vanishes, 
except for some special cases. As a result, modes guided by 3D optical waveguides 
are neither TE nor TM modes, except for the special cases. In general, they are 
hybrid modes. A complicated scheme is needed to designate the hybrid modes. Since 
all field components are present, the analysis for hybrid modes is very complicated. 
Intensive numerical computations are often required.27

In many dielectric waveguide structures, the index difference is small. As a result, 
one of the transverse electric field components is much stronger than the other trans-
verse electric field component. Goell has suggested a physically intuitive scheme to 
describe hybrid modes.28 In Goell’s scheme, a hybrid mode is labeled by the direc-
tion and distribution of the strong transverse electric field component. If the domi-
nant electric field component is in the x- (or y-) direction, and if the electric field 
distribution has p − 1 nulls in the x-direction and q − 1 nulls in the y-direction, then 
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FIGURE 5.2 Channel 3D optical waveguides: (a) raised strip or channel, (b) ridge or rib, (c) 
strip loaded, and (d) embedded channel.
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the hybrid mode is identified as Ex,pq (or Ey,pq) modes. The superscript denotes the 
direction of the dominant transverse electric.

Now consider a weakly guiding rectangular optical waveguide with a core of 
index n1 and surrounded with lower indices nj with j = 2, 3, 4, and 5. The waveguide 
cross section is shown in Figure 5.2.

The rectangular waveguide can be considered to be equivalent to two slab wave-
guides, one extended in the x-direction and one in the y-direction. That means that 
the field is confined as a mode in the y-direction and the other in the x-direction. This 
is normally called the hybrid mode. Thus we can write the field component Hx in the 
five regions as portioned in Figure 5.2 as follows:
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 (5.1)

where Cj, ϕxj, ϕyj are the constants to be determined using the boundary conditions, 
κxj, κyj and are the propagation constants effective in the x and y transverse directions, 
respectively. For each region the propagation constants in the x-, y-, and z-directions, 
κxj, κyj, β, must satisfy

 κ + κ + β = =k n j; 1,2, 3, 4,5xj yj j
2 2 2 2 2  (5.2)

There are no additional constraints on the transverse propagation constant. In 
fact, the transverse propagation constants in regions 2–5 are imaginary; that is, the 
fields must decay to zero in these regions but in the rectangular core.

When expressed in terms of κxj, κyj, ϕx, ϕy, (5.1) can be simplified to
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5.2.1.2 Boundary Conditions at the Interfaces

5.2.1.2.1 Horizontal Boundary y = ±h/2; |x| < w/2
Along the horizontal boundaries, the tangential components are Ex, Ez, Hx, Hz; the 
x-components are ignored, as their amplitudes are extremely small compared with 
other components. Using Maxwell’s equation we can observe that

• Ez is continuous at the boundary and tangential, implying that

 

∂
∂n
H
y

1
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x
2

• Being tangential to the horizontal lines, Hx must be continuous everywhere 
along the horizontal lines. The tangential derivative ∂Hx/∂c, and therefore 
Hz, must also be continuous on the horizontal lines. In other words, if Hx is 
continuous at the horizontal lines, so is Hz.

Thus all the boundary conditions are met if we have continuity of the term
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5.2.1.2.2 Vertical Boundary x = ±w/2; |y| < h/2
Along this boundary we have the tangential components in the y- and z-directions, 
and the normal direction is x. Only the components Ey, Hx are significant, and Ey is 
continuous if Hx is continuous. Applying these conditions for the field components 
at x = ±w/2 we obtain
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The second term of (5.4) can be ignored due to the very small difference in the 
refractive index terms. Thus it can be written as

 − = η ∂ −
∂
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In other words the component Ez is continuous if Hx is continuous there.
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5.2.1.2.3 Transverse Vector κx, κy

The transverse momentum vector κx can now be determined from the boundary 
conditions discussed above. One would seek an oscillating behavior of the waves in 
the waveguide region and exponentially decay to zero in the cladding regions. At y = 
±h/2 the continuity of Hx and
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Combining these equations we obtain the relation
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From (5.2) we can deduce that
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Thus (5.7) becomes
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Or alternatively we have
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where q′, q″, and q are integers. Then eliminating ϕy we can rewrite as
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This is the dispersion relation for the TM modes guided in the channel waveguide, 
and it is also similar to that for a planar waveguide. The two terms on the right-hand 
side (RHS) of (5.11) represent the phase shift, normally called the Goos–Hanchen 
shift for the “rays” penetrating into the cladding of the guided fields. Similar to this 
boundary condition and the dispersion relationship, the dispersion characteristics for 
the transverse vector can be written as
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with p as an integer.

5.2.1.3 Mode Fields of Ey Modes
Similar to the analysis given for the Hx modes, the Ex modes can be found with the 
dispersion relation by using the continuity properties of the field components Hx; 
∂Hy/∂y. We then obtain
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Equations (5.13) and (5.14) specify the dispersion relationship for the TM modes 
with a planar waveguide thickness of W.

Thus, Marcatilli’s method is modeled for two equivalent planar waveguides in the 
horizontal and vertical directions. It corresponds to the dispersion relations (5.11) 
and (5.12) for TM modes guided by a planar waveguide of thickness W. The domi-
nant electric field of Ex modes is in parallel with the horizontal boundaries. Thus we 
use the dispersion equation of TE modes guided by waveguide H to determine κy. 
The dominant electric field component of Ex modes is perpendicular to the vertical 
boundaries of waveguide W. Therefore we use the dispersion for TM modes guided 
by the 2D waveguide to evaluate κx. With κx , κy known, the propagation constant can 
be determined from (5.2).

5.2.2 disPersiOn characteristics

As an example, we consider a dielectric bar of index n1 immersed in a medium 
with index n2, as shown in Figure 5.3, with uniform refractive indices in the regions 
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surrounding the channel waveguiding region. To facilitate comparison, we define the 
normalized frequency parameter V and the normalized guide index b, or normalized 
propagation constant in terms of n1, n2, h:
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The normalized effective refractive index can be evaluated as a function of 
the normalized frequency parameter V to give the dispersion curves as shown in 
Figure 5.4, in which the curves obtained from the finite element method and the 
Marcatilli methods are also contrasted with agreement.

A numerical evaluation for silica doped with a GeO2 waveguide and cladding 
region is pure silica. The relative refractive index of the core and the pure silica clad-
ding is 0.3 or 0.5%; then using the single-mode operation given in Figure 5.4, we can 
select V = 1, and using (5.15), the cross section of the rectangular waveguide is 3 × 
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FIGURE 5.3 Model used to analyze Ey modes of a (a) rectangular waveguide, (b) waveguide 
H, and (c) waveguide W.
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3 μm2 for 0.5% relative refractive index, and for 0.3% the dimension is 6 × 6 micron2. 
The refractive index of pure silica is 1.448 for an operating wavelength of 1550 nm.

5.3 EFFECTIVE INDEX METHOD

5.3.1 General cOnsideratiOns

Similar to the Marcatilli method discussed in the previous section, the effective 
index method is also an approximate method for analyzing rectangular waveguides. 
In the Marcatilli method, a 3D waveguide (see Figure 5.1) is replaced by two 2D 
waveguides: waveguides H and W depicted in Figure 5.3. The two 2D waveguides 
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FIGURE 5.4 An embedded channel optical waveguide: (a) waveguide structure and its rep-
resentation using (b) the effective index method and (c) the Marcatilli method.



163Three-Dimensional Optical Waveguides

are mutually independent in that the waveguide parameters of the two 2D wave-
guides come directly from the original 3D waveguide.

To provide a theoretical basis for the effective index method, in lieu of the original 
3D waveguide, we consider a pseudowaveguide that can be resolved into aforemen-
tioned waveguides I and II, or I′ and II′. The pseudowaveguide is chosen such that 
waveguides I and II, or I′ and II′, can be easily identified and analyzed. The disper-
sion of waveguide II, or II′, is used as an approximation for β of the original 3D 
waveguide. The structures of these waveguides are shown in Figure 5.5.

Consider Ey modes guided by a 3D waveguide shown in Figure 5.5(a). As dis-
cussed above, all field components of Ey modes can be expressed in terms of Hx, 
which can be written as hx(x, y)e–jβz, with hx(x, y) the field distribution in the trans-
verse plane and n(x, y) = nj; j = 1 – 5. The wave equation in the transverse plane can 
be obtained as

 ∂
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Instead of considering the 3D waveguide problem, we can modify the refractive 
index distribution so that a pseudowaveguide structure can be obtained as shown in 
Figure 5.5. The refractive index of the pseudowaveguide can be written as

 = +n n x n y( ) ( )ps x y
2 2 2  (5.17)
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Then one can determine n(x, y) by the common method of separation of vari-
ables; that is, the distribution hx(x, y) can be represented as the product of two 
distribution functions X(x) and Y(y), and the wave equation in the transverse plane 
can be written as
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This equation is physically possible when the two sides equate to nil. So we have
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These two equations can be solved subject to the boundary conditions to derive 
the propagation constant along the z-direction of the waveguide. Thus, the complete 
solution is the product of the two functions X(x) and Y(y) and the phase term repre-
senting the propagation of the field along the z-direction.

5.3.2 PseudOwaveGuide

Consider the waveguide structure shown in Figure 5.5. The refractive index distribu-
tion of the channel waveguide core and cladding is shown and given as
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This distribution can be considered the superposition of two distributed 
functions:
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Then, similar to the method obtained in Marcatilli’s method, the dispersion relation 
can be obtained as
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Using these dispersion relations the dispersion characteristics of an embedded 
channel waveguide with cladding as shown in Figure 5.3 can be obtained very close 
to that given in Figure 5.6 as the dashed curves.

5.4  FINITE DIFFERENCE NUMERICAL 
TECHNIQUES FOR 3D WAVEGUIDES

The main purpose of selecting the FDM to study the quasi-TE- and quasi-TM-polar-
ized waveguide modes is its simplicity and plausible accuracy. We have employed 
semivectorial analysis,12,23,25 which automatically takes full account of the discon-
tinuities in the normal electric field components across any arbitrary distribution 
of internal dielectric interfaces. The semivectorial FDM, despite its simplicity and 
being free from troublesome spurious solutions, has two major disadvantages of 
being computationally intensive and requiring a large amount of memory. Hence, 
it is necessary to introduce the discretization scheme on the nonuniform mesh, in 
which mesh intervals can be changed arbitrarily depending on waveguide structures. 
For this reason, we have modeled the waveguide mode with the finite difference 
method, which employs a nonuniform discretization scheme.9,23 Such a discretization 
scheme enables us to increase the size of the problem space so that the field compo-
nent at the boundary can be assumed to have vanished. The grid spacing increases 
monotonically with increasing distance from the guiding region. The grid lines 
can also be aligned with the boundaries of the step index changes in conventional 
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structures, such as rib, ridge, and strip-loaded waveguides, as well as quantum well 
structures. Furthermore, by judiciously placing the grid lines and corresponding cell 
structure efficiently, we can reduce the required matrix size and hence redundant 
computer calculations, while preserving the accuracy of the calculations. The non-
uniform discretization scheme also enables us to handle the waveguide mode near 
the cutoff region with a relative simple boundary condition. The eigenmodes of the 
Helmholz equation are solved by the application of the shifted inverse power itera-
tion method. This method warrants both the mode size and its relevant propagation 
constant, which are important parameters to the design of an optical waveguide.

Apart from being able to access the accuracy of the final product of our work, 
which is the Semivectorial Mode Modeling (SVMM) computer program, we also 
present an overview of its application in modeling a Ti:LiNbO3 channel waveguide 
for optical devices such as modulators and switches.

5.4.1  nOnuniFOrm Grid semivectOrial POlarized Finite diFFerence 
methOd FOr OPtical waveGuides with arbitrary index PrOFile

5.4.1.1 Propagation Equation
For harmonic wave propagation in the z-direction along a rib or channel waveguide, 
we consider the following fields:

 = ω − βx y z E E E j t z( , , ) ( , )exp ( )x y z,E  (5.24)

 = ω − βx y z H H H j t z( , , ) ( , )exp ( )x y z,H  (5.25)

 D = ε(x, y)E, B = μH (5.26)

where the dielectric permittivity ε(x, y) is piecewise constant and the magnetic per-
meability μ is completely constant throughout the solution domain. The components 
of the electric and magnetic fields in Equation (5.1) are functions of x and y only. 
Then, applying the Maxwell equations in the magnetic and charge-free media and 
taking appropriate algebra, we obtain the wave equation

 ∇ × ∇ × = ∇ ∇ ⋅ − ∇ = ω εµ = k( ) ( ) n2 2 2 2E E E E E  (5.27)

in which k = ω(ε0μ0)1/2 = 2π/λ and ε = ε0n2(x, y) with λ being the free-space wave-
length. With the divergence of ∇	· D = 0 and ∇ logeε = ∇ε/ε we get

 ∇ ⋅ = − ⋅∇ ε = − ⋅∇n nlog /e
2E E E  (5.28)

This may be substituted into (5.4) to yield the wave equation
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 ∇2E + k2E + ∇(E · ∇n2/n) = 0 (5.29)

As n(x, y) is a piecewise constant, ∇n2/n = 0, and it should be noted that ∇n2/n 
is undefined at internal dielectric interfaces where n(x, y) is discontinuous. With 
the assumption that the fields are polarized either perpendicular (quasi-TM) to or 
parallel (quasi-TE) to the crystal surface, and that the major field components of the 
modes are perpendicular to the direction of the propagation, Equation (5.7) can be 
reduced to

 ∇ + = βk n( )t
2 2 2 2E E  (5.30)

in which ∇ = ∂ ∂ + ∂ ∂x y/ /T
2 2 2 2 2, the transverse Laplacian, and β is the propagation 

constant. This is essentially the Helmholz wave equation.

5.4.1.2 Formulation of Nonuniform Grid Difference Equation
Figure 5.7(a) shows the grid lines used in the finite difference method formulation. 
The grid lines are chosen in such a way that denser grids are allocated around the 
guiding region, while coarser grids are assigned to regions farther away from the 
waveguide. Boundaries of abrupt index changes are straddled by the grid lines wher-
ever necessary. Figure 5.7(b) shows the magnified view of a portion of the grid for a 
more detailed illustration. Each cell point is located in the center of each rectangular 
cell; hi and hj are the horizontal and vertical grid sizes. The refractive index within 
each cell is assumed to be uniform. ni,j and ni+1, j represent the values of the refrac-
tive index of each small cell as an approximation and are taken from the continuous 
refractive index profile n(x, y). Nonuniform spacing of the grid lines provides some 
flexibility in setting up the nonuniform grid FDM. The nonuniform discretization 
with increasing spacing away from the guiding region permits sufficient extension of 
the boundary. This enables us to assume a Dirichlet boundary condition (metal box) 
where all fields have vanished.
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(i)(i – 1) (i + 1)
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ni, j+1

hj

hj+1

hi hi+1

a
d b

e
c

FIGURE 5.7 (a) Nonuniform discretized grid for FDM scheme. (b) A magnified portion of 
the grid lattice and cell structure of point i, j.
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5.4.1.2.1 Quasi-TE Mode
For quasi-TE-polarized mode, Ey is assumed to be zero. Ex is continuous across the 
horizontal interfaces but discontinuous across vertical interfaces. Therefore, the 
quasi-TE modes are the eigensolutions of the equation

 ∇ + = βE k n E Et x x x
2 2 2 2  (5.31)

The discontinuity across the vertical interface will need to be taken into account 
when formulating the difference equation.

Figure 5.8 illustrates the quasi-TE field discontinuity at the boundary between 
cells (i, j) and (i + 1, j). Consider the points a, d, and b, with d being at the boundary 
of the dielectric interface. The horizontal axis is the x-axis, while the vertical axis 
is the electric field amplitude of the respective position of the cell. Assume that the 
x-axis is pointing toward the east. So, EE and EW are the field amplitudes just to the 
east and the west of the boundary between the cells (i, j) and (i +1, j). Ei jv,  is the vir-
tual field in cell (i, j), which is the extension of the actual field Ei+1,j. In other words, 
Ei jv,  is the field seen by the cell (i + 1, j). Similarly, +Ei j

v
1,  is the extension of Ei,j. nE 

and nW are the refractive indices just to the east and west of the boundary. Since we 
consider a slowly varying index distribution, we assume that nE and nW are approxi-
mately equal to ni,j and ni+1,j, respectively. The boundary conditions between the cells 
(i, j) and (i + 1, j) are given as follows:

 = ⇒ = +n E n E n E n EE E W W i j E i j W
2 2

,
2

1,
2  (5.32)

Ei,j

a bd

EE

EW

Ev
i,j

Ev
i+1,j

Ei+1,j

E

x

hi hi+1

EW

N

S

FIGURE 5.8 Quasi-TE electric field discontinuity at the boundary between cells (i, j) and 
(i + 1, j). Solid lines are the actual field profiles along the x-axis, while +E E and i j

v
i j
v

, 1,  are 
virtual fields.
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 ∂
∂

= ∂
∂

= +

x
E

x
E pE W

 (5.33)

where p+ represents the field gradient at the boundary between the cells. We can then 
use the approximate relationship between + +E E E E, , ,i j i j i j

v
i j
v

, 1, , 1, , and obtain the fol-
lowing equations for EE and EW:

≈ + ⋅ ≈ − ⋅ ≈ + ⋅+ +
+ +

+
+

+E E h p E E h p E E h p( / 2) ; ( / 2) ; ( / 2)i j E i i j
v

E i
v

W i1, 1 , 1i j1,
 (5.34)

and

 ≈ − ⋅ +E E h p( / 2)v
W ii j,

 (5.35)

where hi and hi+1 are the horizontal lengths of cells (i, j) and (i + 1, j). The four 
equations above are in fact redundant. Therefore we need to consider only either 

+E E or i j
v

i j
v

, 1, , and we choose +Ei j
v

1, . The following shows the algebraic manipulation 
(5.11):

 
= − + = + −
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+ + + +
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h E E h E E

2( ) / ( ); ( );

( ) ( )

i j
v

i j i i i j
v

i j W E

i W i j i i j E

1, , 1 1, 1,

1 , 1,

 (5.36)

and then

 =
+ + −

++
+ + + + +
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E n h h E h n n E
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1

 (5.37)

With a similar procedure between cells (i, j) and (i + 1, j), we can obtain
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 (5.38)

where p– is now the field gradient at the boundary between the cells (i−1, j) and 
(i, j). Note that the quasi-TE electric field is continuous in terms of the y-direction 
even if there are discontinuities in the refractive index. Therefore =+ +E Ei j

v
i j, 1 , 1, 

=− −E Ei j
v

i j, 1 , 1.
The second derivative can be derived as
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∂
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 (5.39a)
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Thence we get the discrete wave equation as
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Substituting these into the Helmholtz equation,

 + − + + = β− − + + − − + +C E C E C E C E C E Ei j i j i j i j i j i j i j i j i j i j i j1, 1, 1, 1, , , , 1 , 1 , 1 , 1
2

,
 (5.41)

where
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 (5.42)

The above equations are essentially eigenvalue equations of

 = βTE TE TE TE
2C E E  (5.43)

in which CTE is a nonsymmetric band matrix that contains the coefficient of the above 
equations, βTE

2  is the TE propagation eigenvalue, and ETE is the corresponding nor-
malized eigenvector representing the field profile Ex(x, y).

5.4.1.2.2 Quasi-TM Mode

The quasi-TM mode can be formulated in a similar fashion. The only difference 
is that for the quasi-TM-polarized mode, Ex is assumed to be zero and Ey is con-
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tinuous across the vertical interfaces but discontinuous across horizontal interfaces. 
Essentially, the quasi-TM modes are the eigensolutions of the equation

 ∇ + = βE k n E Et y y y
2 2 2 2  (5.44)

The detailed derivation of the equation can be found in the literature.23 The fol-
lowing are the derivatives and their relevant difference with reference to Figure 5.9 
for the discretized fields:
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Substituting these into the Helmholtz equation we get

 + − + + = β− − + + − − + +C E C E C E C E C E Ei j i j i j i j i j i j i j i j i j i j i j1, 1, 1, 1, , , , 1 , 1 , 1 , 1
2

,
 (5.46)
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(5.47)

5.4.1.2.3 Eigenvalue Matrix
To solve the difference equation, we need first to discretize the problem space. We 
assume that the space is sliced into NX pieces along the x-direction and NY pieces 
along the y-direction. This will give us a total of N (= NX × NY) grid points. The refrac-
tive index of each cell is then allocated according to the relevant index distribution.

When the finite difference wave equation is evaluated at a grid point, say Ei,j, it 
will yield a 5-point linear equation in terms of the E-field of the immediate neigh-
bors, namely, Ei–1,j, Ei+1,j, Ei,j–1, Ei,j+1, each with its relevant coefficient as shown in 
Equations (5.45) and (5.46). For a cross-sectional area of a waveguide with N such 
grid points, we would end up with N linearly dependent algebraic equations.
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We will now scan through the grid points row after row, at the same time relabel-
ing the subscripts of E from 1 to N. Consider the original grid point (i, j). Assuming 
that the new sequence number is k, then (5.46) can be rewritten as

 + + + + = β− + − +p E l E r E t E b E Ek k k k k k k k Nx k k Nx k1 1
2  (5.48)

where pk, lk, rk, tk, bk, are the coefficients Ci,j, Ci–1,j, Ci+1,j, Ci,j–1, Ci,j+1, respectively. We 
can then collect terms and write the equations in a matrix form.

For a 3 × 3 grid of the refractive index profile, we can write the matrix equations 
as an eigenvalue equation of the form [C] · [E] = β2[E], in which [C] is a nonsymmet-
ric band matrix that contains the coefficient of the above equations, β2 is the propa-
gation eigenvalue, and [E] is the corresponding normalized eigenvector representing 
the field profile E(i, j). In the next section we will discuss the approach that we adopt 
in solving the eigenvalue problem given as
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  (5.49)

There are a few major features of the matrix equation above: (1) This type of 
matrix is often referred to as tridiagonal matrix with fringes. The order of the matrix 
is N × N, the square of the total number of grid points. Most of the terms in the matrix 
are zeros. (2) The matrix is nonsymmetrical relative to the diagonal term. (3) The 
central three diagonal terms always exist and are always nonzero. (4) The coefficients 
p, l, r, t, b make up the five bands of the matrix, with p being the main diagonal, l and 
r the subdiagonals, and t and b the superdiagonal. (5) The subdiagonal terms are just 
one term away from the main diagonal, while the superdiagonal terms are NX terms 
away from the main diagonal. The distance between the main diagonal and the last 
nonzero superdiagonal band is commonly referred to as the half-bandwidth of a band 
matrix. (6) Terms such as l1, rN, t1 – tNX, and bN–Nx – bN are missing. This is so because 
the evaluations of these terms require the E-values outside the boundary area, and 
these values have been assumed to be zero. Therefore, they need not be represented.

5.4.1.3 Inverse Power Method
The properties and characteristics of the eigenvalue problem are well known and 
have been addressed rather extensively in many textbooks.29,30 This section provides 
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only a brief overview to highlight the more specific points related to our particular 
approach.

An N × N matrix A is said to have an eigenvector x and a corresponding eigen-
value λ if the following condition is satisfied:

 A · x = λx (5.50)

There can be more than one distinct eigenvalue and eigenvector corresponding 
to a given matrix. The zero vector is not considered to be an eigenvector at all. The 
above equation holds only if

 det|A – λI| = 0 (5.51)

which is known as the characteristic equation of the matrix. If this is expanded, it 
becomes an Nth degree polynomial in λ whose roots are the eigenvalues. This is 
an indication that there are always N, though not necessarily distinct, eigenvalues. 
Equal eigenvalues coming from multiple roots are called degenerate. Root searching 
in the characteristic equation, however, is usually a very poor computational method 
for finding eigenvalues. There are many more efficient algorithms available in locat-
ing the eigenvalues and their corresponding vectors.

Unfortunately, there is no universal method for solving all matrix types. For cer-
tain problems, either the eigenvalues or eigenvectors are needed, while others require 
both. Furthermore, some problems may only need a small number of solutions out 
of the total N solutions available, while others need all. To complicate the matter 
even further, the eigensolutions could be complex, and some matrices can be so 
ill-behaved that round-off errors in computing can lead to a nonconvergence of the 
solution. Therefore, it is of vital importance to be able to choose the right approach 
in solving an eigenproblem. Choosing an algorithm often involves the classification 
of matrices into types such as symmetry, nonsymmetry, tridiagonal, banded, positive 
definite, definite, Heisenberg, sparse, and random. The matrix in our problem is a 
nonsymmetric banded matrix with bandwidth equal to twice the number of columns 
in the grid profile. It has great sparsity, for most of the elements are zeros. Also, we 
need only a few eigenvalues that correspond to the guided modes of the waveguide. 
In other words, there are only a limited number of guided modes—hence the number 
of eigenvalue λ. The number of eigensolutions required is small compared with the 
size of the matrix (often in the order of tens of thousands). All these different factors 
have led to the choice of the approach called the inverse iteration method.29,30

The basic idea behind the inverse iteration method is quite simple. Let y be the 
solution of the linear system

 (A – τI) · y = b (5.52)

where b is a random vector and τ is close to some eigenvalue λ of A. Then the solu-
tion y will be close to the eigenvector corresponding to λ. The procedure can be 
iterated: replace b by y and solve for a new y, which will be even closer to the true 
eigenvector. We can see why this works by expanding both y and b as linear combi-
nations of the eigenvectors xj of A:
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 (5.53)

Then we have
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If τ is close to λn, say, then provided βn is not accidentally too small, y will be 
approximately xn, up to a normalization. Moreover, the iteration of this procedure 
gives another power of λj – τ in the denominator of (5.55). Thus the convergence is 
rapid for well-separated eigenvalues.

Suppose at the ith stage of iteration we are solving the equation

 (A – λiI) · y = xi (5.56)

where xi and λi are our current guesses for some eigenvector and eigenvalue of interest 
(we shall see below how to update λi). The exact eigenvector and eigenvalue satisfy

 A · x = λx → (A – λiI) · x = (λ – λi)x (5.57)

Since y of (5.57) is an improved approximation to x, we normalize it and set

 =+x
y
yi 1  (5.58)

We get an improved estimate of the eigenvalue by substituting our improved 
guess y in (5.57). By (5.58), the left-hand side is xi, and so calling λ our new value 
λi+1, we find

 
λ = λ +

⋅+
x
x yi i

i
1

2

Although the formulae of the inverse iteration method seem to be rather straight-
forward, the actual implementation can be quite tricky. Most of the computational load 
occurs in solving the linear system of equations. It would be advantageous if we could 
solve (5.32) quickly. Remember that the size of the matrix in our case is dependent 
upon the total grid size of the problem space. For a typical grid size of 100 by 100, for 
example, the coefficient matrix would be of size 10,000 by 10,000. The core memory 
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required in a digital computer to store the entire matrix would be phenomenal. A linear 
system solver such as routines that are available in LINPACK employs a common LU 
factorization (Gaussian elimination) plus a backward substitution combination algo-
rithm, much like the manual way of solving linear equations. There is extensive cover-
age on this topic in most numerical textbooks.30 We will therefore not discuss it further 
except to mention that the LU factorization needs only to be done before the first itera-
tion. When the iteration starts, we already have the steps involved in elimination stored 
away in an array, and only backward substitution is necessary. This approach, even with 
a storage-optimized mode in the LINPACK routine, still has a storage requirement of 
about 3 × (bandwidth of matrix × matrix size). Even though this would mean a consider-
able reduction in memory storage, it still amounts to a rather substantial memory size.

Also, the preconditioner that employs the incomplete Cholesky conjugate gradi-
ent method and the Orthomin accelerator31 has been found to be most stable and 
converges most quickly for our matrix. On average, the combination of the precondi-
tioner and accelerator enables us to complete a simulation of a typical waveguide in 
3 to 5 min on a PC Pentium 4. The same simulation that incorporates the LINPACK 
LU decomposition routine would take 25 min on the same computer with a substan-
tially greater amount of memory. Since the zero elements are no longer involved 
in the calculations, it is understandable that the Non-Symmetric Preconditioned 
Conjugate Gradient (NSPCG) iterative method will perform more efficiently.

By incorporating the NSPCG numerical solver and the inverse iterative method, 
we have successfully implemented a mode modeling program, SVMM, capable of 
modeling a channel waveguide of an arbitrary index profile. The inverse iterative 
method also enables us to model the higher-order modes that are supported by the 
waveguide structure.

5.4.2 ti:linbO3-diFFused channel waveGuide

The modeling of a Ti:LiNbO3 channel waveguide, a graded index waveguide, plays a 
significant role in the design of the optical modulators and switches. Efficient design 
of such optical devices requires good knowledge of the modal characteristics of the 
relevant channel waveguide. In Chiang,7 we outlined the general overview of the 
waveguide fabrication process. In this section, we will attempt to employ our SVMM 
program to simulate the waveguide mode of the Ti:LiNbO3 waveguide and compare 
the results with published experimental results. Our objective, apart from assessing 
the usefulness of SVMM, is to understand the key features in the fabrication of a 
Ti:LiNbO3 waveguide for a Mach–Zehnder optical modulator.

To achieve our purpose, a good knowledge of the refractive index profile of the 
diffused waveguide is required. Over the past decades, much work has been done in 
fabricating a low-loss, minimum mode size, Ti-diffused channel waveguide.6,32 From 
these references, we can gather our knowledge of the diffusion process involved 
in the fabrication of a LiNbO3 waveguide and its relevant diffusion profile. Based 
on this knowledge, we can then profess to model the modal characteristics of the 
waveguide by SVMM. The following section shows how SVMM can be used for the 
design of practical waveguides.
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5.4.2.1 Refractive Index Profile of Ti:LiNbO3 Waveguide
When Ti metal is diffused, the Ti ion distribution spreads more widely than the initial 
strip width. The profiles can be described by the sum of an error function, while the 
Ti ion distributions perpendicular to the substrate surface can be approximated by a 
Gaussian function.1,6,33 This of course is true only if the diffusion time is long enough 
to diffuse all the Ti metal into the substrate. We consider this case as having the finite 
diffusant source. However, if the total diffusion time is shorter than needed to exhaust 
the Ti source, the lateral diffusion profile would take up the sum of the complementary 
error function, while the depth index profile is given by the complementary function.34 
This case is considered to have an infinite diffusant source.23 In our study, we would 
assume that there is sufficient time for the source to be fully diffused because in most 
practical waveguides, it is undesirable to have Ti residue deposited on the surface of 
the waveguide as this will increase the propagation loss.6 This increase in propagation 
loss is a result of stronger interaction with the LiNbO3

 surface (and thus an increased 
scattering loss) as the modes become more weakly guided.

In general, the refractive index distribution of a weakly guiding channel wave-
guide is

 = + ∆ = + ∆ ⋅ ⋅n x y n n x y n n f x g y( , ) ( , ) ( ) ( )b b 0  (5.59)

where nb is the refractive index of the bulk (substrate) and Δn(x, y) is the variation of 
the refractive index in the guiding region. Δn(x, y) in our diffusion model is essen-
tially a separable function where f(x) and g(y) are the functions that describe the 
lateral and perpendicular diffusion profiles, while Δn0 is known as the surface index 
change after diffusion. The surface index change is defined as the change of refrac-
tive index on the substrate just below the center of the Ti strip. In other words, it is 
the refractive index when both f(x) and g(y) assume the value of unity.

The variation of the refractive index can be modeled as below23
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and

 ∆ =
π

τ 





n dn
dc d

erf w
d

2
2y x

0  (5.63)

with

 = =d D t d D t2 , 2x x y y
 (5.64)

In the above expressions, t is the total diffusion time, c is the Ti concentration, dx 
and dy are the diffusion lengths, and Dx and Dy are the diffusion constants in each 
direction. τ and w are the initial Ti strip thickness. dn/dc is the change of index per 
unit change in Ti metal concentration. The change of surface index would approach 
the value where

 
∆ =

π
τn dn

dc d
2

y
0

Any increase in the surface index will have to come from a thicker Ti strip, or a 
decrease in diffusion depth, dy, which involves an increase or decrease in diffusion 
temperature. According to the work of Fukuma and Noda1 the diffusion lengths are 
very close to one another in both lateral and depth directions (isotropic diffusion) at 
1025°C for z-cut crystal. An increase in temperature greater than that would result in 
a higher diffusion constant in the depth direction and a lower value for lateral diffu-
sion and vice versa for diffusion temperature lower than 1025°C. The diffusion length 
can also be changed by monitoring the diffusion time. Essentially, a longer diffusion 
time means a lower surface index change, as most of the Ti source would be diffused 
deeper into the substrate. It is expected that a higher change of surface index since 
not all the Ti metal is completely diffused. The following graphs (see Figures 5.9, 
5.10, and 5.11) show the variation of the diffusion profile as we vary both the initial 
titanium width and the diffusion time. The fabrication condition and parameters are 
assumed to have T = 1025°C, τ = 1100 Å, dn/dc = 0.625, and dx = dy = 2 μm.

We can see in these figures that by controlling the width of the initial Ti strip 
width, we can vary the change of the refractive index and the relative size of the 
channel waveguide, thus enabling us to control the number of modes that can be 
supported by the waveguide.

In general, a narrow initial Ti width would give a near cutoff mode, for the refrac-
tive index change would be too small. The optical mode would be weakly confined, 
thus giving a larger mode size. As we increase the Ti width, the refractive index 
change would be higher and the waveguide mode would be better confined and have 
a smaller mode size. However, the mode size would increase with a further increase 
in Ti width due to a larger physical size of the waveguide. The change of the sur-
face index can also be controlled by varying the thickness of the Ti strip. As (5.53) 
implies, the surface index change is proportional to the strip thickness, τ. The Ti 
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thick film can be diffused at 1000–1050°C for 6 h at around 500–800 Å.6 If the Ti 
strip is too thin, the refractive index change approaches cutoff conditions. All these 
characteristics are illustrated in the next section when we model the waveguide mode 
with SVMM.

5.4.2.2 Numerical Simulation and Discussion
With the above knowledge of the diffusion profile, we are now in a good position to 
feed these models into the SVMM program to investigate the modal characteristics 
of the Ti:LiNbO3 waveguide. In this section, we attempt to simulate the experimen-
tal work reported in Suchoski and Ramaswamy6 in fabricating a minimum mode 
size, low-loss Ti:LiNbO3 channel waveguide. We will restrict our analysis to the 
z-cut by propagating material, since this would be the substrate cut for the optical 
modulator. For this particular substrate cut, the relevant optical field would be TM 
polarized, which correspond to the polarization along the extraordinary index axis 
of the crystal. Hence the change of refractive index concern would be the extraor-
dinary index, ne.

In Suchoski and Ramaswamy’s work, the TM-polarized mode width and depth, 
which are defined as 1/e intensity full width and full depth, are measured for 
Ti:LiNbO3 waveguides fabricated under the condition where T = 1025°C for 6 h. 
The sample waveguides have Ti thicknesses ranging from 500 to 1100 Å and Ti strip 
widths ranging from 2.5 to 10 μm.

The laser source wavelength is assumed to be at 1.3μm. The following graph, 
Figure 5.12, is extracted from Suchoski and Ramaswamy6 and Fukuma and Noda.29 
In view of these experimental results, we can see that the mode size increases as 
the Ti strip width is decreased from 4 to 2.5 μm. This increase is more pronounced, 
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especially with the thinner Ti films, because the waveguides become closer to cut-
off, as thinner Ti films result in a lower value of Δn. The TM mode depth and width 
decrease as the Ti thickness is increased from 500 to 800 å. However, for 4 μm strip 
widths, the mode size does not decrease further for Ti films thicker than 800 Å. 
This is an indication that it is not possible to diffuse any more Ti into the substrate 
for Ti thicknesses of more than 800 Å for a 6 h diffusion time. We now proceed to 
simulate the above experiment with our program. We will focus on Ti thicknesses 
that range between 700 and 800 Å because it is the thickness that gives the minimum 
mode sizes, which is ideal for the design of an optical modulator for maximizing the 
overlap integral between guided optical modes and an applied modulating field. To 
achieve that, we must first work out the suitable diffusion parameter to be used in our 
program. Various values of dn/dc have been reported.1 Measurements reported by 
Minakata et al.35 show the change of extraordinary index ne per Ti concentration as

 
=dn

dc
0.625e

The nominal values for diffusion constants Dx and Dy are from the work of 
Fukuma and Noda,1 and were both measured to be 1.2 × 10–4 μm2/s at the nominated 
temperature, which is 1025°C. This makes both diffusion lengths of dx and dy the 
value of 2 μm.

With these nominal parameters, we simulate the waveguide with a Ti thickness, 
τ, of 700 Å. Figure 5.12 shows the result of our simulation compared to the experi-
mental one, and some illustrations of the TM mode profile.

As it turns out, the simulated results appear to have overestimated both Γx and 
Γy. Such a discrepancy in anticipated fabrication of the diffused waveguide is sub-
jected to many changes. Various reports1,6,32,34–37 have shown that even though the 
nominal diffusion condition can be very much the same, the measured diffusion 
parameters can still differ greatly from one another due to possible differences in 
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stoichiometry between different crystals and measurements techniques. Therefore, 
there would certainly be some uncertainties that lie in fabrication parameters, and 
also in the application of the refractive index model described in Ramaswamy et al.3 
Such uncertainty can be compensated by adjusting the values of dn/dc and also Dx 
and Dy. We find that by adjusting the following diffusion parameters, where

 dn/dc = 0.8, Dx = 1.4 × 10–4 μm/s2, and Dy = 1.1 × 10–4 μm/s2

our simulation results correspond well within design limit with the experimental 
work done by Suchoski for the case where the waveguide is well guided. The result 
is shown in Figure 5.12.

Having found the suitable diffusion parameter, the simulation of another experi-
mental result from Suchoski and Ramaswamy6 is conducted for τ = 750 Å, and the 
Ti strip width, w, ranges from 2.5 to 10 μm. Figure 5.18 depicts the comparison of 
both simulated and experiment results of the mode size variation with respect to the 
width of the Ti strip.

Figures 5.13, 5.14, and 5.15 show the simulated field distributions of the intensity and 
contour profiles, along the x-direction respectively, of the fundamental guided mode.
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The results in Figure 5.18 show that the mode width, Γx, corresponds well with the 
experimental result, with differences of less than 3%. The mode depth, Γy, however, 
matches only to within 8%. Despite the slight discrepancy, the SVMM’s result still 
shows the qualitative characteristic of the diffused waveguide. We can also observe 
that the modal width, Γx, started at a large value and then decreased with wider Ti 
strip width before reaching higher values. Effectively, the larger initial mode size is 
due to the lower refractive index change resulting from a much narrower Ti width, 
thus causing the optical mode to be less confined. As the Ti strip becomes wider, it 
gives a higher change of refractive index, and hence a better confined optical mode. 
The mode width, however, would increase further as we increase the Ti width simply 
because of the increase in the physical width of the waveguide. At the same time, the 
larger physical width would enable the waveguide to support a higher-order mode.

Figure 5.19 depicts the variation of the normalized mode index b defined as38 b 
= (neff

2 – ns
2)/(2Δn · ns) with respect to the variation of the width of the Ti strip. The 
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waveguide becomes more strongly guided, i.e., has a higher effective index, as the 
Ti width is increased. At the same time, higher-order modes begin to appear as the 
strip width gets significantly larger than 6 μm. Figure 5.19 shows the distribution of 
higher-order modes of a waveguide diffused with a 10 μm Ti strip width.

The modal depth, however, decreases with wider Ti strip width because any wider 
Ti strip width does not affect the diffusion depth, but lateral mode distribution would 
support higher-order modes. The surface index would increase with thicker Ti film, 
thus leading to smaller modal depth. The surface index, however, reaches a maxi-
mum value only as we increase w. Therefore by increasing the Ti strip width to a cer-
tain point, the modal depth would cease to decrease further, as observed by both the 
experimental and simulated results. At this point, lateral diffusion would dominate. 
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It is worth being reminded that the limiting case of increasing width in the Ti width 
is a planar waveguide.

Figure  5.21 shows simulation results with waveguides of the same diffusion 
parameter but with the Ti thickness for the diffusion of 800 Å. It shows that SVMM 
overestimates the mode size of the diffused waveguide. In fact, the thickness of 
800 Å, as mentioned before, corresponds to the case where the Ti thickness has 
just depleted. In other words, the change of surface index is at its highest point for 
that diffusion time. The mode size would therefore appear to be much smaller than 
those waveguides in which the Ti has been diffused sufficiently longer than the time 
needed to just deplete all the Ti. This explains why the simulated modal width and 
depth are larger than the practical one. Figures 5.22 and 5.23 summarize the simu-
lated results for a waveguide for a range of Ti thicknesses.

From the curves of Figures 5.22 and 5.23, we can see that the modal width and 
depth increase monotonically with the Ti thickness. It is not difficult to see that from 
the experimental results the diffusion model and diffusion parameters are no longer 
valid when the Ti film exceeds the thickness that is fully diffused of around 800 Å. For 
any thickness beyond that, we will need to resort to another diffusion model. In our 
case, this isn’t necessary because having a Ti film thicker than the diffusable amount 
would lead to scattering loss, thus increasing the total insertion loss of the device.

In this section thus far, we have demonstrated how SVMM can be used apart 
from a simulating rib waveguide, to simulate a diffused channel waveguide. In fact, 
the finite difference method can be employed to obtain reasonable accuracy of the 
mode index and its distribution, as well as the evolution with different diffusion 
parameters for optical waveguides having an arbitrary index profile. Simulation of 
the Ti:LiNbO3 waveguide, however, is not a straightforward matter because fabrica-
tion of such a waveguide is subjected to many changes, such as differences in crystal 
quality, diffusion process, density variations of the deposited titanium films, and 
measurement techniques. As a result, we can see inconsistencies in the published lit-
erature. Fouchet et al.34 have shown the relation between the refractive index change 
Δne,o(Z) and the Ti concentration C(Z) in the mathematical form of
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 ∆ = λ ⋅ αn Z A C C Z( ) ( , ) ( ( ))e o e o o, ,
e o,  (5.65)

The expression shows that the proportionality coefficient Ae,o depends not only on 
the wavelength λ, but also on the diffusion parameters that are characterized by Co, 
the Ti surface concentration.

In other words, the diffusion model that we used in our simulation is only a crude 
representation of the diffused waveguide. To enhance the accuracy of the simulation, 
we will need to provide a more accurate diffusion model that takes into account the 
dispersion relationship of the change in refractive index profile in Ti:LiNbO3; despite 
being a crude representation of the diffusion process, it is still sufficient to demon-
strate the credibility of SVMM in modeling a diffused waveguide. The simulations 
that we did in this particular section not only have shown the usefulness of SVMM, 
but also have provided a qualitative overview of the design of the Ti:LiNbO3 wave-
guide. At this point, this program can surely calibrate against diffusion data that are 
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measured in house and be used as a tool in the design of a Ti:LiNbO3 waveguide for 
optical modulators.

5.5 MODE MODELING OF RIB WAVEGUIDES

In every finite difference approach, a few approximations are made and will there-
fore introduce some error into the final result. The following are a few approxima-
tions that are likely to introduce some error in our calculation: (1) the approximation 
of the full vectorial wave equation by the semivectorial one, (2) the replacement 
of the differential equation with the difference equations, (3) discretization error, 

6

0.5

5.5

4.5

3

3.5

4

2.5

2
31292725 373533

Ti Strip Width (µm)
39

Γ x
, Γ

y (
µm

)
Γx

Γy

SVMM

SVMM

Ref [6]

Ref [6]

FIGURE 5.21 Comparison of simulated and experimental mode sizes for τ = 800 Å.

6

0.5

5.5

4.5

4

3.5
325 3.5

Ti Strip Width (µm)
4

Γ x
 (µ

m
)

τ = 700 Å

τ = 750 Å
τ = 800 Å

τ = 900 Å

τ = 1100 Å

FIGURE 5.22 Simulated modal width Γx for a range of Ti thickness, τ.



188 Wireless and Guided Wave Electromagnetics

(4) round-off error, and (5) the errors that are introduced by the NSPCG numerical 
solver itself.

To assess the accuracy, capability, and limitations of our program, we have cal-
culated fundamental mode indices of three well-known rib waveguides that are 
often used as waveguide modeling benchmarks. Results of polarized modes have 
been published.10–22 The geometry of the rib waveguide is shown in Figure  5.24. 
Parameters include the width of the rib w, height of the rib h, thickness of the guiding 
layer underneath the rib d, index of the substrate ns, and index of the guiding layer ng, 
listed in Table 5.1. The refractive index of the air cladding region, nc, is unity.

The three waveguides each have a different characteristic. Structure 1 has rela-
tively large vertical refractive index steps (Δn = 2.44 and 0.1), which could, for exam-
ple, correspond to a GaAs guiding layer bound by air and a Ga0.75Al0.25As confining 
layer. In the lateral direction, the rib height is large and the width narrow. This struc-
ture, with strong light confinement in both the lateral and vertical directions, is use-
ful for curved guides, as radiation loss is minimized. This structure does not allow 
application of the effective index method because the slab outside the rib is cut off.
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TABLE 5.1
Parameters of Rib Waveguide for 
Calculation Benchmark

Guide ng ns d (μm) h (μm) w (μm)

1 44 34 0.2 1.1 2

2 44 36 0.9 0.1 3

3 44 435 5 2.5 4
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Structure 2 shows a weakly guiding feature. In this case the rib height is much 
less, allowing the mode to extend laterally. This is particularly useful for directional 
coupler structures, as strong coupling between adjacent guides will result in short 
coupling lengths. The guiding layer thickness is made small to give a thin mode shape 
in the vertical direction, and thus low-voltage operation. Essentially, this structure is 
tightly confined vertically and weakly confined horizontally. Such features enable the 
application of the effective index method1,16,24 because the small etch step and large 
width-to-height ratio are the conditions of validity of this approximate method.

Structure 3 gives a good coupling to an optical fiber. Insertion loss is a crucial 
parameter for most waveguide devices and is determined by propagation loss and 
losses due to mode mismatch. Fresnel reflection loss is also important, but can be 
reduced to insignificant levels by using λ/4 antireflection coatings. Mode profiles of 
a circularly symmetric optical fiber and a waveguide will, in general, be different, 
due to the differing refractive indices of the semiconductor and the fiber, and also the 
differing shapes of the modes. The effects of both factors may be alleviated by the 
use of appropriate waveguide designs. In structure 3 the guiding layer is relatively 
thick, and the strip width and height are adjusted to give a more symmetric mode 
shape. In this structure the slab mode is near cutoff. Again, it should be pointed out 
that because the rib height is nearly twice the slab thickness and the rib width is 
less than the rib height, the accuracy of the effective index method is expected to be 
poor. Figures 5.25 to 5.28 are the contour plot and 3D plot of the TE-polarized mode 
of the three-waveguide structure calculated by the SVMM program. Similarly, as 
an example, Figure 5.28(a) shows the three-dimensional plot of TE-polarized mode 
profile for waveguide of structure 3 listed in Table 5.1; Figure 5.28(b) plots the field 
contour of TE-polarized mode profile for such waveguide.

The grid sizes hx and hy are 0.1. Since we assume that the field value around the 
computational boundary is zero, this would mean that we require a much larger com-
putational window for both structures 2 and 3, so that the assumption would be valid. 
This, however, would mean that we can either use a coarser grid, leading to reduction 
in computing accuracy, or maintain the grid size but face up with a huge eigenmatrix 
to solve. For that reason, the variable grid size comes in handy. We can avoid a severe 
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FIGURE 5.24 Typical structure of rib waveguide.
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storage penalty by judiciously placing the denser mesh around the area the higher 
field value is assuming and coarser mesh at the region of the much lower field value. 
This would thus allow us to extend the boundary of the computation without incur-
ring a severe storage problem while preserving the accuracy of the computation. The 
choice of grid size and its influence on the accuracy of the final results are discussed 
and illustrated in the next section.

5.5.1 chOice OF Grid size

A judicious choice of grid size is likely to produce a plausible simulation result. To 
assess the effect of grid size on the accuracy of our simulation program, we compute 
the effective index for the TE-polarized mode of structure 1 by varying the grid size 
in both the x- and y-directions, namely, hx and hy. We compare our result with the 
one simulated by Lusse et al.,11 which uses a dense mesh of 508 × 394 mesh points, 
the full vectorial finite difference method.

In simulations 1 to 6 (see Table 5.2), the value of hy = 0.1 is kept constant while 
reducing hx from 0.5 down to 0.025. As we can see, as hx reaches 0.025, we can no 

TABLE 5.2
Calculation of Effective Index with Different Choices of Grid Size

Sim. No. hx (μm) hy (μm)
xdim 
(μm)

ydim 
(μm)

Total 
Grid

Effective 
Index

1 0.5 0.1 8.0 7.3 16 × 73 3,9134,74

2 0.25 0.1 8.0 7.3 32 × 73 3,899,896

3 0.125 0.1 8.0 7.3 64 × 73 3,895,512

4 0.1 0.1 8.0 7.3 80 × 73 3,894,906

5 0.05 0.1 8.0 7.3 160 × 73 3,894,048

6 0.025 0.1 8.0 7.3 320 × 73 3,893,836

7 0.025 0.05 8.0 7.3 320 × 146 3,888,583

8 0.025 0.025 8.0 7.3 320 × 292 3,887,148

9 0.0–2.0:0.1
2.0–2.5:0.05
2.5–0:0.025
0.0–4.0:0.05
4.0–5.5:0.025
5.5–6.0:0.05
6.0–8.0:0.1

0.0025 8.0 7.3 240 × 292 3,887,162

10 0.0–2.0:0.1
2.0–2.5:0.05
2.5–0:0.025
0.0–4.0:0.05
4.0–5.5:0.025
5.5–6.0:0.05
6.0–8.0:0.1

0.0–4.0:0.025
4.0–7.3:0.05

8.0 7.3 240 × 226 3,887,165

P. Lusse11 — — — — 508 × 394 88,687
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longer get a significant improvement on the accuracy. Further reduction of grid size 
down to 0.01 would be highly impractical because we would end up with 800 grid 
points along the x-direction, thus paying a high penalty in terms of computer mem-
ory. In simulations 7 and 8, we keep hx at 0.025 while reducing hy from 0.1 down to 
0.025; another significant improvement in accuracy is shown and the results get very 
close to those simulated by Lusse et al.11 with both hx and hy equal to 0.025, a grid 
size of 320 × 292; the difference of our calculated effective index from that of Lusse 
et al.11 is 2.78 × 10–5. Simulations 9 and 10 show how the nonuniform scheme could 
economize storage usage while preserving the desired accuracy. By placing a denser 
grid mesh around the region where higher field values are assumed and a coarser 
mesh for regions farther away, we manage to reduce our mesh size from 320 × 292 
to 240 × 226 (a total reduction of 39,200 points) without significant loss in accuracy, 
as can be seen from the graph. The nonuniform grid allocation scheme has in this 
particular case shown its usefulness. (Note that each reduction of grid size needs to 
be multiplied by 26, for that is the amount of work space required by the coefficient 
matrix, eigenvector, and NSPCG numerical solver.)

5.5.2 numerical results

Table 5.3 shows the values of the propagation constants of both TE- and TM-polarized 
modes for all three waveguides. The results are compared with several published 

TABLE 5.3
Comparisons of Effective Indices and Normalized Indices at λ 
= 1.55

Methods

Guide 1 Guide 2 Guide 3

neff b neff b neff b

TE-Polarized Mode
SVMM 3,887,148 0.4835 3,953,612 0.4391 4,368,918 0.3782

Sv-BPM14 388,711 0.4834 395,471 0.4405 436,805 0.3608

Helmholtz15 388,764 0.4839 395,560 0.4416 436,808 0.3614

SI19 38,874 0.4837 39,506 0.4354 43,688 0.3759

SV25 3,869,266 0.4656 3954 0.4401 4,368,112 0.3621

FD26 3,882,623 0.4789 3,952,147 0.4373 436,804 0.3611

TM-Polarized Mode
SVMM 3,879,173 0.4755 390,647 0.3803 4,368,434 0.3685

Sv-BPM14 387,924 0.4756 390,693 0.3809 436,772 0.3543

Helmholtz15 387,990 0.4762 390,712 0.3811 346,772 0.3543

SI19 38,788 0.4752 39,032 0.3763 43,684 0.3669

SV25 3,867,447 0.4638 3,905,927 0.3796 4,367,719 0.3542

FD26 3,875,430 0.4718 3,905,701 0.3794 4,367,751 0.3549
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results. The bolded entries of the table are results of our work. We can see from the 
tables that our results compare favorably with all the other published results.

The numerical results presented so far have indicated the order of accuracy of the 
SVMM programs. We can observe that the exemplar results are compared well with 
other published results.

5.5.3 hiGher-Order mOdes

In our earlier discussion, we indicated that the inverse power method can be 
used to work out the other eigenmodes of the waveguide. To illustrate that, we 
simulate the waveguide mode of the waveguide structure published by Rahman 
and Davies.22 Table  5.4 outlines the parameters of the waveguide structure. 
Figures 5.29 and 5.30 show the fundamental mode and the leading asymmetric 
mode of the TE-polarized field.

The leading asymmetric mode of Figure 5.30 can be obtained with an initial 
eigenvalue that is close to the eigenvalue of the leading asymmetric mode. One way 
to acquire a good initial guess for an independent eigenvalue is by perturbing the 
last few significant digits of the last calculated eigenvalue. In our case, the eigen-
value of the fundamental mode (see Figure 5.29) was calculated to be 347.78889. 
We then proceeded to the calculation of the asymmetric mode with an initial guess 
of 346. Other eigenmodes can also be worked out in similar fashion. However, we 
need to remember that there is only a limited number of eigenmodes supported by 
a certain waveguide structure. A good indication that the particular eigenmode is 
physically not feasible is an effective index that is lower than that of the refractive 
index of the substrate, thus giving a negative value of the normalized index. This is 
illustrated in Figure 5.31.

The third-order mode distribution depicted in Figure 5.32 is acquired by further 
reducing the initial guess of the eigenvalues from 346 to 345. As a result, we get 
an effective index of 398, which is lower than the refractive index of the substrate, 
which is 40 in this case. This results in a normalized index b of –0.047. As shown 
in the contour plot, most of the field is radiated into the substrate of the waveguide. 
Similarly, Figure 5.32 shows the 3D plot of the third-order mode, which is a radiation 
mode that is not guided in the waveguide region.

This feature of SVMM that enables us to work out the higher-order modes is 
extremely important for finding out if the designed waveguide can support multi-
mode operation. We will see in the chapter on circular optical waveguides how such 
a feature can be exploited in the design of a single-mode waveguide.

TABLE 5.4
Parameters of Rib Waveguide (λ = 1.15 μm)

Guide ng ns d (μm) h (μm) w (μm)

Rahman and Davies22 44 40 0.5 0.5 3

Source: Rahman, B.M.A., and Davies, J.B., IEE Proc. J, 132, 349–355, 1985.
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FIGURE 5.29 (a) Three-dimensional plot of fundamental mode of waveguide; (b) contour 
plot of the fundamental mode of the waveguide. (From Rahman, B.M.A., and Davies, J.B., 
IEE Proc. J, 132, 349–355, 1985.)
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5.6 CONCLUSIONS

In this chapter, the simplified approach for analytical study of channel waveguide, 
the 3D version, is described using the Marcatilli method and effective index tech-
niques. Simplified analytical dispersion relations have been obtained for these 3D 
waveguides. An example design of a GeO2-doped core rectangular channel wave-
guide is given.

Further, we have successfully developed numerical techniques based on a semi-
vectorial finite difference analysis to solve the Helmholz equation. The numerical 
model that we have formulated can accurately and effectively model the guided 
modes in optical waveguides of arbitrary index profile distribution. A nonuniform 
mesh allocation scheme is employed in the formulation of the difference equations 
to free more computer memory for the computation of waveguide regions that bear 
greater significance. The accuracy of our computer program, SVMM, is assessed 
by computing the propagation constants and the effective indices of several rib 
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FIGURE 5.30 (a) Three-dimensional plot for the leading asymmetric mode of waveguide 
(calculated effective index = 4025302); (b) contour plot of leading asymmetric mode of wave-
guide. (From Rahman, B.M.A., and Davies, J.B., IEE Proc. J, 132, 349–355, 1985.)
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FIGURE 5.32 (a) Three-dimensional plot of the third-order mode, which is not supported 
by the waveguide structure (calculated effective index = 3980958, normalized index = 
–0.047314); (b) contour plot of radiated mode.
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waveguides that have been known to be excellent benchmark waveguide struc-
tures. The results of our computation have compared favorably with other published 
results.14,15,19,25,26 We then continue to simulate the optical guided modes of diffused 
optical waveguides in LiNbO3. The computed mode size is consistent with published 
experimental results. Our simulations, however, have shown the inadequacies of the 
adopted diffusion model for its inability to model the diffused waveguide in a more 
robust sense. It is suggested that further research be conducted for a more refined 
and robust representation of the refractive index profile of the Ti:LiNbO3-diffused 
waveguide. Despite the shortcomings of the diffusion model that we have adopted, 
we have demonstrated the potential of SVMM to be used as an analytical and design 
tool for an integrated optical waveguide.
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6 Optical Fibers
Single- and Few-
Mode Structures and 
Guiding Properties

6.1 OPTICAL FIBERS: CIRCULAR OPTICAL WAVEGUIDES

6.1.1 General asPects

Planar optical waveguides compose a guiding region, a slab embedded between a 
substrate and a superstrate having identical or different refractive indices. The light-
waves are guided by the confinement of the lightwaves with an oscillation solution. 
The number of oscillating solutions that satisfy the boundary constraints are the 
number of modes that can be guided. The guiding of lightwaves in an optical fiber is 
similar to that of the planar waveguide, except the lightwaves are guiding through a 
circular core embedded in a circular cladding layer.

Within the context of this book on guided wave photonics, optical fibers would 
be most relevant as circular optical waveguides. We should point out the following 
developments in optical fiber communication systems so that we are able to focus on 
modern optical systems that engineers have based on the fundamental understanding 
of the electromagnetic field theory:

• The step index and graded index multimode optical fibers find very limited 
applications in systems and networks for long-haul applications.

• The single-mode optical fibers have been achieved for very small differences 
in the refractive indices between the core and cladding regions. Thus the 
guiding in modern optical fibers for telecommunications is called weakling 
guiding. This development was intensively debated and agreed on by the 
optical fiber communications technology community during the late 1970s.

• The invention of optical amplification in rare-earth-doped single-mode 
optical fibers in the late 1980s has transformed the design and deployment 
of optical fiber communication systems and networks in the last decade and 
for the coming decades of the 21st century. The optical loss of the fiber and 
the optical components in the optical networks can be compensated for by 
using these fiber in-line optical amplifiers.

• Therefore, the pulse broadening of optical signals during the transmission 
and distribution in the networks has become much more important for sys-
tem design engineers.
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• Recently, due to several demonstrations of the use of digital signal process-
ing of coherently received modulated lightwaves, multiple input multiple 
output (MIMO) techniques can be applied to enhance significantly the sen-
sitivity of optical receivers, and thus the transmission distance and capacity 
of optical communication systems.1 MIMO techniques would offer some 
possibilities of the use of different guided modes through a single fiber, 
for example, few-mode fibers that can support more than one mode but not 
too many, as in the case of multimode types. Thus, the conditions under 
which a circular optical waveguide can operate as a few-mode fiber are also 
described in this chapter.

Due to the above developments we shall focus the theoretical approach on the 
understanding of optical fibers toward the practical aspects for design optical fibers 
with minimum dispersion or for a specified dispersion factor. This can be carried out 
by, from practical measurements, the optical field distribution following a Gaussian 
distribution. Having known the field distribution, one would be able to obtain the 
propagation constant of the single-guided mode and, hence, the spot size of this 
mode—and thus the energy concentration inside the core of the optical fiber. Using 
the basic concept of optical dispersion by using the definition of group velocity and 
group delay, we would be able to derive the chromatic dispersion in single-mode opti-
cal fibers. After arming ourselves with the basic equations for dispersion, we would 
be able to embark on the design of optical fibers with a specified dispersion factor.

6.1.2 OPtical Fiber: General PrOPerties

6.1.2.1 Geometrical Structures and Index Profile
An optical fiber consists of two concentric dielectric cylinders. The inner cylinder, or 
core, has a refractive index of n(r) and radius a. The outer cylinder, or cladding, has 
an index n2 with n(r) > n2 and a larger outer radius. A core of about 4–9 μm and a 
cladding diameter of 125 μm are the typical values for a silica-based single-mode opti-
cal fiber. A schematic diagram of the structure of a circular optical fiber is shown in 
Figure 6.1. Figure 6.1(a) shows the core and cladding region of the circular fiber, while 
Figure 6.1(b) and (c) show the figure of the etched cross sections of a multimode and 
single mode, respectively. The silica fibers are etched in a hydroperoxide solution so 
that the core region doped with impurity would be etched faster than that of pure silica, 
and thus the exposure of the core region, as observed. Figure 6.2 shows the index profile 
and the structure of circular fibers. The refractive index profile can be step or graded.

The refractive index n(r) of a circular optical waveguide is usually changed with 
radius r from the fiber axis (r = 0) and is expressed by

 = + 





n r n NA s r
a

( )2
2
2 2  (6.1)

where NA is the numerical aperture at the core axis, while s(r/a) represents the pro-
file function that characterizes any profile shape (s = 1 at maximum) with a scaling 
parameter (usually the core radius).
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FIGURE 6.1 (a) Schematic diagram of the step index fiber: coordinate system, structure. 
The refractive index of the core is uniform and slightly larger than that of the cladding. For 
silica glass the refractive index of the core is about 1.478, and that of the cladding about 1.47, 
at the 1550 nm wavelength region. (b) Cross section of an etched fiber—multimode type—50 
μm diameter. (c) Single-mode optical fiber-etched cross section.

z Propagation
direction

Cladding

Core

Core

Graded distribution

Cladding

Radial direction
(a)

(b)

–a +a

r2(r)

Cladding

n1

n2

n2

n1

n2

Step index pro�le

n2

2d

FIGURE 6.2 (a) Refractive index profile of a graded index profile. (b) Fiber cross section 
and step index profile with a as the radius of fiber.
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6.1.2.1.1 Step Index Profile
In a step index profile the refractive index remains constant in the core region, thus

 





= ≤s r
a

r a1 for  (6.2)

 





= >s r
a

r a0 for  (6.3)

so we have for a step index profile

 = <n r n r a( ) for 2
1
2  (6.4)

and

 = >n r n r a( ) for 2
2
2  (6.5)

Exercise

Refer to the technical specification of the single-mode optical fiber Corning SMF-
28. State whether the index profile of the fiber is a perfect step index profile or 
graded index profile. Is it true that the profile is a perfect step index distribution? If 
not, then what is the real manufactured profile?

6.1.2.1.2 Graded Index Profile
We consider hereafter the two most common types of graded index profiles: power-
law index and the Gaussian profile.

6.1.2.1.2.1  Power-Law Index Profile The core refractive index of an optical fiber 
usually follows a graded profile. In this case the refractive index rises gradually from 
the value n2 of the cladding glass to the value at the fiber axis. Therefore, s(r/a) can 
be expressed as

 





= − 










≤ = <

α

s r
a

r
a

r a r a1 for  and 0 for  (6.6)

where α is the power exponent. Thus the index profile distribution n(r) can be expressed 
in the usual way as (by using (6.6) and (6.2), by substituting = −NA n n  2

1
2

2
2)
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where ∆ = NA n/2
1
2  is the relative refractive difference with a small difference 

between the cladding and the core regions. The profile shape given in (6.7) offers 
three special distributions:

• α = 1: The profile function s(r/a) is linear and is called a triangular profile.
• α = 2: The profile is a quadratic function with respect to the radial distance 

and is called the parabolic profile.
• α = ∞: The profile is a step type.

6.1.2.1.2.2  Gaussian Index Profile While in the Gaussian index profile, the 
refractive index changes gradually from the core center to a distance very far away 
from it, and s(r) can be expressed as
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6.1.3 Fundamental mOde OF weakly GuidinG Fibers

The electric and magnetic fields 
� �

φ φE r z H r z( , , ) and ( , , )  of the optical fibers in cylin-
drical coordinates can be found by solving Maxwell’s equations. However, only the 
lower-order modes of ideal step index fibers are important for modern optical trans-
mission systems. For single-mode optical fibers the relative refractive index differ-
ence Δ < 1%; that is, there is a very small difference between the refractive indices 
of the core and the cladding, and then optical waves are mildly confined and thus 
the optical field is gently guided. The electric and magnetic fields 

� �
E H and  can then 

take approximate solutions of the scalar wave equation in a cylindrical coordinate 
system (x, θ, ϕ) as
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+ δ
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where nj = n1, n2, and φ(r) is the spatial field distribution of the nearly transverse EM 
waves:
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where Ey, Ez, Hx, Hz are negligible and ε = ε = ε µn Z and ( )0 2
2

0 0 0
1/2 is the vacuum 

impedance. That is, the waves can be seen as a plane wave traveling down the fiber 
tube. This plane wave is reflected between the dielectric interfaces; in other words, it 
is trapped and guided along the core of the optical fiber.

6.1.3.1 Solutions of the Wave Equation for Step Index Fiber
The field spatial function φ(r) would have the form of Bessel functions (from (6.9)):

 ϕ = < <r A J ur a
J u

r a( ) ( / )
( )

; 0 : in core region0

0

 (6.11)

 ϕ = >r A K vr a
K v

r a( ) ( / )
( )

; : in cladding region0

0

 (6.12)

where J0 and K0 are the Bessel functions of the first kind and a modification of the 
second kind, respectively, and u, v are defined as
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Following the Maxwell’s equations relation, we find that Ez can take two possible 
solutions, which are orthogonal as
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The terms u and v must satisfy simultaneously two equations:

 + = = − = ∆u v V ka n n kan( ) (2 )2 2 2
1
2

2
2 1/2

2
1/2  (6.15)

and

 =u J u
J u

v K v
K v

( )
( )

( )
( )

1

0

1

0

 (6.16)



209Optical Fibers

where (6.16) is obtained by applying the boundary conditions at the interface r = a 
(Ez is the tangential component and must be continuous at this dielectric interface). 
Equation (6.16) is commonly termed the eigenvalue equation of the wave equation 
for guiding. The solution of this equation would give specific discrete values of β, the 
propagation constants of the guided lightwaves.

6.1.3.2 Single- and Few-Mode Conditions
Equation (6.15) shows that the longitudinal field is in the order of u/(kan2) with 
respect to the transverse component. In practice Δ << 1, and by using (6.15), we 
observe that this longitudinal component is negligible compared with the trans-
verse component. Thus the guided mode is transversely polarized. The funda-
mental mode is then usually denominated as an LP01 mode (LP stands for linearly 
polarized), for which the field distribution is shown in Figure 6.5(a) and (b). The 
graphical representation of the eigenvalue equation (6.16) calculated as the varia-
tion of b = β/k as the normalized propagation constant and the V-parameter is 
shown in Figure 6.6(d). There are two possible polarized modes, the horizontal 
and vertical polarizations, which are orthogonal to each other. These two polar-
ized modes can be employed for transmission of different information channels. 
They are currently exploited, in the first two decades of the 21st century, in optical 
transmission systems employing polarization division multiplexed so as to offer a 
transmission bit rate of 100 Gb/s and beyond.2,3 Furthermore, when the number of 
guided modes is higher than two polarized modes, they form a set of modes over 
which information channels can be simultaneously carried and spatially demulti-
plexed at the receiving end, so as to increase the transmission capacity, as illus-
trated in Figure 6.5(a) and (b)4,5 Such few-mode fibers are employed in the most 
modern optical transmission system, whose schematic is shown in Figures 6.3 and 
6.4. Obviously there must be a demultiplexing process to split the model patterns. 
A number of the guided modes supported by the fiber can be modulated and spa-
tially multiplexed, then coupled to the fiber line for transmission to the other end. 
They are then spatially demultiplexed into individual modes and then fed into 
optical receivers. Note the two possible polarizations of the mode LP11. The sepa-
rated modes are coherently detected to give electronic signals that are then ampli-
fied and sampled and converted into digital forms. These digital signals are then 
processed in ultra-high-speed digital signal processors (DSPs) using the MIMO 
technique, which is well developed in wireless transmission technology.

The number of guided modes is determined by the number of intersecting points 
of the circle of radius V and the curves representing the eigenvalue solutions (6.16). 
Thus for a single-mode fiber the V-parameter must be less than 2.405, and for few-
mode fiber this value is higher; for example, if V = 2.8, we have three intersecting 
points between the circle of radius V and three curves, and then the number of 
modes would be and their corresponding alternative polarized modes would be 
LP01, LP11 as shown in Figure 6.5(b) and (c). For a single mode there are two polar-
ized modes whose polarizations can be vertical or horizontal. Thus a single-mode 
fiber is not a monomode type but supports two polarized modes! The main issues 
are on the optical amplification gain for the transmission of modulated signals in 
such few-mode fibers. This remains to be the principal obstacle.
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We can illustrate the propagation of the fundamental mode and higher-order 
modes as in Figure 6.6(a) and (b). The rays of the modes can be axially straight or 
skewed and twisted around the principal axis of the fiber. Thus there are different 
propagation times between these modes. This property can be employed to com-
pensate for the chromatic dispersion effect.7 Figure 6.6 shows the graphical solu-
tion of the modes of optical fibers. In Figure 6.6(d) the regions of single operation, 
and then higher-order, second-order mode regions as determined by the value of 
the V-parameter, are indicated. Naturally due to manufacturing accuracy the mode 
regions would be variable from fiber to fiber.

Figure 6.7 shows the coherent mixing of a local oscillator laser and the signals, 
which can consist of two polarized channels and be modulated using quadrature 
amplitude modulation (QAM). A μ/2 phase shifter is required to split the real part, 
the in-phase component, and the quadrature one. Both polarization and optical phase 
shifting are employed so that the polarized channels can be transmitted in order to 
double the capacity of the transmission systems. The QAM can be used to obtain 
the best performance as well as to increase the spectral efficiency by high-order 
modulation. The optically processed signals are then detected by the photodetec-
tors in pairs and connected back to back, the balanced detection, in which the mix-
ing of the signals and local laser happens to recover the amplitude of the in-phase 
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FIGURE 6.4 (a–c) Intensity profiles of the first few-order modes of a few-mode optical 
fiber employed for a 5 × 65 Gbps optical transmission system6 and an optical system arrange-
ment for the spatially demux and mux of modal channels. (d) Arrangements of the spatial 
multiplexer for coupling three modes into the transmission fiber. (e) Horizontal and vertical 
polarized modes LPV H

01
, ; polarization directions are indicated by arrows.
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and quadrature components, hence the magnitude and phase. These signals are then 
amplified and sampled to convert into a digital domain, so that they can be process 
digitally. This type of detection and processing in the digital domain represents the 
most modern technique to date for dual-polarization lightwave transmission and a 
coherent technique at an ultra-high bit rate of 100 Gb/s and beyond. When the fre-
quency of the local laser equals that of the signals, we have homodyne detection; if 
not, then we have heterodyne detection or intradyne detection, depending on whether 
the frequency difference is outside or within the signal band.

6.1.3.3 Gaussian Approximation
6.1.3.3.1 Fundamental Mode Revisited
We note again that 

� �
E H and  are approximate solutions of the scalar wave equation, 

and the main properties of the fundamental mode of weakly guiding fibers can be 
observed as follows:

• The propagation constant β (along the z-direction) of the fundamental 
mode must lie between the core and cladding wavenumbers. This means 
the effective refractive index of the guided mode lies with the range of the 
cladding and core refractive indices.

• Accordingly, the fundamental mode must be nearly a transverse electro-
magnetic wave, as described by Equation (6.10).

 π
λ

< β < π
λ

n n2 22 1  (6.17)

• The spatial dependence φ(r) is a solution of the scalar wave equation (6.9).

6.1.3.3.1.1  Gaussian Approximation The main objectives are to find a good 
approximation for the field φ(r) and the propagation constant β, which can be found 
though the eigenvalue equation and Bessel’s solutions as shown in the previous sec-
tion. It is desirable if we can approximate the field to good accuracy to obtain simple 
expressions and have a clearer understanding of light transmission on a single-mode 
optical fiber without going through graphical or numerical methods. Furthermore, 
experimental measurements and numerical solutions for step and power-law profiles 
show that φ(r) is approximately Gaussian in appearance. We thus approximate the 
field of the fundamental mode as
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where ro is defined as the spot size, i.e., at which the intensity equals e–1 of its maxi-
mum. Thus by multiplying the wave equation (6.9) by rφ(r), and using the identity,
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then by integrating from 0 to infinitive and using
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The procedure to find the spot size is then followed by substituting φ(r) (Gaussian), 
Equation (6.18) into (6.20), then differentiating and setting δ2β/δr evaluated at to 
zero; that is, the propagation constant β of the fundamental mode must give the larg-
est value of r0.

Knowing r0 and β, the fields Ex and Hy Equation (6.10) are fully specified.

6.1.3.3.1.1.1  Case 1: Step Index Fiber Substituting the step index profile given 
by (6.10) and φ(r) Equation (6.18) into (6.20) leads to an expression for β in terms of 
r0 given by

 = ⋅ ⋅ = π
λ

V NA k a NA a2  (6.21)

The spot size is thus evaluated by setting

 δ β
δ

=
r

0
2

0

 (6.22)

That is when the propagation constant is largest. For a step index core fiber, the spot 
size r0 is given by

 =r a
Vln0

2
2

2
 (6.23)

Substituting (6.23) into (6.21) we have

 β = − −a akn V( ) ( ) ln 12
1

2 2  (6.24)

This expression is physically meaningful only when V > 1 (r0 is positive).
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6.1.3.3.1.1.2  Case 2: Gaussian Index Profile Fiber Similarly, for the case of 
a Gaussian index profile, by following the procedures for a step index profile fiber 
we can obtain
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and
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2

2 2

0

 (6.26)

that is, maximizing the propagation constant of the guided waves. The propagation 
constant is at maximum when the “light ray” is very close to the horizontal direction. 
Substituting (6.26) into (6.25), we have

 β = − +a akn V( ) ( ) 2 12
1

2  (6.27)

Equation (6.27) is physically meaningful only when V > 1 (r0 > 0).
It is obvious from (6.27) that the spot size of the optical fiber with a V-parameter 

of 1 is extremely large; hence, all energy is not concentrated in the core of the fiber 
but in the cladding region. It is very important that one must not design the optical 
fiber with a near unit value of the V-parameter. In practice we observe that the spot 
size is large but finite (observable). In fact, if V < 1.5, the spot size becomes large and 
the effect of this on the dispersion of the signal propagating through a single-mode 
fiber will be investigated in detail in the next chapter.

6.1.3.4 Cutoff Properties
Similar to the case of planar dielectric waveguides, from Figure 6.6 we observe that 
when we have V < 2.405, only the fundamental LP01 exists. Thus we have what is 
shown in Figure 6.8.

We note that for single-mode operation the V-parameter must be less than or equal 
to 2.405. However, in practice V < 3 can be acceptable for single-mode operation.

Indeed, the value 2.405 is the first zero of the Bessel function J0(u). In practice, 
one cannot really distinguish the V-value between 2.3 and 3.0; experimental observa-
tion also shows that the optical fiber can still support only one mode. Thus, designers 
usually take the value of V as 3.0 or less to design a single-mode optical fiber.

The V-parameter is inversely proportional with respect to the optical wavelength, 
which is directly related to the operating frequency. If an optical fiber is launched 
with lightwaves whose optical wavelength is smaller than the operating wavelength 
at which the optical fiber is single mode, then the optical fiber is supporting more 
than one mode. The optical fiber is said to be operating in a few regions and then a 
multimode region when the total number of modes reaches a few hundred.
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Thus one can define the cutoff wavelength for optical fibers as follows: the wave-
length (λc) above which only the fundamental mode is guided in the fiber is called the 
cutoff wavelength λc. This cutoff wavelength can be found by using the V-parameter 
as Vc = Vat cut off = 2.405; thus,

 λ = πaNA
V

2
c

c

 (6.28)

Exercise

An optical fiber has the following parameters: a core refractive index of 1.46, a 
relative refractive index difference of 0.3%, a cladding diameter of 125 μm, and a 
core diameter of 8.0 μm.

 a. Find the fiber NA and hence the fiber acceptance angle.
 b. What is the cutoff wavelength of this fiber?
 c. What is the number of optical guided modes that can be supported if the 

optical fiber is excited with lightwaves of a wavelength of 810 nm?
 d. If the cladding diameter is reduced to 50 and 20 μm, comment on the field 

distribution of the guided single mode.

In practice the fibers tend to be effectively single mode for larger values of V, say 
V < 3 for the step profile, because the higher order modes suffer radiation losses 
due to fiber imperfections. Thus if V = 3, from (6.15) we have a < 3λ/2 NA; in this 
case λ = 1 μm and the numerical aperture NA must be very small (<<1) for radius 
a to have some reasonable dimension. Usually Δ is about 1% or less for standard 
single-mode optical fibers (SSMFs) employed in long-haul optical transmission 
systems so as to minimize the loss factor and the dispersion.

6.1.3.5 Power Distribution
The axial power density or intensity profile S(r), the z-component of Poynting’s vec-
tor, is given by

 =S r E H( ) 1
2 x y

*  (6.29)

Substituting (6.10) into (6.29) we have
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The total power is then given by



220 Wireless and Guided Wave Electromagnetics

 ∫= π = ε
µ







∞

P rS r dr r2 ( ) 1
2

0

1/2

0
2  (6.31)

and hence the fraction of power η(r) within 0 to r across the fiber cross section is 
given by
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Table 6.1 gives the expressions for P and η(r) of step index and Gaussian profile 
fibers (by substituting the appropriate values of r0 into (6.31) and (6.32)).

As a rule of thumb—and experimentally confirmed—an optical fiber is best for 
the guided mode, and the optical power contained in the core is about 70–80% of 
the total power.

Exercise

Using Gaussian approximation for the intensity distribution of the fundamental 
mode of the single-mode optical fiber with V = 2, find the fraction of power in the 
core region with a = 4 μm.

TABLE 6.1
Analytical Expressions for Total Optical Guided Power and 
Its Fractional Power Confined Inside the Core Region for 
Step Index and Gaussian Index Profiles

Step Index Profile Fiber Gaussian Profile Fiber
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Exercise

Find the radius a for maximum confinement of light power, i.e., maximum mode 
spot size r0, for step index and parabolic profile optical fibers.

6.1.3.6 Approximation of Spot Size r0 of Step Index Single-Mode Fibers
As stated above, spot size r0 would play a major role in determining the performance 
of single-mode fiber. It is useful if we can approximate the spot size as long as the 
fiber is operating over a certain wavelength. When a single-mode fiber is operating 
above the cutoff wavelength, a good approximation (greater than 96% accuracy) for 
r0 is given by

= + + = + λ
λ







+ λ
λ







− −
+ +r

a
V V0.65 1.619 2.879 0.65 0.434 0.0419

c c

0 3/2 6
3/2 6

 (6.33)

≤ λ
λ

≤for 0.8 2.0 single mode.
c

Exercise

What is the equivalent range for the V-parameter of Equation (6.33)? Inspect the 
b-V and V2(d2(Vb)/dV2) versus V and b; if possible, do a curve fitting to obtain the 
approximate relationship for r/a and V (MATLAB® procedure is recommended). In 
the chapter’s appendix typical values of mode spot size or mode field diameter, 
approximately twice the spot size, are given for Corning SMF-28, the standard 
single-mode optical fiber and large effective area fibers, also single mode. Note 
that the value specified must vary with respect to the fluctuating value of the rela-
tive refractive index and the concentricity of the fiber core diameter.

Exercise

Refer to the technical specification of Corning SMF-28 and LEAF.

 a. State the core diameter of the fibers, the spot size, or mode field diameters 
of the fibers.

 b. Then estimate the effective areas of these fibers.
 c. What is the ratio of the effective area and the physical area of the cores of 

the fibers.

6.1.4 equivalent steP index descriPtiOn

As we can observe, there are two possible orthogonally polarized modes, (Ex, Hy) 
and (Ey, Hx), that can be propagating simultaneously. The superposition of these 
modes can usually be approximated by a single LP mode. These modes’ properties 
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are well known for step index optical fibers, and analytical solutions are also read-
ily available.

Unfortunately, practical single-mode optical fibers never have a perfect step index 
profile due to the variation of the dopant diffusion and polarization. These non-step 
index fibers can be approximated, under some special conditions, by the equivalent 
step index (ESI) profile technique.

A number of index profiles of modern single-mode fibers, e.g., non-zero-disper-
sion-shifted fibers, are shown in Figure 6.9. The ESI profile is determined by approx-
imating the fundamental mode electric field spatial distribution φ(r) by a Gaussian 
function as described in Section 6.1.3.1. The electric field can thus be totally speci-
fied by the e–1 width of this function or mode spot size (r0). Alternatively, the term 
mode field diameter (MFD) is also used and equivalent to twice the size of the mode 
spot size r0.

6.1.4.1 Definitions of ESI Parameters
The ESI description can be used to design a single-mode fiber with a graded index, 
W-type or segmented core profiles (under some limitations). These non-step index 
profiles can be described by ESI parameters denoted in the following: Ve is the 
effective or equivalent V-parameter, ae is the ESI core radius, λec is the ESI cutoff 
wavelength, and Δe is the equivalent relative index difference. These parameters are 
related to two moments M0, M1 defined as

 ∫= −
∞

M n r n a r dr[ ( ) ( )]n
n2 2

0

 (6.34)

for n = 1, 2. The effective Ve-parameter and core radius are given by
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FIGURE 6.9 Index profiles of a number of modern fibers, e.g., dispersion-shifted single-
mode fibers.
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It follows from (6.35) and (6.36) that the parameters λec and Δe can be found by 
setting

 = ∆V k a n2e e e
2 2 2

1
2  (6.37)

and Ve = 2.405, the cutoff condition for step index fibers. Therefore the cutoff wave-
length for an ESI profile fiber is

 λ = π M2 2
2.405ec

1  (6.38)

It is noteworthy that Ve as given in (6.37) is equivalent to the mode volume. 
Physically, the significance of Ve can be compared to the average density of a disk 
with a local density equal to [n2(r) – n2(a)].

6.1.4.2 Accuracy and Limits
The ESI approximation is generally accurate to within 2%, at least over the wave-
length range 0.8 < λ/λc < 1.5. For most practical purposes this range is the operating 
wavelength to minimize the dispersion property of single-mode optical fibers.

6.1.4.3 Examples of ESI Techniques
6.1.4.3.1 Graded Index Fiber
These index profiles of graded fiber are given by Equation (6.7). We thus have

 − = = − 





α

n r n a s r a r
a

( ) ( ) ( / ) 12 2  
(6.39)

Substituting (6.39) into (6.35) gives

 = α
α +







V
V 2
e

1/2
 (6.40)

where we have used V = k · a · NA as the V-parameter of a step index fiber with the 
core index at the fiber axis of n1. Then, we have
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 λ = α
α +







V
2.405 2ec

1/2
 (6.41)

Exercise

Given a single-mode optical fiber with a triangular profile index distribution 
whose equivalent V-parameter is equal to 2 at 1550 nm wavelength, what is the 
V-parameter value at the center of the core of the fiber? If the diameters of the 
cores of the two fibers are kept identical, then what is the ratio of the refractive 
indices at the core center of the fibers? Repeat for a parabolic profile.

6.1.4.3.2 Graded Index Fiber with a Central Dip
The fiber index profile with a central dip and grade gradually increases to the outer 
cladding, as shown in Figure 6.10.

Similar to (6.6) for a graded index fiber with a maximum index at the core axis, 
we have

 = − γ − < <αS r a x o r a( / ) 1 (1 ) for  (6.42)

where γ is the depth and 0 < γ < 1. When r = 0, we have a step index profile, and when 
r = 1, we have the central axis refractive index equal to the cladding index.

Using (6.34) and (6.35), Ve can be easily found and given by

 = − γ
α + α =

V
V

1 2
( 1)( 2)

e
2

2
 (6.43)

6.1.4.4 General Method
The general technique to find the ESI parameters for optical fibers can be started by 
raising the stationary expression in (20) for expressing β of the actual fiber compared 
to its equivalent propagation constant βe as

Graded distribution
n2(r)

r+a–a

FIGURE 6.10 Refractive index profile of a graded index fiber with a central dip. This is a 
typical profile of manufactured fiber if good collapsing of the fiber preform is not achieved.
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where n r( )e
2  is the equivalent counterpart of n(r) when the fiber is expressed in its 

equivalent step form. The field expression ψ(r) is assumed (in fact to be obtained) 
to be similar for the actual fiber and its step equivalence. Once the field φ(r) can be 
replaced by the approximate field shape, we can find Ve and ae that minimize β − βe

2 2  
given in (6.44). Generally these parameters are functions of both V and a, and thus 
it is impossible to get one ESI technique that is applicable to a wide range of wave-
lengths, and it is required that we apply complicated numerical calculations.

6.2 SPECIAL FIBERS

Besides optical fibers for transmission of signals, there are a number of special types 
of fibers that are essential for optical systems, for applications in either telecommu-
nication systems or sensing devices.

In fiberoptics, a polarization-maintaining optical fiber (PMF or PM fiber) is an 
optical fiber in which the polarization of linearly polarized lightwaves launched into 
the fiber is maintained during propagation, with little or no cross-coupling of opti-
cal power between the polarization modes. Such fiber is used in special applications 
where preserving polarization is essential. Several different designs of PM fiber are 
used. Most work by inducing stress in the core via a noncircular cladding cross sec-
tion or via rods of another material included within the cladding. Several different 
shapes of rod are used, and the resulting fiber is sold under brand names such as 
PANDA and Bow Tie. The differences in performance between these types of fibers 
are subtle. Some of the differences are explained in the article “PANDA-Style Fibers 
Move beyond Telecom.”8

Typical cross sections of PMFs or high-birefringence fibers are shown in 
Figure 6.11. From the guided mode point of view, we can observe that the refractive 
index of the fiber would take two different values along the horizontal and vertical 
directions due to the directional effects of stress (Figure 6.11(a)–(c)) or the geometri-
cal profile (Figure 6.11(d)). The difference in refractive indices in these directions 
can be tailored so that only one mode is guided and dominant with the polarization 
in the direction along which the single-mode condition is satisfied, as described in 
Section 6.1.3. In Figure 6.11(a), the core of the fiber is circular and different stresses 
are applied to the core under the drawing process or by inserting a silica circular 
tube into the preform during the drawing process (see drawing process in Section 
6.4). This fiber cross section figure looks like the face of a panda, and so the name 
PANDA fiber, while in Figure 6.11(b), the core refractive index distribution looks 
like a bow tie and hence the name bow-tie fiber.
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Polarization-maintaining optical fibers are used in special applications, such as 
in fiber optic sensing, interferometry, and quantum key distribution.9,10 They are also 
commonly used in telecommunications for the connection between a source laser 
and a modulator, since the modulator requires polarized light as input. They are 
rarely used for long-distance transmission, because PMF is expensive and has much 
higher attenuation than SMF.

PMF does not polarize light like a polarizer does. Rather, PM fiber maintains the 
existing polarization of linearly polarized light that is launched into the fiber with the 
correct orientation. If the polarization of the input light is not aligned with the stress 
direction in the fiber, the output will vary between linear and circular polarization 
(and generally be elliptically polarized). The exact polarization will then be sensitive 
to variations in temperature and stress in the fiber. The output of a PMF is typically 
characterized by its polarization extinction ratio (PER)—the ratio of correctly to 
incorrectly polarized light, expressed in decibels. The quality of PMF patchcords 
and pigtails can be characterized with a PER meter. These fibers are sometime 
called HiBi fibers or high-birefringent fibers. The axes of a PMF are termed as fast 
and slow (see Figure 6.12), indicating the propagation wavenumber βx, βy of high and 
low values, as these propagation constants are determined in vacuum, divided by the 
effective index of the guided polarized mode. Hence, along the fast axis the polar-
ized lightwaves see a smaller value of refractive index and vice versa.

(a) (b)

(c) (d)

FIGURE 6.11 Cross section of polarization-maintaining fibers: (a) PANDA, (b) Bow Tie, (c) 
elliptical clad, and (d) elliptical core.
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The principles of the design of these polarization-maintaining fibers can be 
similar to the effective index method described in Section 5.3 of Chapter 5 for 
three-dimensional optical waveguides, except that the cross section of these fibers is 
circular with birefringence in the refractive index along the horizontal and vertical 
axes or elliptical geometry.

6.3 NONLINEAR OPTICAL EFFECTS

In this section the nonlinear effects on the guided lightwaves propagating through 
a long length of optical fibers, the single-mode type, are described. Unfortunately 
when the intensity of the optically modulated waves reaches a certain level, the 
refractive index of the core changes and, hence, the phase of the waves—thus dis-
persion. Besides this phase change, there are also other effects, such as frequency 
doubling and wavelength conversion. Although the nonlinear coefficient of the fiber 
silica is small, the length of propagation is very long, and so the accumulation of 
these phase changes is quite significant, and it is very much visible when the width 
of the pulses is short at ultra-high speed, e.g., 40 Gb/s.

These nonlinear effects play important roles in the transmission of optical pulses 
along single-mode optical fibers as distortion due to the modification of the phase of 
the lightwaves. The nonlinear effects can be classified into three types: the effects 
that change the refractive index of the guided medium due to the intensity of the 
pulse, the self-phase modulation; the scattering of the lightwave to other frequency-
shifted optical waves when the intensity reaches a certain threshold, Brillouin and 
Raman scattering (SBS, SRS) phenomena; and the mixing of optical waves to gener-
ate a fourth wave, the degenerate four-wave mixing (FWM). Besides these nonlinear 
effects there is also the photorefractive effect, which is due to the change of the 
refractive index of silica due to the intensity of ultraviolet optical waves. This phe-
nomenon is used to fabricate grating whose spacing between dark and bright regions 
satisfies the Bragg diffraction condition. These are fiber Bragg gratings (FBGs) and 

Connector Key

Input beam
polarization

Slow

Fast

FIGURE 6.12 Alignment of fiber axis and input polarization of lightwaves: fast and slow 
axes.
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are used as optical filters and dispersion compensators when the spacing varies or 
is chirped.

In modern coherent optical communication systems incorporating digital signal 
processors at the coherent receiver, the compensation can be done in the electronic 
domain, and back propagation of the lightwaves can be implemented to reverse the 
nonlinear effects imposed on the phase of the guided mode using the frequency 
domain transfer function.11–13

6.3.1 nOnlinear selF-Phase mOdulatiOn eFFects

All optical transparent materials are subject to the change of the refractive index 
with the intensity of the optical waves, the optical Kerr effect. This physical phenom-
enon originates from the harmonic responses of electrons of optical fields, leading 
to the change of the material susceptibility. The modified refractive index nK1,2  of the 
core and cladding regions of the silica-based material can be written as

 = +n n n P
A

K

eff
1,2 1,2 2  (6.45)

where n2 is the nonlinear index coefficient of the guided medium; the average typi-
cal value of n2 is about 2.6 × 10–20 m2/W. P is the average optical power of the pulse 
sequence, and Aeff is the effective area of the guided mode, which is the e–1-value of 
the intensity distribution of the guided field. The nonlinear index changes with the 
doping materials in the core. Although the nonlinear index coefficient is very small, 
the effective area is also very small, about 50–70 μm2, and the length of the fiber 
under the propagation of optical signals is very long and the accumulated phase 
change quite substantial. This leads to the self-phase modulation (SPM) and cross-
phase modulation (XPM) effects in the optical channels.

6.3.2 selF-Phase mOdulatiOn

The origin of the SPM is due to the phase variation of the guided lightwaves exerted 
by the intensity of its own power or field accumulated along the propagation path, 
which is quite long, possibly a few hundred to thousands of kilometers. Under a 
linear approximation we can write the modified propagation constant of the guided 
linearly polarized mode in a single-mode optical fiber as

 β = β + = β + γk n P
A

PK

eff
0 2  (6.46)

where
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where n2 and γ are the nonlinear coefficient and parameter of the guided medium, 
respectively, taking effective values of 2.3 × 10–23 m–2 and from 1 to 5 (kmW)–1, 
depending on the effective area of the guided mode and the operating wavelength. 
Thus, the smaller the mode spot size or mode field diameter, the larger the nonlinear 
SPM effect. For a dispersion-compensating fiber the effective area is about 15 μm2, 
while for SSMF and nonzero-dispersion-shafted fibers (NZ-DSF), the effective area 
ranges from 50 to 80 μm. Thus the nonlinear threshold power of dispersion compen-
sating fiber (DCF) is much lower than that of SSMF and NZ-DSF. The maximum 
launched power into DCF would be limited at about 0 dBm or 1.0 mW in order to 
avoid a nonlinear distortion effect, while it is about 5 dBm for SSMF.

The accumulated nonlinear phase changes due to the nonlinear Kerr effect over 
the propagation length L is given by

 ∫ ∫φ = β − β = γ = γ = −αdz P z dz P L P z P e( ) ( ) with ( )NL
K

L L

in eff in
z

0 0

 (6.47)

defined as the representation of the attenuation of the optical signals along the propa-
gation direction z. In order to consider that the nonlinear SPM effect is small com-
pared with the linear chromatic dispersion effect, one can set ϕnL = 1 or ϕNL = 0.1 rad, 
and the effective length of the propagating fiber is set at Leff = 1/α, with optical losses 
equalized by cascaded optical amplification subsystems. Then, the maximum input 
power to be launched into the fiber can be set at

 < α
γ

P
N

0.1
in

A

 (6.48)

For γ = 2(W · km)–1 and NA = 10, α = 0.2 dB/km (or 0.0434 × 0.2 km–1), and then 
Pin < 2.2 mW or about 3 dBm. Similarly, this threshold level is about 0 dBm for DCF 
with an effective area about at the 1.550 μm spectral region. In practice, due to the 
randomness of the arrival 1 and 0, this nonlinear threshold input power can be set at 
about 10 dBm as the total average power of all wavelength multiplexed channels of 
WDM transmission systems, launched into the fiber link.

6.3.3 crOss-Phase mOdulatiOn

The change of the refractive index of the guided medium as a function of the inten-
sity of the optical signals can also lead to the phase of optical channels in different 
spectral regions close to that of the original channel. This is XPM effects, which are 
critical in wavelength division multiplexed (WDM) channels, and even more critical 
in dense WDM when the frequency spacing between channels is 50 GHz or even 
narrower, the cross-interference between channels generating unwanted noises in 
the optical domain, and thence to the detected electronic signals at the receiver. In 
such systems the nonlinear phase shift of a particular channel depends not only on 
its power but also on that of other multiplexed channels. The phase shift of the ith 
channel can be written as14
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The factor of 2 in (6.49) is due to the bipolar effects of the susceptibility of silica 
materials, and the total phase noises are integrated over both sides of the channel 
spectrum. The XPM thus depends on the bit pattern and the randomness of the syn-
chronous arrival at 1. It is hard to estimate analytically, so numerical simulations 
would normally be employed to obtain the XPM distortion effects using the non-
linear Schrodinger wave propagation equation involving the signal envelopes of all 
channels. The evolution of slow-varying complex envelopes A(z, t) of optical pulses 
along a single-mode optical fiber is governed by the nonlinear Schrodinger equation 
(NLSE)7:
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where z is the spatial longitudinal coordinate, α accounts for fiber attenuation, β1 
indicates DGD, β2 and β3 represent second- and third-order factors of fiber chromatic 
dispersion (CD), and γ is the nonlinear coefficient. This equation would be derived 
from Maxwell’s equations under external perturbation.

The phase modulation due to nonlinear phase effects is then converted to ampli-
tude modulation and the cross talk to other adjacent channels. This is shown in 
Figure 6.13.

6.3.4 stimulated scatterinG eFFects

Scattering of lightwaves by the impurities can happen due to the absorption and 
vibration of the electrons and dislocation of molecules in silica-based materials. The 
back scattering and absorption are commonly known as Raleigh scattering losses in 
fiber propagation in whose phenomena the frequency of the optical carrier does not 

Normalized bounds = 2 × σ

Normalized XPM distritbution

Normalized stand. dev., σTransport
PM to AMPM

FIGURE 6.13 Illustration of XPM effects—phase modulation (PM) conversion to ampli-
tude modulation (AM) and, hence, interference between adjacent channels.
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change. Other scattering processes in which the frequency of the lightwave carrier 
is shifted to other frequency regions are commonly known as inelastic scattering, 
the Raman scattering, and Brillouin scattering. In all cases the scattering of photons 
to a lower energy level photon with an energy difference between these levels falls 
with the energy of phonons. Optical phonons result from the electronic vibration for 
Raman scattering, while acoustic phonons or mechanical vibration of the linkage 
between molecules leads to Brillouin scattering. At high power, when the intensity 
exceeds a certain threshold, the number of scattered photons is exponentially grown, 
and then the phenomena are a simulated process. Thus the phenomena can be called 
stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS). SRS 
and SBS were first observed in the 1970s.15–17

6.3.4.1 Stimulated Brillouin Scattering
Brillouin scattering comes from the compression of silica materials in the presence 
of an electric field, the electrostriction effect. Under the pumping of an oscillat-
ing electric field of frequency fp, an acoustic wave of frequency Fa is generated. 
Spontaneous scattering is an energy transfer from the pump wave to the acoustic 
wave and then a phase matching to transfer a frequency-shifted optical wave of fre-
quency as a sum of the optical signal waves and the acoustic wave. This acoustic 
wave frequency shift is around 11 GHz with a bandwidth of around 50 to 100 MHz 
(due to the gain coefficient of the SBS), and a beating envelope would be modulating 
the optical signals. Thus, jittering of the received signals at the receiver would be 
formed and, hence, the closure of the eye diagram in the time domain.

Once the acoustic wave is generated, it beats with the signal waves to generate 
the sideband components. This beating beam acts as a source and further transfers 
the signal beam energy into the acoustic wave energy and amplifies this wave to 
generate further jittering effects. The Brillouin scattering process can be expressed 
by the following coupled equations:14
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The SBS gain gB is frequency dependent with a gain bandwidth of around 50 to 
100 MHz for a pump wavelength at around 1.550 μm. For silica fiber gB is about 
5e-11 mW–1. The threshold power for the generation of SBS can be estimated (using 
Equation (6.51)) as
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where
 Ip = intensity of pump beam
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 Is = intensity of signal beam
 gB = Brillouin scattering gain coefficient
	αs, αp = losses of signal and pump waves

For the standard single-mode optical fiber (SSMF), this SBS power threshold is 
about 1.0 mW. Once the launched power exceeds this power threshold level the beam 
energy is reflected back. Thus, the average launched power is usually limited to a few 
dBm due to this low threshold power level.

6.3.4.2 Stimulated Raman Scattering
Stimulated Raman scattering (SRS) occurs in silica-based fiber when a pump laser 
source is launched into the guided medium, and the scattering light from the mol-
ecules and dopants in the core region are shifted to a higher energy level and then 
jump down to a lower energy level—hence, the amplification of photons in this level. 
Thus a transfer of energy from different frequency and energy level photons occurs. 
The stimulated emission happens when the pump energy level reaches above the 
threshold level. The pump intensity and signal beam intensity are coupled via the 
following equations:
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where
 Ip = intensity of pump beam
 Is = intensity of signal beam
 gR = Raman scattering gain coefficient
	αs, αp = losses of signal and pump waves

The spectrum of the Raman gain depends on the decay lifetime of the excited 
electronic vibration state. The decay time is in the range of 1 ns, and the Raman 
(gain) bandwidth is about 1 GHz. In single-mode optical fibers the bandwidth of 
the Raman gain is about 10 THz. The pump beam wavelength is usually about 100 
nm below the amplification wavelength region. Thus, in order to extend the gain 
spectra, a number of pump sources of different wavelengths are used. Polarization 
multiplexing of these beams is also used to reduce the effective power launched in 
the fiber to avoid the damage of the fiber. The threshold for stimulated Raman gain 
is given by
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For SSMF with an effective area of 50 μm2, gR ~ 1e – 13 m/W, and then the 
threshold power is about 570 mW near the C-band spectral region. This would 
require at least two pump laser sources, which should be polarization multiplexed. 
The SRS is used frequently in modern optical communication systems, especially 
when no undersea optical amplification is required; the distributed amplification 
of SRS offers significant advantages compared with lumped amplifiers such as an 
erbium-doped fiber amplifier (EDFA). The broadband-gain and low-gain ripple of 
SRS is also another advantage for DWDM transmission.

6.3.4.3 Four-Wave Mixing Effects
Four-wave mixing (FWM) is considered a scattering process in which three photons 
are mixed to generate the fourth wave. This happens when the momentum of the 
four waves satisfies a phase matching condition, that is, the condition of maximum 
power transfer. Figure 6.14 illustrates the mixing of different wavelength channels 
to generate interchannel cross talk. The phase matching can be represented by a 
relationship between the propagation constant along the z-direction in a single-mode 
optical fiber as

 β ω + β ω − β ω − β ω = ∆ ω( ) ( ) ( ) ( ) ( )1 2 3 4  (6.55)

where ω1, ω2, ω3, ω4 are the frequencies of the first to fourth waves and Δ is the phase 
mismatching parameter. If the channels are equally spaced with a frequency spacing 
of Ω, as in DWDM optical transmission, then we have ω1 = ω2; ω3, = ω1 + Ω; ω4 = 
ω1 – Ω. We can use the Taylor series expansion around the propagation constant at 
the center frequency of the guide carrier β0; then we can obtain14
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FIGURE 6.14 Illustration of FWM of optical channels: (a) Momentum vectors of channels; 
(b) frequencies resulting from mixing of different channels.
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 ∆ ω = β Ω( ) 2
2  (6.56)

The phase matching is thus optimized when β2 is zero, indicating that in the 
region where there is no dispersion FWM is biggest, and hence, there is maximum 
interchannel cross talk. This is the reason dispersion-shifted fiber is not commonly 
used when the zero dispersion wavelength falls in the spectral region of operation of 
a channel. In modern transmission fiber the zero-dispersion wavelength is shifted to 
outside the C-band, say 1.510 μm, so that there is a small dispersion factor at 1550 
nm, and the C-band ranges from 2 to 6 ps/nm.km, for example, Corning LEAF 
or nonzero-dispersion-shifted fibers (NZ-DSFs). This small amount of dispersion is 
sufficient to avoid the FWM with a channel spacing of 100 or 50 GHz.

The XPM signal is proportional to instantaneous signal power. Its distribution is 
bounded <5 channels and otherwise effectively unbounded. Thus, the link budgets 
include XPM evaluated at maximum outer bounds.

6.4 OPTICAL FIBER MANUFACTURING AND CABLING

This section is devoted to a brief description of the manufacturing of optical fibers 
and the cabling of several fibers for optical communication systems. The manufac-
turing techniques and cabling process affect the transmission and physical proper-
ties of the fibers. We focus on the aspects for a general understanding of optical 
transmission systems.

As we have described in previous sections, the SSMF structure is a cylindrical 
core with a refractive index slightly higher than that of the cladding region. For 
optical communications operating in the 1300 and 1700 nm wavelength regions, the 
silica material is the base material. A pure silica tube is the starting structure, and a 
combination of silica, germanium dioxide (GeO2), and P2O5 is then deposited inside 
the tube. Other dopants, such as B2O3 and flouride, can also be used to reduce the 
refractive index of some small regions of the core. These are the segmented core and 
W-type fibers, which are described in the next chapter.

Once the deposition of the impurities is done (see Figure 6.15) the tube is collapsed 
to produce silica preforms as shown in Figure 6.15(a). Also shown in this figure is a 
schematic of the fiber-drawing machine and fiber-drawing tower. The refractive index 
of the fiber preform is also shown in this figure, as noted in its caption, and its details 
are shown in Figure 6.15(b) and (c) and Figure 6.16. The fiber preform is necessary 
and fabricated by starting with a pure silica tube rotating in a chemical vapor cham-
ber containing the composition of silica and doping impurities for forming the core 
region. After the deposition of the core material, the silica tube is then collapsed into 
the preform. This preform is then placed in a drawing tower as shown in Figure 6.17, 
heated by a microwave section to melting, and drawn into a circular optical waveguide 
fiber with a control feedback subsystem to ensure the uniformity of the core of the 
fiber. In addition, the drawn fiber may be spun during the drawing process to obtain 
uniformity in the fiber core ellipticity to minimize the polarization mode dispersion 
(PMD), which will be treated in the next chapter. This PMD is very critical for a mod-
ern optical fiber system operating at ultra-speed. Figure 6.18 shows the scenarios of 
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Deposition

(a)

(b) (c)

FIGURE 6.15 Schematic of a fiber deposition and fabrication of a fiber preform. (a) 
Deposition of core material and collapsing. (b) Fiber preform, before drawing into fiber 
strands. (c) Cross section of fiber preform with refractive index profile exactly the same as the 
fiber index profile of single-mode (upper) and multimode (lower) types.
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FIGURE 6.16 Refractive index profile across a single-mode fiber preform. (Note: Non-step-
like profile—so why modeled as a step index structure?)
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Preform

Furnace

Acrylic raisin bath

UV curing

Fiber collection

Pulley drawing

(a)

(b)

FIGURE 6.17 (a) Schematic of fiber-drawing machine. (b) Picture of fiber microwave fur-
nace and diameter monitoring and feedback control.
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installation of fiber cables by aerial hanging, ploughing into the ground and undersea. 
The PMD is most serious for the aerial environment due to the randomness of wind 
direction and speeds of the wind and thence the random vibration of the cables.

6.5 CONCLUDING REMARKS

This chapter introduces the fundamental concepts of waveguiding in the circular 
optical waveguide or optical fibers, including approaches from the Maxwell equa-
tions and the wave equations leading to guided conditions for the modes subject to 
boundary conditions. However, experimental observations and measurement of the 
intensity distribution of the guided mode indicate its Gaussian distribution. It is an 
engineering approach to substitute this known solution to obtain essential parame-
ters for the guided mode. This condition is even more important when the difference 
in the refractive indices of the core and cladding region is very small and the mode 
is guided gently, the weakly guiding phenomena.

The basic properties of the fiber structure, its profile, the spot size, the cutoff wave-
length, and the Gaussian approximation, are described. The Gaussian approximation 

(a) Installation of �ber
      cable by hanging 

(c) Installation of undersea �ber cable 

(d) Splicing two optical �bers 

(b) Installation of �ber cable by 
      drench digging and burying

FIGURE 6.18 Installation of fiber cables at different terrains and undersea.
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makes the understanding of the optical guided mode simple. It also allows us to obtain 
directly the optical mode distribution and thus several other approximations required 
to obtain the simplest form of important parameters of single-mode optical fibers.

Once the basic properties of single-mode optical fibers are found, they form the 
basic set of parameters so that optical fibers whose effective index profiles are non-
step can be found based on the ESI technique, which converts the parameters to an 
equivalent step-like profile and hence other optical properties.

Only structural and wave properties of lightwave signals traveling in optical 
fibers are presented here. As optical communication systems engineers, we have to 
understand and develop techniques for analyzing and identifying the transmission of 
digital and analog signals through optical fibers, that is, the attenuation and broaden-
ing of optical signals after transmission through a medium, namely, attenuation and 
broadening via dispersion of lightwave pulses. These topics will be treated in the 
next chapter, where the theory of electromagnetism has been transformed into the 
signal propagation and the distortion mechanism due to interference effects of differ-
ent spectral/frequency component lightwaves under modulation traveling at different 
speeds due to the confinement of the optical waveguides and the material refractive 
index dependence on wavelength. Furthermore, examples of the design of optical 
fibers are given in the next chapter, especially on how to consider the flattening and 
compensating of dispersion characteristics.

When the time-dependent and nonlinear parameters along the propagation direc-
tion are included in the wave equation, it becomes a nonlinear type, and in order to 
illustrate the behavior of the guided mode along the fiber transmission line, it can 
be considered a cascade of several optical lenses so that the nonlinear effects can be 
operated in the frequency domain. The numerical technique involved in this propa-
gation will be described in Chapter 7.

6.6 PROBLEMS

6.6.1 PrOblem 1

An optical fiber with a step index profile, a core diameter of 62.5 μm, and a numeri-
cal aperture of 0.2 at a wavelength of 1550 nm is used for signal distribution and 
transmission in a local area network.

 a. What is the V-parameter of this optical fiber?
 b. How many guided modes would it support? Can you comment on this num-

ber regarding the velocities of lightwaves?
 c. Select a cladding diameter. Give reasons for your selection.
 d. Find the maximum acceptance angle of this fiber and estimate the coupling 

loss of a laser source with a uniform radiation cone of 30°.

6.6.2 PrOblem 2

An optical fiber has the following parameters: index profile = step-like, core diam-
eter = 9.0 μm, numerical aperture = 0.11, and cladding refractive index = 1.4844.
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 a. Find the normalized frequency of the fiber at 1550 nm wavelength.
 b. Is the fiber operating in the single-mode or multimode region at 1550 nm? 

If it is in the single-mode region, estimate its mode field diameter and spot 
size. Sketch its field and intensity distribution across the fiber cross section.

 c. Find the cutoff wavelength of the fiber. If lightwaves of wavelengths smaller 
than the cutoff wavelength are launched into the fiber, is the fiber still oper-
ating in the single-mode region?

6.6.3 PrOblem 3

A single-mode step index optical fiber has the following parameters: core diameter 
= 8.0 μm, cladding diameter = 0.125 mm, core refractive index = 1.460, and relative 
index difference = 0.2% at 1550 nm.

 a. Confirm that the fiber can be operating in the single-mode regime at 1550 
nm wavelength.

 b. Find the fiber cutoff wavelength. If the refractive index difference fluctuates 
within 20% due to the manufacturing of the fiber, what is the cutoff region 
of this fiber?

 c. What is the fiber mode field diameter if it is operating at 1.550 μm wavelength?

6.6.4 PrOblem 4

For the optical fiber in Problem 3, if the refractive index profile is parabolic (α = 2) 
or triangular (α = 1) with the given numerical aperture at the central axis, repeat (a), 
(b), and (c).

6.6.5 PrOblem 5

Single-mode optical fibers produced by Corning (see Appendix 6.1) have typical 
characteristics as per the technical data sheet.

 a. Using the fiber physical characteristics and technical data on its numeri-
cal aperture, confirm the fiber functional characteristics such as the cutoff 
wavelength range.

 b. If this fiber is launched with a 0.850 μm laser, how many modes would it 
support? Sketch the fields for LP01 and LP11 modes.

 c. If lightwaves at 1.550 μm travel over 10 km of this fiber, calculate the travel 
time of the waves.

 d. Estimate the fiber core diameter at 1.310 μm wavelength.
 e. If the same spot size of (d) is required for the fiber to operate at 1.550 μm, can 

you advise the manufacturer on any change of the fiber physical parameters?

6.6.6 PrOblem 6

 a. The optical fiber in Problem 3 is used in an optical fiber transmission sys-
tem with a laser source operating at 1.310 μm having an output power of 
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1.0 mW. The fiber length is 50 km. An optical receiver can detect an average 
optical power of 0.1 μW. Is it possible to detect the optical power at the end 
of the fiber length?

 b. Referring to the technical data of the standard optical fiber, estimate the 
spreading of the optical pulse after transmitting through the 50 km length 
fiber if the source has an optical line width of 2.0 nm.

6.6.7 PrOblem 7

A step index optical fiber is used for an optical communication system operating at 
1.310 μm and having a core radius of 25 μm and refractive indices in the core and 
cladding regions of 1.460 and 1.4550, respectively.

 a. What is the numerical aperture of the fiber?
 b. Estimate the number of guided modes.

6.6.8 PrOblem 8

 a. Show that for a graded index fiber having a core refractive index
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   with s(r/a) = 1 – (r/a)α, the acceptance angle α(r) is given by 
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 b. If the optical fiber has a parabolic profile shape, show that
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  where NA = n2(2Δ)1/2(1 + Δ).
 c. A parabolic graded index silica optical fiber has a cladding refractive 

index of 1.460 and a relative index difference at the core axis of 1%. Find 
the maximum acceptance angle at the core axis of the fiber. Plot sin α(r) 
as a function of r. What is the acceptance angle of the fiber at the core 
and cladding interface? Comment on the launch of a laser source into this 
fiber.

6.6.9 PrOblem 9

 a. For a single-mode optical fiber having a graded index central dip, that is, 
s(r/a) = 1 – (1 – r/a)α, the ESI parameters of V and the radius are given by



242 Wireless and Guided Wave Electromagnetics

 
= − γ

α + α +






 = α + α + α + − γ

α + α + α + − γ
V
V

a
a

1 2
( 1)( 2)

and ( 1)( 2)( 3) 6
( 1)( 2)( 3) 2

e e
1/2

 where V = ka(2Δ)1/2.
 b. The fiber has a physical core radius of 8.0 μm, a maximum relative index 

difference of 0.3%, and a cladding refractive index of 1.460. Find its ESI 
parameters for the normalized frequency and radius at 1.550 μm wave-
length. Find also its ESI cutoff wavelength and its mode field diameter at 
this wavelength.

6.6.10 PrOblem 10

A silica single-mode optical fiber with a mode spot size of 9 μm is launched with an 
optical data signal sequence of an average power of 10 mW.

 a. Assuming the nonlinear coefficient n2 is 2.3e–20 m/W, estimate the nonlin-
ear factor γ—then the nonlinear phase expected after propagating through a 
100 km span of this fiber, given that the attenuation factor of the fiber is 0.2 
dB/km. Hint: You need to find the effective length of the optical sequence 
traveling distance.

 b. If the optical data sequence is modulated using the QPSK scheme, sketch 
the constellation of the data sequence before and after propagating through 
the fiber.

 c. Repeat (a) and (b) for the Corning SMF-28 and LEAF as given in the chap-
ter’s appendix.
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APPENDIX 6.1: TECHNICAL SPECIFICATION OF 
CORNING SINGLE-MODE OPTICAL FIBERS
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Environmental Specifications Mechanical Specifications

Operating Temperature Range
–60°C to + 85°C

Dimensional Specifications

Standard Length (km/reel): 2.2 – 50.4*
*Longer spliced lengths available at a premium.

Glass Geometry
    Fiber Curl: ≥ 4.0 m radius of curvature
    Cladding Diameter: 125.0 ± 1.0 µm
    Core-Clad Concentricity: ≤ 0.5 µm
    Cladding Noncircularity: ≤ 1.0%

Defined as: Min. Cladding Diameter
Max. Cladding Diameter

× 1001 –

Coating Geometry
    Coating Diameter: 245 ± 5 µm
    Coating–Cladding Concentricity: <12 µm 

Proof Test
�e entire fiber length is subjected to a tensile
proof stress ≥ 100 kpsi (0.7 GN/m2*).
*Higher proof test levels available at a premium.

Performance Characterizations
Characterized parameters are typical values.

Core Diameter: 8.2 µm

Numerical Aperture: 0.14
   NA is measured at the one percent power level
   of a one-dimensional far-field scan at 1310 nm.

Zero Dispersion Wavelength (λ0): 1313 nm

Zero Dispersion Slope (S0): 0.086 ps/(nm2.km)

Refractive Index Difference: 0.36%

Effective Group Index of Refraction,
(Neff @ nominal MFD):
1.4677 at 1310 nm
1.4682 at 1550 nm

Fatigue Resistance Parameter (nd): 20

Coating Strip Force:
Dry: 0.6 lbs. (3N)
Wet, 14-day room temperature: 0.6 lbs. (3N)

Rayleigh Backscatter Coefficient
(for 1 ns pulse width):
1310 nm: –77 dB
1550 nm: –82 dB
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Spectral Attenuation (typical fiber)

Environmental
Test Condition

Induced Attenuation
(dB/km)

1310 nm 1550 nm
Temperature Dependence
–60°C to +85°C* ≤0.05 ≤0.05
Temperature-Humidity Cycling
–10°C to + 85°C*, up to 98% RH ≤0.05 ≤0.05
Water Immersion, 23° ± 2°C* ≤0.05 ≤0.05
Heat Aging, 85°C ± 2°C* ≤0.05 ≤0.05
*Reference temperature = +23°C
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Corning® LEAF® Optical Fiber
Product Information

PI1107
Issued: May 2001
Supercedes: April 2001
ISO 9001 Registered

A powerful Network Needs:
Backbone by LEAF Fiber.
With the ever-accelerating race for bandwidth, 
network designers are challenged to build a 
network for the present that will also maximize 
future technologies. Deploy the fiber that revolu-
tionized network technology and gives you room 
to move. Break the bandwidth barrier with a fiber 
so technologically advanced it gives you the optical 
backbone you need for today’s and tomorrow’s 
networks – Corning® LEAF® optical fiber.

Find out what the world’s most powerful 
networks have in common: Backbone by LEAF 
fiber.

�e Large Effective Area Advantage

LEAF fiber’s large effective area (Aeff) offers 
higher power-handling capability, improved optical 
signal-to-noise ratio, longer amplifier spacing, and 
maximum dense wavelength division multiplexing 
(DWDM) channel plan flexibility compared with 
other nonzero dispersion-shifted fibers (NZ-DSFs).

Fiber with a large Aeff also provides a critical 
performance advantage – the ability to uniformly 
reduce all nonlinear effects (Figure 1). Nonlinear 
effects represent the greatest performance limita-
tions in today’s multichannel DWDM systems.

�e Next Generation

In addition to outperforming other NZ-DSFs in the 
conventional band (C-Band: 1530–1565 nm), LEAF 
fiber facilitates the next technological development 
in fiber–optic networks – the migration to the long 
band (L-Band: 1565–1625 nm). In both C-Band and 
L-Band operation, LEAF fiber has demonstrated 
greater ability to handle more channels by reducing 
nonlinear effects such as four-wave mixing, self-
phase modulation and cross-phase modulation in 
multichannel DWDM transmission.
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Reduce Network Costs
With its increased optical reach advantage, LEAF 
fiber requires fewer amplifiers and regenerators,
and therefore provides immediate and long-term 
cost savings. LEAF fiber is also compatible with 
installed base fibers and photonic components. In 
fact, LEAF fiber’s slightly larger mode-field diam-
eter improves its splicing performance, especially 
when connecting to standard single-mode fiber 
such as Corning® SMF-28™ fiber. And, as with all 
Corning optical fiber, LEAF fiber’s geometry pack-
age is the best in the industry. With LEAF fiber, it is 
easy and economical to increase the information-
carrying capacity of your network.

Figure 1
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LEAF fiber’s larger Aeff increases the area where the light can 
propagate, thereby reducing nonlinear effects.

Fiber for Today and Tomorrow
While LEAF fiber is exceptionally suited to oper-
ate with already installed 2.5 Gbps systems, it is 
techno-economically optimized for today’s high-
channel-count 10 Gbps systems and provides the 
ability to upgrade in the future to tomorrow’s high 
bit systems. Additionally, LEAF fiber’s unparalleled 
specifications on polarization mode dispersion 
(PMD) allow fiber installed today to operate at data 
rates higher than 10 Gbps. �e combination of 
LEAF fiber’s large Aeff and its demonstrated Raman 
upgradeability allows transmission engineers to 
design and build networks advantaged over other 
fiber plants. As the world’s most advanced NZ-DSF, 
LEAF fiber is ready for future technology when your 
network is.

LEAF Fiber – All about Value
With LEAF fiber’s proven large Aeff advantage, the 
industry’s best geometry package, and inherent 
future-proof design, LEAF fiber continues to be the 
fiber of choice for today’s high-capacity and tom-
morrow’s all-optical networks. Network providers 
on the cutting edge have embraced large Aeff tech-
nology as the fiber “backbone” for high-data-rate 
networks now and in the future.

Technology Awards
Corning Incorporated has received multiple 
industry awards for its patented LEAF optical 
fiber. Independent panels of experts have 
chosen LEAF fiber based on its technical 
merits for the following awards:

Annual Technology Award from 
Fiberoptic Product News
Commercial Technology Achievement 
Award for Fiber-Optics from Laser 
Focus World Magazine
Circle of Excellence Award from     
Photonics Spectra Magazine
R&D 100 Award from R&D Magazine

Coating
Corning fiber is protected for long-term 
performance and reliability by the CPC™ 
coating system. Corning’s enhanced, dual 
acrylate CPC coatings provide excellent 
fiber protection and are easy to work with. 
CPC coatings are designed to be mechani-
cally stripped and have an outside diameter 
of 245 µm. CPC coatings are optimized for 
use in many single- and multi-fiber cable 
designs, including loose tube, ribbon, slotted 
core, and tight buffer cables.
Optical Specifications
Attenuation
≤0.25 dB/km at 1550 nm
≤0.25 dB/km at 1625 nm

No point discontinuity greater than     
0.10 dB at 1550 nm
Attenuation at 1383 ± 3 nm shall not 
exceed 1.0 dB/km

�e attenuation in a given wavelength range 
does not exceed the attenuation of the refer-
ence wavelength (λ) by more than the value 
α. In all cases, a maximum attenuation of 
≤0.25 dB/km applies at 1550 nm and 1625 nm.

Attenuation vs Wavelength

Range
(nm)

Ref. λ
(nm)

Max Increase α
(dB/km)

1525–1575 1550 0.05

1625 1550 0.05
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Dispersion Calculation

λ = Operating wavelength up to 1565

D(1565 nm) – D(1530 nm)
35

+ D(1565 nm)Dispersion = D(λ) = *(λ – 1565)

λ = Operating wavelength from 1565–1625

D(1625 nm) – D(1565 nm)
60

+ D(1625 nm)Dispersion = D(λ) = *(λ – 1625)

Special selections of LEAF fiber attributes are avail-
able upon request.

Ordering Information
To order Corning® LEAF® optical fiber, contact your 
sales representative, or call the Optical Fiber Cus-
tomer Service Department at 910-395-7659 (North 
America) and 607-974-7174 (International). Please 
specify the following parameters when ordering.

Fiber Type: Corning® LEAF® Nonzero Dispersion 
Shifted Single-Mode Fiber

Fiber Attenuation Cell:     dB/km

Fiber Quantity:                   kms

Other: (Requested ship date, etc.)

Corning Incorporated
www.corning.com/opticalfiber
One Riverfront Plaza
Corning, NY 14831
U.S.A.
Phone: 800-525-2524 (U.S. and Canada)
607-786-8125 (International)
Fax: 800-539-3632 (U.S. and Canada)
607-786-8344 (International)
Email: info@corningfiber.com

Europe
Berkeley Square House
Berkeley Square
London W1X 5PE
U.K.
Phone: +800 2800 4800 (U.K.*, Ireland, France, Germany,
¨e Netherlands, Spain and Sweden)
*Callers from U.K. dial (00) before the phone number
+800 781 516 (Italy)
+44 7000 280 480 (All other countries)
Fax: +44 7000 250 450
Email: europe@corningfiber.com
Asia-Pacific
Australia
Phone: 1-800-148-690
Fax: 1-800-148-568
Indonesia
Phone: 001-803-015-721-1261
Fax: 001-803-015-721-1262
Malaysia
Phone: 1-800-80-3156
Fax: 1-800-80-3155
Philippines
Phone: 1-800-1-116-0338
Fax: 1-800-1-116-0339

Singapore
Phone: 800-1300-955
Fax: 800-1300-956

¨ailand
Phone: 001-800-1-3-721-1263
Fax: 001-800-1-3-721-1264

Central & Latin America

Brazil
Phone: 000817-762-4732
Fax: 000817-762-4996

Mexico
Phone: 001-800-235-1719
Fax: 001-800-339-1472

Venezuela
Phone: 800-1-4418
Fax: 800-1-4419

Greater China

Beijing
Phone: (86) 10-6505-5066
Fax: (86) 10-6505-5077

Hong Kong
Phone: (852) 2807-2723
Fax: (852) 2807-2152

Shanghai
Phone: (86) 21-6361-0826 ext. 107
Fax: (86) 21-6361-0827

Taiwan
Phone: (886) 2-2716-0338
Fax: (886) 2-2716-0339

E-mail: luyc@corning.com

Corning and LEAF are registered trademarks and SMF-28 is a
trademark of Corning Incorporated, Corning, N.Y.

©2001, Corning Incorporated
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7 Optical Fiber 
Operational Parameters

Operational parameters of any electronic or photonic devices are specified for opera-
tions such as amplification, switching, or transmission, so they are required in both 
time and frequency domains related to the speed of the system operation. This chap-
ter describes the mechanism and properties of lightwave modulated signals when 
propagating over a distance of optical fibers, the single-mode optical fibers (SMFs) 
only, in particular standard SMF (SSMF) and nonzero-dispersion-shifted fibers 
(NZ-DSFs), and dispersion-compensating fibers. Attenuation and dispersion effects, 
the two principal impairments in the design of transmission systems, are described 
in detail.

7.1 INTRODUCTORY REMARKS

In Chapter 8 the basic structure and fundamental aspects of lightwaves propagating 
in planar optical waveguides are treated. The single-mode optical fibers are the basic 
structure for standard communication transmission systems and were introduced in 
Chapter 6. This chapter deals with the transmission of optical signals over optical 
fibers, mainly the loss and spreading of optical signals transmitted through optical 
fibers, namely, the attenuation and dispersion effects. These two parameters influ-
ence significantly the transmission distance and bit rate, or the high or low speed of 
the data rate, which can be transmitted over the guided wave medium.

Attenuation and dispersion are the two most important effects that play major 
parts in optical fiber transmission systems. The attenuation of an optical signal 
would limit the availability of optical power along the transmission path, and for 
very low attenuation, dispersion limits the repeater spacing below what would be 
possible from the attenuation factor.

The fiber loss has been reduced from 100 dB/km (i.e., transmission possible over 
only a few meters) at 1300 nm in 1970 to about 0.25 and 0.15 dB/km, which is very 
close to a theoretically possible transparent limit and transmission of over several 
hundred kilometers of fibers, for 1300 and 1550 nm wavelength regions, respectively, 
in 1980.

The dispersion and pulse broadening of optical fibers have also been reduced 
due to “smart design” of optical fiber structures. In early 1970 we saw a remarkable 
development of theories for the understanding of lightwave guiding in optical fibers 
of multimode types. The breakthrough in the reduction of loss in optical fibers and 
the ability to manufacture optical fibers with a very small core diameter leads to the 
design of single optical fibers.1 The remarkable theoretical development of optical 
waveguiding in a weakly guiding (i.e., a very small difference between the core and 



250 Wireless and Guided Wave Electromagnetics

cladding regions) fiber structure leads to a plane-wave-like transmission of light-
waves. Further, the availability of narrow linewidth lasers allows systems engineers 
to design and implement several high-speed long-distance fiber optic communica-
tion systems.

The attenuation that arises from intrinsic material properties and from waveguide 
properties is described, and a general attenuation coefficient is derived. The chro-
matic dispersion for SM fiber in a linear limit means that we assume the optical 
power launched into the fiber to be less than the threshold for nonlinear effects is 
then treated. The effects of optical waveguide parameters on the dispersion factors 
are analyzed. The balance of the opposite-signed dispersion factors between mate-
rial and waveguides is analyzed so that a minimum dispersion factor can be designed 
for optical fibers with dispersion-compensated or -shifted characteristics achieved.

7.2 SIGNAL ATTENUATION IN OPTICAL FIBERS

Optical loss in optical fibers is one of the two main fundamental limiting factors, 
as it reduces the average optical power reaching the receiver. The optical loss is the 
sum of three major components: intrinsic loss, microbending loss, and splicing loss.

7.2.1 intrinsic Or material attenuatiOn

Intrinsic loss consists mainly of absorption loss due to OH impurities and Rayleigh 
scattering loss. The intrinsic absorption is a function of λ–6. Thus in silica fibers, the 
longer the operating wavelength, the lower the loss is. However, it also depends on 
the transparency of the optical materials that are used to form the optical fibers. For 
silica fiber the optical material loss is low over the wavelength range 0.8 to 1.8 μm. 
Over this wavelength range there are three optical windows that optical communi-
cations are utilizing. The first window over the central wavelength 810 nm is about 
20.0 nm bandwidth over the central wavelength. The second and third windows most 
commonly used in present optical communications are over 1300 and 1550 nm with 
a range of 80 and 40 nm, respectively. The intrinsic losses are about 0.3 and 0.15 dB/
km at 1550 and 1300 nm regions, respectively.

This is a few hundred thousand times improvement over the original transmis-
sion of signal over 5.0 m with a loss of about 60 dB/km. Most communication fiber 
systems are operating at 1300 nm due to the minimum dispersion at this range. For 
power-hungry systems optical or extra-long systems should operate at 1550 nm.

7.2.2 absOrPtiOn

The absorption loss in silica glass is composed mainly of ultraviolet (UV) and infra-
red (IR) absorption tales of pure silica. The IR absorption tale of pure silica has been 
shown to be due to the vibration of the basic tetrahedron, and thus strong resonances 
occurs around 8 to 13 μm with a loss of about 10–10 dB/Km. This loss is shown in the 
curve IR of Figure 7.1. Overtones and combinations of these vibrations lead to vari-
ous absorption peaks in the low-wavelength range, as shown by curve UV.
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Various impurities that also lead to spurious absorption effects in the wavelength 
range of interest (1.2–1.6 μm) are transition metal ions and water in the form of OH 
ions. These sources of absorption have been practically reduced in recent years.

7.2.3 rayleiGh scatterinG

The Raleigh scattering loss, LR, which is due to microscopic nonhomogeneities of 
the material, shows a λ–4 dependence and is given by

 LR = (0.75 + 4.5D)λ–6 dB/Km (7.1)

where Δ is the relative index difference as defined above and λ is the wavelength in 
μm. Thus, to minimize the loss Δ should be made as low as possible.

7.2.4 waveGuide lOss

The losses due to waveguide structure arise from power leakage, bending, microben-
ding of the fiber axis, and defects and joints between fibers. The power leakage is 
significant only for depressed cladding fibers.

7.2.5 bendinG lOss

When a fiber is bent the plane-wave fronts associated with the guided mode are 
pivoted at the center of curvature, and their longitudinal velocity along the fiber axis 
increases with the distance from the center of curvature. As the fiber is bent further 
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FIGURE 7.1 Attenuation of optical signals as a function of wavelength. The minimum loss 
at wavelength: at λ = 1.3 μm about 0.3 dB/km and at λ = 1.5 μm about 0.13 dB/km. For cabled 
fibers the attenuation factor at 1550 nm is 0.25 dB/km.



252 Wireless and Guided Wave Electromagnetics

over a critical curve, the phase velocity exceeds that of a plane wave in the cladding 
and radiation occurs.

The bend loss LB for a radius R (radius of curvature) is given by

 = − −
λ







L r
R

10 log 1 890  for silicaB 10
0
6

4 2
 (7.2)

7.2.6 micrObendinG lOss

Microbending loss results from power coupling from the guided fundamental mode 
of the fiber to radiation modes. This coupling takes place when the fiber axis is bent 
randomly in a high spatial frequency. Such bending can occur during packing of the 
fiber during the cabling process.

The microbending loss of an SMF is a function of the fundamental mode spot size 
r0. Fibers with large spot size are extremely sensitive to microbending. It is therefore 
desirable to design the fiber to have as small a spot size as possible to minimize 
bending loss. The microbending loss can be expressed by the relation

 = × λ− −L r L2.15 10m mm
4

0
6 4  (7.3)

where Lmm is the microbending loss of a 50 μm core multimode fiber having a numer-
ical aperture (NA) of 0.2.

7.2.7 JOint Or sPlice lOss

Ultimately the fibers will have to be spliced together to form the final transmission 
link. With fiber cable that averages 0.4–0.6 dB/km, splice loss in excess of 0.2 dB/
splice drastically reduces the nonrepeated distance that can be achieved. It is therefore 
extremely important that the fiber be designed such that splicing loss be minimized.

Splice loss is mainly due to axial misalignment of the fiber core, as shown in 
Figure 7.2.

Splicing techniques, which rely on aligning the outside surface of the fibers, 
require extremely tight tolerances on the core to outside surface concentricity. 
Offsets on the order of 1 μm can produce significant splice loss. This loss is given by

 = 





L d
r

10
ln10

 dBs
0

2
 (7.4)

where d is the axial misalignment of the fiber cores. It is obvious that minimizing 
optical loss involves making trade-offs between the different sources of loss. It is 
advantageous to have a large spot size to minimize both Raleigh and splicing losses, 
whereas minimizing bending and microbending losses requires a small spot size. In 
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addition, as will be described in the next section, the spot size plays a significant role 
in the chromatic dispersion properties of single-mode fibers.

7.2.8 attenuatiOn cOeFFicient

Under general conditions of power attenuation inside an optical fiber, the attenuation 
coefficient of the optical power P can be expressed as

 = −αdP
dz

P  (7.5)

where α is the attenuation coefficient in linear scale. This attenuation coefficient can 
include all effects of power loss when signals are transmitted through the optical 
fibers.

Considering optical signals with an average optical power entering at the input 
of the fiber length L, Pin, and output optical power, Pout, we have that Pin and Pout are 
related to the attenuation coefficient α as

 Pout = Pine(–αL) (7.6)

It is customary to express α in dB/km by using the relation

 α = − 





= α
L

P
P

(dB/km) 10 log 4.343out

in
10  (7.7)

with L the distance in kilometers. SSMFs with a small Δ would have a loss/attenua-
tion coefficient of about 0.2 dB/km; i.e., the purity of the silica would be very high. 
Such a purity of a bar of silica would allow us to see through a 1 km thick glass bar 
without distortion. The attenuation curve for silica glass is shown in Figure 7.1.

7.3 SIGNAL DISTORTION IN OPTICAL FIBERS

7.3.1 basics On GrOuP velOcity

Consider a monochromatic field given by

Fiber 2Fiber 1

(a) (b)
d

FIGURE 7.2 (a) Misalignment in splicing of two optical fibers, generating losses; (b) 
aligned spliced fibers.



254 Wireless and Guided Wave Electromagnetics

 = ω − βE A t zcos( )x  (7.8)

where A is the wave amplitude/envelope carried by the optical carrier, ω is the radial 
frequency of the lightwave carrier, and β is the propagation constant of the light-
waves guided along the z-direction at the operating wavelength. If we set (ωt − βz) 
constant, then the wave phase velocity is defined as the differential variation with 
respect to time along the propagation direction, given by

 = = ω
β

v dz
dtp  (7.9)

Now consider the propagating wave, which is a superimposition of two mono-
chromatic fields of frequencies ω + δω and ω − δω of

 = ω + δω − β + δβE A t zcos[( ) ( ) )]x1
 (7.10)

 = ω − δω − β − δβE A t zcos[( ) ( ) )]x2  (7.11)

The total field is then given by

 = + = ω − β δω − δβE E E A t z t z2 cos( )cos( )x x x1 2  (7.12)

If ω >> δω, then cos(ωt − βz) varies much faster than cos(δωt − δβz). By setting 
the constant we can define the group velocity as

 = ω
β

→ = β
ω

−v d
d

v d
dg g

1  (7.13)

The group delay tg per unit length (setting L at 1.0 km) is thus given as

 = = β
ω

t L
v

d
d

(of 1 Km)
g

g
 (7.14)

We are interested in the group velocity because when the lightwave carrier is 
modulated so as to carry information, the spectrum of the lightwaves is broadened 
from a single line of the single carrier. This broadening of the spectrum consists of 
several frequency components that travel down the optical fiber with different veloci-
ties because the refractive index of the fiber and the propagation constant vary with 
respect to frequency. Thus, interference between these components would generate 
the broadening of the original modulating pulse before propagating. This broadening 
would then limit the operation speed of the transmission systems.
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The pulse spread Δτ per unit length due to a group delay of light sources of spec-
tral width σλ (i.e., the full width at half maximum (FWHM) of the optical spectrum 
of the light source) is

 ∆τ =
λ

σλ
dt
d

g  (7.15)

Then, the spread of the group delay is due to the spread of the source wavelength in 
ps/km. The linewidth of the light source makes a significant difference in the distor-
tion of the optical signal transmitted through a long length of single-mode optical 
fiber. The narrower the source linewidth, the less dispersed the optical pulses are. A 
typical linewidth of Fabry–Perot semiconductor lasers is about 1 to 2.0 nm, while 
the distributed feedback (DFB) laser would exhibit a linewidth of 100 MHz. To how 
many nanometers is this 100 MHz optical frequency equivalent?

In the case where the laser source has a very narrow spectral width, such as the 
external laser cavity whose bandwidth is only 100 MHz, the spectral width would 
take the value of the 3 dB bandwidth of the modulated spectrum, which is equivalent 
to that in the baseband of the signal. This is illustrated in Figure 7.3.

The variation of the phases of different spectral components can also be illus-
trated, as phasors, in Figures 7.4 and 7.5. Due to this phase difference or delay times 
between components, interference of these waves would thus create dispersion or 
broadening of the pulse in the time domain.

Optical signal traveling along a fiber becomes increasingly distorted. This dis-
tortion is a consequence of intermodal delay effects and intramodal dispersion. 
Intermodal delay effects are significant in multimode optical fibers due to each mode 
having a different value of group velocity at a specific frequency. While intermodal 
dispersion is pulse spreading that occurs within a single mode, it is the result of the 
group velocity being a function of the wavelength λ and is therefore referred to as 
chromatic dispersion.

Two main causes of intermodal dispersion are

• Material dispersion arising from the variation of the refractive index of the 
fiber core and cladding, n(λ), as a function of wavelengths. This causes a 
wavelength dependence of the group velocity of any guided mode.

Envelope
1 + m

1

–1

1 – m

Carrier wave
t –fT fT

fT – fm

Tm = 1/fm = 2π/ωm

fT + fm
0 f

FIGURE 7.3 Modulated signal in time domain and frequency domain.
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• Waveguide dispersion occurring due to the dependence of the propagation 
constant β(λ) of the guided mode as a function of wavelength λ and core 
radius a and the refractive index difference.

The group velocity associated with the fundamental mode is thus frequency depen-
dent. As a result, different spectral components of the light pulse travel at different 
group velocities; this phenomenon is then referred to as the group velocity dispersion 
(GVD), intramodal dispersion, or material dispersion and waveguide dispersion.

7.3.2 GrOuP velOcity disPersiOn

7.3.2.1 Material Dispersion
The refractive index of silica varies as a function of wavelength, as depicted in 
Figure 7.6. The refractive index is plotted over the wavelength region of 1.0 to 2.0 
μm, which is the lowest loss range for silica fiber and, thus, the operating region for 
optical communication systems. This region is commonly known as the 1300 and 
1550 nm window.
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γo

γu

–ωm
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FIGURE 7.5 Magnitude of complex envelope when not sinusoidal or affected by nonlinear 
distortion effects.
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+ωm

–ωm
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FIGURE 7.4 Vector phasor diagram representing the complex envelope. The phasor rotates 
at an optical angular frequency, and the optical carrier phase is indicated by the angle of the 
vectors in this plane.
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The propagation constant β of the fundamental mode guided in an optical fiber 
can be written as

 β λ = π λ
λ
n( ) 2 ( )  (7.16)

The group delay tgm per unit length, by using (7.14), can be obtained for material 
dependence as

 = β
ω

t d
dgm

 (7.17)

Now use

 ω = π
λ







= − π
λ

λd d c c d2 2
2

 (7.18)

Then (7.17) becomes

 = − λ
π

β
λ

t
c
d
d2gm

2  (7.19)

Substituting (7.16) into (17.9) we have

 = λ − λ λ
λ
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n dn
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1 ( ) ( )

gm  (7.20)
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FIGURE 7.6 Variation in the refractive index as a function of optical wavelength of silica 
fiber.
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Thus the pulse dispersion per unit length Δτm/Δλ due to material can be found 
by differentiating (7.20) and summing up all spectral components of the lightwave 
group of a source having a root mean square (RMS) spectral width σλ as

 ∆τ = − λ
λ

σλc
d n
dm

2

2
 (7.21)

If setting Δτm = M(λ)σλ, we obtain

 λ = − λ
λ

M
c
d n
d

( )
2

2
 (7.22)

M(λ) is defined as the material dispersion factor or material dispersion parameter; its 
unit is commonly expressed in ps/(nm.km), or equivalently in SI units of 10–6 s/m2.

If the refractive index can be expressed as a function of the optical wavelength, 
the material dispersion can be estimated. In fact, in practice optical material engi-
neers have to characterize all optical properties of new materials. The refractive 
index n(λ) can usually be expressed in Sellmeier’s dispersion formula as

 ∑λ = + λ
λ − λ

n G( ) 1
( )

k

kk

2
2

2 2  (7.23)

where Gk are Sellmeier’s constants and k is an integer normally taken in a range of 
k = 1, 2, 3. In the late 1970s several silica-based glass materials were manufactured 
and their properties measured. The refractive indices are usually expressed using 
Sellmeier’s coefficients. These coefficients for several optical fiber materials are 
given in Table 7.1.

By using curve fitting, the refractive index of pure silica, n(λ), can be expressed as

 λ = + λ + λ−n c c c( ) 1 2
2

3
2  (7.24)

where c1 = 1.45084, c2 = –0.00343 μm–2, and c3 = 0.00292 μm2. From Table 7.1 
and (7.24), we can use (7.22) to determine the material dispersion factor for certain 
wavelength range.

For the doped core of the optical fiber, Sellmeier’s expression (7.23) can be 
approximated by using the curve-fitting technique to approximate it to the form 
given in (7.24). The material dispersion factor M(λ) becomes zero at wavelengths 
around 1280 nm and about –10 ps/(nm.km) at 1550 nm, as calculated in Figure 7.7. 
However, the attenuation at 1350 nm is about 0.4 dB/km, compared to 0.2 dB/km 
at 1550 nm, as shown in Table 7.1. So from the operation of optical transmission 
systems, at the operating wavelength of 1300 nm, optical modulated signals would 
suffer almost no dispersion and, hence, no distortion, but they are limited by the high 
attenuation factor. On the other hand, operating in the 1550 nm wavelength, the loss 
is low but the modulated signals would suffer distortion due to pulse broadening by 
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the dispersion phenomena. This dilemma has been considered and was solved in 
early 1990 when fiber-based optical amplification was achieved using erbium-doped 
silica core fiber and the design of zero-dispersion fiber with the zero-dispersion 
wavelength shifted to the vicinity of 1550 nm. The detection of this kind of optical 
communication system is direct, and noises contributed by these optical amplifiers 
are high—hence, limiting the transmission distance. In the 21st century coherent 
detection associated with digital signal processing has enabled the reduction of opti-
cal amplifiers installed along the transmission link and compensation of dispersion 
conducted in the electronic digital domain. These advanced techniques have allowed 
the best performance for optical transmission systems.

Communication engineers prefer to deploy optical communication systems at 
wavelength ranges over which the loss is at a minimum, as well as the dispersion fac-
tor. Unfortunately, this cannot be simultaneously satisfied. Over the last three decades 
of advancement of transmission systems, in the 1980s of the last century, we were 
employing sources at 1310 nm when the dispersion was almost zero and repeating 
the channels every 40 km in the electronic domain. Until the 1990s, when optical 
amplification could be employed using Er-doped fiber amplifier at 1550 nm, all opti-
cal systems were switched to this infrared region. The fiber dispersion could then 
be compensated by designing dispersion-compensating fiber (DCF) to insert after 
the transmission fiber or dispersion-shifted fibers whose zero-dispersion wavelength, 
λZD, could be tailored to be in the lowest attenuation region, as shown in Figure 7.7. 
However, due to the low values of material dispersion, the waveguide dispersion fac-
tor requires fibers of diameter sufficiently small—hence, the nonlinear distortion and 
high attenuation factor due to bending. Additional optical amplifiers must be employed 
to compensate for this high DCF loss, and further optical noises are added to the over-
all transmitted signals, thus limiting the transmission distance. These noises can be 
eliminated by techniques that can compensate the dispersion in either the optical or 
electronic domain. In the optical domain, with devices such as fiber Bragg gratings, 
few mode fibers can be used to delay different frequency components opposite of 
those that exerted on the spectrum of the signals. We will address the design of such 

TABLE 7.1
Sellmeier’s Coefficients for Several Optical Fiber 
Silica-Based Materials with Germanium Doped in the 
Core Region

Sellmeier’s 
Constants

Germanium Concentration, C (mol%)

0 (pure silica) 3.1 5.8 7.9

G1 0.6961663 0.7028554 0.7088876 0.7136824

G2 0.4079426 0.4146307 0.4206803 0.4254807

G3 0.8974794 0.8974540 0.8956551 0.8964226

λ1 0.0684043 0.0727723 0.0609053 0.0617167

λ2 0.1162414 0.1143085 0.1254514 0.1270814

λ3 9.896161 9.896161 9.896162 9.896161
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advanced optical fibers in the next few sections, after the description of the waveguide 
dispersion phenomena and associated mathematical expressions.

A system set up to measure the dispersion property is shown in Figure 7.8. A tun-
able laser source with a very narrow line width is modulated by an external optical 
integrated modulator, the RF signals of which come from the phase detector at the 
output of the fiber line. The wavelength of the laser is scanned across the spectral 
region of interests. The differential group delay (DGD) is then obtained by finding 
the ration between the phase and the difference in wavelength. From this DGD we 
can derive the dispersion factor.

Likewise signals can be coherently detected, amplified, and then compensated in 
a digital electronic domain. This technique is currently most preferable, as it is pro-
grammable provided that high-speed analog-to-digital converters (ADCs) are avail-
able. ADCs at a sampling rate of 65 GSa/s are now commercially available, and an 
ultra-high sampling digital oscilloscope has also been developed, allowing optical 
communication systems operating in the 100 Gb/s and beyond, even at 1 Tbps capac-
ity using superchannels.

7.3.2.2 Waveguide Dispersion
The effect of waveguide dispersion can be approximated by assuming that the refrac-
tive index of the material is independent of wavelength. Let us now consider the 
group delay, i.e., the time required for a mode to travel along a fiber of length L. This 
kind of dispersion depends strongly on Δ and V-parameters. To obtain the results of 
fiber parameters, we define a normalized propagation constant b as

 

=

β −

−
b k

n

n n

2

2 2
2

1
2

2
2

 
(7.25)

for small Δ. We note that β/k is in fact the effective refractive index of the guided 
optical mode propagating along the optical fiber; that is, the guided waves traveling 
the axial direction of the fiber see it, or slow down, as a medium with a refractive 
index of an equivalent effective index.

In case the fiber is a weakly guided waveguide, that is, the refractive index dif-
ference between the core and cladding regions is very small, the effective refractive 
index taking a value of significantly close to that of the core or cladding index, the 
normalized propagation constant (7.25), can be approximated by

 
≅

β −

−
b k

n

n n
2

1 2

 
(7.26)

Solving (7.26) for β, we have

 β = ∆ +n k b( 1)2  (7.27)

The group delay due to waveguide dispersion is then given by (per unit length)
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Equation (7.29) can be obtained from (7.28) by using the expression of the V-parameter. 
Thus, the pulse temporal spreading Δτwg due to the waveguide dispersion per unit 
length by a source having an optical bandwidth (or linewidth σλ) is given by

 ∆τ =
λ

σ = − ∆
λ

σλ λ
dt
d

n
c

V d Vb
dV
( )

wg
gw 2

2

2
 (7.30)

and the waveguide dispersion factor or waveguide dispersion parameter (similar to 
the material dispersion factor) is then defined as

 λ = − λ ∆
λ

D n
c

V d Vb
dV

( ) ( ) ( )2
2

2
 

(7.31)

in units of ps/(nm.km). In the range of 0.9 < λ/λc < 2.6, the dimensionless factor 
V(d2(Vb)/dV2) can be approximated (to <5% error) by

 ≅ + −V d Vb
dV

V( ) 0.080 0.549(2.834 )
2

2
2  (7.32)

or alternatively, using the definition of cutoff wavelength and the expression of the 
V-parameters, we obtain

 ≅ + − λ
λ







V d Vb
dV
( ) 0.080 3.175 1.178 c

2

2

2
 (7.33)

Exercise

Prove the equivalence of Equations (7.28) to (7.33). Note that the sign assignment 
of the material and waveguide dispersion factors must be the same. Otherwise, a 
negative and positive of these dispersion factors would create confusion. Can you 
explain what would happen to the pulse if it is transmitted through an optical fiber 
having a total negative dispersion factor?

From (7.33) and (7.32) we can calculate the waveguide dispersion factor and 
hence the pulse dispersion factor for a particular source spectral width, σλ. It is 
noted that the dispersion considered in this chapter is for step index fiber only. For 
grade index fiber, equivalent step index (ESI) parameters must be found and the 
chromatic dispersion can then be calculated.
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7.3.2.3 Alternative Expression for Waveguide Dispersion Parameter
Alternatively, the waveguide dispersion parameter can be expressed as a function of 
the propagation constant β by using ω = 2πc/λ and (7.33); then the waveguide disper-
sion factor can be written as

 λ = − π
λ

β = − π
λ

β
ω

D c c d
d

( ) 2 2
2 2 2

2

2
 (7.34a)

Thus, the waveguide dispersion factor is directly related to the second-order deriva-
tive of the propagation constant with respect to the optical radial frequency.

An example for the design of an optical fiber operating in the single-mode region 
is given in Figure 7.7. The cladding material is pure silica. Shown in this figure are 
the curves of the material dispersion, waveguide dispersion, and total dispersion for 
a single-mode optical fiber with a nonuniform refractive index profile in the core.

7.3.2.4 Higher-Order Dispersion
We observe also from Figure 7.6 that the bandwidth length product of the optical 
fiber can be extended to infinity if the system is operating at the wavelength such that 
the total dispersion is zero. However, the dispersive effects do not disappear com-
pletely at this zero-dispersion wavelength. Optical pulses still experience broadening 
due to higher-order dispersion effects. It is easily imagined that the total dispersion 
factor cannot be made zero “flattening” over the optical spectrum. This is higher-
order dispersion, which governs by the slope of the total dispersion curve, defined as 
the dispersion slope
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S(λ) is also known as the differential-dispersion parameter or dispersion slope and 
commonly specified by fiber manufacturer, as given in Appendix 7.1 of this chapter 
for standard single-mode optical fiber (SSMF) and large effective area fiber (LEAF).

7.3.2.5 Polarization Mode Dispersion
Figure 7.9 illustrates the conceptual dynamics of the difference of the two polarized 
fields of the guided fundamental mode of a single-mode fiber, the linearly polarized 
mode LP01, due to the birefringence of the fiber created by external effects during 
the installation of fibers or during the drawing process from a fiber-drawing tower. 
The propagation or transmission length is very long, possibly longer than a few 
thousand kilometers; the variation of the fiber core birefringence and concentricity 
would lead to different propagation velocities and delay time between these polarized 

(a)

(b)

∆T

∆T

Slow

Fast

Linear
birefringence

(e.g., PM fiber)

Randomly concatenated
birefringent sections

FIGURE 7.9 Conceptual model of PMD: (a) simple birefringence device and (b) randomly 
concatenated birefringence.
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components—hence, the term polarization mode dispersion (PMD). The PMD pulse 
is broadening due to the delay times of different spectral components of a modulated 
pulse or pulse sequence. Figure 7.10 illustrates the degradation of a pulse sequence in 
terms of an observed eye diagram in optical fiber communication systems. Years ago 
this PMD effect was not critical for bit rates less than 2.5 Gb/s, but since the end of the 
last century the bit rate has been increased to 10 Gb/s and presently 100 G, and even 
beyond to 400 GSymbols/s, and so the PMD is even more serious.

The delay between two PSPs is normally negligibly small at 10 Gb/s. However, at 
high bit rate and in ultra-long-haul transmission, PMD severely degrades the system 
performance.2–5 The instantaneous value of DGD (Δτ) varies along the fiber and fol-
lows a Maxwellian distribution3,6,7 (see Figure 7.11).

The Maxwellian distribution is governed by the following expression:

 ∆τ = ∆τ
π ∆τ

− ∆τ
π ∆τ












∆τ ≥f ( ) 32( ) exp 4( ) 0   
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2 3

2

2
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The mean DGD value ∆τ  is commonly termed fiber PMD and provided in the 
fiber specifications. For example, for SSMF the PMD is about 0.1 ps/ps/ km , and 
for old type about 0.5 ps/ km , which is quite substantial. Optical signals traveling 
over 100 km, a 5 ps PMD, would be added to the total pulse broadening. The fol-
lowing expression gives an estimate of the maximum transmission limit Lmax due to 
the PMD effect:

 =
∆τ ⋅

L
R

0.02
b

max 2 2
 (7.36)
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FIGURE 7.10 Effect of PMD in a digital optical communication system, degradation of the 
received eye diagram.
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where Rb is the bit rate. Based on (7.36), Lmax for both old vintage fiber and contem-
porary fibers can be obtained as follows:

• ∆τ  = 1 ps/km (old fiber vintages): For bit rate of R = 40 Gb/s, the maxi-
mum distance Lmax = 12.5 km; for R = 10 Gb/s, Lmax = 200 km.

• ∆τ  = 0.1 ps/km (contemporary fiber for modern optical systems): For bit 
rate R = 40 Gb/s, the maximum transmission distance Lmax = 1250 km; for R 
= 10 Gb/s, Lmax = 20,000 km under no chromatic dispersion effect.

The PMD effects can, however, be compensated for in the electronic domain in 
a coherent transmission and digital signal processor (DSP)-based optical receiver.8

Question

Inspect the technical specifications of Corning SMF-28 and LEAF fibers given 
in the Appendix 6.1 and extract the values of the PMD. Explain the difference 
between the values of the fibers. What is the standard value allowable for PMD 
in modern fibers?

7.3.3 transmissiOn bit rate and the disPersiOn FactOr

The effect of dispersion on the system bit rate Br is obvious and can be estimated by 
using the criterion

 Br · Δt < 1 (7.37)
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where Δτ is the total pulse broadening. With the fiber length, the total dispersion 
DT(λ) = M(λ) + D(λ), and a source linewidth σλ, the criterion becomes

 Br · L · |DT|σλ ≤ 1 (7.38)

For a total dispersion factor of 1 ps/(nm · km) and a semiconductor laser of line-
width of 2–4 nm, the bit rate length product cannot exceed 100 Gb/s-km. That is, if a 
100 km transmission distance is used, then the bit rate cannot be higher than 1.0 Gb/s.

Figure 7.12 shows a schematic diagram of subsystems in cascade of an optical 
transmission system, including transmitter, fiber, and receiver, which is a direct 
detection type. Under direct detection the photodetector can be represented by 
square-law detection, that is, the square of the absolute value of the optical field 
amplitude. This is due to the fact that a photodetection diode absorbs optical power 
in the sensitive spectrum of the material of the detector, and then electrons and holes 
are generated and collected at the electrodes based on biasing voltage dropped across 
the electrodes.

7.3.4 eFFects OF mOde hOPPinG

So far we have assumed that the source center emission wavelength is unaffected by 
the modulation. In fact, when a short current pulse is applied to a semiconductor laser, 
its center emission wavelength may hop from one mode to its neighbor at a longer 
wavelength. In the case where a multilongitudinal mode laser is used, this hopping 
effect is negligible; however, it is very significant for a single longitudinal mode laser. 
Currently external cavity lasers can offer a very narrow linewidth of about 100 kHz 
and high stability without any mode hopping effects. These lasers are employed in 
digital coherent transmission systems operating at 100 Gbps and beyond bit rates.

Transmitter Fiber Receiver

const consthTP(t)
x(t) y(t)

v1(t)>0 P1(t) P1(t) P2(t) v2(t)
|...|2

P(“1”)

P(“0”)

0 Tb t

(a)

(b)

FIGURE 7.12 (a) Schematic of an optical transmission system operating under direct detec-
tion and equivalent transfer functions of subsystems; (b) typical ideal eye diagrams for non–
return-to-zero amplitude shift keying (NRZ-ASK) modulation format.
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7.4  ADVANCED OPTICAL FIBERS: DISPERSION-SHIFTED, 
-FLATTENED, AND -COMPENSATED OPTICAL FIBERS

In the beginning of the 1980s, there was great interest to reduce the total dispersion 
[M(λ) + D(λ)] of single-mode optical fiber at 1550 nm, where the loss is lowest for 
silica fiber. There were two significant trends; one was to reduce the linewidth and 
stabilize the laser center wavelength, and the other was to reduce the dispersion 
at this wavelength. The fibers designed for long-haul transmission systems usually 
exhibit a near-zero dispersion at a certain spectral window. These are dispersion-
shifted fibers; that is, at this wavelength we prefer to have the total dispersion = [M(λ) 
+ D(λ)] ∼ 0. The material dispersion factor M(λ) is natural and slightly affected by 
variation of doping material and concentration. However, the waveguide dispersion 
factor D(λ), and hence the total dispersion DT(λ), can be tailored by designing appro-
priate refractive index profiles and geometrical structure to balance the material dis-
persion effects. Note that the dispersion factors due to material and waveguide take 
algebraic values; thus, they can be designed to take opposite values to cancel each 
other. See Appendices 1 and 2 (Sections 7.6 and 7.7) for MATLAB® files as examples 
for the design of these fibers.

An advanced optical fiber design technique can offer the design of dispersion-
flattened fibers where the dispersion factor is flat over the wavelength range from 1300 
to 1600 nm by tailoring the refractive index profile of the core of optical fibers in such 
distribution as the W-profile, the segmented profile, and multilayer core structure.

Question

What is the principal phenomenon for an optical fiber so that the dispersion char-
acteristic is flattened over the wavelength range 1300 to 1550 nm?

Another type of optical fiber that would be required for compensating the disper-
sion effect of an optical signal after transmission over a length of optical fiber is the 
dispersion-compensated fiber, whose dispersion factor is many times larger than that 
of the standard communication fiber with an opposite sign. This can be designed by 
setting the total dispersion to the required compensated dispersion, and the wave-
guide dispersion can be found over the required operating range. Then optical fiber 
structures can be tailored. A sample design of an advanced optical fiber, the non-
zero-dispersion-shifted type, is given in Appendix 7.2.

7.5  PROPAGATION OF OPTICAL SIGNALS IN OPTICAL FIBER 
TRANSMISSION LINE: SPLIT-STEP FOURIER METHOD

The simulation of optical communication becomes more important nowadays due 
to the costs of setting up a test platform for operation at every speed, on the order of 
more than 40 and 100 Gbps and beyond. Under simulation platforms the propagation 
of an optical data sequence over a long line of optically amplified fiber is essential. 
Thus numerical techniques must be resorted to to achieve accurate and reasonably 
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fast results. It is noted that the length of the data sequence would be on the order of 
several billion bits if a bit error rate (BER) of 10–9 is desired. This section gives an 
introduction to the numerical technique, the split-step Fourier method, to solve the 
nonlinear Schrodinger equation so that it can be integrated into the simulation plat-
form for optical transmission systems.

7.5.1 symmetrical sPlit-steP FOurier methOd (ssFm)

The evolution of slow-varying complex envelopes A(z, t) of optical pulses along a 
single-mode optical fiber is governed by nonlinear Schrodinger equation (NLSE):
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where z is the spatial longitudinal coordinate, α accounts for fiber attenuation, β1 
indicates DGD, β2 and β3 represent second- and third-order dispersion factors of 
fiber chromatic dispersion (CD), and γ is the nonlinear coefficient. In a single-chan-
nel transmission, Equation (7.39) includes the following effects: fiber attenuation, 
fiber CD and PMD, dispersion slope, and self-phase modulation (SPM) nonlinear-
ity. Fluctuation of optical intensity caused by the Gordon–Mollenauer effect is also 
included in this equation.

The solution of NLSE and hence the modeling of pulse propagation along a sin-
gle-mode optical fiber is solved numerically by using the split-step Fourier method 
(SSFM). In SSFM, fiber length is divided into a large number of small segments δz. 
In practice, fiber dispersion and nonlinearity are mutually interactive at any distance 
along the fiber. However, these mutual effects are small within δz, and thus, effects 
of fiber dispersion and fiber nonlinearity over δz are assumed to be statistically inde-
pendent of each other. As a result, SSFM can separately define two operators: (1) the 
linear operator that involves fiber attenuation and fiber dispersion effects and (2) the 
nonlinearity operator that takes into account fiber nonlinearities. These linear and 
nonlinear operators are formulated as follows:
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where = −j 1, A replaces A(z, t) for simpler notation, and T = t – z/vg is the refer-
ence time frame moving at the group velocity. Equation (7.40) can be rewritten in a 
shorter form, given by

 ∂
∂

= +A
z

D N A( ˆ ˆ )  (7.41)
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and the complex amplitudes of optical pulses propagating from z to z + δz are calcu-
lated using the following approximation:

 + ≈A z h T hD hN A z T( , ) exp( ˆ )exp( ˆ ) ( , )  (7.42)

Equation (7.42) is accurate to the second order of the step size δz. The accuracy 
of SSFM can be improved by including the effect of fiber nonlinearity in the middle 
of the segment rather than at the segment boundary (see Figure 7.13). This modified 
SSFM is known as the symmetric SSFM.

Equation (7.73) can now be modified as

 ∫+ δ ≈ δ
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This method is accurate to the third order of the step size δz. In symmetric SSFM, 
the optical pulse propagates along a fiber segment δz in two stages. First, the opti-
cal pulse propagates through the linear operator that has a step of δz/2, in which the 
fiber attenuation and dispersion effects are taken into account. Then, the fiber non-
linearity is calculated in the middle of the segment. After that, the pulse propagates 
through the second half of the linear operator. The process continues repetitively in 
consecutive segments of size δz until the end of the fiber. It should be highlighted 
that the linear operator is computed in the frequency domain, while the nonlinear 
operator is calculated in the time domain.

7.5.2 matlab® PrOGram and matlab simulink® mOdels OF the ssFm

A MATLAB program is given below. This program performs the propagation of the 
optical signals along the optical fiber transmission distance, as shown in Figure 7.14. 
This program must be included in the folder storing the MATLAB Simulink model. 
In this folder an initialization program (see Appendix 8.2) must also be included to 
set the data and parameters required for the Simulink model and subroutines. (See 
Figure 7.15.) Furthermore, the SSMF including Raman gain amplification effects is 
given in Appendix 8.1, a modification of the MATLAB file given below to include 
the Raman scattering effect.

7.5.2.1 SSFM MATLAB Program
function output = ssprop_matlabfunction_modified(input)
nt = input(1);
u0 = input(2:nt+1);
dt = input(nt+2);
dz = input(nt+3);
nz = input(nt+4);
alpha_indB = input(nt+5);
betap = input(nt+6:nt+9);
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(a) (b)

(c) (d)

(e) (f )

FIGURE 7.13 Eye diagram and time sequence of random signals at 10 Gb/s transmission 
over standard SMF after (a and b) 0 km (i.e., at the transmitter), (c and d) 20 km, and (e and 
f) 80 km distance.
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gamma = input(nt+10);
P_non_thres = input(nt+11)
maxiter = input(nt+12);
tol = input(nt+13);
 tic;
%tmp = cputime;
% This section solves the NLSE for pulse propagation in an 
optical fiber using the
% SSFM
% The following effects are included: group velocity 
dispersion
% (GVD),higher order dispersion, loss, and self-phase 
modulation (gamma).
% USAGE
% u1 = ssprop(u0,dt,dz,nz,alpha,betap,gamma);
% u1 = ssprop(u0,dt,dz,nz,alpha,betap,gamma,maxiter);
% u1 = ssprop(u0,dt,dz,nz,alpha,betap,gamma,maxiter,tol);
% INPUT
% u0 - starting field amplitude (vector)
% dt - time step - [in ps]
% dz - propagation stepsize - [in km]
% nz - number of steps to take, ie, ztotal = dz*nz
% alpha - power loss coefficient [in dB/km], need to convert 
to linear to
% have P = P0*exp(-alpha*z)
% betap - dispersion polynomial coefs, [beta_0... beta_m] [in 
ps^(m-1)/km]
% gamma - nonlinearity coefficient [in (km^-1.W^-1)]
% maxiter - max number of iterations (default = 4)
% tol - convergence tolerance (default = 1e-5)
%% OUTPUT
%% u1 - field at the output
% Convert alpha_indB to alpha in linear scale
%— — — — — — — -

alpha = log(10)*alpha_indB/10; % alpha (1/km)

%— — — — — — — -

Nonlinear operator Linear operator

z z+δz
δz

FIGURE 7.14 Schematic illustration of symmetric SSFM.
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ntt = length(u0);
w = 2*pi*[(0:ntt/2-1),(-ntt/2:-1)]’/(dt*nt);
%w = 2*pi*[(ntt/2:ntt-1),(1:ntt/2)]’/(dt*ntt);
clear halfstep
 halfstep = -alpha/2;
for ii = 0:length(betap)-1;
 halfstep = halfstep - j*betap(ii+1)*(w.^ii)/factorial(ii);
end

clear LinearOperator
% Linear Operator in Split Step method
LinearOperator = halfstep;
% pause
halfstep = exp(halfstep*dz/2);
%
u1 = u0;
ufft = fft(u0);
%
% Nonlinear operator will be added if the peak power is 
greater than the
% Nonlinear threshold
iz = 0;
while (iz < nz) & (max((abs(u1).^2 + abs(u0).^2)) > P_non_
thres)
 iz = iz+1;
 uhalf = ifft(halfstep.*ufft);
 for ii = 1:maxiter,
   uv = uhalf.* exp(-j*gamma*(abs(u1).^2 + 

abs(u0).^2)*dz/2);
  ufft = halfstep.*fft(uv);
  uv = ifft(ufft);

  %fprintf(‘You are using SSFM\n’);

  if (max(uv-u1)/max(u1) < tol)
   u1 = uv;
   break;
  else
   u1 = uv;
  end
 end
 if (ii = = maxiter)
   warning(sprintf(‘Failed to converge to%f in%d 

iterations’,...
   tol,maxiter));
 end

 u0 = u1;

end
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if (iz < nz) & (max((abs(u1).^2 + abs(u0).^2)) < P_non_thres)

% u1 = u1.*rectwin(ntt);
 ufft = = fft(u1);
 ufft = ufft.*exp(LinearOperator*(nz-iz)*dz);
 u1 = ifft(ufft);
%fprintf(‘Implementing Linear Transfer Function of the Fiber 
Propagation’);
end
 toc;
output = u1;

7.5.2.2 MATLAB Simulink Model
The MATLAB program (subroutine) is incorporated in the MALAB Simulink 
model for signal propagation. Under the mask of the block MATLAB function 
[ssprop _ matlabfunction _ modified(input)] is the inclusion of the 
MATLAB program subroutine given above and illustrated in Figure 7.16.

7.5.2.3 Modeling of Polarization Mode Dispersion (PMD)
First-order PMD can be implemented by modeling the optical fiber as two sepa-
rate paths representing the propagation of two PSPs. The symmetrical SSFM can 
be implemented on each polarized transmission path, and then their outputs are 

FIGURE 7.16 Screenshot of MATLAB Simulink model under the mask of the MATLAB 
function of the SSMF algorithm.
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superimposed to form the output optical field of the propagated signals. The transfer 
function to represent the first-order PMD is given by

 = ++ −H f H f H f( ) ( ) ( )  (7.44)

where

 = κ π − ∆τ
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 (7.45)

and

 = κ π − ∆τ
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in which κ is the power splitting ratio (κ = 1/2 when a 3 dB or 50:50 optical coupler/
splitter is used), and Δτ is the instantaneous DGD value following a Maxwell distri-
bution (refer to Equation (7.35)).9,10

7.5.2.4 Optimization of Symmetrical SSFM
7.5.2.4.1 Optimization of Computational Time
A huge amount of time is spent in symmetric SSFM for FFT and IFFT operations, in 
particular when fiber nonlinear effects are involved. In practice, when optical pulses 
propagate toward the end of a fiber span, the pulse intensity is greatly attenuated 
due to the fiber attenuation. As a result, fiber nonlinear effects are negligible for the 
rest of that fiber span, and hence the transmission is operating in a linear domain in 
this range. In this research, a technique to configure symmetric SSFM is proposed 
in order to reduce the computational time. If the peak power of an optical pulse is 
lower than the nonlinear threshold of the transmission fiber, for example, around –4 
dBm, symmetrical SSFM is switched to a linear mode operation. This linear mode 
involves only fiber dispersions and fiber attenuation, and its low-pass equivalent 
transfer function for the optical fiber is

 ω = − β ω + β ω









H j( ) exp 1
2

1
62

2
3

3  (7.47)

If β3 is not considered in this fiber transfer function, which is normally the case 
due to its negligible effects on 40 Gb/s and lower bit rate transmission systems, the 
above transfer function has a parabolic phase profile.9,10

7.5.2.4.2 Mitigation of Windowing Effect and Waveform Discontinuity
In symmetric SSFM, mathematical operations of FFT and IFFT play very significant 
roles. However, due to a finite window length required for FFT and IFFT operations, 
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these operations normally introduce overshooting at two boundary regions of the 
FFT window, commonly known as the windowing effect of FFT. In addition, since 
the FFT operation is a block-based process, there exists the issue of waveform dis-
continuity; i.e., the right-most sample of the current output block does not start at 
the same position as the left-most sample of the previous output block. The window-
ing effect and the waveform discontinuity problems are resolved with the following 
technique. Referring to illustrations given in Figure 7.17, the actual window length 
for FFT/IFFT operations consists of two blocks of samples—hence, the 2N sample 
length. The output, however, is a truncated version with the length of one block (N 
samples) and output samples taken in the middle of the two input blocks. The next 
FFT window overlaps the previous one by one block of N samples.

A sample MATLAB program is given in Appendix 8.1, describing the SSMF 
process, which can be integrated into a MATLAB Simulink model whose initializa-
tion MATLAB file is also shown in Appendix 8.2. A number of Simulink models 
integrating SSMF can also be found in Binh.11,12

7.5.3 remarks

The attenuation and dispersion of optical signals transmitted through silica optical 
fibers are described. Attenuation can be reduced by using the optical wavelength in 
the longer wavelength range. For example, for silica fiber the preferred wavelength is 
1.55 μm. However, natural forces are not kind to us, and a dispersion factor of about 
18 ps/(nm.km) generates pulse broadening for signal transmitted at this wavelength 
in a circular fiber.

Longer-wavelength carriers can be used in the mid-infrared range of about 2.5 
to 5 μm. At this wavelength range different kinds of glasses must be used, such as 
chalcogenite type or fluoride type. Another technique presently used to compensate 
for the dispersion effect is to reduce the linewidth of the lasers, or to use equalizing 
techniques, such as spectrum inversion at the transmitter ends or at the center of the 
transmission length by optical filtering at the receiving end. Alternatively, the optical 
fiber can be tailored to achieve dispersion-shifted or -flattened characteristics.

FFT Window
(2×N samples) Output Block 1

(N samples)

Output Block 2
(N samples)

Block 2
(N samples)

Block 1
(N samples)

Continuous Waveforms
after FFT

Overlapping
(N samples)

Block 2
(N samples)

Block 3
(N samples)

2nd FFT iteration

1st FFT iteration

FIGURE 7.17 Proposed technique for mitigating windowing effect and waveform disconti-
nuity caused by FFT/IFFT operations.
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APPENDIX 7.1: PROGRAM LISTINGS FOR DESIGN 
OF STANDARD SINGLE-MODE FIBER

% totdisp_SMF.m
%
% MatLab script for calculating total dispersion for Non-Zero 
Dispersion Shifted
% Fiber (NSDSF). The script plots material dispersion, the 
waveguide dispersion, and
% total dispersion for the designed fiber.
% Optical Fiber Design
lambda = [1.1:0.01:1.700]*1e-6;% setting spectral region
G1 = 0.7028554; %Sellmeier’s coefficients for 
germanium: doped silica
G2 = 0.4146307; % (concentration B in table)
G3 = 0.8974540;
lambda1 = 0.0727723e-6; %Wavelengths for germanium doped 
silica
lambda2 = 0.1143085e-6;
lambda3 = 9.896161e-6;

c = 299792458; %Speed of light
pi = 3.1415926; %Greek letter pi
a = 4.1e-6;   %Core radius
delta = 0.003; %Greek letter delta (ref. index difference
       %between core and cladding)

% Calculating the refractive index
%— — — — — — — — — — — — — — — — — -

npow2oflambda = 1 + (G1.*lambda.^2./(lambda.^2.-
lambda1*lambda1))...
 + (G2.*lambda.^2./(lambda.^2.-lambda2*lambda2))...
 + (G3.*lambda.^2./(lambda.^2.-lambda3*lambda3));

noflambda = sqrt(npow2oflambda);

pointer = find(lambda = =1.550e-6);
n1 = noflambda(pointer) %Refractive index in the core

% Calculating the material dispersion
%— — — — — — — — — — — — — — — — — -

t1 = diff(noflambda);
t2 = diff(lambda);
t3 = t1./t2;

t4 = diff(t3);
t5 = diff(lambda);
t5 = adjmat(t5);
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lambda = adjmat(lambda);
lambda = adjmat(lambda);

%Material dispersion
Matdisp = - (lambda./c).* (t4./t5);

% Converting to ps/nm.km
Matdisp = Matdisp.*1e6;
figure 1)
clf
hold

xlabel(‘nm’)
ylabel(‘ps/nm.km’)
title(‘Standard Single Mode Fiber’)
plot(lambda, Matdisp, ‘.-’)
grid on

% Calculating waveguide dispersion
%— — — — — — — — — — — — — — — — -

V = (2 * pi * a * n1 * sqrt(2 * delta))./(lambda);

Dlambda1 = - (n1 * delta)./(c * lambda);
%plot(lambda,Dlambda2)

Dlambda2 = 0.080 + 0.549 * (2.834 - V).^2;
%plot(lambda,Dlambda2)

Dlambda = Dlambda1.* Dlambda2;

% Converting to ps/nm.km
Dlambda = Dlambda.*1e6;
plot(lambda,Dlambda, ‘-’)

% Calculating total dispersion
%— — — — — — — — — — — — — — — — -

TotDisp = Matdisp + Dlambda;
plot(lambda, TotDisp, ‘:’)

legend(‘Material Dispersion’, ‘Waveguide Dispersion’, ‘Total 
Dispersion’, 0)

% Finding the dispersion at 1460, 1550 and 1625 nm
%— — — — — — — — — — — — — — — — — — — — — — — — —

pointer = find(lambda = =1.460e-6);
Disp1460 = TotDisp(pointer)
pointer = find(lambda = =1.550e-6);
Disp1550 = TotDisp(pointer)
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pointer = find(lambda = =1.6250e-6);
Disp1625 = TotDisp(pointer)
% refind_SMF.m
%
% MatLab script for calculating of possible values for
% refractive index in the core, n1, and cladding, n2,
% its corresponding relative refractive index.
%
% PROJECT DESIGN: Optical Fiber Design
%

lambda = [1.1:0.01:1.700]*1e-6;

n1 = [1.0487:0.001:1.8587]; %Refractive index of the core
n2 = [1.0435:0.001:1.8535]; %Refractive index of the cladding

% Calculating the refractive index for the index profile
%— — — — — — — — — — — — — — — — — — — — — — — — — — — -

delta = (n1 - n2)./n1;
deltap = delta * 100;

plot(n1, deltap)
grid on

xlabel(‘n1’)
ylabel(‘Delta - Relative Refractive Index(%)’)
title(‘Refractive Index’)

APPENDIX 7.2: PROGRAM LISTINGS OF THE DESIGN 
OF NON-ZERO-DISPERSION-SHIFTED FIBER

% totdisp_NZDSF.m
%
% MatLab script for calculating total dispersion for
% Non-Zero Dispersion Shifted Fiber. The script plots
% the material dispersion, the waveguide dispersion, and
% the total dispersion of the designed fiber.
%
% PROJECT 1: Optical Fiber Design
%

lambda = [1.1:0.001:1.700]*1e-6;

G1 = 0.7028554;  %Sellmeier’s coefficients for 
germanium

G2 = 0.4146307;  %doped silica (concentration B in 
table)

G3 = 0.8974540;
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lambda1 = 0.0727723e-6;  %Wavelengths for germanium doped 
silica

lambda2 = 0.1143085e-6;
lambda3 = 9.896161e-6;

c = 299792458; %Speed of light
pi = 3.1415926; %Greek letter pi
a = 2.4e-6;   %Core radius
delta = 0.0043; %Greek letter delta (ref. index difference
       %between core and cladding)

% Calculating the refractive index
%— — — — — — — — — — — — — — — — — -

npow2oflambda = 1 + (G1.*lambda.^2./(lambda.^2.-
lambda1*lambda1))...
 + (G2.*lambda.^2./(lambda.^2.-lambda2*lambda2))...
 + (G3.*lambda.^2./(lambda.^2.-lambda3*lambda3));

noflambda = sqrt(npow2oflambda);

pointer = find(lambda = =1.550e-6);
n1 = noflambda(pointer) %Refractive index in the core @1550nm

% Calculating the material dispersion
%— — — — — — — — — — — — — — — — — -

t1 = diff(noflambda);
t2 = diff(lambda);
t3 = t1./t2;

t4 = diff(t3);
t5 = diff(lambda);
t5 = adjmat(t5);

lambda = adjmat(lambda);
lambda = adjmat(lambda);

%Material dispersion
Matdisp = - (lambda./c).* (t4./t5);

% Converting to ps/nm.km
Matdisp = Matdisp.*1e6;
figure 1)
clf
hold

xlabel(‘nm’)
ylabel(‘ps/nm.km’)
title(‘Non-Zero Dispersion Shifted Fiber’)
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plot(lambda, Matdisp, ‘.’)
grid on

% Calculating waveguide dispersion
%— — — — — — — — — — — — — — — — -

V = (2*pi*a*n1*sqrt(2*delta))./(lambda);

pointer = find(lambda = =1.550e-6);
V1550 = V(pointer)

Dlambda1 = - (n1 * delta)./(c * lambda);
Dlambda2 = 0.080 + 0.549 * (2.834 - V).^2;
Dlambda = Dlambda1.* Dlambda2;

% Converting to ps/nm.km
Dlambda = Dlambda.*1e6;
plot(lambda,Dlambda, ‘-’)

% Calculating total dispersion
%— — — — — — — — — — — — — — — — -

TotDisp = Matdisp + Dlambda;
plot(lambda, TotDisp, ‘+’)

legend(‘Material Dispersion’, ‘Waveguide Dispersion’, ‘Total 
Dispersion’, 0)

% Finding the dispersion at 1460, 1550 and 1625 nm
%— — — — — — — — — — — — — — — — — — — — — — — — —

pointer = find(lambda = =1.460e-6);
Disp1460 = TotDisp(pointer)
pointer = find(lambda = =1.550e-6);
Disp1550 = TotDisp(pointer)
pointer = find(lambda = =1.6250e-6);
Disp1625 = TotDisp(pointer)
% refine_NZDSF.m
%
% MatLab script for calculating of possible values for
% refractive index in the core, n1, and cladding, n2,
% its corresponding relative refractive index.
%

lambda = [1.1:0.01:1.700]*1e-6;
n1 = [1.0487:0.001:1.8587]; %Refractive index of the core
n2 = [1.0324:0.001:1.8424]; %Refractive index of the cladding

% Calculating the refractive index for the index profile
%— — — — — — — — — — — — — — — — — — — — — — — — — — — -
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delta = (n1 - n2)./n1;
deltap = delta * 100;

plot(n1, deltap)
grid on
xlabel(‘n1’)
ylabel(‘Delta - Relative Refractive Index(%)’)
title(‘Refractive Index’)

7.6 PROBLEMS

7.6.1 PrOblem 1

What is the wavelength range of infrared light, ultraviolet light, and far-infrared 
light? What are the approximate wavelengths of the colors in the color band of resis-
tors? Are they corresponding to the color of the rainbow?

7.6.2 PrOblem 2

A GeO2-doped silica-based optical fiber has the following parameters:

• Step index profile
• Refractive index difference at the core of 0.5%
• Core diameter of 9.0 µm

 a. Calculate the refractive index of the fiber core and cladding at 1.310 and 
1.55 µm wavelengths.

 b. What is the estimate loss of this fiber at the above wavelengths?
 c. What are the V-parameters of the fiber at these wavelengths?
 d. What are the material dispersion and waveguide dispersion factors at these 

wavelengths? Hence, the total dispersion factors?
 e. This fiber is to be used in optical systems of bit rates of 2.2 Gb/s. What is the 

maximum fiber length that the signal can be transmitted without suffering 
the allowable signal degradation?

7.6.3 PrOblem 3

 a. Give a brief account of the pros and cons for optical fiber communication 
systems operating at 810, 1300, and 1550 nm wavelength regions.

 b. Why does silica optical fiber become very lossy at the 1400 nm wavelength 
region?

 c. What are the typical optical fiber losses at the above wavelength regions 
and, hence, the typical cable losses?

7.6.4 PrOblem 4

 a. Show that the material dispersion factor is zero at the wavelength given by
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λ = − c

c
34 3

2

 b. The coefficients c1, c2, and c3 for pure and GeO2-doped silica fiber are

Coefficient c Pure Silica 7.9% GeO2-Doped Silica

c1 1.45084 1.46286

c2 in μm–2 –0.00334 –0.00331 

c3 in μm2 0.00292 0.00320

  Find the zero-dispersion wavelengths due to the material of these fibers.
 c. Derive an expression for the group delay per km unit length. Plot this group 

delay versus wavelength for part (b).
 d. Find the transit time difference of lightwaves propagating through the fiber 

emitted by light sources centered at 810 and 1550 nm with a linewidth of 
10 nm.

7.6.5 PrOblem 5

Using the approximate expression for the normalized propagation constant b as a 
function of V, derive the group velocity delay due to the waveguide and the disper-
sion factor due to the waveguide as a function of V.

7.6.6 PrOblem 6

Using the data of the SMF optical fiber manufactured by Corning, calculate

 a. The material dispersion factor
 b. The waveguide dispersion factor

at 1330 and 1550 nm.

7.6.7 PrOblem 7

A silica optical fiber has a cladding refractive index of 1.4680 at 1550 nm and a rela-
tive refractive index of 0.5%. The fiber core diameter is 8.2 μm with an accuracy of 
0.5 μm.

 a. Estimate its V-parameter at the above operating wavelength. Hence confirm 
whether the fiber is single mode or weakly multimode.

 b. If it is single mode at the operating wavelength, estimate its mode spot size 
and mode field diameter and the cutoff wavelength range of this fiber.

 c. Using the Sellmeier’s coefficients for pure silica, estimate the material dis-
persion of this fiber. Calculate the waveguide dispersion factor and thence 
the total dispersion factor of the fiber.
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 d. This fiber is used for signal transmission over several optically amplified 
spans. Sketch the transmission system, including all transmission subsys-
tems and the transmission fibers and dispersion-compensating fibers.

 e. Estimate the dispersion factor of the dispersion-compensating fibers so that 
only 15 km of DCF is required for 100 km of transmission fibers.

7.6.8 PrOblem 8

Using the dispersion factor of the DCF obtained in problem 7, and the material dis-
persion in that question:

 a. Find the waveguide dispersion required for achieving the total dispersion of 
this DCF fiber.

 b. For it to operate as a single-mode type, use the approximation expression 
of the waveguide parameter to find the required core radius and refractive 
index difference.

7.6.9 PrOblem 9

Give reasons why the dispersion of the non-zero-dispersion-shifted fibers must not 
be zero in the transmission band 1530 to 1620 nm. State the dispersion factor of the 
Corning LEAF fiber.

For the Corning LEAF fibers, what is the effective area of the fiber? Using the 
nonlinear threshold of the SMF-28 of 3 mW, estimate the nonlinear threshold of the 
LEAF fibers.

7.6.10 PrOblem 10

Write a brief paragraph about the phenomenon of:

• The polarization mode dispersion effect in single-mode optical fibers
• Nonlinear dispersion effects due to the self-phase modulation effect

Estimate the total PMD of the SMF-28 and LEAF fibers over a transmission span 
of 100 km—thence the total PMD over 10 spans.

Search the Internet for an method of PMD compensation over long-haul 
transmission.

7.6.11 PrOblem 11

For the SMF-28 estimate the total pulse broadening, including the chromatic disper-
sion (CD) and PMD, for an NRZ 10 Gb/s data channel transmitted over a single span 
of 100 km.

Reestimate this broadening for a 40 Gb/s transmission bit rate.
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7.6.12 PrOblem 12

 I. Describe briefly the attenuation or loss of silica fibers and the total chro-
matic dispersion effect of the guided mode as a function of operating wave-
length of lightwaves guided in a weakly guided single-mode optical fiber 
for long-haul optical communication systems.

 II. Give a brief account of the optical transmission loss of silica fibers for opti-
cal communication systems as a function of the operating wavelength in the 
C-band, L-band, and S-band wavelength regions.

 III. A circular optical fiber is manufactured with the cladding region of pure 
silica with a refractive index of 1.486 at 1550 nm wavelength, and the core 
refractive index difference is 0.003. Design an optical fiber so that it is sin-
gle moded at the operating wavelength of 1550 nm with a total dispersion 
factor DT(λ) of not higher than 0.2 ps/(nm-km). The following parameters 
should be determined for the fiber: the fiber core diameter, the fiber cutoff 
wavelength, and its total dispersion factor.

The following materials can be used for the design of the fiber:
The material and waveguide dispersion factors DM(λ) and DW(λ) for a single-

mode step index circular optical waveguide are given by

 
= − λ

λ
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where λZD = 1290 nm for pure silica with a low doping concentration of impurities.
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where the normalized propagation constant b of a step index circular optical fiber 
can be approximately given by

 
= −





< <b V
V

V( ) 1.1428 0.9960 for 1.4 2.2
2

V is the normalized frequency parameter and c = 3 × 108 m/s is the velocity of light 
in free space.

7.6.13 PrOblem 13: Fiber desiGn mini-PrOJect

Design dispersion-shifted single-mode optical fibers at 1550 nm. Groups of students 
of three or four can be formed and requested to select particular combinations of 
doped material with different Sellmeier’s coefficients as core and cladding materials 
for the design.
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7.6.13.1 Design Project Objectives
To design the geometrical and index profile of silica optical fibers to meet certain 
dispersion properties as required. Further, a set of fiber performance with dispersion 
as the main factor must be investigated as a function of the fiber core radius and the 
relative refractive index difference.

7.6.13.1.1 System Applications
The designed fiber must be incorporated with a dispersion-compensated fiber—in 
this case the standard single-mode optical fiber (SMF) whose specifications are 
given in lectures. If the total length of the transmission is 10,000 km, specify the 
length of your designed fiber and the SMF so that the average fiber dispersion is 0.01 
ps/nm.km. It can be assumed that the spacing of optical amplifiers is 100 km.

 a. Design specifications: A number of types of single-mode optical fibers are 
required to be designed for optical communication systems in long- and 
short-haul transmission. Tables 7.2 through 7.4 show the characteristics of 
the required fibers:

TABLE 7.2
Materials for Core or Cladding Regions

Fiber 
No.

Optical Fibers 
Profile

Material Type 
Core Systems Requirement

Other 
Requirements

See tables below 
for Sellmeier’s 
constants

Maximum dispersion 
in the wavelength 
range 1510 to 1590 
nm in ps/(nm.km)

1 Triangular A–J Dispersion-shifted 
wavelength at 1550 nm

<1.5

2 Parabolic A–J Dispersion-shifted 
wavelength at 1520 nm

<1.5

3 Triangular A–J Dispersion-shifted 
wavelength at 1560 nm

<2

4 Parabolic A–J Dispersion-shifted 
wavelength at 1530

<3

5 Triangular A–J Dispersion-compensated 
wavelength at 1550 nm

>0.5

6 Parabolic A–J Dispersion-compensated 
wavelength at 1540 nm

>1.0

9 Triple-clad A–J Dispersion flattened 
over 1500 to 1590 nm

Not higher than 0.2 
ps/(nm.km)

10 Triangular in core and 
segmented in 
cladding

A–J Dispersion flattened 
over 1500 to 1590 nm

Not higher than 0.2 
ps/(nm.km)
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   Practical limits for the fiber core radius and relative index difference 
must be taken into account. A set of curves must be obtained with the core 
radius or the relative index difference as a parameter. Make sure that the 
material dispersion factors are correctly modeled.

 b. Software environment: The preferred package is MATLAB or MATLAB 
4.2 or 5.1 for Windows. A sample of the design is given below.

7.6.13.2 Assessment of Design Assignments
A major design assignment on optical fibers for communication systems is counted 
for 10% of the total marks allocated for the optical systems part. Twenty percent is 
awarded to design groups selecting index profile types 9 or 10.

The design assignment is specified for different groups of students. The maxi-
mum number of members of each group is two. A higher number of group members 
can only be accepted in exceptional circumstances, and in this case the complexity 
of the design assignment is increased accordingly.

When the assignment is submitted, candidates may be requested for an individual 
oral presentation. The written design submitted by each group is awarded equally 
for group members and counted for only 40% of the total mark of the design assign-
ment; the other 60% is awarded for the oral presentation.

 a. Sample design program: This is a sample program for the design written in 
MATLAB to give a guideline for the estimation of material and waveguide 
dispersion as well as total dispersion and pulse broadening. Conditions for 

TABLE 7.3
Sellmeier’s Coefficients for Several Optical Fiber 
Silica-Based Materials with Germanium Doped in the 
Core Region

Sellmeier’s 
Constants Germanium Concentration, C (mol%)

Types A B C D

0 3.1% 5.8% 7.9%

G1 0.6961663 0.7028554 0.7088876 0.7136824

G2 0.4079426 0.4146307 0.4206803 0.4254807

G3 0.8974794 0.8974540 0.8956551 0.8964226

λ1 0.6840432 0.0727723 0.0609053 0.0617167

λ2 0.1162414 0.1143085 0.1254514 0.1270814

λ3 9.896161 9.896161 9.896162 9.896161

Note: Wavelength in μm and Gk in μm–2.
Source: After S. Kobayashi, Shibata, S., and Izawa, T., Proc. International 

Conference on Integrated Optics and Optical Fiber 
Communication, Tokyo, Japan, 1977, p. 309.
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a single-mode structure and total dispersion at a particular wavelength or 
wavelength range must be satisfied. Also, in Appendices 7.1 and 7.2 sample 
MATLAB files are given for the design of single-mode optical fibers and 
non-zero-dispersion-shifted fibers.

%— — — — — —  OPTICAL Fiber Design LABORATORY 1— — — — — —  %
% Sample Design of Optical Fibers having Different Doping 
Profile
% Copy right reserved © LN Binh, 2012
% clear after each run.
Clear all
Clc;
c = 2.997925e8;% velocity of light in vacuum

%setting Sellmeiers constants
G1 = 0.711040;

TABLE 7.4
Sellmeier’s Coefficients for Several Optical Fiber Silica-Based Materials with 
Germanium Doped in the Core Region

Sellmeier’s 
Constants Concentration Composition

Types E F G H

Quenched SiO2 13.5 GeO2:86.5 SiO2 9.1 P2O5:90.0 SiO2 13.3 B2O3:86.7 SiO2

G1 0.696750 0.711040 0.695790 0.690618

G2 0.408218 0.408218 0.452497 0.401996

G3 0.890815 0.704048 0.712513 0.898817

λ1 0.069066 0.064270 0.061568 0.061900

λ2 0.115662 0.129408 0.119921 0.123662

λ3 9.900559 9.425478 8.656641 9.098960

Sellmeier’s 
Constants Concentration Composition

Types I J K L

1.0 F:99.0 SiO2 16.2 Na2O:32.5 
B2O3:50.6 SiO2

G1 0.691116 0.796468

G2 0.399166 0.497614

G3 0.890423 0.358924

λ1 0.068227 0.094359

λ2 0.116460 0.093386

λ3 9.993707 5.999652

Note: Wavelength in μm and Gk in μm–2.
Source: After J.W. Fleming, Elect. Lett., 14, 326–332, 1978.
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G2 = 0.408218;
G3 = 0.704048;

lambda1 = 0.064270e-6;
lambda2 = 0.129408e-6;
lambda3 = 9.425478e-6;

% select a reasonable value of core radius and relative 
refractive index
a = 4.1e-6;
delta = 0.0025;

start = input(‘Enter lambda start point (nm)—  -: ‘);
finish = input(‘Enter lambda end point (nm)— —  -: ‘);
resolution = input(‘Enter lambda resolution (nm)— —  : ‘);
disp(‘’);

lambda = start*1e-9;
lambdavector(1,1) = lambda;

for(i = 1:(((finish-start)/resolution)+1))

n1squared = 1+((G1*power(lambda,2))/(power(lambda,2)-power(l
ambda1,2)))+((G2*power(lambda,2))/(power(lambda,2)-power(lam
bda2,2)))+((G3*power(lambda,2))/(power(lambda,2)-
power(lambda3,2)));
n1 = sqrt(n1squared);
n1vector(1,i) = n1;

n2 = n1*(1+delta);
n2vector(1,i) = n2;

V = (2*pi/lambda)*a*n1*sqrt(2*delta);
Vvector(1,i) = V;

dy1dx = (-2*G1*power(lambda1,2)*lambda)/
(power(power(lambda,2)-power(lambda1,2),2));
dy2dx = (-2*G2*power(lambda2,2)*lambda)/
(power(power(lambda,2)-power(lambda2,2),2));
dy3dx = (-2*G3*power(lambda3,2)*lambda)/
(power(power(lambda,2)-power(lambda3,2),2));

d2y1dx2 = (2*G1*power(lambda1,2)*(3*power(lambda,2)+power(lam
bda1,2)))/(power(power(lambda,2)-power(lambda1,2),3));

d2y2dx2 = (2*G2*power(lambda2,2)*(3*power(lambda,2)+power(lam
bda2,2)))/(power(power(lambda,2)-power(lambda2,2),3));

d2y3dx2 = (2*G3*power(lambda3,2)*(3*power(lambda,2)+power(lam
bda3,2)))/(power(power(lambda,2)-power(lambda3,2),3));
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d2ndx2 = 0.5*(((d2y1dx2+d2y2dx2+d2y3dx2)*power(n1,2)-
0.5*(power(dy1dx+dy2dx+dy3dx,2)))/power(n1,3));

M = (-d2ndx2/c)*lambda;
Mvector(1,i) = M;%row vector

Dw = (-n2*delta)/c*(0.080+0.549*power(2.834-V,2))*(1/
lambda);
Dwvector(1,i) = Dw;

 if(i < (((finish-start)/resolution)+1))
   lambdavector(1,i+1) = lambdavector(1,i)+(resolution*1e-9

);
  lambda = lambdavector(1,i+1);
 end
end

plot(lambdavector,Mvector,lambdavector,Dwvector,lambdavector,M
vector+Dwvector);
grid;
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8 Guided Wave Optical 
Transmission Lines
Transfer Functions

Launching optical modulated signals of information channels over a guided wave 
medium, especially the optical fibers, and their propagation are critical for optical 
communication systems. The transmittance in terms of the fields or intensity of the 
guided waves is very critical for determining the quality of signals at the receiving 
end. Transfer functions are commonly used in electrical systems to interpret a num-
ber of quantities as a function of frequency range. Similarly in optical systems, the 
transfer function is indeed closely related to the transmittance of the guided light-
waves, not only in linear but also in nonlinear dynamics of signals.

This chapter gives an introduction to the transfer functions of optical fibers that 
can operate in linear and nonlinear regions.

8.1 TRANSFER FUNCTION OF SINGLE-MODE FIBERS

The transfer function, the output over the input in the frequency domain, of any sub-
system of an overall system is very important for the designer to evaluate its behavior 
and effects on the quality of the performance of the system. In optical communication 
systems, optical fibers play a major role in the guidance of modulated lightwaves over 
very long distances; therefore, the transfer function of optical fiber as a transmission 
medium must be known and represented in the frequency domain. That is, the enve-
lope of modulated signals plays a principal role in the characteristics of the double 
sidebands on both sides of the optical carrier. This section describes the behavior of 
signals transmitted over the single-mode optical fiber in terms of the transfer function 
in the frequency domain operating in both linear and nonlinear regions.

8.1.1 linear transFer FunctiOn

The treatment of the propagation of modulated lightwaves through single-mode fiber 
in the linear and nonlinear regimes has been well documented.1–6 For completeness 
of the transfer function of single-mode optical fibers, in this section we restrict our 
study to the frequency transfer function and impulse responses of the fiber to the 
linear region of the media. Furthermore, the delay term in the nonlinear Schrodinger 
equation (NLSE) can be ignored, as it has no bearing on the size and shape of the 
pulses. From NLSE we can model the fiber simply as a quadratic phase function. 
This is derived from the fact that the nonlinear term of NLSE can be removed, and 
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the Taylor series approximation around the operating frequency, for example, the 
central frequency, can be obtained, as well as frequency and impulse responses of 
the single-mode fiber. The input–output relationship of the pulse can therefore be 
depicted. Equation (8.1) expresses the time-domain impulse response h(t) and the 
frequency-domain transfer function H(ω) as a Fourier transform pair:

 =
πβ β







↔ ω = − β ωh t
j

jt H( ) 1
4

exp
4

( ) e j

2

2

2

2
2  (8.1)

where β2 is well known as the group velocity dispersion (GVD) parameter. The input 
function f(t) is typically a rectangular pulse sequence, and β2 is the GVD parameter 
of the fiber and is proportional to the length of the fiber. The output function g(t) is the 
dispersed waveform of the pulse sequence. The propagation transfer function in (8.1) 
is an exact analogy of diffraction in optical systems (see Papoulis7,8). Thus the qua-
dratic phase function also describes the diffraction mechanism in one-dimensional 
optical systems, where distance x is analogous to time t. The establishment of this 
analogy affords us to borrow many of the imageries and analytical results that have 
been developed in the diffraction theory. Thus, we may express the step response s(t) 
of the system, H(ω), in terms of Fresnel cosine and sine integrals as follows:
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where C(t) and S(t) are the Fresnel cosine and sine integrals. The excitation of the 
step signal into a system is shown in Figure 8.1.

Using this analogy, one may argue that it is always possible to restore the origi-
nal pattern f(x) by refocusing the blurry image g(x) (e.g., image formation9). In the 
electrical analogy, it implies that it is possible to compensate the quadratic phase 
media perfectly. This is not surprising. The quadratic phase function H(ω) in (8.1) 
is an all-pass transfer function; thus, it is always possible to find an inverse function 
to recover f(t). One can express this differently in information theory terminology, 
that the quadratic phase channel has a theoretical bandwidth of infinity; hence, its 
information capacity is infinite. Shannon’s channel capacity theorem states that there 
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is no limit on the reliable rate of transmission through the quadratic phase channel. 
Figure 8.2 shows the pulse and impulse responses of the fiber. Only the envelope of 
the pulse is shown, and the phase of the lightwave carrier is included as the complex 
values of the amplitudes. As observed, the chirp of the carrier is significant at the 
edges of the pulse. At the center of the pulse, the chirp is almost negligible at some 
limited fiber length; thus, the frequency of the carrier remains nearly the same as at 
its original starting value. One could obtain the impulse response quite easily, but the 
pulse response is much more relevant in the investigation of the uncertainty in the 
pulse sequence detection. Rather, the impulse response is much more important in 
the process of equalization, in which a convolution in the time domain of the impulse 
responses of cascaded subsystems would be necessary for designing the equalizer at 
the receiver. Alternatively, the transfer functions of various cascaded subsystems can 
be multiplied together, and then with that of the equalizer, to achieve a unity overall 
transfer function. The impulse and step responses are most critical in the character-
ization of the propagation medium, the optical fiber.

The uncertainty of the detection depends on the modulation formats and detection 
process. The modulation can be implemented by manipulation of the amplitude, the 
phase or the frequency of the carrier, or both the amplitude and phase of multisubcar-
riers, such as the orthogonal frequency division multiplexing (OFDM). The amplitude 
detection would be mostly affected by the ripples of the amplitudes of the edges of 
the pulse. The phase of the carrier is mostly affected near the edge due to the chirp 
effects. However, if differential phase detection is used, then the phase change at the 
transition instant is the most important, and the opening of the detected eye diagram. 
For frequency modulation the uncertainty in the detection is not very critical provided 
the chirping does not enter into the region of the neighborhood of the center of the 
pulse in which the frequency of the carrier remains almost constant.

The picture changes completely if the detector/decoder is allowed only a finite 
time window to decode each symbol. In the convolution coding scheme, for example, 
it is the decoder’s constraint length that manifests due to the finite time window. 
In the adaptive equalization scheme, it is the number of equalizer coefficients that 
determines the decoder window length. Since the transmitted symbols have already 
been broadened by the quadratic phase channel, if they are next gated by a finite 
time window, the information received could be severely reduced. The longer the 
fiber, the more the broadening of the pulses is widened, and the more uncertain it 
becomes in the decoding. It is the interaction of the pulse broadening on one hand 

g(t) 

h(t)

1
4β2

jt2
H(ω) = e–jβ2ω2exph(t) =

j4πβ2

f (t)

δ(t)

System under
consideration,

the �ber 

FIGURE 8.1 Representation of a system with input and output signals, especially the 
impulse response h(t) due to δ(t), impulse signal as an excitation source.
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FIGURE 8.2 Rectangular pulse transmission through an SMF: (a) pulse response, (b) fre-
quency spectrum, and (c) step response of the quadratic phase transmittance function. Note 
that the horizontal scale is in normalized unit of time.
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and the restrictive detection time window on the other that give rise to the finite 
channel capacity.

It is also observed that the chirp occurs mainly near the edge of the pulses when 
it is in the near-field region, about a few kilometers for standard single-mode fibers. 
In this near-field distance the accumulation of nonlinear effects is still very weak, 
and thus these chirp effects dominate the behavior of the single-mode fiber.2,10 The 
nonlinear Volterra transfer function presented in the next section would thus have 
minimum influence. This point is important for understanding the behavior of light-
waves circulating in short-length fiber devices in which both linear and nonlinear 
effects are to be balanced, such as active mode locked soliton and multibound soliton 
lasers.11,12 In the far field the output of the fiber is Gaussian-like for the square pulse 
launched at the input. In this region the nonlinear effects would dominate over the 
linear dispersion effects, as they have been accumulated over a long distance.13,14

The linear time-variant system such as the single-mode fiber would take a transfer 
function of

 = − αH f H f e( ) ( ) j f( )  (8.4)

where α = π2β2L = –πDLλ2/2c is proportional to the length L and the dispersion 
factor D(λ) (s/m2). The phase of the frequency transfer response is a quadratic func-
tion of the frequency; thus, the group delay would follow a linear relationship with 
respect to the frequency as observed in Figure 8.3. The frequency response in ampli-
tude terms is infinite and is a constant, while the phase response is a quadratic func-
tion with respect to the frequency of the baseband signals. The carrier is chirped 
accordingly as observed in Figures 8.4 and 8.5. The chirping effect is very signifi-
cant near the edge of the rectangular pulse and almost nil at the center of the pulse, in 
the near-field region of less than 1 km of standard single-mode fiber. In the far-field 
region the pulse becomes Gaussian-like. Thus the response of the fiber in the linear 
region can be seen as shown in Figure 8.6 for a Gaussian pulse input to the fiber. The 
output pulse is also Gaussian by taking the Fourier transform of the input pulse and 
multiplying by the fiber transfer function. Thence, an inverse Fourier would indicate 
the output pulse shape follows a Gaussian profile. Figure 8.3(a–c) illustrates the typi-
cal variation of the phase and magnitude responses of SSMF. The phase responses 
are important for signals under the phase shift keying modulation scheme, as these 
effects will rotate the constellation of the transmitted signals.8 The chirping effects 
due to fiber dispersion are also illustrated in Figure 8.4. It is noted that chirp occurs 
mostly at the edges of the pulse, and then spreads to the center over a long transmis-
sion distance. Finally, the pulse would take a Gaussian profile shape in the far-field 
region, as shown in Figure 8.5.

This leads to a rule of thumb for consideration of the scaling of the bit rate and 
transmission distance: given that a modulated lightwave of a bit rate B can be trans-
mitted over a maximum distance L of single-mode optical fiber with a bit error rate 
(BER) of 10–9 error-free level, if the bit rate is halved, the transmission distance 
can be increased by four times, and vice versa. For example, for 10 Gb/s amplitude 
shift keying modulation format signals can be transmitted over 80 km of standard 
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single-mode optical fiber; then at 40 Gb/s only 5 km can be transmitted for a BER of 
10–9 without any forward error coding and under direct detection.

8.1.2  sinGle-mOde OPtical Fiber transFer FunctiOn: simPliFied 
linear and nOnlinear OPeratinG reGiOns

In this section, a closed expression of the frequency transfer function of dispersive 
and nonlinear single-mode optical fibers for broadband operation can be derived, 
similar to the case under microwave photonics. The expression takes into account 
both chromatic dispersion and self-phase modulation (SPM) effects and is valid for 
optical double-sideband modulation, optical single-sideband (SSB) modulation, and 
chirped optical transmitters.

(a) Magnitude response in bandpass regime
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(b) Phase response in bandpass regime 
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ωωT ωT  + ωB
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(c) Bandpass to low pass transformation
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|H(ω)|

ω
 – ωB  + ωB

bTP(ω)

FIGURE 8.3 Frequency response of a single-mode optical fiber: (a) magnitude, (b) phase 
response in bandpass regime, and (c) baseband equivalence.
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Step Responses of Optical Signals at 1550 nm for
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FIGURE 8.4 Carrier chirping effects and step response of a single mode optical fiber of 
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The evolution along the propagation path z of the small-signal intensity modula-
tion (IM), or complex power ωp z( , )  and phase rotation (PM) φ ω z( , ), during the 
propagation of the guided mode through the single-mode optical fiber (SMF), taking 
into account both the chromatic dispersion and the nonlinearity (SPM) effects, is 
governed by the following set of differential equations15–18:

 δ ω
δ

= β ω φ ω ω = ωp z
z

P z A z p z( , ) ( , ); ( , ) ( , )2
2

0
 (8.5)

 δφ ω
δ

= − β ω + γ








 ω−αz

z P
e p z( , )

4
( , )z2

2

0

 (8.6)

where ω φ ωA z z( , ) and ( , )  are defined as the normalized complex amplitude and 
phase, respectively, of the optical field in the Fourier domain; ω is the radial fre-
quency of the radio frequency (RF) or broadband signal; z is the distance along the 
propagation axis of the fiber; α is the attenuation coefficient in the linear scale of 
SMF; and β2 is the first-order dispersion coefficient, i.e., the group delay factor as a 
function of the optical wavelength given by

 β = − λ λ
π
D
c
( )

22

2  (8.7)

where c is the velocity of light in vacuum, D(λ) is the dispersion factor of the fiber 
typically taking a value of 17 ps/nm/km for silica SMF at the operating wavelength 
λ = 1550 nm, and γ is the nonlinear SPM factor defined by

 γ = π
λ

= πn
A

A r2 ; with 
eff

eff
2

0
2  (8.8)

G(f)g(t) 1

1
2 = 0,606e 1

2πT0
fbw =

f1
2πT0

1
2πT0

–T0 T0

T0
2

2 (2πf )2
2π T0eG(f ) =

r2

2T0
2g(t) = e

–

FIGURE 8.6 Fiber response to Gaussian pulse. Gaussian → Gaussian!
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where n2 is the nonlinear coefficient of the fiber, typically n2 = 1.3 × 10–23 m2/W 
for the standard SMF, Corning SMF-28, and = πA reff 0

2  is the effective area of the 
fiber, which is the area of the Gaussian mode spot size r0 of the guided mode in a 
single-mode optical fiber under the weakly guiding condition.19 These parameters 
were described in Chapter 7.

Equations (8.5) and (8.6) are derived from the observer positioned on the mov-
ing frame of the phase velocity of the waves, which are normally expressed by the 
nonlinear Schrodinger equation (NLSE):

 ∂
∂

= − α + β ∂
∂









 + γA t z

z
A t z j A t z

t
j A t z A t z( , ) ( , )

2
( , ) ( , ) ( , )2

2

2
2  (8.9)

Present coherent optical systems are based on digital signal processing at the 
transmitter and receivers using digital-to-analog and analog-to-digital converters at 
the transmitters and receivers, respectively, allowing complex modulation formats 
imposed on the optical carriers. However, at extremely high speed, the processing 
algorithms must be simple enough so as not to consume too much processing time 
for real-time applications. The simplified transfer function of the guided medium 
must be obtained. Furthermore, phase shift keying is proven to be a very efficient 
scheme for modulation of the lightwaves. Under the quadrature amplitude modula-
tion (QAM) both the in-phase and quadrature phase components are recovered in 
the amplitude, which is proportional to the power of the optical signals arriving in 
the front of the optical waves of the optical hybrid coupler and the balanced photo-
detector pair. A schematic of the transmission is shown in Figure 8.7(a), in which 
the transmitter can generate an optical sequence or near-single-frequency sinusoidal 
waves at frequencies reaching 30 GHz using a Fujitsu DAC sampling rate of 65 
GSa/s. The optical modulator is a typical Fujitsu IQ modulator modulated by electri-
cal signals output from the DAC and phase shifted in the RF domain by an electrical 
phase shifter (PS). The RF phase can be set such that when the signals are π/2 shifted 
with respect to each other, the suppression of one of the single sidebands can be 
achieved at the output spectrum. The main carrier can be suppressed by biasing the 
“children” Mach–Zehnder intensity modulators (MZIMs) at the minimum transmis-
sion point. An insert of the structure of an I/Q modulator is shown in Figure 8.7(b).

By differentiating (8.5) and substituting into (8.6) we obtain

 δ ω
δ

= − β ω − β ω + γ
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subject to the initial conditions given by
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where the subscript in indicates the input location, which is at the starting of the 
propagation of the modulated optical waves through the SMF.
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FIGURE 8.7 (a) Digital-based optical transmitter and coherent reception with real-time 
sampling and digital signal processing. DAC = digital-to-analog converter, ADC = analog-to-
digital converter, DSP = digital signal processing, PDP = photodetector pair, FC = fiber cou-
pler, I/Q = in-phase/quadrature phase. (b) Structure of an IQ optical modulator in integrated 
guided waveform (not to scale). RF = radio frequency, PD = photodetector, X = horizontal, Y 
= vertical, n = negative, p = positive. (See also Chapter 5 for 3D-guided wave structures and 
modulators.)
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Now by changing some variables with the setting of

 = = − β ω γ
α
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 (8.12)

then (8.10) can be rewritten as
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The solution of this equation is a combination of purely imaginary Bessel func-
tions L and K and is subject to the initial conditions of (8.11). Thus the evolution of 
the complex amplitude of the modulated optical waves along the propagation path 
is given by20,21
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with υ = –(β2ω2/α). The first term on the right-hand side (RHS) of (8.14) is the mag-
nitude part, and the second is the phase part, that is, the in-phase and quadrature 
components of the QAM signal. Thus the in-phase and quadrature parts of the com-
plex magnitude can be expressed as
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The complex amplitude vector of the lightwaves is rotating as depicted in Figure 
8.8. The behavior of the amplitude and phase of the complex power can be explained 
by referring to Figure  8.9. The in-phase and quadrature phase components move 
along the horizontal and vertical axes within the ±1 limits, meaning that as the phase 
rotates around the unit circle, these components oscillate such that when the phase is 
(2M + 1) (M = 0, 1, 2, …) or an odd number of π/2, the in-phase component becomes 
nullified. Likewise for the quadrature phase at Nπ(N = 0, 1, 2, …). In the case of the 
QAM scheme, e.g., 16 QAM, there would be a three-amplitude level of the phase 
constellation, and these levels are rotating. The initial phase is set by the initial posi-
tion of the constellation point of square 16 QAM, but the oscillation and nullified 
locations would be very much similar to those of Figure 8.9.
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Under a linear operating regime, that is, γ = 0, we can obtain an expression for the 
complex power amplitude and phase as

 ω = β ωp z z( , ) cos
2I

2
2  (8.17)

For simulation of the evolution of the modulated lightwave channel over SMF, 
Appendix 8.1 lists a MATLAB® file for propagating an optical data sequence 
through an optical fiber transmission line employing the NLSE and the split-step 
Fourier method (see also Chapter 7, Section 7.5). Furthermore, Appendix 8.2 lists 
an initialization file for simulating optical signal propagation and parameters of an 
optical transmission system. This file is to be changed according to desired simula-
tion circumstances.

8.1.3 nOnlinear Fiber transFer FunctiOn

The weakness of most of the recursive methods in solving the NLSE is that they 
do not provide much useful information to help the characterization of nonlinear 
effects.1 The Volterra series transfer function (VSTF) model provides an elegant way 
for describing a system’s nonlinearities, and enables designers to observe clearly 
where and how the nonlinearity affects the system performance. Although several 
references3–6,22–24 have given outlines of the kernels of the transfer function using 
the Volterra series, it is necessary for clarity and physical representation of these 
functions; brief derivations are given here on the nonlinear transfer functions of an 
optical fiber operating under nonlinear conditions.

The VSTF of a particular optical channel can be obtained in the frequency domain 
as a relationship between the input spectrum X(ω) and the output spectrum Y(ω) as
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where Hn(ω1, …, ωn) is the nth-order frequency-domain Volterra kernel, including 
all signal frequencies of orders 1 to n. The wave propagation inside a single-mode 
fiber can be governed by a simplified version of the NLS wave equation with only the 
self-phase modulation effect included as (also given in Chapter 7)

 ∂
∂ 

= − α − β ∂
∂ 

− β ∂
∂ 

− β ∂
∂ 

+ γA
z

A A
t

j A
t

A
t

j A A
2 2 6

0
1

2
2

2
3

3

3
2  (8.19)

where A = A(t, z). The proposed solution of the NLS equation can be written with 
respect to the VSTF model of up to fifth order as
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where A(ω) = A(ω, 0), that is, the amplitude envelope of the optical pulses at the input 
of the fiber. Taking the Fourier transform of (8.3) and assuming A(t, z) is of sinusoidal 
form, we have
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where

 
ω = − α + β ω + β ω − β ω ω ω ω = γG j j j G j( )
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The parameter ω covers the range over the signal bandwidth, and beyond that it can 
overlap the signal spectrum of other optically modulated carriers. ω1 … ω3 are all 
also taking values over a similar range as that of ω but in different frequency axes. 
For a general expression the limit of integration is indicted over the entire range to 
infiniy. Thus the higher the order of the VSTF, the more complex are the numerical 
solutions due to multiple spectral ranges to be integrated over. Substituting (8.20) 
into (8.21) and equating both sides, the kernels can be obtained after some algebraic 
manipulations, and then by equating the first-order terms on both sides, we obtain
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 (8.22)

The solution for the first-order transfer function (8.22) is then given by
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This is in fact the linear transfer function of a single-mode optical fiber with the 
dispersion factors β2 and β3, as already shown in the previous section. Similarly, for 
the third-order terms we have
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Now, letting ω3 = ω – ω1 + ω2, it follows that
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Thus, the third kernel transfer function can be obtained as
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The fifth-order kernel can be similarly found but not included here, refer to Binh 
et al.25 for the expression. Higher-order terms can be derived with ease if higher accu-
racy is required. However, in practice such higher order would not exceed the fifth 
rank. We can understand that for a length of uniform optical fiber, the first- to nth-
order frequency spectrum transfer can be evaluated, indicating the linear to nonlinear 
effects of the optical signals transmitting through it. Indeed, the third- and fifth-order 
kernel transfer functions based on the Volterra series indicate the optical field ampli-
tude of the frequency components that contribute to the distortion of the propagated 
pulses. An inverse of these higher-order functions would give the signal distortion in 
the time domain. Thus, the VSTFs allow us to conduct distortion analysis of optical 
pulses and an evaluation of the bit error rate of optical fiber communication systems.

The superiority of such a Volterra transfer function expression allows us to evalu-
ate each effect individually, especially the nonlinear effects, so that we can design 
and manage the optical communication systems under linear or nonlinear opera-
tions. Currently this linear–nonlinear boundary of operations is critical for system 
implementation, especially for optical systems operating at 40 Gbps, where a linear 
operation and a carrier-suppressed return-to-zero format are employed. As a norm in 
series expansion, the series need converged to a final solution. It is this convergence 
that allows us to evaluate the limit of nonlinearity in a system.
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8.2 FIBER NONLINEARITY

The linear effects in optical fibers are described in Section 8.3. This section describes 
the nonlinear effects and their influence on the propagation of optical signals over a 
long length of fibers. The nonlinear and linear effects in optical fibers can be classi-
fied as shown in Figure 8.11.

The fiber refractive index (RI) is dependent on both operating wavelengths and 
lightwave intensity. This intensity-dependent phenomenon is known as the Kerr 
effect and is the cause of fiber nonlinear effects.

8.2.1 sPm and xPm eFFects

The power dependence of RI is expressed as

 ′ = +n n n P A( / )eff2
 (8.27)

where P is the average optical power of the guided mode, n2  is the fiber nonlinear 
coefficient, and Aeff is the effective area of the fiber.

Fiber nonlinear effects include intrachannel SPM, interchannel cross-phase mod-
ulation (XPM), four-wave mixing (FWM), stimulated Raman scattering (SRS), and 
stimulated Brillouin scattering (SBS). SRS and SBS are not the main degrading 
factors, as their effects get noticeably large only with very high optical power. On 
the other hand, FWM severely degrades the performance of an optical system with 
the generation of ghost pulses only if the phases of optical signals are matched with 
each other. However, with high local dispersions such as in SSMF, effects of FWM 
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FIGURE 8.11 Linear and nonlinear fiber properties in SMF.
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become negligible. In terms of XPM, its effects can be considered to be negligible 
in a dense wavelength division multiplexing (DWDM) system in the following sce-
narios: (1) highly locally dispersive system and (2) large channel spacing. However, 
XPM should be taken into account for optical transmission systems deploying non-
zero-dispersion-shifted fiber (NZ-DSF) where local dispersion values are small. 
Thus SPM is usually the dominant nonlinear effect for systems employing transmis-
sion fiber with high local dispersions, e.g., SSMF and DCF. The effect of SPM is 
normally coupled with the nonlinear phase shift ϕNL, defined as

 ∫φ = γ = γ

γ = ω

= − α−α

P z dz L P

n A c

L e

( )   

/ ( )

(1 ) /

NL

L
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where ωc is the lightwave carrier, Leff is the effective transmission length, and α is 
the fiber attenuation factor, which normally has a value of 0.17 to 0.2 dB/km in the 
1550 nm spectral window. The temporal variation of the nonlinear phase ϕNL results 
in the generation of new spectral components far apart from the lightwave carrier ωc, 
indicating the broadening of the signal spectrum. This spectral broadening δω can 
be obtained from the time dependence of the nonlinear phase shift as

 δω = − ∂φ
∂

= −γ ∂
∂T
P
T
LNL
eff

 (8.29)

Equation (8.29) indicates that δω is proportional to the time derivative of the aver-
age signal power P. Additionally, the generation of new spectral components occurs 
mainly at the rising and falling edges of optical pulses; i.e., the amount of generated 
chirps is larger for an increased steepness of the pulse edges.

The wave propagation equation can be represented as
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in which we have ignored the pure delay factor involving β1. The last term on the 
RHS represents the Raman scattering effects.

8.2.2 mOdulatiOn instability

The mutual effect between the nonlinear dispersion effects and the nonlinear effects 
can lead to the modulation of the lightwave pulses and, thus, unstable states of the 
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optical pulses. This phenomenon is usually called the modulation instability and is 
normally observed in soliton lasers. The gain spectrum of the modulation instability 
is shown in Figure 8.12.26

8.2.3 eFFects OF mOde hOPPinG

So far we have assumed that the source center emission wavelength is unaffected 
by the modulation. In fact, when a short current pulse is applied to a semiconduc-
tor laser, its center emission wavelength may hop from one mode to its neighbor, a 
longer wavelength. In the case where a multilongitudinal mode laser is used, this 
hopping effect is negligible; however, it is very significant for a single longitudinal 
mode laser. Currently external cavity lasers can offer very narrow linewidths of 
about 100 kHz and high stability without any mode-hopping effects. These lasers 
are employed in digital coherent transmission systems operating at 100 G and 
beyond bit rates.

8.3  NONLINEAR FIBER TRANSFER FUNCTIONS 
AND APPLICATION IN COMPENSATIONS

Nonlinear effects have been considered in the previous section, in which the SPM 
effects play the major role in the distortion of modulated signals, besides the lin-
ear chromatic dispersion effects. We have also seen that the nonlinear Schrodinger 
equation has been used extensively in modeling the lightwave signals propagating 
through optical fiber links in which both linear and nonlinear effects are included.
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FIGURE 8.12 Spectrum of the optical gain due to modulation instability at three different 
average power levels in an optical fiber with β2 = 20 ps2/km and γ = 2 W/km.
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In practice we have seen many optical components, such as the fiber Bragg grat-
ings, dispersion compensating fibers (DCFs), or optical fiber filter structures,27 
compensate for chromatic dispersion effects in the optical domain, as described in 
Sections 8.2. Nonlinear dispersion compensation can also be compensated in the 
optical domain by phase conjugators,28,29 but these require being placed exactly at 
the midway of optical fiber links, which would be hard to be determined. However, 
under current high-speed optical communication technology, electronic digital sig-
nal processing of received signals occurs in the electronic domain after the coher-
ent receivers. Thus it is possible to compensate for both the linear and nonlinear 
dispersions if algorithms can be found to do the reverse dispersion processes in the 
electronic domain to minimize the signal distortion. These algorithms would be 
developed if such transfer functions of the fibers operating in linear and nonlinear 
regions could be simplified so as to cost the least number of processing steps for 
processors working at ultra-high speed.30,31 The schematic of the optical coherent 
receiver in the long-haul optical fiber communication system is shown in Figure 8.13. 
Both transmitters and receivers can integrate digital signal processors before and 
after the optically amplified multispan optical fiber transmission link. The fiber link 
can be represented by a canonical form of transfer functions. It is noted here that 
the sampler must operate at very high rate, normally at about 56 or 64 GSa/s;32 thus, 
the DSP would have minimum memory banks and processing speed must be high 
enough so that real-time processing of signals can be achieved. Hence, algorithms 
must be very efficient and cost minimum time.

This section is thus dedicated to some of the recent developments in representing 
the transfer functions of optical fibers for signal propagation and compensations, 
with applications especially in the electronic domain.
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using coherent detection in a modern optically amplified fiber link transmission system.
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8.3.1  cascades OF linear and nOnlinear transFer 
FunctiOns in time and Frequency dOmains

In order to reduce computational requirements at the receiver and assuming that the 
nonlinear phase rotation on the optical carrier can be separable from the linear phase 
effects, one can represent the transfer functions of the propagation of the optical pulse 
sequence over a length L by a cascade of linear and nonlinear phase rotation as33

 
+ = γE t z h E t z e( , ) ( , )n

j h E t z( , ) 2  
(8.31)

and
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where the nonlinear phase is multiplied to the signals envelope at the input of a fiber 
length. This nonlinear phase is estimated under a number of considerations, so that 
it is valid under certain constraints. h is the step size, as we have assumed in previ-
ous section, but it can also take a much larger distance—thus allowing reduction of 
computational resources. � �ω + ω +E z h E z h( , ) and ( , )n  are the approximated optical 
fields at the input and output of the fiber over a step of order n. Clearly from (8.31) we 
can observe that the phase accumulated over the distance step h is contributed to the 
rotation of the phase of the carrier, while (8.32) represents the rotation of the phase 
of the carrier after propagating through h by the linear GVD effect evaluated in the 
spectral domain. Thus the transfer function of the linear dispersion effect given in 
(8.4) can be employed together with the nonlinear phase contribution as shown in 
Figure 8.14 over the whole transmission link of N spans or cascades of span by span 
over the whole link.

The assumptions and observations through experiments of the nonlinear phase 
effects on transmission of signals are as follows:

• Amplitude-dependent phase rotation to improve system performance has 
been demonstrated in Kikuchi et al.34 and Charlet et al.35 over short fiber 
spans with nearly perfect chromatic dispersion (CD) compensation per span.

• The received signal has a spiral-shaped constellation as reported in Lau and 
Kahn.36 It is possible to exploit the correlation between the received ampli-
tude and nonlinear phase shift to reduce nonlinear phase noise variance as 
shown in Pina et al.37 under simulation using the split-step Fourier method 
(SSFM). This spiral rotation leads to conclusions that under possibly weak 
nonlinear effects the phase can be superimposed on the modulated signals 
as an additional phase components—thus, the cascade of the nonlinear 
phase superposition and linear transfer function.

The effective length of each step must be evaluated so as not to overcompensate. 
This effective length can be estimated as given in (8.28), which is typically about 
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22 km for standard single-mode optical fiber (SSMF) with a nonlinear coefficient 
of 2.1e-20 m/W. The rotation of the constellation of a quadrature phase shift keying 
(QPSK) signal sequence is shown in Figure 8.15, indicating the effects of nonlinear 
rotation when the linear chromatic dispersion is completely compensated.

Once the nonlinear phase noises can be represented as a phase superposition on the 
signals, under coherent detection the optical field would be detected and presented as 
an electronic current or voltages at the output of an optical receiver whose signals are 

Constellation QPSK

Decision boundary

NL phase rotation

FIGURE 8.15 Received signal constellation of QPSK under coherent detection over 5000 
km of SSMF under nonlinear (NL) effects and linear dispersion with decision boundary (spi-
ral lines) for detection. (From A.P.T. Lau and J.M. Kahn, IEEE J. Lightw. Technol., 25(10), 
3008, 2007. With permission.)
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then sampled by a high-speed sampler to covert to the digital domain and processed by 
a digital signal processor (DSP). The compensation of nonlinear phase noises is then 
conducted in the digital domain, and thus a back propagation algorithm is required. 
This algorithm can be implemented by forward propagation with a nonlinear coefficient 
of sign opposite to that of the transmission fiber. The numerical implementation of such 
a transfer function and phase superposition given in (8.31) and (8.32) is quite straightfor-
ward and numerically effective, as the phase over the propagation step can be over one 
span or sections of spans, or even the whole transmission link.33 However, the compen-
sation may be too much, and thus distortion does also happen. In this case there must be 
an adaptive technique to monitor the compensation process so that when the nonlinear 
phase distortion is just completely compensated, the process must be finished.33

8.3.2  vOlterra nOnlinear transFer FunctiOn 
and electrOnic cOmPensatiOn

As described in Appendix 8.1, the wave propagation inside a single-mode fiber 
(SMF) can be governed by a simplified version of the NLSE, in which only SPM 
is affected. A = A(t, z) is the electric field envelope of the optical signal, β2 is the 
second-order dispersion parameter, α is the fiber attenuation coefficient, and γL is 
the nonlinear coefficient of the fiber. The solution of the NLSE can be written with 
VSTFs of kernels of the fundamental order and (2N + 1)th-order as described in 
Peddanarappagari and Brandt-Pearce.38 Shown in Figure 8.16a is the transfer func-
tion VSTF of a span of transmission fiber by a parallel combination of a linear and 
two nonlinear kernels. The whole transmission link can be thus represented by a 
cascade of the VSTFs and optical amplification stage as in Figure 8.16b. However, up 
to the third order is sufficient to represent the weakly nonlinear effects in the slowly 
varying amplitude of the guide wave propagating in a single-mode weakly guiding 
fiber; the frequency domain of the amplitude along the transmission line is given as25
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where A(ω) = A(ω,z = 0) represents the optical pulse at the input of the fiber in the 
frequency domain. ω1, ω2, and ω are the dummy variables acting as parameters 
and indicating the cross-interactions of the lightwaves at different frequencies, i.e., 
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intra- or interchannels, especially the interchannel interaction effects. The range of 
these spectral variables changes from (−∞, +∞). Thus we can observe that (ω1,ω2) 
form a plane of the angular frequency components, and the angular frequency ω can 
be scanned across all regions to see the interactions of the nonlinear effects. We can 
distinguish the regions on this plane, different nonlinear effects, after the propaga-
tion of the lightwaves in the nonlinear regime.

There are regions where there are cross-terms indicating the interaction of dif-
ferent and nonidentical frequency components of the signal spectra. These cross-
terms are the intermodulation terms, i.e., due to XPM, as commonly known. The 
term jβ2(ω1 – ω)(ω1 – ω2) accounts for the waveform distortion within a single span. 
Higher-order kernels, for example, the fifth-order kernel H5(ω1, ω2, ω3, ω4, ω), can 
be used if higher accuracy is required. These nonlinear transfer functions indicate 
the nonlinear distortion effects on the linear transfer part; thus, they are the power 
penalty or distortion noise that degrades the channel capacity.

8.3.3 sPm and intrachannel nOnlinear eFFects

Under consideration of only the SPM of all the nonlinear effects on the optical 
signals transmitting through a dispersive transmission link, we can drop all the 
cross-coupling terms but ΔΩ in (8.25); the nonlinear effect is thus contributed by 
additional intrachannel effects with ω1, ω2 taking the values with the spectra of the 
optical signal and not crossing over the spectra of other adjacent channels. With the 
substituting of the fundamental order transfer function (8.22) we arrive at
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FIGURE 8.16 (a) Representation of a fiber span by VSTFs of first and higher order (up to 
fifth order); (b) cascade of optically amplified Ns-span fiber link without DCF.
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The nonlinear distortion noises contributed to the signals when operating under 
the two regimes of large and negligible dispersion are given by Tang,3 depending on 
the dispersion factor of the fiber spans.

The nonlinear transfer function H3 indicates the power penalty due to nonlinear 
distortion and can be approximated as25
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Thus if the ASE noise of the in-line optical amplifier is weak compared with signal 
power, then we can obtain the nonlinear distortion noises for highly dispersive fiber 
spans (e.g., G.652 SSMF) as
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and for mildly dispersive fiber spans (e.g., G.655 LEAF fiber spans):
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The nonlinear power penalty thus consists of the linear optical amplifier noises; the 
second is the SPM noises from the input signal and nonlinear interference between 
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the input and optical amplifier noises, which may be ignored when the ASE is weak. 
Equations (8.38) and (8.39) show the variation of the penalty and, hence, channel 
capacity of dispersive fibers, operating under nonlinear effects and in multispans 
with optically amplified fiber spans of dispersion parameters from 0 to –20 ps2/km. 
The nondispersive fiber has restricted the channel capacity to about 3–4 bps/Hz but 
6–9 bps/Hz with 4 and 32 spans, respectively, for a dispersion parameter of –20 ps2/km 
with 100 DWDM channels of 50 GHz spacing between the channels and an optical 
spectral noise density of 1 μW/GHz.3 The length of each fiber span is 80 km.

By the definition of the nonlinear threshold determined at 1 dB degradation from 
the linear optical signal-to-noise ratio (OSNR), the contribution of the nonlinear 
noise term, from (8.38), we can obtain the maximal launched power at which there 
is an onset of the degradation of the channel capacity as

 
= ω

γ
π







Ω
α

P
N

max  0.1
2

2

c

s
L

3

2 2

2
 (8.41)

An example of the estimation of the maximum level of power per channel to be 
launched to the fiber before reaching the nonlinear threshold 1 dB penalty level fol-
lows: for an overall 100 channels of 150 GHz spacing ΩT ≈ 200 nm, then Pth ≈ 58 
μW/GHz, or for 25 GHz bandwidth, we have the threshold power level at Pth β low = 
0.15 mW per channel.

For highly dispersive and eight-wavelength channels we have Pth  β  low → 7–10 
Pth β low, which may reach 1.5 mW/channel threshold level. The estimations given here, 
as an example, are consistent with the analytical expression obtained in Equation 
(8.41). Thus, this shows clearly: (1) Dispersive multispan long-distance transmission 
under a coherent ideal receiver would lead to better channel capacity than a low-
dispersive transmission line. (2) If a combination of low- and high-dispersive fiber 
spans is used, then we expect that from our analytical Volterra approach, the penalty 
would reach the same level of threshold power so that a 1 dB penalty on the OSNR 
is reached. Note that this approach relies on the average level of optical power of 
the lightwave-modulated sequence. This may not be easy to estimate if a simulation 
model is employed. (3) However, under simulation, the estimation of average power 
cannot be done without costing extremely high time; thus, the instantaneous power is 
commonly estimated at the sampled time interval of a symbol. This sampled ampli-
tude and the instantaneous power can be deduced. Thence the nonlinear phase is 
estimated and superimposed on the sampled complex envelope for further propaga-
tion along the fiber length. This may create some differences between the analytical 
estimates and numerical simulated results, as we can observe from the published 
results given in Tang.3 The sequence high–low-dispersive spans would offer slightly 
better performance than a low–high combination. This can be due to the fact that for 
low-dispersive fiber the output optical pulse would be higher in amplitude, which is 
to be launched into the high-dispersive fibers; thus this would suffer higher nonlinear 
effects because the instantaneous power launched into the fiber would be different—
even the average power would be the same for both cases.
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The argument in (3) can be further strengthened by representing a fiber span 
by the VSTFs, as shown in Figure 8.17. Any swapping of the sequence of low- and 
high-dispersion fiber spans would offer the same power penalty due to nonlinear 
phase distortion, except the accumulated noises contributed from the ASE noises 
of the in-line optical amplifiers of all spans. Thus we could see that the noise figure 
(NF) of both configurations can be approximated the same. This is in contrast to 
the simulated results reported in Pina et al.37 We believe that the difference in the 
power penalty in different order of arrangement of low- and high-dispersion fiber 
spans reported in Papoulis14 is due to a numerical error, as possibly the SSFM was 
employed and the instantaneous amplitude of the complex envelope was commonly 
used. This does not indicate the total average signal power of all channels. Therefore, 
we can conclude that the simulated nonlinear threshold power level would suffer an 
additional artificial OSNR penalty due to the instantaneous power of the sampled 
complex amplitude of the propagating amplitude.
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FIGURE 8.17 (a) System of concatenation of fiber spans consisting of a pair of different 
CDs and NL; (b) optically amplified Ns-span fiber link without DCF.
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Tang3 reported the variation of the channel capacity against the input power/chan-
nel with dispersion as a parameter –2 to –20 ps2/km with a noise power spectral 
density of 10 μW/GHz over 4 spans, and that for 4 and 32 spans of dispersive fibers 
of 0 and –20 ps2/km with a channel spacing of 50 GHz, 100 channels, noise spectral 
density of 10 μW/GHz. The deviation of the capacity is observed at the onset of the 
power per channel of 0.1, 2, and 5 mW.

Further observations can be made here. The noise responses indicate that the non-
linear frequency transfer function of a highly dispersive fiber link is related directly 
to the fundamental linear transfer function of the fiber link. When the transmission 
is highly dispersive, the linear transfer function acts as a low-pass filter, and thus, all 
the energy concentrates in the passband of this filter, which may be lower than that 
of the signal at the transmitting end. This may lower the nonlinear effects, as given 
in Equation (8.36). For lower-dispersive fiber this transfer function would represent a 
low-pass filter with 3 dB roll-off frequency, much higher than that of a dispersive fiber. 
For example, the G.655 would have a dispersion factor about three times lower than 
that of the G.652 fiber. This wideband low-pass filter will allow the nonlinear effects of 
intrachannels and interchannel interactions. The dispersive accumulation term
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dominates when the number of spans is high.
Simulation results given in Binh,39 using the Volterra series transfer function, 

consider this kind of arrangement of dispersive fiber spans. We expect from our ana-
lytical expression (8.36) that the arrangement of alternating positions between G.655 
and G.652 would not create any penalty. The simulation reported in Binh et al.25 

indicates a 1.5 dB difference at 10 × 2 spans (SSMF + non-DCF) and no difference 
at 20 × 2 spans. The contribution by the ASE noises of the optical amplifiers at the 
end of each span would influence the phase noises, and hence, the effects on the error 
vector magnitude (EVM) of the sampled signal detected constellation.

From the transfer functions, including both linear and nonlinear kernels of the 
dispersive fibers, we could see that if the noises are the same, then the nonlinear 
effects would not be different regardless of whether high- or low-dispersive fiber 
spans were placed at the front or back. However, if the nonlinear noises are accounted 
for, and especially the intrachannel effects, we could see that if less dispersive fibers 
are placed in the front, then higher noises are expected, and thus a lower nonlinear 
threshold (at which a 1 dB penalty is reached on the OSNR). This is opposite to the 
simulation results presented in Tang.6 However, these accumulated noises are much 
smaller than the average signal power. Under simulation, depending on the numeri-
cal approach used to solve the NLSE, the estimation of signal power at the sampled 
instant is normally obtained from the sampled amplitude at this instant, and thus, 
it is different from the average launched power into the fiber span. This creates dis-
crepancies in the order of the high- or low-dispersion fiber spans as argued in Binh, 
Liu, and Li (2012).25 Thus there are possibilities that the peak is of above-average 
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amplitude of the very dispersive pulse sequence at some instants along the propaga-
tion path at which there is a superposition of several pulses. This amplitude may 
reach a level much higher than the nonlinear threshold and, thus, create a different 
distortion penalty due to nonlinear effects.

We have simulated the optical transmission systems over alternating cascading of 
high- and low-dispersion fiber spans with the number of spans in order of at least five 
consecutive of one type and then the other. The modulation format is non–return-
to-zero quadrature phase shift keying (NRZ-QPSK), and the fibers are SSMF as 
high-dispersion type and TWC as low-dispersion type. The performance BER versus 
OSNR is obtained as depicted in Binh, Liu, and Li,25 in which we can also observe 
the difference between the arrangements of the order of low- and high-dispersive 
spans in the transmission link:

 a. For high launched power, regardless of whether high- or low-dispersion 
sequence, the BER versus OSNR performances are almost identical—see 
1, 2, and 3 dBm launched power curves for 5 and 10 SSMF + 5 and 10 
TWC, respectively.

 b. For weaker nonlinearity with launched power of –2 and –3 dBm, we observe 
that there are some differences in the power penalty between the arrange-
ments of the consecutive sequences of fiber spans of high and low dispersion.

We believe that this is due to the numerical modeling of the NLSE by SSFM as 
also observed. The power penalty due to nonlinear effects, whether by self-phase 
modulation or cross-phase modulation or intra- and interchannels or four-wave mix-
ing (FWM), will degrade the channel capacity of an optical transmission system. 
PDM and QPSK modulation formats with pulse-shaping NRZ or RZ will likely be 
deployed transmission systems in the near future. Estimation of channel capacity 
under this environment system operation is critical.

This report has arrived at analytical expressions of the power penalty or departure 
from the ideal Shannon channel capacity. VSTFs are also derived for the relationship 
between the linear and nonlinear contributions to the power penalty. Thus conclu-
sions on the structures of high- and low-dispersive fiber arrangements are made in 
order to obtain the least dispersive nonlinear effects on the OSNR.

It is expected from analytical analyses using the perturbation approach and 
Volterra series transfer functions up to the third order that the order of arrangement 
of the low- and high-dispersive fibers would not make any difference in the power 
OSNR penalty. However, under a numerical simulation model, this would be dif-
ferent due to the instantaneous power at the sampled instant. There are possibilities 
that superimposed amplitudes at different instants along the highly dispersive pulse 
sequence produce highly complex amplitudes, and high nonlinear phase distortion 
and, therefore, additional penalty on OSNR.

The Volterra transfer function offers better accuracy and covers a number of 
SPM and parametric scattering, but suffers costs of computing resources due to two-
dimensional fast Fourier transform (FFT) for the SPM and XPM. This model should 
be employed when such extra nonlinear phase noises are required, such as in the case 
of superchannel transmission.
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8.4 CONCLUDING REMARKS

As an introduction of the concept of transfer function of optical signals propagating 
over the guided medium, this chapter describes the behavior of the envelope of trans-
mitted lightwaves when the magnitude is in the linear or nonlinear regions. Also, the 
chirping of the carriers in the near and far fields is also described. Analytical forms 
of the transfer functions of optical fibers can be derived and intuitively approximated 
so that they can be employed in the design of the optical transmission systems or 
used for the development of algorithms in the processing and compensation of non-
linear phase noises during the propagation of signal channels in nonlinear regions. 
The transfer functions are play important roles in modern-day ultra-high-capacity 
ultra-long-reach optical communication systems.

APPENDIX 8.1: PROGRAM LISTINGS OF SPLIT-STEP 
FOURIER METHOD (SSFM) WITH NONLINEAR SPM 
EFFECT AND RAMAN GAIN DISTRIBUTION

function output = ssprop_matlabfunction_raman(input)

nt = input(1);
u0 = input(2:nt+1);
dt = input(nt+2);
dz = input(nt+3);
nz = input(nt+4);
alpha_indB = input(nt+5);
betap = input(nt+6:nt+9);
gamma = input(nt+10);
P_non_thres = input(nt+11);
maxiter = input(nt+12);
tol = input(nt+13);
%Ld = input(nt+14);
%Aeff = input(nt+15);
%Leff = input(nt+16);

tic;
%tmp = cputime;

%— — — — — — — — — — — — — — — — — — — — — — — — — — — — — -
% This function ssmf solves the nonlinear Schrodinger equation 
for
% pulse propagation in an optical fiber using the split-step
% Fourier method.
%
% The following effects are included in the model: group 
velocity
% dispersion (GVD), higher order dispersion, loss, and self-
phase
% modulation (gamma). Raman gain is treated as a distributed 
amplification.
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%
% USAGE
%
% u1 = ssprop(u0,dt,dz,nz,alpha,betap,gamma);
% u1 = ssprop(u0,dt,dz,nz,alpha,betap,gamma,maxiter);
% u1 = ssprop(u0,dt,dz,nz,alpha,betap,gamma,maxiter,tol);
%
% INPUT
%
% u0 - starting field amplitude (vector)
% dt - time step - [in ps]
% dz - propagation stepsize - [in km]
% nz - number of steps to take, ie, ztotal = dz*nz
% alpha - power loss coefficient [in dB/km], need to convert 
to linear to have P = P0*exp(-alpha*z)
% betap - dispersion polynomial coefs, [beta_0... beta_m] [in 
ps^(m-1)/km]
% gamma - nonlinearity coefficient [in (km^-1.W^-1)]
% maxiter - max number of iterations (default = 4)
% tol - convergence tolerance (default = 1e-5)
%
% OUTPUT
%
% u1 - field at the output
%— — — — — — — -
% Convert alpha_indB to alpha in linear domain
%— — — — — — — -
alpha = 1e-3*log(10)*alpha_indB/10; % alpha (1/km) - see 
Agrawal p57
%— — — — — — — -
%P_non_thres = 0.0000005;

ntt = length(u0);
w = 2*pi*[(0:ntt/2-1),(-ntt/2:-1)]’/(dt*nt);
%t = ((1:nt)’-(nt+1)/2)*dt;
gain = numerical_gain_hybrid(dz,nz);

for array_counter = 2:nz+1
 grad_gain(1) = gain(1)/dz;
  grad_gain(array_counter) = (gain(array_counter)-gain(array_

counter-1))/dz;
end
gain_lin = log(10)*grad_gain/(10*2);

clear halfstep
 halfstep = -alpha/2;
  for ii = 0:length(betap)-1;
    halfstep = halfstep - j*betap(ii+1)*(w.^ii)/

factorial(ii);
  end
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  square_mat = repmat(halfstep, 1, nz+1);
  square_mat2 = repmat(gain_lin, ntt, 1);
  size(square_mat);
  size(square_mat2);
  total = square_mat + square_mat2;
clear LinearOperator
  % Linear Operator in Split Step method
  LinearOperator = halfstep;
  halfstep = exp(total*dz/2);

u1 = u0;
ufft = fft(u0);

% Nonlinear operator will be added if the peak power is 
greater than the
% Nonlinear threshold
iz = 0;
while (iz < nz) && (max((gamma*abs(u1).^2 + gamma*abs(u0).^2)) 
> P_non_thres)
 iz = iz+1;

 uhalf = ifft(halfstep(:,iz).*ufft);

 for ii = 1:maxiter,
   uv = uhalf.* exp((-j*(gamma)*abs(u1).^2 + 

(gamma)*abs(u0).^2)*dz/2);
  ufft = halfstep(:,iz).*fft(uv);
  uv = ifft(ufft);

  if (max(uv-u1)/max(u1) < tol)
   u1 = uv;
   break;
  else
   u1 = uv;
  end

 end
% fprintf(‘You are using SSFM\n’);
 if (ii = = maxiter)

  fprintf(‘Failed to converge to%f in%d 
iterations’,tol,maxiter);

end

 u0 = u1;
end

if (iz < nz) && (max((gamma*abs(u1).^2 + gamma*abs(u0).^2)) < 
P_non_thres)
 % u1 = u1.*rectwin(ntt);
 ufft = fft(u1);
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 ufft = ufft.*exp(LinearOperator*(nz-iz)*dz);
 u1 = ifft(ufft);

  %fprintf(‘Implementing Linear Transfer Function of the Fiber 
Propagation’);

end

%toc;

output = u1;

APPENDIX 8.2: PROGRAM LISTINGS 
OF AN INITIALIZATION FILE

% This file initialization file – declaring all parameters and 
data required for
% Simulink model and Split Step Fourier – this file should be 
incorporated in Simulink% model via the use of model 
properties.
% This “initialization” program is to be modified to match 
parameters employed for
% any specific optical transmission systems.

clear all
close all

% Constants
c = 299792458; % speed of light (m/s)in vacuum
% NUMERICAL PARAMETERS

numbitspersymbol = 1
P0 = 0.003;  % peak power (W)
FWHM = 25  % pulse width FWHM (ps)
%halfwidth = FWHM/1.6651 % for Gaussian pulse
halfwidth = FWHM % for square pulse

bitrate = 1/halfwidth; % THz
baudrate = bitrate/numbitspersymbol;
signalbandwidth = baudrate;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% biasing condition on optical modulator for Differential 
Phase Sshift Keying
Vpi = 5;
halfVpi = Vpi/2;
twoVpi = Vpi*2;

% nt = 2^8;  % number of points in FFT
PRBSlength = 2^5;

% Make sure : FFT time window (= nt*dt) = PRBSlength * FWHM...
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% FFTlength nt = PRBSlength/block * numbersamples/bit = 
PRBSlength * (FWHM/dt)
% num_samplesperbit = FWHM/dt should be about 8 - 16 samples/
bit
num_samplesperbit = 32;% should be 2^n
dt = FWHM/num_samplesperbit; % sampling time(ps);% time step 
(ps)
nt = PRBSlength*num_samplesperbit; % FFT length

% nt = 2^9;
% nt = num_samplesperbit;

dz = 0.2;  % distance stepsize (km)
nz = 500;

%melbourne to gippsland: transmission distance of the link as 
an example
%170km two spans
nz_MelbToGipps = 500;

%undersea link – as a part of the overall link with Raman 
amplification or
% scattering effects
% total undersea distance = 290km over which Raman pump is 
employed; nz is the number% of distance in steps of 
propagation
nz_Raman = 250;
nz_undersea = 950;
nz_DCF = 145;

%George Town to Hobart – ANOTHER transmission link span 
EMPLOYING Raman amplification
nz_GtownToHobart = 500;

% number of z-steps
maxiter = 10; % max number of iterations
tol = 1e-5;   % error tolerance for convergence 

determination

% OPTICAL PARAMETERS

nonlinearthreshold = 0.010;% 10mW—  % Nonlinear Threshold Peak 
Power in mW

lambda = 1550;  % operating wavelength (nm)
of channel under 
considerations

optical_carrier = c/(lambda*1e-9);  % convert wavelength to 
frequency

alpha_indB = 0.17; % fiber loss (dB/km)
D = 18.5;% GVD (ps/nm.km); if anomalous dispersion(for 
compensation),D is negative



327Guided Wave Optical Transmission Lines

beta3 = 0.06; % GVD slope (ps^3/km)
ng = 1.46;  % group index
n2 = 2.6e-20; % nonlinear index (m^2/W)
Aeff = 76;  % effective area (um^2)

% CALCULATED QUANTITIES

T = nt*dt;  % FFT window size (ps) 
-Agrawal: should be about 10-20 times of the pulse width
alpha_loss = log(10)*alpha_indB/10;% alpha (1/km)
beta2 = -1000*D*lambda^2/(2*pi*c); % beta2 (ps^2/km);

%— — — — — — — — — — — — — — — — — — — — — — — — — —
% beta 3 can be calculated from the Slope Dispersion (S) as 
follows:]
% Slope Dispersion
% S = 0.092; % ps/(nm^2.km)
% beta31 = (S - (4*pi*c./lambda.^3))./(2*pi*c./lambda.^2)
%— — — — — — — — — — — — — — — — — — — — — — — — — —
gamma = 2e24*pi*n2/(lambda*Aeff); % nonlinearity coef (km^-1.
W^-1)
t = ((1:nt)’-(nt+1)/2)*dt; % vector of t values (ps)
t1 = [(-nt/2+1:0)]’*dt; % vector of t values (ps)
t2 = [(1:nt/2)]’*dt; % vector of t values (ps)

w = 2*pi*[(0:nt/2-1),(-nt/2:-1)]’/T; % vector of w values 
(rad/ps)
v = 1000*[(0:nt/2-1),(-nt/2:-1)]’/T; % vector of v values 
(GHz)
vs = fftshift(v); % swap halves for plotting
v_tmp = 1000*[(-nt/2:nt/2-1)]’/T;

% STARTING FIELD

% P0 = 0.001  % peak power (W)
% FWHM = 20   % pulse width FWHM (ps)
%halfwidth = FWHM/1.6651  % for Gaussian pulse

%For square wave input, the FWHM = Half Width
%halfwidth = FWHM;

L = nz*dz

Lnl = 1/(P0*gamma)  % nonlinear length (km)
Ld = halfwidth^2/abs(beta2) % dispersion length (km)
N = sqrt(abs(Ld./Lnl))  % governing the which one is 
dominating: dispersion or Non-linearities
ratio_LandLd = L/Ld  % if L << Ld— > NO 
Dispersion Effect
ratio_LandLnl = L/Lnl  % if L << Lnl— > NO 
Nonlinear Effect
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% Monitor the broadening of the pulse with relative the 
Dispersion Length
% Calculate the expected pulsewidth of the output pulse
% Eq 3.2.10 in Agrawal “Nonlinear Fiber Optics” 2001 pp67
FWHM_new = FWHM*sqrt(1 + (L/Ld)^2)

% N<<1— > GVD ; N >>1— -> SPM
Leff = (1 - exp(-alpha_loss*L))/alpha_loss
expected_normPout = exp(-alpha_loss*2*L)
NlnPhaseshiftmax = gamma*P0*Leff

betap = [0 0 beta2 beta3]’;

% Constants for ASE of EDFA
% PSD of ASE: N(at carrier freq) = 2*h*fc*nsp*(G-1) with nsp = 
Noise
% Figure 2 (assume saturated gain)
%**************** Standdard Constant *************************
*******
h = 6.626068e-34; %Plank’s Constant
%******************************************
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9 Fourier Guided 
Wave Optics

ABBREVIATIONS
Term Full Name

AWG Array waveguide grating

DWDM Dense wavelength division multiplexing

PLC Planar lightwave circuit

GW Guided wave

DFT or FFT Discrete/fast Fourier transform

DWT Discrete wavelet transform

IFFT Inverse FFT

oFFT Optical FFT

oDWT Optical DWT

9.1 INTRODUCTION

Photonic signal processing has emerged as one of the most essential techniques in 
modern optical communication systems beyond 100 Gb/s,1–6 especially in the intense 
effort to increase the transmission capacity per wavelength lightwave channel to 
terabits/s. In order to increase the spectral efficiency defined as the number of bits/s 
that are accommodated in 1 Hz, advanced modulation formats are employed, such as 
differential quadrature phase shift keying (D-QPSK), quadrature amplitude modu-
lation (QAM) in the amplitude, and phase plane or orthogonal frequency division 
multiplexing as multisubcarrier modulation.7 If it is possible to generate orthogonal 
channels in the optical domain, then this would offer significant advantages to the 
preservation of the subchannels via the orthogonality of the channels after transmis-
sion over dispersive a fiber channel, and hence the processing of the received signals 
at the end of the transmission link.

Fourier transform offers the orthogonality needed for such an operation due to 
the summation of the harmonic terms of sine and cosine terms. Fourier optics offers 
an excellent technique for processing optical signals. The idea of transformation in 
optics was investigated some decades ago. The Fourier transform of a continuous and 
coherent spatial distribution or image can be evaluated physically to a high degree 
of accuracy by use of one or more simple lenses plus free-space light propagation, 
leading to the well-established technology of Fourier optics as described in texts by 
Goodman,8 Papoulis,9 and Gaskill.10 This can be applied to a sequence of modulated 
lightwave signals carried by several optical subcarriers so that these channels can 
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be positioned to be orthogonal to each other. This is one of the main features of the 
discrete Fourier transform (DFT).

In modern optical communications in the 21st century, digital and coherent detec-
tion techniques are employed for detection and processing of transmitted symbol 
sequences over several thousand single-mode optical fibers without using any disper-
sion-compensating fibers (DCFs). The optical signals are normally sampled, and so 
in the optical domain the signals are considered sampled complex values. That is, the 
phase of the embedded lightwaves is contained in the complex term of the amplitude. 
In this chapter we treat the optical signals in the discrete domain.

This chapter introduces the fundamental principles of Fourier optics and its 
implementation in guided wave structures using either fiber or integrated planar or 
channel waveguide forms. Both discrete Fourier and wavelet transforms are given 
as the transformations that generate orthogonal components in the spectral domain. 
The optical structures of these transforms can take either serial or parallel forms. 
From a fundamental 2 × 2 optical coupler as a 2-point discrete Fourier transformer, 
one can build up a DFT of Nth order. Thus compact optical DFT and optical inverse 
DFT (IDFT) devices can be designed. Alternatively, parallel waveguide paths can 
be employed with appropriate delay length corresponding to specific spectral resolu-
tion, the array waveguide gratings. Another method that can also be used is multi-
mode interference (MMI) waveguides to obtain resolution in the spatial domain and, 
hence, distribution of the guided waves into different spatial and frequency resolu-
tions. However, this structure is strongly dependent on the interference between the 
guided high-order mode and the fundamental mode to achieve the time resolution, 
hence the frequency spacing. This interference makes this MMI unstable. On the 
other hand, an optical wavelet packet transformer requires only precise, within rea-
sonable tolerance, coupling coefficients in a number of splitting/coupling stages and 
no phase tuning; it thus offers significant flexibility in the selectivity of the filter 
passbands and combining channels in the inverse. Discrete wavelet transformation 
(DWT) offers some significant advantages in the reduction of accumulated and inter-
ference noises; some 10 dB improvement in the optical signal-to-noise ratio (OSNR) 
is expected for long-haul nondispersion compensation transmission systems.

The applications of optical DFT and IDFT as well as DWT are presented in 
advanced optical transmission systems operating at speeds on the order of terabits/s. 
It is noted that the difference between these two technologies is the path length, 
which can be very short in guided wave structures and only in moderate terms for 
fiber structures. If the operating speed is tens of Gb/s, then integrated optical struc-
tures must be used, the guided wave Fourier optics.

This chapter treats DFT, specifically fast Fourier transform (FFT), of discrete 
signals in an optical transmission system or network, thus leading to the prospec-
tive concept of fiber Fourier optics. In this approach a discrete set of coherently 
related optical input amplitudes an are fed into a lossless fiber or integrated optic 
device through a corresponding set of single-mode optical waveguides or single-
polarization input fibers, and the DFT bn of this sequence is taken out through N 
similar output optical waveguides. This device can be termed the Fourier optical cir-
cuit (FOC).11 Modern technology on planar lightwave circuits (PLCs) using silica on 
silicon12 offers such an implementation for an integrated Fourier optical transformer. 
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Similarly, another orthogonal transformation, DWT, is also analyzed and imple-
mented using guided wave components.

The chapter is organized as follows. Section 9.2 gives an introduction to discrete 
Fourier transform. Section 9.3 then introduces the guided wave technology that offers 
the practical implementation of DFT devices, including channel and planar optical 
waveguides, array waveguide gratings (AWGs), and cascaded 2-point DFT devices 
to form Nth-order DFT components. These components can also be implemented in 
fiber structures. Alternatively, the MMI device structures can also be designed to 
provide the functionalities of a DFT device. Some fundamental designs and analyses 
of the planar waveguides and channel waveguides are given in Section 9.3.3—in 
particular, the dispersion characteristics of the waveguides, so that one can select the 
number of modes to be supported, and then realization with geometrical and index 
values. We then describe the relationship between mathematical representations of 
DFT, DWT, and optical realization in both serial and parallel forms using guided 
wave optical components in a discrete integrated form. The design features of these 
transformers and their implementations employing guided wave devices are given in 
Sections 9.2.4.1 and 9.3.3, respectively. Applications of these DFTs in terabits/s opti-
cal transmission are given with focus on the optical signal processing, although some 
basic optical transmission system concepts employing the DFTs are also given for 
the sake of completeness. We avoid using any jargon terms related to transmission 
performance, but put emphasis on terms of guide wave phenomena.

Optical processing is always conducted in the analog domain. However, the dis-
crete Fourier and wavelet transformation terms are used due to the equivalent delay 
path length and the sampling time. Thus, the delay transform z can be used to repre-
sent and simplify the mathematical expressions.

The term discrete is used in this chapter to imply duality of the sampling in the 
optical domain and the sampling interval as commonly defined in the digital domain, 
that is, a delay of the optical carrier by an amount that is equivalent to the delay time 
of a symbol of optical modulated signals13 or the time interval between samples. 
For example, for a 25 GSym/s modulated signal the symbol period is 40 ps. If such 
a digital symbol is sampled at 50 GSamples/s, then the sample period is 20 ps. So a 
unit delay time is 20 ps and a delay length of an optical fiber is L ≈ 3e8/1.5 × 20e–12 
= 20 μm, assuming that the effective refractive index of the guided mode is close to 
1.5. Indeed, this index depends on the order of the guided mode and the composition 
of the core and cladding regions, as well as the materials used in the fabrication of 
the guided wave structure.14 With the very short length for high-frequency operation, 
it is only possible to use integrated optic technology, and hence the guided wave 
optics term used for this chapter.

9.2 BACKGROUND: FOURIER TRANSFORMATION

9.2.1 basic transFOrm

In the standard approach to the discrete Fourier transform, consider an N-term 
complex-valued input discrete sequence an as a complex sequence of the continuous 
signal a(t):
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Then the DFT Am of this discrete sequence is given by
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And the IDFT is given as
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The summation in (9.2) can be split into even 2k and odd 2k + 1 terms, leading 
to the sequence coefficients of the even and odd DFT terms for the upper and lower 
halves of the output components, given by

 

∑ ∑

∑ ∑

≤ ≤ −

= +

















≤ ≤ −

= −

















=

=

−
− π − π

+

=

−
− π

= +
=

−
− π − π

+

=

−
− π

q N

A
N

a e e a e

q N

A
N

a e e a e

for 0
2

1 upper-half number of coefficients

1

and for 0
2

1 lower-half number of coefficients

1

m q k
k

N

jqk
N

jq
N

k
k

N

jqk
N

m q N k
k

N

jqk
N

jq
N

k
k

N

jqk
N

2
0

2
1

2

2 1
0

2
1

2
2

0

2
1

2

2 1
0

2
1

2

 (9.4)

The index q is scanning across all values. The summations on the right-hand 
sides of (9.4) can be recognized as simply (N/2)th-order DFTs on the even and 
odd components of the Nth-order array, with some additional phase shifts of value 
exp(–jq(2π/N)) added to half of the transformed elements after the transformations. 
Thus depending on the order N of the transform when q and N equate to a ratio 
matching 2π would lead to a no phase shifting at all.

9.2.2 OPtical circuitry imPlementatiOn

9.2.2.1 2 × 2 Asymmetric Coupler
The optical blocks of the coupler and the phase shifter can be realized without much 
difficulty in integrated lightwave circuits such as silica on silicon, InP, and even in 



335Fourier Guided Wave Optics

LiNbO3-integrated photonic circuitry as given in Figure 9.1. Phase modulation or 
shifting can be implemented by using the electro-optic effect via an applied voltage 
on the lumped (for low frequency) or traveling wave type (for high frequency). The 
interpretation of the mathematical representation of the DFT is described as follows, 
and corresponding to the assignments of the order of discrete input samples as shown 
in Figure 9.3.

The summations on the right-hand sides of (9.4) can be recognized as simply 
(N/2)th-order DFTs on the even and odd components of the Nth-order array, with 
some additional phase shifts of value e–jqk(π/N) added to half of the transformed ele-
ments after the transformations. We note that a phase shift in the frequency domain 
is equivalent to a delay in the time domain. We will see later that this delay is indeed 
an optical path difference in the implementation of an integrated optical structure. 
Furthermore, (9.4) illustrates the general principle that one can evaluate an Nth-order 
DFT by structuring the two (N/2)th-order transforms and combining the results with 
appropriate phase shifts. This provides the foundation for the FFT algorithm,15,16 
which is universally employed for the numerical evaluation of DFTs. If this same 
procedure is applied again to the (N/2)th-order DFTs, they can each be separated 
into two (N/4)th-order transforms. If the original order N is a power of 2 so that N = 
2M, applying this procedure (M – 1) times reduces the initial Nth-order DFT to M/2 
second-order DFTs. A second-order DFT is thus simply given as
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This transformation requires addition and subtraction, and no multiplication is 
involved. In addition, a scaling factor of 1/ 2  is required. This factor is indeed 
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a1i

a0o =

a1o =

FIGURE 9.1 A 3 dB 2 × 2 asymmetric guided wave coupler (AGWC) represented as a 
second-order Fourier transformer.
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the coupling factor in the optical field term of a 3 dB optical coupler or splitter. 
The other splitting port would then involve a complex term of –j. So a 2 × 2 Fourier 
transform is simply a 3 dB coupler (or 50:50),11 as shown in Figure 9.1. It is noted that 
such a coupler can be implemented in bulk, integrated, or fiber optics. The principal 
motivation for implementation-integrated optics is the minimization of the insertion 
loss and alignment difficulty. This is essential when the order of DCT is increased 
much higher. The inputs a0i and a1i represent the field amplitude of the input signals 
injected into ports 0 and 1 of the coupler. The transfer matrices of the optical fields 
of a 50:50 2 × 2 lossless asymmetric coupler and symmetric coupler are given by
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In general the transfer matrix or the transmittance matrix involving the optical fields 
between the input and output ports of the asymmetric coupler is given by
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where k is the intensity coupling coefficient. The optical fields at the output ports of 
a 3 dB asymmetric coupler are given by
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An asymmetric guided wave coupler can be considered to have formed by two 
nonidentical core optical waveguides being placed side by side. The tunneling of the 
guided waves from one to the other is not symmetrical, and hence the phase shifts 
are imposed on one optical path with respect to the other.

9.2.2.2 Exemplar Models
We describe here two exemplar models for 4 × 4 and 8 × 8 Fourier transformers and 
their implementation in the optical domain employing asymmetric optical couplers 
and phase shifters.

9.2.2.2.1 4 × 4 Transformation Optical Circuitry
For a 4 × 4 transform we can obtain the coefficients of the stages of the couplers and 
phase shifters as follows. Referring to Equation (9.4), we have
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Hence we have the transfer matrix and the inputs and outputs as
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The optical circuit representing the 4 × 4 transform is given in Figure 9.2 directly 
interpreted from (9.9) and (9.10). Note that an alternative structure can be formed 
with the position of the phase shifter.

9.2.2.2.2 8 × 8 Transformation Optical Circuitry
Equation (9.4) has been written in the composition of the odd and even parts. Hence, 
the DFT is formed by the order of even and odd of the input ports and output ports. 
Equation (9.4) can be realized by using an optical splitter and phase shifting circuit 
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FIGURE 9.2 Optical circuit for a 4 × 4 optical Fourier transformer.
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of an 8 × 8 transfer transmittance matrix, as shown in Figure 9.3; the matrix coef-
ficients are given by
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Similar to the design of the 4 × 4 optical Fourier transformer, the transfer matrix 
can be obtained as given in (9.12).
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From this matrix we can obtain the transform optical circuit as shown in Figure 9.3. 
Note that a minus sign can be replaced by a phase shift of π-rads and j is a phase shift 
of π/2. One can trace the summation via the propagation of the optical fields of the 
input ports through the asymmetric couplers.

Equation (9.12) shows the symmetry of the coupling with additional phase shift-
ing at some specific positions due to the phase components of the second half of the 
transform equation, especially the minus sign, which is equivalent to a π phase shift. 
The matrix (9.12) can be rearranged so that the order of the elements would be a0, 
a4…a2, a6…a1, a5…a3, a7. This arrangement will lead to the coupling into the sum-
mation and subtraction resultant outputs, and then phase shifting to the final time-
domain outputs shown in Figure 9.3.

It is noted that such a 2 × 2 coupler can also be used as a 1 × 2 coupler with one 
of the input ports left unused.

Note the similar phase terms in the pairs of the rows of the matrix. By examining 
the row of the matrix given in (9.12), we notice the following:

• Row (a0 + a4)
• Row (a1 – a5)e–j2π/8

• Row (a2 – a6)e–j4π/8

• Row (a3 – a7)e–j6π/8
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These rows are for the propagation of the transformation via the couplers and 
phase shifting; the minus signs are extracted in output port 2 of the asymmetric cou-
pler. These are displayed in the optical structure depicted in Figure 9.3.

The appendix at the end of this chapter tabulates the specifications and illustrates 
the optical transmittance characteristics of a commercial array waveguide grating 
(AWG); the spectral characteristics indicate the principles of the FFT of such AWG 
in which the spectra of individual channels are overlapped and orthogonal to adja-
cent channels, that is, going to zero at the maximum of the others.

9.2.3  OPtical dFt by mach–zehnder delay 
interFerOmeters (mzdis)

The DFT or FFT equation (9.4) can be rewritten in the form that would be imple-
mented by a set of delay interferometers. For a continuous input signal x(t), the output 
Xm(t) can be expressed as
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where δ is the impulse function. Now taking the Fourier transform of (9.13), we 
have

PS => φ = q 2π
N

 , q = 1, 2, 3 ... N
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FIGURE 9.3 Signal flow of optical guided waves and operation for implementation of Nth-
order optical DFT formed by couplers and phase shifters (PS; N = 8 for this diagram). (Note: 
For numbering of the order of the input signal and the output ports, the first half of input ports 
are even, and the second half odd. Scaling coefficients for amplitude are not shown. Samplers 
are employed for sampling the output waveform in a time domain.)
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ω ωX x( ), ( )m� �  are the Fourier transforms on the output and input signals in the spectral 
domain. Referring to Figure 9.3, the outputs of an 8 × 8 optical DFT can be formed 
with the input sampled signals a0…a7 coupled to a three-stage (23) coupling system 
consisting of asymmetric couplers and phase shifters. As seen from (9.4) the couplers 
are arranged in such a way that the even and odd sampled inputs are coupled and 
phase shifted according to the phase shift coefficients given in this DFT relationship.

Alternatively, (9.14) can be manipulated to give
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By inspecting Equation (9.15) we can see that the first part represents the DFT 
of order N/2 and the term in the bracket represents the transfer function in the fre-
quency domain of a delay interferometer of a delay τ and a phase shift φm and 3 dB 2 
× 2 couplers at the input and output ports. The delay time and phase shift are given as
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So we can see that using an FFT of order N/2 can be obtained by cascading a 
number of MZDIs. This will be described in the next section in the implementation 
of the DFT or the wavelet packet transformer in the photonic domain.

9.2.4 FOurier transFOrm siGnal FlOw and OPtical imPlementatiOn

Based on (9.2) and (9.3), we can arrive at the signal flow graph shown in Figure 9.3. 
Note that the 2 × 2 asymmetric coupler is assigned as a cross-coupling symbol 
instead of the non-cross flow described in NTT Electronic Labs.12 Only couplers and 
phase shifters are required where the phase shift amount depends on the order of the 
FFT. An active switching device can be used instead of the 3 dB coupler so that one 
can change the order of FFT as required.

9.2.4.1 Practical Integrated Guided Wave Structure
As we can observe, Equation (9.4) is composed of the followings parts, and hence 
operations, as outlined in Figure 9.4. The mathematical operations in guided wave 
systems include the following:
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FIGURE 9.4 (a) DFT mathematical operation representation and (b) equivalent operations 
by guided wave components in parallel form.
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• Incoming optical waves (possibly modulated optical waves) are guided into 
a wave splitting region, normally a planar waveguide with receiving wave-
guides positioned where they can receive the maximum power distribution.

• Forming asymmetric coupling systems and appropriate phase shifters for 
the odd and even sampled discrete components in the guided wave structure.

• The number of stages depends on the total number of Fourier transform 
order, N, and appropriate number of couplers and phase shifters. The cou-
pling coefficients and asymmetry of the coupling regions must be precise in 
order to obtain the low loss and phase shifting according to the coefficients 
of the DFT given by (9.4).

• Cascade of asymmetric couplers or MZDI stages can be implemented and 
offer the same DFT structures. However, the MZDI can be used to offer a 
more simplified structure.

Design details of the guided wave optical transformers are briefly given in Section 
9.6. More details are also described in Chapter 5.

9.2.4.2 Cascade—Series Formation
In optical processing the frequency downsampling components of the Fourier trans-
form are realized by using a delay path whose propagation time is equivalent to the 
inverse of the frequency component. We can see from Figure 9.5 that an original 
optical signal is split into two equal-intensity field outputs that are then delayed by 
Δt in one path and none in the other. Thus the outputs of the first stage MZDI are in 
the fundamental order of the DFT, and then at the output ports of the 3 dB couplers 
the frequency is in the range of the fourth order. The higher the order, the shorter is 
the delay path. Figure 9.6 depicts a possible structure that can be implemented by 
integrated optical waveguides using both planar and channel waveguides described 
in Chapters 3 and 4.

9.2.4.3 Parallel Formation—Array Waveguide Grating
An example of the parallel formation of the FFT representing Equation (9.4) is the 
array waveguide grating that consists of three stages. The first stage is the split by 
radiation from a single waveguide to multiple output waveguides via a planar wave-
guide section. The middle stage is the delay paths in optical waveguides with a dif-
ference in the time equal to the inverse of the frequency spacing between the lines of 
the highest order as desired or the order of the FFT. The time delay is equivalent to 
the phase difference by the following relationship:

 = ≡− β∆ ω∆z e ej L j t1  (9.17)

where β is the effective propagation constant of the channel waveguide, ΔL is the 
path difference between the two consecutive paths, ω is the angular frequency of 
the lightwaves, and z is the symbol of the commonly known z-transform employed 
in digital signal processing.17 Once we know the order of the DFT, we can estimate 
the frequency of the highest-order spectral components, then the delay time with a 
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FIGURE 9.5 Operations by guided wave components using fiber optics. (a–b) Guided wave 
optical path of a Mach–Zehnder delay interferometer (MZDI) or asymmetric interferometer 
with phase delay tunable by thermal or electro-optic effects. (c) Block diagram representa-
tion. (d) Implementation of optical FFT using cascade stages of fiber optical MZDI structure. 
EAM = electroabsorption modulator used for demultiplexing in time domain. Note also phase 
shifters employed in MZDIs between stages. Inserts are spectra of optical signals at differ-
ent stages, as indicated by the optical FFT (serial type). (Extracted from Hillerkuss, R. et al., 
Nature Photonics, 5, 364, 2011.)
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known fabricated propagation constant of the lightwave, that is, the effective index 
of the guided wave of fundamental order. The final stage is combining and directing 
lightwave channels to individual outputs of each frequency region. The structure of 
the parallel delay paths is equivalent to the summation of a number of MZDI pairs; 
each is equivalent to a frequency component—thence the DFT operation.

A geometrical structure of a multiple input multiple output AWG is shown in 
Figure 9.7(a) and (b). Figure 9.7(c) illustrates the radiation of the lightwaves from 
the input to the optical parallel waveguide paths, and then the inteference of the 
outputs to other outputs of the device via another planar waveguide section. It is the 
interference that would ensure the guidance of a particular frequency component of 
the original signals. On the other hand, if a number of lightwaves of different fre-
quencies are launhched from the outputs back to the input side of the AWG, we have 
a multiplexing of the time-domain signals and hence the inverse Fourier transform 
operation. The spectra of a commercial AWG with 50 and 100 GHz spacing are 
shown in Figure 9.8. Note that the spectrum of the lines overlaps at about –11 dB, 
meaning that the passband of each filter rolls off and crosses over at this level. The 
operating principles of the AWG are given as follows. An AWG wavelength multi/
demultiplexer combines and splits optical signals of different wavelengths for use in 
WDM systems. The heart of the device, the AWG, consists of a number of arrayed 
channel waveguides that act together like a diffraction grating in a spectrometer. The 
grating offers high-wavelength resolution, thus attaining narrow-wavelength chan-
nel spacing such as 0.8 nm in International Telecommunication Union (ITU) chan-
nel allocation. Moreover, the multiplexer’s extreme stability eliminates the negative 
effects caused by mechanical vibration; in addition, it delivers long-term reliability 
because it is composed of silica-based planar lightwave circuits.

A number of AWGs based on PLC have been fabricated and made available 
by NTT NEL Co. Ltd. With 25, 50, and 100 GHz channel spacing the total num-
ber of input and output ports can reach 256. The spectra of both transverse elec-
tric (TE) and transverse magnetic (TM) modes coincide with each other, which 
makes the PDM modulated signals demuxed or go through an optical DFT without 
loss of misalignment of the spectra. A typical spectrum of the AWG is shown in 
Figure 9.9.
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FIGURE 9.6 Schematic of optical FFT using array waveguide grating; the delay difference 
is equivalent to the inverse of the frequency spacing between individual spectral lines.
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9.2.5 awG structure and characteristics

The configuration of a 1 × N AWG multiplexer is shown in Figure 9.4(b). The mul-
tiplexer consists of 1/N input/output waveguides or possibly N × N, two focusing 
slab waveguides, and arrayed waveguides with a constant path length difference ΔL 
between neighboring waveguides. The length of the difference is determined by the 
inverse of the fundamental frequency of the transform. The input light is launched 
into the first slab waveguide and then excites the arrayed waveguides with equal 
phase distribution. This is effectively the diffraction of the lightwave from the end 
of the single-mode waveguide when entering into the slab waveguide. After travel-
ing through the arrayed waveguides, the light beam interferes constructively at one 
focal point in the second slab. The location of the focal point depends on the signal 
wavelength λ because the relative phase delay in each arrayed waveguide is given by 
ΔL/λ. The slab and array waveguides act as a lens and grating, respectively, as shown 
in Figure 9.4(a–c).

We can consider the principle of the AWG in more detail as follows. In the first 
slab region, input waveguide separation is D1, the arrayed waveguide separation is d1, 
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FIGURE 9.7 A geometrical design of (a) 4 × 4 and (b) 1 × 4 array waveguide grating.19 (c) 
Radiation and interference of lightwave rays in planar sections of the AWG (not to scale).
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and the curvature radius is R1. The waveguide parameters in the first and the second 
slab regions may differ. In the second slab region the output waveguide separation 
is D, the arrayed waveguide separation is d, and the curvature radius is R. The input 
light at position x1 (x1 is arbitrary and measured in a counterclockwise direction from 
the center of the input waveguides) is radiated to the first slab and then excites the 
arrayed waveguides. The amplitude profile in each arrayed waveguide usually has 
a Gaussian distribution. After traveling through the arrayed waveguides, the light 
beams constructively interfere at one focal point x (x is measured in a counterclock-
wise direction from the center of the output waveguides) in the second slab. Let us 
consider the phase retardation for the two light beams passing through the (i – 1)th 
and ith arrayed waveguides. The difference between the total phase retardations for 
the two light beams passing through the (i – 1)th and ith arrayed waveguides must be 
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between frequency components. (Extracted from Binh, L. N., Guided Wave Photonics, Taylor 
& Francis, Boca Raton, FL, 2011, Chapter 3.)
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an integer multiple of 2π in order that the two beams constructively interfere at focal 
point x. Therefore we have the interference condition as

 β λ − β λ + β λ ∆ = πd x
R

dx
R

L m( ) ( ) ( ) 2s s c0
1 1

1
0 0  (9.18)

where βs, βc are propagation constants in a slab region and an arrayed waveguide, m 
is an integer, and λ0 is the center wavelength of the multiwavelength array system. 
When the condition βc(λ0)ΔL = 2mπ or

157015601550154015301520

1545
–50

–40

–30
Tr

an
sm

iss
io

n 
(d

B)

Lo
ss

 [d
B]

–20

–10

0

1550 1555 1560

40

35

30

25

20

15

10

5

0

Wavelength [nm]

Wavelength [nm]

50GHz. 2×8 Colorless AWG
(b)

(a)

FIGURE 9.9 NTT NEL Co. Ltd. SiO2:Si PLC AWG device with TE and TM modes, 25–50 
GHz channel spacing: (a) Single band 225 GHz AWG; (b) cyclic colorless AWG characteristics.
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 λ =
∆n L
m

eff
0

 (9.19)

is satisfied for λ0, the light input position x1 and the output position x should satisfy 
the condition

 =d x
R

dx
R

1 1

1

 (9.20)

In Equation (9.19), neff is the effective index of the arrayed waveguide (neff = βc/k; k 
= wave number in vacuum) and m is the diffraction order. The above equation means 
that light is coupled into the input position x1 and the output position x is determined 
by (9.20). Usually the waveguide parameters in the first and second slab regions are 
the same; they are d1 = d and R1 = R. Therefore, the input and output distances are the 
same as x1 = x. The dispersion of the focal position x with respect to the wavelength λ 
for the fixed light input position x1 is given by differentiating (9.18) to λ as

 ∆
∆λ

= ∆
λ

x N
n

R L
d

c

s 0

 (9.21)

where ns is the effective index in the slab region, and Nc is the group index of the 
effective index nc of the arrayed waveguide (Nc = nc – λ d nc/dλ). The input and out-
put waveguide separations are Δx = D when Δλ is the channel spacing of the WDM 
signal. Putting these relations into Equation (9.4), the wavelength spacing Δλ for the 
fixed light input position is given by

 ∆λ = − λ
∆

n
N

dD
R L

c

c

0  (9.22)

The path length difference ΔL is also obtained from (9.19). The spatial separation 
of the mth and (m + 1)th-focused beams for the same wavelength is obtained from 
(9.18) as

 = − = λ
+X x x R

dnFSR m m
s

1
0  (9.23)

XFSR represents the free spectral range of AWG. The number of available wavelength 
channels Nch is given by XFSR/D, where D is the output waveguide separation.

In silica-based AWGs, the equivalent refractive index nc is different for the orthogo-
nal polarization modes due to stress-induced birefringence. The focusing position is 
therefore different for the TE and TM polarizations. The TE/TM mode conversion 
method, in which a thin half-waveplate is inserted at the center of the arrayed wave-
guides, is the simplest and most practical way to correct for the different focal positions.
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9.3 GUIDED WAVE WAVELET TRANSFORMER

Among the transformation techniques that produce orthogonality of the time 
domain, waveforms would minimize the deleterious effects of dispersion. Wavelet 
transformation offers the use of time–frequency plane and finite impulse response 
(FIR), so implementation in the optical domain may offer some advantages. This 
section considers the wavelet transformation and its implementation using guided 
wave structures. Similar to the FFT and IFFT described above, the mathematical 
representation can be expressed in serial and parallel forms; the discrete wavelet 
transform can also be presented in these structures.

9.3.1 wavelet transFOrmatiOn and wavelet Packets

Cincotti et al. have recently21,22 proposed photonic architectures that perform the fast 
Fourier transform, the discrete wavelet transform (DWT), and the wavelet packet 
(WP) decomposition of an optical signal. The same architecture is also proposed 
to implement a full optical encoder–decoder that generates a set of the orthogonal 
codes simultaneously. WP decomposition is an appealing technique for processing 
signals with time-varying spectra due to its remarkable property to describe fre-
quency content along with time localization. Wavelets have a large number of appli-
cations, such as image compression, signal denoising, human vision, and radar, and 
in many fields, such as mathematics, quantum physics, electrical engineering, and 
seismic geology.

In optical communications, wavelets have been proposed for time–frequency 
multiplexing23 in order to minimize the linear dispersion effects. This section gives 
a short description of the features of the DWT and WP decomposition.

9.3.1.1 Cascade Structure
The DWT of a discrete sequence can be numerically evaluated via recursive discrete 
convolutions with a low-pass and a high-pass filter, followed by a subsampling of fac-
tor 2, according to the Mallat’s pyramidal decomposition algorithm,24,25 as
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where c1[n], d1[n] are the scaling and details coefficients, respectively, at the level 
decomposition or resolution of 2. The coefficients of the resolution at 2l are iteratively 
generated starting from the scaling coefficients at the previous resolution 2l–1 as
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On the other hand, the reconstruction of the input sequence can be generated by

 ∑= − + −s n h n k c k g n k d k[ ] [2 ] [ ] [2 ] [ ]
k

1 1  (9.26)

The scaling and detail coefficients are the orthogonal projections of the input 
sequence s[n] onto two complementary spaces ,l l� � , which are, respectively, 
spanned and scaled versions of the scaling function

 ϕ = ϕ −− −t t k( ) 2 (2 )l k
l l

,
/2  (9.27)

and the wavelet function

 ψ = ψ −− −t t k( ) 2 (2 )l k
l l

,
/2  (9.28)

These two functions must satisfy the dilation relationships:
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with τ determined by the inverse of the free spectral range defined as the frequency 
region in which all frequency components are included. The two infinite impulse 
response filters (FIRs) of length M have the frequency responses given by

 
∑

∑

ω =

ω =

− ωτ

=

−

− ωτ

=

−

H h k e

G g k e

( ) 1
2

[ ]

( ) 1
2

[ ]

jk

k

M

jk

k

M

0

1

0

1
 (9.30)

These two frequency responses are related by
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Hence,

 ω + ω =H G( ) ( ) 12 2  (9.32)
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where the superscript * denotes the complex conjugation. The filters G(ω), H(ω) are the 
quadrature mirror filter (QMF) and half-band filter (HB), respectively.26 They can be 
implemented by a lossless two-port coupler27 with the conservation of energy given by 
(9.32). In the complex plane z, the QMF and HB responses of (9.31) can be rewritten as
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where z = ejωτ = ejβL with the delay variable length L, β is the propagation constant of 
the guided mode, and L is the delay length equivalent to the time τ.17,28 The subscript 
* denotes the Hermitian conjugation, i.e., H*(z) = H(1/z*). We can see that the wavelet 
transfer can be implemented by fiber couplers and delay lines whose lengths can be 
tailored to match the sampling rate in the time domain, and hence the frequency 
spectrum of the base band signals that are carrying the optical waves in guided wave 
structures such as integrated optics or planar lightwave circuits. The z-transform 
expression can be implemented using optical circuits without much difficulty.29 A 
unit delay is represented by z–1 equivalent to a phase shift of propagation length L 
and the guided wave constant β.

If a wavelet filter is a half-band filter, we can follow the design procedure described 
in Cincotti.22 An optical FIR filter of length M can be formed by cascading M two-
port lattice structures with M optical delay lines, M phase shifters, and (M + 1) direc-
tional couplers. However, if the filter can be simplified to HB type, then the number 
of Mach–Zehnder delay interferometers (MZDIs) can be halved. An HB filter of order 
2N can be realized by cascading an MZDI with a delay τ and (N – 1) MZDI with a 
delay time of 2τ, as depicted in Figure 9.10(a). Figure 9.10(b) depicts the equivalent 
circuit by a 3 dB coupler MZDI and a network transfer function S(z) of N – 1 cascaded 
MZDI with coupling coefficients k2, …, kN and phase shifters ϕ1, …, ϕN.
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FIGURE 9.10 Structure of an optical wavelet filter (i.e., half-band filter [HB]) made up by 
cascading of MZDIs of length t and 2τ and phase shifters and a 3 dB 2 × 2 coupler cascaded 
with N – 1 couplers of amplitude coupling coefficients k. (a) N coupler structure; (b) equiva-
lent by one MZDI and a network S(z) of identical (N – 1) 2 × 2 couplers with coefficients 2 
to kN. H(z) is the HB and G(z) is the QMF. Note: 2 × 2 coupler is symmetric in this structure.
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9.3.1.2 Parallel Structure
The DWT decomposes a signal s(t) from a subspace Vo into nonoverlapping fre-
quency subbands by means of orthogonal projections W fj

m  given as

 ∑ζ = ζ =
=

−
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…  (9.34)
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where w{ }k
m j,  are the wavelet coefficients. The wavelet molecules wm,k,j are recur-

sively determined starting from the low-pass filter H and high-pass filter G, i.e., into 
mapping the input signal sequence into its low- and high-frequency parts by means 
of two orthogonal projections:
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The wavelet molecules are characterized by three parameters: the frequency 
order j, the scale m, and the position k. The time-varying harmonics in the input sig-
nals are detected from the position and scale of high-amplitude wavelet coefficients. 
Note that in DWT only the scaling coefficients c{ }k

m  are recursively filtered. In full 
decomposition, both the scaling and detail coefficient vectors are recursively decom-
posed into two parts with the scheme illustrated in Figure 9.11.

9.3.2 Fiber OPtic synthesis

Figure 9.12 depicts an optical circuit following the decomposed structure of Figure 
9.11 using guided wave devices, including an asymmetric MDI incorporating a phase 
shifter to resolve the frequency components of a serial optical pulse sequence input. 
We note that unlike for the DFT optical circuit described in Section 9.2.4.1, the 
decomposition for DWT no-phase shifters is required; thus there is no need for tun-
ing the phase shifting by either electro-optic or pyroelectric effects. The Haar wave-
let transform of first order is given in Cincotti.22

The transfer matrix of a lattice of an asymmetric MDI can be written as
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The overall transfer matrix of a network of lattice of MZDI can be formed by multi-
plication of appropriate matrices to give
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The condition for a unitary matrix is required to satisfy the conservation of energy 
in the coupling of the optical fields from one lattice to the other.

In the case that there are N input channels in parallel, the DWT would look like 
the structure depicted in Figure 9.13. The outputs c d( , )0

2
0
2  have the spectrum con-

sisting of all optical passbands and their quadrature counterparts.
The coefficients cklev  and dklev, with the subscript indicating the order and the 

superscript the level of propagation, can be evaluated as22
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These coefficients are given by the transfer matrices of the filterd H and G as

For M = 1, first-order Haar wavelet (l = 1):
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For second-order Haar wavelet (l = 2):
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9.3.3 synthesis usinG multimOde interFerence structure

Planar optical waveguides are normally considered guided wave optical devices that 
are infinitely long in the lateral direction, y, and have restricted confinement in the 
vertical direction, x. It is normally assumed that the field distribution in the lat-
eral direction is uniform, and there is an oscillating profile in the vertical direction. 
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FIGURE 9.13 Optical guided wave network for the decomposition of a serial input optical 
signal with Haar (Daubechies of order M = 2) in four stages using a guided wave coupler 2 × 2 
with different coupling coefficients as indicated in the coupler notation.
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Assume now that the planar waveguide is supporting only one guided mode in the 
x-direction and a multimode in the y-direction and that the input waveguide and 
output waveguides are single channel waveguides. Thus one can consider that light 
emitting from this kind of structure is similar to the diffraction from a slit to mul-
tiple slots or an antenna radiating an oscillating field in the planar waveguide region 
and distributed to different locations. This is illustrated in Figure 9.14. The field of 
guided modes of the planar waveguide with some restriction on the lateral dimen-
sion, that is, multimode guiding in the lateral direction, would be oscillating and thus 
distributed according to the high- and low-field regions.

Figure 9.3 shows typical field intensity distribution in a multimode planar wave-
guide in the lateral direction. The interference of these lateral modes forms the pat-
ent of maximum and minimum intensities as shown in Figure 9.15, depending on the 
order of the modes of the interference. This interference effect can be considered as 
overlapping imaging effects.30,31 Figure 9.15 shows the planar waveguide interfer-
ence section. The length of this section is critical for the interferences of the lateral 
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FIGURE 9.14 General structure of MMI coupler, input waveguide radiating field in planar 
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FIGURE 9.15 Lateral modes of the multimode planar waveguide.
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distribution. Thus its accuracy in the fabrication or thermal dependence would play 
a major part in the splitting and combining of the optical spectral distribution. Note 
that the number of the guided modes in the vertical direction is one. Figure 9.14 
shows sketches of the confined modes of the planar waveguides. Thus a number of 
general N × N MMI couplers can be formed as shown in Figures 9.16, 9.17, 9.18, and 
9.19. For the detailed design of multimode planar waveguides we can refer to the 
appendix. We would design the waveguide such that it is multimode in the lateral 
direction and single mode in the vertical direction. So an effective index technique 
would be computationally efficient.

9.3.4 remarks

It is noted that the principal differences between the Fourier and wavelet transforma-
tions are that the scaled and detailed versions under wavelets all have the same number 
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FIGURE 9.16 General N × N MMI coupler with an arbitrary access number of waveguides 
of N. (After Zhou, J., IEEE Photonic Technol. Lett., 22(15), 1093–1097, 2010.34)
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FIGURE 9.17 Symmetric interference 1 × K coupler. (After Siegmen, A.E., Opt. Lett., 
26(16), 1215–1217, 2001.)



358 Wireless and Guided Wave Electromagnetics

of oscillations. If this were traditional Fourier analysis, scaling coefficients would cor-
respond to the Fourier coefficients, and detail coefficients (wavelet functions) would 
correspond to sin(nωt) and cos(nωt). The more important differences between the 
wavelet expansion and the Fourier expansion are that the wavelet coefficients are local-
ized in both time and frequency, contrary to sine and cosine waves, which are com-
pletely delocalized in time, and that to describe finer details in time, wavelet expansion 
uses scaled basis functions, contrary to Fourier analysis, which uses higher frequencies.

In summary the photonic implementation of an optical wavelet transform can be 
decomposed into either cascade or parallel forms using guided wave structures of 
input and output waveguides, waveguide inerferometers, and phase shifters. Tunable 
phase shifting can be integrated. However, if MZDIs with tunable optical delay lines 
are used, these phase shifters can be eliminated. Switchable phase delay lines can be 
used to reconfigure the optical transformer, or a different order can be implemented 

W/K

2W/K

2W/3K

W

2W/3

L = 3 Lc/N

Pair of output
waveguides

1a
1b

2a
2b

Ka
Kb

Interference
planar region

FIGURE 9.18 Pair interference 2 × K MMI coupler. (After Siegmen, A.E., Opt. Lett., 
26(16), 1215–1217, 2001.)

Two mode
lateral

waveguide

Multimode
waveguide

Two mode
lateral

waveguide

Symmetrical field

Antisymmetrical
field

Planar MMI region

Planar MMI region

Planar MMI region

L = 3 Lc/4

L = 3 Lc/4

L = 3 Lc/4 PS = π/2

PS = π/2

FIGURE 9.19 Overlapping image MMI coupler to achieve a mode splitter or combiner. 
The phase shifter PS (π rad.) is used for reversing the phase. (After Siegmen, A.E., Opt. Lett., 
26(16), 1215–1217, 2001.)



359Fourier Guided Wave Optics

in active guided wave structures such as the electro-optic efficient crystal with 
Ti-diffused waveguides and phase modulation and switching.32 The guided wave 
structures can be in fiber optic form, with planar lightwave technology including 
guided wave channel and planar waveguides and multimode interferometers. With 
the base band signal frequency or speed reaching several GSymbols/s, we expect 
devices in planar waveguide technology will prevail in the near future.

On implementation, the principal difference between photonic DWT and DFT 
transformers is that the frequency bands of the DWT can be selectively assigned 
with the preservation of the orthogonality of the signals in the time and frequency 
domains. The assignment of the spectral bands allows simplification of computing 
resources and is much more suitable for optical implementation.

9.4  OPTICAL ORTHOGONAL FREQUENCY 
DIVISION MULTIPLEXING

The current trend in the speed of optical transmission is developed toward terabits/s 
from a single laser source.1–5 The principles of such Tbps optical transmission sys-
tems are as follows:

• The original lightwave source, the primary laser, is operating in the con-
tinuous wave (CW). Ultra-short pulse with a repeating frequency can then 
be generated in a mode-locked fiber ring resonator.33

• These short pulse sequences are then launched into a highly nonlinear fiber 
(HNLF), and the nonlinear interactions of the pulses would then generate a 
comb-like feature of several subcarriers, the secondary carriers.

• These secondary carriers are demultiplexed into individual secondary car-
riers. Each is then modulated by optical modulators.

• The modulated secondary carriers are then combined by an optical DFT 
and launched into an optical fiber transmission line.

• At the output of the transmission line the subcarrier channels are then 
demultiplexed by an optical inverse DFT and individually coherently 
detected by optical receivers and processed in the electronic domain and by 
algorithms in digital signal processors.

• DFT channels can be interleaved and decomposed into odd and even chan-
nels at the transmitter and receiver sides so that the frequency spacing 
between channels can have larger spatial tolerances and, hence, less chan-
nel cross talk.

A generic block diagram of the optical transmission system shown in Figure 9.20 
summarizes the steps given above. A detailed structure of the optical receivers is shown 
in Figure 9.21, in which an optical FFT is employed to recover the transmission chan-
nels in the electronic processor after the optical processing stages, including an optical 
FFT to demultiplex the individual optical transmitted channels and mixing with local 
oscillators of individual channels to recover the signals in the electronic domain and 
digitalized for digital signal processing. The spacing between the channels is about 50 
GHz or 0.4 nm. The principal function of an optical FFT is to separate the channels 
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with assurance of the orthogonality of the channels after transmitting through a very 
long and dispersive fiber transmission line without dispersion compensation. Advanced 
optical fiber communication systems extensively exploit coherent receiving techniques 
in which the optical fields of the arriving signals are mixed with a local laser oscilla-
tor via a hybrid coupler with polarization diversity. Both polarized mixed fields are 
then separately detected by balanced optical receivers. The output electronic signals 
are then sampled by analog-to-digital converters (ADCs) to digital domain signals that 
are then processed by digital signal processors to compensate for linear dispersion and 
nonlinear distortion effects, to recover the carrier phase, etc. The orthogonality of the 
optical channels before transmitting through long distance is very critical, and so the 
roles of the optical DFT and IDFT. The insert in Figure 9.21(c) shows the constellation 
of the 16-quadrature amplitude modulation (QAM) as decoded by a real-time sampling 
oscilloscope positioned after the coherent balanced receiver. These sampled digital sig-
nals are then processed by a digital signal processor (DSP) to recover the original data 
sequence. In this type of optical transmission system, the orthogonality property of the 
multiplexed multiwavelength channels is very important, so that even overlapping spec-
tral regions can be decoded by optical FFT or a discrete wavelet transformer (DWT).

9.5  NYQUIST ORTHOGONAL CHANNELS FOR 
TBPS OPTICAL TRANSMISSION SYSTEMS

Optical DFT and DWT can be employed in the organization of data channels modu-
lated at the Nyquist rate so that the total capacity for transmission over a single-mode 
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optical fiber can reach several Tbps over the C-band. This section considers the 
design of such optical transmission systems for Tbps with orthogonal channels oper-
ating at 56 GSym/s and an I/Q modulation scheme, the QAM.

A proposed optical transmission is shown in Figure 9.22 consisting of

• A comb generator generating multiple equally spaced subcarriers from a 
single-frequency lightwave source.

• The comb subcarriers are then demultiplexed by an array waveguide grat-
ing of equal spacing to that of the comb components.

• These individual subcarriers are modulated by the data channels encoded 
with certain symbols of a specific modulation format such as Mary-QAM.

• The modulated subcarrier channels are then arranged and multiplexed 
through an optical wavelet packet filter that gives the in-phase and quadra-
ture mirror channels. Both outputs can be combined and transmitted 
through the optical transmission line.

• The single-frequency characteristics of the subcarriers of the comb light-
wave source are critical for the spectral properties of the channels orthogo-
nal after transmitting over a long-distance transmission line.

• When the channels arrive at the receiver, an optical processing front end 
is employed to extract and select a group of particular desired channels. 
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the optical FFT. (e) Close view of the spectrum of a single channel. (From Hillerkuss, D. et al., 
Nature Photonics, 5, 364, 2011; Zhou, J., IEEE Photonic Technol. Lett., 22(15), 1093, 2010.)
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The photonic/optical processing front end takes the form/structure given 
in Figure 9.13 or Figure 9.17 to give the in-phase group of wavelets and 
quadrature mirror filter group of channels, which are then demuxed into 
individual channels by using an AWG. Note that a number of filter channels 
can be selectively switched into either the in-phase or quadrature outputs.

• Each individual channel is then coherently mixed with a local oscillator 
laser and detected by a balanced receiver via a hybrid optical coupler. The 
electrical signals at the output of the optical receivers are then sampled by a 
dual pair of ADCs and processed in the digital domain by DSPs.
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9.6  DESIGN OF OPTICAL WAVEGUIDES 
FOR OPTICAL FFT AND IFFT

As derived in the previous section, the entire sequence of operations involved in 
successively subdividing an input array of N pixels and applying the added phase 
shifts to calculate its Nth-order FFT can be implemented in a lossless optical fiber (or 
other) network with nothing more than N/2 log2(N) couplers or 3 dB beam splitters 
plus a number of in-line optical phase shifts. The implementation of such a structure 
in an integrated optical circuit is critical and would allow compact integration of 
several 2 × 2 couplers and phase shifters into a high-order Fourier optical trans-
former. Indeed, one can form a signal flow graph,17 and the implementation is quite 
straightforward.

In the implementation of this coupler, guided wave optical devices are commonly 
used, with the planar lightwave circuit on a silicon substrate with silica, with pure 
silica as the guiding material. The waveguide can be formed with geometrical struc-
tures such as rib waveguide or doped materials, as described in Chapters 5 and 6.

As an example, we consider a dielectric bar of index immersed in a medium with 
index n2, as shown in Figure 9.23, with uniform refractive indices in the regions sur-
rounding the channel waveguiding region. To facilitate comparison, we define the 
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normalized frequency parameter V and the normalized guide index b, or normalized 
propagation constant, in terms of n1, n2, h.
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The V-parameter can be approximated as given in (9.42) provided that the dif-
ference in the refractive index between the guiding region and cladding is small 
enough, usually less than a few percent.

Thus the normalized effective refractive index can be evaluated as a function of 
the normalized frequency parameter V to give the dispersion curves as shown in 
Figure 9.24 in which the curves obtained from the finite element method (FEM) and 
Marcatilli’s methods35 and the effective index technique confirm their agreement to 
within a tolerable accuracy.

A numerical evaluation for silica doped with a GeO2 waveguide and cladding 
region is pure silica. The relative refractive index of the core and the pure silica clad-
ding is 0.3 or 0.5%; then using the single-mode operation given in Figure 9.24, we 
can select V = 1, and using (9.42), then the cross section of the rectangular waveguide 
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FIGURE 9.24 Dispersion characteristics, dependence of the normalized propagation con-
stant of the guided modes as a function of the parameter V, the normalized frequency: com-
parison of three numerical, analytical methods for rectangular optical waveguides consisting 
of uniform core and cladding. Shown in boxes are regions of supported guided modes. (From 
Zhou, J., IEEE Photonic Tech. Lett., 22, 15, 2010, p. 1093.)
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is 3 × 3 μm2 for 0.5% relative refractive index, for 0.3% the dimension is 6 × 6 
μm2, and the refractive index of pure silica is 1.448 for an operating wavelength of 
1550 nm. Extending this dispersion curve for the lateral region we can design mul-
timode planar waveguides with a single mode in the vertical direction and support 
a few modes in the lateral region by determining the value of the V-parameter for 
the lateral direction and the lateral length of the waveguide. This type of laterally 
few-mode waveguide can be employed in the multimode interference (MMI) of the 
modes for optical field splitting and combining as described in Section 9.4. These 
MMI structures can be formed in cascade or parallel to create a discrete Fourier or 
wavelet optical transformer.

In practice most of the optical channel waveguides are fabricated using buried rectan-
gular channel waveguides; for example, a ridge silica on silicon structure is first formed 
on a silicon substrate and then covered with another layer of pure silicon by chemical 
vapor deposition. However, for Fourier optics and advanced optical communications, 
accurate position and orthogonality of the channels are very critical. This requires high 
precision in waveguide fabrication and, hence, high accuracy in the design of wave-
guides. Modern fabrication technology can offer such required precision.

This type of rectangular dielectric waveguide has been extensively investigated 
by Kumar’s method.36 This method offers higher accuracy on the estimation of the 
mode propagation constant, especially near the cutoff limit. The dispersion curve for 
the square of the normalized propagation constant and the parameter B is given as
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It is noted that although the perturbation method reported by Kumar et al.36 would 
give more accuracy near the cutoff region of the modes, in practice, due to fabrica-
tion tolerance, we can expect that both the Kumar method and effective approaches 
can be used to design and fabricate without any problems. Further details of this 
perturbation technique can be found in Moreolo et al.22 In summary, the procedures 
for the design of a waveguide, planar, or channel structure, for supporting single or 
multimodal regions of the E- or H-fields, are

• Based on the dispersion curves of both the E- and H-field modes, that is, the 
curves representing the V-parameter and the normalized propagation index, 
determine the desired number of modes in either polarization, then go to 
the curve to get the corresponding normalized propagation constant index. 
The effective refractive index of the guided modes can be determined from 
this index and also the expected propagation time of the guided mode over 
the length of the waveguide. This is important for the design of the multi-
mode interference waveguide.
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• Continue for other polarization directions, and then combine the two guided 
solutions to obtain the approximated analytical values for the combined mode.

• One can of course draw a circle with the value V selected, and the intersec-
tion of this circle and the dispersion curves of the modes would give the 
vertical value of b, the normalized propagation constant index from Figure 
9.24. Thus the propagation constants of the guided modes could be esti-
mated. These effective indices of the guided modes give the propagation 
velocity of the lightwaves confined in the optical waveguides.

9.7 CONCLUDING REMARKS

This chapter has outlined the principles of optical forward and inverse FFT using 
guided wave techniques. Some simple and basic mathematical representations 
of Fourier transform in the discrete mode are given. In summary, the techniques 
include the following steps:

• Determine the final frequency range and spacing between the spectral com-
ponents using either DFT or DWT and associated decomposition structures.

• From the fundamental frequency deduce the number of stages and the sam-
pling rate required.

• Decide on the serial or parallel form, then the design of individual MZDIs 
for the serial form and the delay path between waveguide arrays for the 
parallel form.

• Now design single-mode channel waveguides for the spectral regions of 
the frequency range. Use an effective index or perturbation techniques 
with the guide of the dispersion curves leading to a specific dimension of 
the waveguide.

• Alternatively, use MMI.
• Design the planar waveguide for radiating and combing of the spectral 

channels.
• Employ any commercial design packages if available. Otherwise, use 

the graphical techniques and the dispersion curves given in Section 9.6. 
Determine the number of modes to be supported by the waveguide, and 
then obtain the V-parameter for the core guiding and cladding regions. It 
is recommended that the maximal value of the propagation is selected, and 
then the V-parameter.

• Estimate the delay time and length of the waveguide as well as the coupling 
coefficient and separation distance between the waveguides of the guided 
wave directional coupler.

• Once these geometrical structures are determined, simulate detailed behav-
ior of the lightwaves propagating through the optical DFT or DWT using a 
simulation technique such as the beam propagation method.

• Finally, perform fabrication of the transformers and characterization using 
integrated photonic techniques such as the planar lightwave circuit (PLC) 
technology.
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Readers can explore many commercial packages to design the geometry and 
index profile for specific fabrication platforms, such as silica on silicon of polymeric 
material systems. Figure 9.25 shows the spectrum of an array waveguide grating 
(AWG) in which the spectrum of each channel is orthogonal to the two adjacent 
channels. This type of AWG can be employed as an optical FFT at the transmit-
ter and receiver of the terabits per second (Tbps) transmission system depicted in 
Figure 9.26. A typical specification of the AWG can be found in the appendix of 
this chapter. (Note that no optical DWT transmission systems have been reported to 
date, to the best of our knowledge.) The implementation of the optical DWT is much 
simpler than that for the DFT, as 2 × 2 couplers with predetermined coupling coeffi-
cients are sufficient. Furthermore, we understand that there are other transformation 
techniques that can also offer orthogonality of the channels, and even higher/faster 
than the Nyquist (FTN) speed,37 which is another orthogonal transform, but with a 
sampling speed higher than that required by Nyquist. The system of FTN requires, 
naturally, a channel with memory or associated with digital signal processing in 
the electronic domain, with memory equalization such as the maximum likelihood 
sequence estimation (MLSE) algorithm. Thus we can see that an interaction between 
the photonic and electronic domains can be possible to implement FTN transmission 
at extremely high speed, thanks to the generation of orthogonal spectra of optical 
channels by guided wave optics.
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APPENDIX 9.1

Available Channel Frequency
Range
Channel Spacing
Number of Channels
Channel Passband
Insertion Loss [1]
Uniformity
Ripple
Polarization Dependent Loss
Adjacent Channel Crosstalk
Non-adjacent Channel Crosstalk
Total Crosstalk
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Fiber Type
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FIGURE 9.25 Optical spectra of AWG Enablence PM-DWDM 100 GHz spacing and inter-
leaved to 50 GHz orthogonal channel spacing → 2 × 40 channels. (a) Typical parameters. (b) 
AWG spectra.
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Appendix: Vector Analysis

A.1 DEFINITION

The use of vector analysis in the study of electromagnetic (EM) field theory results 
in a real economy of times and thoughts. Even more important, the vector forms 
help to give a clear understanding of the physical laws that mathematics describe. 
Scalar is a quantity that is characterized only by the magnitude and algebraic sign. 
Vector is the quantity defined by the scalar quantity as well as its direction. They 
are represented by the sign ~ underneath, for example, vectors. Thus a vector can be 
represented geometrically by an arrow whose direction is appropriately chosen and 
whose length is proportional to the magnitude of the vector.

A.2 OPERATIONS

a.2.1 riGht-handed cOOrdinate system

A vector should be represented in a right-handed coordinate system, as shown in 
Figure A.1, in which the labeling of the axes follows a right-hand rule, or if we rotate 
the x-axis to the y-axis in the clockwise of the right hand, then the screwing direction 
must be the z-direction.

a.2.2 sum and diFFerence OF twO vectOrs

Given that the vector is specified by

 � � � � � � �

� � � � � �
�

= = + + = + +A A A A A a A a A a iA jA kA

a a a i j k x y z

( )

, , or , , unit vector in , ,  direction

x y z x x y y z z x y z

x y z

 (A.1)

Then for vector 
�
B  the summation of the two vectors 

� �
A B,  is given as

 � �
+ = +

= + + +

A B A A A B B B

A B A B A B

( ) ( )

( )

x y z x y z

x x y y z z

 (A.2)

a.2.3 multiPlicatiOn OF a scalar and vectOr and dOt PrOducts

A vector can be scaled by the multiplication of a constant.
A scalar product of two vectors 

� �
A B,  is expressed by the dot product of the two 

vectors to give a scalar quantity:
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where θ is the angle between the two vectors.
The cross-product of the two vectors is a vector presented by
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−
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A B A B = B A  (A.4)

A.3 CURL, DIVERGENCE, AND GRADIENT OPERATIONS

If V is a scalar function, then the gradient ∇V is given by

 
� � � �

∇ =

∂
∂
∂
∂
∂
∂

























= ∂
∂

+ ∂
∂

+ ∂
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V
x
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y
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z

V
x

V
y

V
z

V i j k  (A.5)

If 
�
V x y z( , , )  is a vector function, then the divergence i

�
∇ A  is given as

x

y

z

A

Ax

Ay

Az

FIGURE A.1 Right-handed coordinate system, that is, if rotating x to y in the clockwise 
direction, then the screwing direction must be z using the right hand.
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If 
�
V x y z( , , )  is a vector function, then the curl of 

� �
∇ ×V , V , is given as

 
�

� � �

∇ × =

∂
∂

∂
∂

∂
∂

=

∂
∂

−
∂
∂

− ∂
∂

+ ∂
∂

∂
∂

− ∂
∂

























x y z
V V V
i j k

V
y

V
z

V
x

V
z

V
x

V
y

x y z

z y

z x

y x

V  (A.7)

This is the curl operation.

a.3.1 identity

Given that 
�
A V,  are the vector and scalar functions, respectively, we have the fol-

lowing identities:

 

� �

� �

�
i

� �
�

= ∇ ∇ × =

= ∇ × ∇ =

= ∇ ∇ = ∇ = ∂
∂

+
∂
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div curl

curl grad

div gradA V
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( ) ( ) 0

( ) ( ) 0

( ) ( ) Laplacianx y z2
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2

2

2

2

A A

A V

V V
 (A.8)

a.3.2 Physical interPretatiOn OF Gradient, diverGence, and curl

Gradient: The gradient of any scalar function is the maximum spatial rate of 
change of that function. If the scalar function represents the temperature, 
then grad(V) is the temperature gradient or the rate of change of the tem-
perature with distance. It is evident that although the temperature is a scalar 
function, grad(V) is a vector quantity, with its direction being that in which 
the temperature changes most quickly.

Divergence: As a mathematical tool, vector analysis finds great usefulness in 
simplifying the expressions of the relations that exist in a three-dimensional 
field. A consideration of fluid flow motion gives a direct interpretation of 
divergence and curl. First consider an incompressible fluid, e.g., water, then 
the rectangular parallel pipe shown in Figure A.2.

  If the fluid is flowing through this small volume, then due to the non-
compression of the fluid, it is expected that there will be the same amount 
of volume of the fluid at the output of the small volume. Thus, there is no 
divergence of the fluid after flowing through the volume, and the divergence 
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of the fluid is zero. However, if the fluid can be compressed, then the rate of 
flow of the fluid through this infinitesimal volume would change, and thus 
the rate of flow would be different at the output of the volume compared 
with that at the input. Thence, the divergence of the flow is finite.

Curl: The concept of curl or rotation of a vector quantity can be illustrated 
in a stream of flow problems, for example, a leaf flowing on the surface of 
water, as shown in Figure A.3. If the leaf rotates about an axis parallel to 
the z-axis, then the velocity of flow of the leaf would be different, and the 
curl of the velocity 

�
v  denoted as 

�
∇ × v  is given as

 
�

� � �
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 (A.9)

  The rotation velocity of the leaf about the z-axis is given as the change of 
the velocity of the leaf flow in the x-direction minus that of the y-direction.

x

y

∆y

∆x∆z

z

FIGURE A.2 An infinitesimal volume rectangular parallel pipe within a fluid medium.

Leaf

x

y

FIGURE A.3 Flow of a leaf on the surface of water.
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A.4 VECTOR RELATION IN OTHER COORDINATE SYSTEMS

a.4.1 cylindrical cOOrdinates

Refer to the labels of the cylindrical coordinates assigned in Figure A.4; we have the 
following expressions for the gradient, divergence, and curl operators:
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ρ
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V
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z

1V  (A.10)

If 
�
A x y z( , , )  is a vector function, then the divergence i

�
∇ A  is given as
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If 
�
V x y z( , , )  is a vector function, then the curl of 

� �
∇ ×V V, , is given as
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FIGURE A.4 A cylindrical coordinate system.
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The Laplacian in the cylindrical coordinates is then given by

 �∇ =
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ρ ∂
∂ρ







+
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V V V
z

1 1 Laplacian2
2

2
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2V  (A.13)

a.4.2 sPherical cOOrdinates

Referring to the spherical coordinate systems depicted in Figure A.5 we can write

 
� � � �

∇ = ∂
∂

+ ∂
∂θ

+
θ

∂
∂φθ φ

V
z r

V
r

V1 1
sinrV a a a  (A.14)

If 
�
A x y z( , , )  is a vector function, then the divergence i

�
∇ A  is given as
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If 
�
A x y z( , , )  is a vector function, then the curl of 

� �
∇ ×A A, , is given as
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FIGURE A.5 A spherical coordinate system.
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The Laplacian of a scalar function V in the spherical coordinate system is given as
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