The zeros of the Weierstrass g—function and
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ABSTRACT. We express the zeros of the Weierstass p-function in
terms of generalized hypergeometric functions. As an application
of our main result we prove the transcendence of two specific hy-
pergeometric functions at algebraic arguments in the unit disc.
We also give a Saalschiitzian 4 F';—evaluation.

1. Introduction

The Weierstrass p-function is defined for z € C and 7 € H, the
upper half-plane, by

o(z,7) =272+ Z (z+w)?—w™),

w#0

where w runs over the lattice Z + 7Z. For 7 fixed, p and its derivative
. are the fundamental elliptic functions for Z + 77Z. The fact that
the zeros of p, in the torus C/(Z + 7Z) occur at the points of order 2,
namely 1/2,7/2 and (1 + 7)/2, is basic for the theory. On the other
hand, the zeros of g itself are not nearly as easy to describe. Since ¢
assumes every value in CU{oo} exactly twice in C/(Z+7Z), it follows
that p has two zeros there which, g being even, can be written in the
form +z,. Almost a century after Weierstrass’ lectures on elliptic
functions were published [14], Eichler and Zagier [6] found the first
explicit formula for z,.
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This formula gives 2 as a certain modular type integral of weight
3 in terms of 7. Here we will “deuniformize” their formula and ex-
press zp as a multi-valued function of the classical modular invariant

(1) J(T) = q¢ '+ 7444+ 196884g + ... (¢ = ™),
although it is, in fact, better to work with
(2) r=1-1728/j.

Along these lines, it was already understood in the nineteenth cen-
tury that 7 can be written as the ratio of two solutions of the second
order hypergeometric equation in z:

[0(6—3)—z(0+ 5)(0+ )Y =0 where 6 =z

Similarly, we will show that z, can be expressed as the ratio of two
solutions of the third order hypergeometric equation in :

(66 =30 —3) —2(@ + )0+ F) (@ + DY =0.

To be more specific, we will use (generalized) hypergeometric series
defined for |z| < 1 by

= (a)n - (@m)n 2"

3) F(z)=F(a1,...,am;b1,...,0p_ = —,
O Flay =l mih 0= 2 B ol
where (a),, = I'(a+n)/I'(a) and no (bt),, = 0. It is well known that for
any fixed choice of b € {1,by,...,b,_1}, the function z°~' F(x) satis-
fies an m-th order hypergeometric equation and has an analytic con-
tinuation to a multi-valued function on the Riemann sphere punc-

tured at {0, 1, oo}. In terms of these functions it can be shown using
the classical method of Fricke [9, I. p.329 ] (see also [10, p.159]) that

qF(L 5.1, |
4) -t (12731 7) . (QZ%),
F(12’12 11 —x) (7/12)T(11/12)

Our main result, proved in the following section, gives a similar ex-
pression for 2.

THEOREM 1. The zeros of the p-function are given by £z,, where

1

1+7 ot F 72717 ) |ZL’ i

G) 2= X (3.3 1:3312) <C2:_§{§)'
2 F(&, 31| 1—2)

Here 7 is given in (4) and x in (2).

In addition to its basic interest for the theory of elliptic functions,
Theorem 1 has some simple applications to hypergeometric series
worth noting. One concerns the transcendence of their special val-
ues. Suppose that all parameters a;, and by, of F(z) given by (3) are
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rational. It is a well known problem to determine the set of algebraic
x with |z| < 1 for which the value F(z) of such an F is algebraic.
When F' is a Gauss hypergeometric series (m=2) this set is known to
be finite unless £ is an algebraic function or is one of a finite number
of explicitly known exceptional functions (see [1] and its references,
particularly [5]). For generalized hypergeometric functions (m > 3)
there seem to be no nontrivial examples known where this question
is settled. It is shown in §3 that Theorem 1 together with a classical
result of Schneider provide two such examples.

COROLLARY 1. For algebraic x # 0 with |x| < 1 the values

F(§,§,1,4,4’5L’) and F<4’4’173" |37)

are both transcendental.

Eichler and Zagier also gave an amusing corollary of their for-
mula for 7 = i:

n=1 n2 72\/6 ’
where A, = 1,732,483336, ... are defined through the g-series

an>1( )24 s
ZA (1-504%, ., 05(n)q”)3/2 (‘75(”) =2_d )

dln

i An —27n ™= 10g(5 + 2\/6>
—_— e f—

In the same spirit, in the limiting case Im 7 — oo we present a hy-
pergeometric counterpart.

COROLLARY 2. We have
F(474717173»372|1) %log(z\/é_él)
This curious Saalschiitzian ,F3—evaluation does not seem to fol-

low easily from classical results [3]. It is derived in §4 from Theorem
1 and a delicate asymptotic formula discovered by Ramanujan.

2. The Eichler-Zagier formula

To state the Eichler-Zagier formula we need the Eisenstein series
Ey(m) =1+240) o3(n)g" and Eg(t) =1-504 o5(n)q",
n>1 n>1
and the normalized discriminant function
A7) = g (Bi (1) = Bg(1) = ¢ [ ] (1 =)™
n>1

all familiar modular forms.
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THEOREM (Eichler—Zagier). The zeros of the Weierstrass ¢ -function
are given by

N lo (5+2f ) A( )
(6)Z—m—|—%+m':|:< g +144m\/_/ E6( Fo(0) da)
for all m,n € 7Z, where the integral is to be taken over the vertical line
o=T1+iR"inH.

They gave two proofs of (6) in [6]. The first is based on the fact
that if 2o(7) is a zero of p(z, 7), then 2 (7) is a modular form of weight
3 that can be determined explicitly. The second proof uses elliptic
integrals in a more direct manner.

Proceeding to the proof of Theorem 1, by analytic continuation it
is enough to assume that 7 = iy with y > 1. Any fractional powers
that occur are assumed to be principal values. It is convenient to
begin with the modular function t = 1 —z = 1728/, where as before
J = E}/A. We have the relations

1728A E? 1dt FEs
= EZI’ s 1 t= E_Z’ and ;E = 271'254.
To obtain the last one we use the formulas of Ramanujan for deriva-
tives with respect to 7 [11, p.142.]:

EZ1 = %(EQE;; - E6)7 Eé = 7T?:(E2E6 - EZ), A/ = 27T’iE2A,

z)=1-— 24201(n)q

n>1

(7)

where

It is a classical fact that a pair of linearly independent solutions
to the hypergeometric equation

(8) tA—0)Y" +(1 -3y — 7Y =0
is given by
) Fi(t)=F(s5,3;11t) and Fy(t) = 7(t)Fi(t),

where 7(t) is the inverse of ¢(7) ([9, I. p. 336.]). We need the remark-
able identity of Fricke [9] (see also [1, p. 256]):

(10) Fi(t(r) = B/ ().
Using (7) and (10) we obtain the Wronskian

(11)

Fl(t) Fg(t) / / _ 1 41 _ p\—1/2
B H) = BORO - RORD = & -
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as well as the identity

1728A(7) . dt
12 = L1 -t R ().
( ) Eg/Q(T) Qm( ) 1( )dT
Write v = ¢(7) and let
() 1728A(0)

— A2 _ i S
(13) H(u) =47 Fy(u) /ioo (0 —7(u)) Fo(0 )2 do.
Changing variables o +— ¢ and we get using (12) and 7(u) = ?f—guu;

that
H(u) = 2mi /Ou (Fi () Fa(u) — Fi(u)Fa(t)) (1 — £)75/ at.

Now apply the differential operator

Lu:u(l—u)%+(1—%u)%—%

to this integral to get
Lo H(u) = 2miu(l — u)(FLFy — FyF))(1 —u) ™4,
where we are using that £ and F} satisfy (8). Thus by (11)
L,H=(1—u)™34

or, in other words, H (u) satisfies an inhomogeneous hypergeometric
equation. Letting = 1 — u this equation can be written

(14) o(1—2)Y"+ (3 = 32)Y — 2Y =a273/4,

By using the method of Frobenius (see [2, p.201.]), it is easy to find a
particular solution to (14) in the form

(15) —16x1/4F(%, %, 1; %,% | ) = —16:E1/4F(:E),

say. Thus it follows from (13) that for some constants a« and b we
have

T - _1/4
R / (r— ) g2 dr = SO0 (1= 1) 4 arFy(t) + bFL(),

100

where t = t(T) = 17;42@_()7—) and 7 = %8’ with Fl(t) = F(%, %, 1 | t)

from (9). Finally we get from (6) with m = n = 0 and the minus sign
that for some other constants c and d the zeros can be represented by

i _1/4
(16) 20 = 2p(T) = Q(F;MQF(I —t)+cr +d.
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In order to compute the constant ¢, let 7 = iy and take y — oco. The
tirst term asymptotics of the zero-balanced hypergeometric series F
from (15) is easily obtained:
(17) F(1-1t)= —%E(QM'T) +0(1), as y — oo.
When combined with (16) and (6) this shows that ¢ = 1/2. Taking
d =1/2gives zy(i) = (1+1)/2, known to be a (double) zero of p(z,17).
Theorem 1 now follows. [J

We remark that Eichler and Zagier generalized their formula in
[6] to equations of the form p(z, 7) = ¢(7) for any meromorphic ¢(7)
and also to the zeros of Jacobi forms in [7]. However, one finds in
those cases where the above technique applies that a solution to the
resulting inhomogeneous hypergeometic equation is not usually ex-
pressible in a simple way in terms of a hypergeometric function.

3. A theorem of Schneider

For arithmetic purposes it is best to define @ for any full lattice
A C C as the sum over non-zero w € A

o(2) = p(z,A) =272+ Z (z+w)?—w™).
w#0

As is well known, g satisfies

(18) 02 = 40" — g2 — g3,

where g, = ga(A) = 603, w " and g3 = gz(A) = 140 L, w . It
is a fundamental fact that

(19) g5 —27g3 #0

and that, given any pair of complex numbers g, g3 satistying (19),
there is a (unique) lattice A whose p-function satisfies (18). Of course,
o(z,\) = w?p(z/wi,7) when A = w,(Z + 7Z) for a non-zero w; € C
and 7 € 'H, which is always possible to arrange. In this case we have
the identities

6

(20) g2 = %EZ;(T) and g3 = 287—7;?E6(T).

Turning now to the proof of Corollary 1, we need the following
classical result of Schneider [13].

THEOREM (Schneider). If g, and g5 are algebraic, then, for any alge-
braic z # 0, p(z, A) is transcendental.
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A short proof of this result can be found in [4, Chapter 6]. Theo-
rem 1 and (10) together with (20) imply that

E 2 1.3 5| 273
w=202F(5 55551 55)

differs from a zero of p(z, A) by a point of order 2 in C/A. The du-
plication formula for the p-function [9, II. p.184] applied at this zero

yields the evaluation

9
o) = — -2
oow) =~

Thus for the lattice A with invariants g, = g3 = % we have that
@<%V_3xF(% »LDE ‘x)> = — 1o
Schneider’s theorem now gives the first statement of Corollary 1.
A parallel treatment of the proof of Theorem 1, but starting with
the modular function v = 1 — 1/ and the identity
F<1271271 | v(T)) = EI/G(T)a
(see [1, p. 256]) shows that

differs from a zero of p(z, A) by a point of order 3 in C/A. Now the

triplication formula for @ [9, II. p.184] applied at this zero yields the
evaluation

35 1.4 5| 95
il |27§§)

’) 471373

8g5 2%¢3
p(Bw) = = — —2.
g2 92

Thus for the lattice with invariants g, = g3 = 272 we see that
8
(V=3 P33 188 0) =8 - &

As before, the second statement of Corollary 1 now follows from
Schneider’s Theorem. [J

4. A result of Ramanujan

It is instructive to compare Theorem 1 with the corresponding
result for the degenerate p—function

72 2

lim p(z,7) = — .
Im 7—00 sin® 7z 3

The zeros of this function are given by £z, + Z, where

(21) Z =3+ 5= log(5 + 2v/6).
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In order to compare this with Theorem 1, we need to determine ex-
plicitly the constant term in the asymptotic formula (17). Such a
result was found by Ramanujan and appears in his notebook [12,
p-132] without proof.

THEOREM (Ramanujan). Ifa + b+ c = d + e and Re(c) > 0 then

. a)l'(b)I'(c
(22) xlir?_ %F(a, b,c;d,e | x)+log(l —x) =L, where

d—c),(e—c)y
(@)n(b)n n ’

L= 20(1) — (a) — v(t) + 3

with ¢(a) =I"(a)/T'(a).

Ramanujan’s method of deriving this is unknown. In 1984 Evans
and Stanton [8] gave a proof of it in a more precise form; their proof
is rather intricate. To derive Corollary 2, specialize (22) to

(23) lim %0F(3, 5,14, | @) + 2mir +log1728 = L,

after using (1), (2) and the duplication and triplication formulas

[(22) = Z=T(2)l(z +}) and
(24) [(32) = 2 20(2)0(z + (2 + 2).

By Theorem 1 and its proof we have from (23)
L =4mi(z — 3) + log 1728,

where z, in (21) is the correct degenerate zero, as follows from the
discussion above (16). Thus

(25) L = —2log(5 + 2v6) + 3log 12,
By (24) we get easily that
2¢p(1) = (1/3) — 9(2/3) = 3log3.
Now Corollary 2 follows from (25) after shifting indices n — n+1in

the sum in L and using that 1/(n + 1) = (1),,/(2),. O
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