Skip to main content

Advertisement

Log in

Glucagon-like peptide 1 receptor agonists and the potential risk of pancreatic carcinoma: a pharmacovigilance study using the FDA Adverse Event Reporting System and literature visualization analysis

  • Research Article
  • Published:
International Journal of Clinical Pharmacy Aims and scope Submit manuscript

Abstract

Background

There are increasing data on the potential risk of pancreatic carcinoma associated with glucagon-like peptide 1 receptor agonists (GLP-1RAs).

Aim

The study aimed to determine whether GLP-1RAs are associated with increased detection of pancreatic carcinoma based on the FDA Adverse Events Reporting System and clarify its potential mechanisms through keyword co-occurrence analysis from literature database.

Method

Disproportionality and Bayesian analyses were used for signal detection using reporting odds ratio (ROR), proportional reporting ratio (PRR), information component (IC), and empirical Bayesian geometric mean (EBGM). Mortality, life-threatening events, and hospitalizations were also investigated. VOSviewer was adopted to generate visual analysis of keyword hotspots.

Results

A total of 3073 pancreatic carcinoma cases were related to GLP-1RAs. Five GLP-1RAs were detected with signals for pancreatic carcinoma. Liraglutide had the strongest signal detection (ROR 54.45, 95% CI 51.21–57.90; PRR 52.52, 95% CI 49.49–55.73; IC 5.59; EBGM 48.30). The signals of exenatide (ROR 37.32, 95% CI 35.47–39.28; PRR 36.45, 95% CI 34.67–38.32; IC 5.00; EBGM 32.10) and lixisenatide (ROR 37.07, 95% CI 9.09–151.09; PRR 36.09; 95% CI 9.20–141.64; IC 5.17, EBGM 36.09) were stronger than those of semaglutide (ROR 7.43, 95% CI 5.22–10.57; PRR 7.39; 95% CI 5.20–10.50; IC 2.88, EBGM 7.38) and dulaglutide (ROR 6.47, 95% CI 5.56–7.54; PRR 6.45; 95% CI 5.54–7.51; IC 2.67, EBGM 6.38). The highest mortality rate occurred in exenatide (63.6%). Based on the bibliometric investigation, cAMP/protein-kinase, Ca2+ channel, endoplasmic-reticulum stress, and oxidative stress are potential pathogenesis of pancreatic carcinoma resulting from GLP-1RAs.

Conclusion

Based on this pharmacovigilance study, GLP-1RAs, except albiglutide, are associated with pancreatic carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(12):728–42.

    Article  CAS  PubMed  Google Scholar 

  2. Tian L, Jin T. The incretin hormone GLP-1 and mechanisms underlying its secretion. J Diabetes. 2016;8(6):753–65.

    Article  CAS  PubMed  Google Scholar 

  3. Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018;27(4):740–56.

    Article  CAS  PubMed  Google Scholar 

  4. Holst JJ. From the incretin concept and the discovery of GLP-1 to today’s diabetes therapy. Front Endocrinol. 2019;10:260.

    Article  PubMed  Google Scholar 

  5. Deacon CF, Nauck MA, Toft-Nielsen M, et al. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes. 1995;44(9):1126–31.

    Article  CAS  PubMed  Google Scholar 

  6. Aroda VR. A review of GLP-1 receptor agonists: evolution and advancement, through the lens of randomised controlled trials. Diabetes Obes Metab. 2018;20(Suppl 1):22–33.

    Article  CAS  PubMed  Google Scholar 

  7. Derosa G, Maffioli P. GLP-1 agonists exenatide and liraglutide: a review about their safety and efficacy. Curr Clin Pharmacol. 2012;7(3):214–28.

    Article  CAS  PubMed  Google Scholar 

  8. Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669–701.

    Article  PubMed  PubMed Central  Google Scholar 

  9. de Heer J, Goke B. Are incretin mimetics and enhancers linked to pancreatitis and malignant transformations in pancreas? Expert Opin Drug Saf. 2014;13(11):1469–81.

    Article  PubMed  Google Scholar 

  10. Gale EA. GLP-1 based agents and acute pancreatitis: drug safety falls victim to the three monkey paradigm. BMJ. 2013;346: f1263.

    Article  PubMed  Google Scholar 

  11. Denker PS, Dimarco PE. Exenatide (exendin-4)-induced pancreatitis: a case report. Diabetes Care. 2006;29(2):471.

    Article  PubMed  Google Scholar 

  12. Bain SC, Stephens JW. Exenatide and pancreatitis: an update. Expert Opin Drug Saf. 2008;7(6):643–4.

    Article  PubMed  Google Scholar 

  13. Mali G, Ahuja V, Dubey K. Glucagon-like peptide-1 analogues and thyroid cancer: an analysis of cases reported in the European pharmacovigilance database. J Clin Pharm Ther. 2021;46(1):99–105.

    Article  CAS  PubMed  Google Scholar 

  14. Santella C, Yin H, Hicks BM, et al. Weight-lowering effects of glucagon-like peptide-1 receptor agonists and detection of breast cancer among obese women with diabetes. Epidemiology. 2020;31(4):559–66.

    Article  PubMed  Google Scholar 

  15. Elashoff M, Matveyenko AV, Gier B, et al. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology. 2011;141(1):150–6.

    Article  CAS  PubMed  Google Scholar 

  16. Butler PC, Elashoff M, Elashoff R, et al. A critical analysis of the clinical use of incretin-based therapies: are the GLP-1 therapies safe? Diabetes Care. 2013;36(7):2118–25.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cure P, Pileggi A, Alejandro R. Exenatide and rare adverse events. N Engl J Med. 2008;358:1969–72.

  18. Butler AE, Campbell-Thompson M, Gurlo T, et al. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes. 2013;62(7):2595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spranger J, Gundert-Remy U, Stammschulte T. GLP-1-based therapies: the dilemma of uncertainty. Gastroenterology. 2011;141(1):20–3.

    Article  PubMed  Google Scholar 

  20. Matveyenko AV, Dry S, Cox HI, et al. Beneficial endocrine but adverse exocrine effects of sitagliptin in the human islet amyloid polypeptide transgenic rat model of type 2 diabetes: interactions with metformin. Diabetes. 2009;58(7):1604–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu S, Wang J, Jing L, et al. A diabetic patient complicated with pancreatic cancer after using liraglutide: a case report. Front Endocrinol. 2020;11:608966.

    Article  PubMed  Google Scholar 

  22. Azoulay L, Filion KB, Platt RW, et al. Incretin based drugs and the risk of pancreatic cancer: international multicentre cohort study. BMJ. 2016;352: i581.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Knapen LM, van Dalem J, Keulemans YC, et al. Use of incretin agents and risk of pancreatic cancer: a population-based cohort study. Diabetes Obes Metab. 2016;18(3):258–65.

    Article  CAS  PubMed  Google Scholar 

  24. Monami M, Nreu B, Zannoni S, et al. Effects of SGLT-2 inhibitors on diabetic ketoacidosis: a meta-analysis of randomised controlled trials. Diabetes Res Clin Pract. 2017;130:53–60.

    Article  CAS  PubMed  Google Scholar 

  25. Pinto LC, Falcetta MR, Rados DV, et al. Glucagon-like peptide-1 receptor agonists and pancreatic cancer: a meta-analysis with trial sequential analysis. Sci Rep. 2019;9(1):2375.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cao C, Yang S, Zhou Z. GLP-1 receptor agonists and risk of cancer in type 2 diabetes: an updated meta-analysis of randomized controlled trials. Endocrine. 2019;66(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Wang M, Wang X, et al. Comparison of New glucose-lowering drugs on the risk of pancreatitis in type 2 diabetes: a network meta-analysis. Endocr Pract. 2022;28(3):333–41.

    Article  PubMed  Google Scholar 

  28. Egan AG, Blind E, Dunder K, et al. Pancreatic safety of incretin-based drugs–FDA and EMA assessment. N Engl J Med. 2014;370(9):794–7.

    Article  CAS  PubMed  Google Scholar 

  29. Cao M, Wang L, Zhang L, et al. Global publication trends and hotspots of molecular biomarkers in DILI from 1991 to 2020: a 30-year bibliometric analysis. Sci Prog. 2021;104(1):311971031.

    Article  Google Scholar 

  30. Holst JJ, Orskov C, Nielsen OV, et al. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 1987;211(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  31. Brown E, Wilding J, Barber TM, et al. Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: mechanistic possibilities. Obes Rev. 2019;20(6):816–28.

    Article  CAS  PubMed  Google Scholar 

  32. Sarafidis P, Ferro CJ, Morales E, et al. SGLT-2 inhibitors and GLP-1 receptor agonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. A consensus statement by the EURECA-m and the DIABESITY working groups of the ERA-EDTA. Nephrol Dial Transplant. 2019;34(2):208–30.

    Article  CAS  PubMed  Google Scholar 

  33. Palmer SC, Tendal B, Mustafa RA, et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ. 2021;372: m4573.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sakaeda T, Tamon A, Kadoyama K, et al. Data mining of the public version of the FDA Adverse Event Reporting System. Int J Med Sci. 2013;10(7):796–803.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lewis AL, Mcentee N, Holland J, et al. Development and approval of rybelsus (oral semaglutide): ushering in a new era in peptide delivery. Drug Deliv Transl Res. 2022;12(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  36. Aaseth J, Ellefsen S, Alehagen U, et al. Diets and drugs for weight loss and health in obesity—an update. Biomed Pharmacother. 2021;140: 111789.

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Feng W, Duan J, et al. Pharmacovigilance bibliometrics: visualizing thematic development in the category of pharmacology and pharmacy in web of science. Front Pharmacol. 2021;12: 731757.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Michel C, Scosyrev E, Petrin M, et al. Can disproportionality analysis of post-marketing case reports be used for comparison of drug safety profiles? Clin Drug Investig. 2017;37(5):415–22.

    Article  PubMed  Google Scholar 

  39. Raschi E, Poluzzi E, Salvo F, et al. Pharmacovigilance of sodium-glucose co-transporter-2 inhibitors: what a clinician should know on disproportionality analysis of spontaneous reporting systems. Nutr Metab Cardiovasc Dis. 2018;28(6):533–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was supported by the Chinese Society of Toxicology Clinical Toxicology Project (number CST2020CT109) and the Beijing Hospital Authority Youth Programme (number QML20180503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhu.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The placement of graph in Table 3 is corrected.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 107 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Pan, C., Tian, Y. et al. Glucagon-like peptide 1 receptor agonists and the potential risk of pancreatic carcinoma: a pharmacovigilance study using the FDA Adverse Event Reporting System and literature visualization analysis. Int J Clin Pharm 45, 689–697 (2023). https://doi.org/10.1007/s11096-023-01556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11096-023-01556-2

Keywords

Navigation