Skip to main content
Log in

Radioiodinated anastrozole and epirubicin as potential targeting radiopharmaceuticals for solid tumor imaging

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study describes the preparation of radioiodinated anastrozole and epirubicin and their biological evaluation as potential solid tumor imaging gents. Radioiodinated anastrozole and epirubicin were successfully prepared via direct electrophilic substitution reaction at ambient temperature. The radiochemical yields for radioiodinated anastrozole and epirubicin were maximized to 92.9 ± 0.1 and 98.8 ± 0.1 %, respectively by studying different reaction parameters such as substrate amount, chloramine-T, pH of the reaction mixture, reaction temperature and reaction time. They showed in vitro stability up to 4 and 24 h, respectively. The preclinical evaluation and biodistribution in mice bearing solid tumor showed high retention and biological accumulation in solid tumor cells (12.4 and 25.3 % injected activity/g tissue) and high T/NT ratio equal to 4.7 ± 0.1 and 5.2 ± 0.1 at 2 and 1 h post-injection, respectively. Data described before could recommend radioiodinated anastrozole and radioiodinated epirubicin as potential targeting radiopharmaceuticals for solid tumor imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Harrison L, Blackwell K (2004) Oncologist 9(Suppl 5):31–40

    Article  Google Scholar 

  2. Chapman JD, Engelhardt EL, Stobbe CC, Schneider RF, Hanks GE (1998) Radiother Oncol 46:229–237

    Article  CAS  Google Scholar 

  3. Vaupel P, Mayer A (2007) Cancer Metastasis Rev 26:225–239

    Article  CAS  Google Scholar 

  4. Hu M, Polyak K (2008) Curr Opin Genet Dev 18:27–34

    Article  CAS  Google Scholar 

  5. Kurihara H, Honda N, Kono Y, Arai Y (2012) Curr Med Chem 19(20):3282–3289

    Article  CAS  Google Scholar 

  6. Junbo Z, Qian Y, Jinfeng H, Yan P, Sheng Y, Yining H, Tingting T, Chenchen Y, Xuebin W (2010) J Radioanal Nucl Chem 283:481–485

    Article  Google Scholar 

  7. Santos-Cuevas CL, Ferro-Flores G, Murphy CA, Ramirez F, Luna-Gutiérrez MA, Pedraza-López M, Garcia-Becerra R, Ordaz-Rosado D (2009) Int J Pharm 375(1-2):75–83

    Article  CAS  Google Scholar 

  8. Stober B, Tanase U, Herz M, Seidl C, Schwaiger M, Senekowitsch-Schmidtke R (2006) Eur J Nucl Med Mol Imaging 33(8):932–939

    Article  Google Scholar 

  9. Kanchan K, Sudhanand P, Aruna K, Archana M, Manu J, Meera V, Ambikalmajan MRP, Rama M, Natesan R (2007) Appl Radiat Isot 65(4):382–396

    Article  Google Scholar 

  10. Schottelius M, Wester H (2009) Methods 48(2):161–177

    Article  CAS  Google Scholar 

  11. De Barros AL, Cardoso VN, Mota Ld, Leite EA, de Oliveira MC, Alves RJ (2010) Bioorg Med Chem Lett 20(8):2478–2480

    Article  Google Scholar 

  12. Faintuch BL, Teodoro R, Duatti A, Muramoto E, Faintuch S, Smith CJ (2008) Nucl Med Biol 35(4):401–411

    Article  CAS  Google Scholar 

  13. Yang DJ, Wallace S, Cherif A, Li C, Gretzer MB, Kim EE, Podoloff DA (1995) Radiology 194(3):795–800

    Article  CAS  Google Scholar 

  14. Bakheet SM, Powe J (1998) Semin Nucl Med 28(4):352–358

    Article  CAS  Google Scholar 

  15. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) J Nucl Med 33(11):1972–1980

    CAS  Google Scholar 

  16. Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R, Tamahashi N (1995) J Nucl Med 36(3):484–492

    CAS  Google Scholar 

  17. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N (1995) J Nucl Med 36(7):1301–1306

    CAS  Google Scholar 

  18. Sugawara Y, Gutowski TD, Fisher SJ, Brown RS, Wahl RL (1999) Eur J Nucl Med 26(4):333–341

    Article  CAS  Google Scholar 

  19. Reinhard MJ, Kubota K, Yamada S, Iwata R, Yaegashi H (1997) J Nucl Med 38(2):280–287

    Google Scholar 

  20. Gutowski TD, Fisher SJ, Moon R, Wahl RL (1992) J Nucl Med 33:925–928

    Google Scholar 

  21. Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR (1993) J Nucl Med 34(7):1190–1197

    CAS  Google Scholar 

  22. Furumoto S, Shinbo R, Iwata R, Ishikawa Y, Yanai K, Yoshioka T, Fukuda H (2013) J Nucl Med 54(8):1354–1361

    Article  CAS  Google Scholar 

  23. Henley T, Reddy MP, Ramaswamy MR, Lilien DL (2004) Clin Nucl Med 29(5):322–323

    Article  Google Scholar 

  24. Yang DJ, Ilgan S, Higuchi T, Zareneyrizi F, Oh CS, Liu CW, Kim EE, Podoloff DA (1999) Pharm Res 16(5):743–750

    Article  CAS  Google Scholar 

  25. Carlin S, Zhang H, Reese M, Ramos NN, Chen Q, Ricketts SA (2014) J Nucl Med 55(3):515–521

    Article  CAS  Google Scholar 

  26. Hoigebazar L, Jeong JM (2013) Recent Results Cancer Res 194:285–299

    Article  Google Scholar 

  27. Larson SM (1994) J Nucl Med 35(10):1653–1655

    CAS  Google Scholar 

  28. Sakr TM, Motaleb MA, Ibrahim IT (2012) J Radioanal Nucl Chem 292(2):705–710

    Article  CAS  Google Scholar 

  29. Sakr TM, El-Safoury DM, Awad GA, Motaleb MA (2013) J Label Compd Radiopharm 56(8):392–395

    Article  CAS  Google Scholar 

  30. Sakr TM, Essa BM, El-Essawy FA, El-Mohty AA (2014) Radiochemistry 56(1):76–80

    Article  CAS  Google Scholar 

  31. Wan W, Yang M, Pan S, Yu C, Wu N (2008) Drug Dev Res 69(8):520–525

    Article  CAS  Google Scholar 

  32. De Barros AL, Mota Ld, Ferreira Cde A, Oliveira MC, Góes AM, Cardoso VN (2010) Bioorg Med Chem Lett 20(21):6182–6184

    Article  Google Scholar 

  33. Mallia MB, Subramanian S, Mathur A, Sarma HD, Venkatesh M, Banerjee S (2010) J Label Comp Radiopharm 53(8):535–542

    Article  CAS  Google Scholar 

  34. Wang J, Yang J, Yan Z, Duan X, Tan C, Shen Y, Wu w (2011) J Radioanal Nucl Chem 287(2):465–469

    Article  CAS  Google Scholar 

  35. Machac J, Krynyckyi B, Kim C (2002) Semin Nucl Med 32(4):276–292

    Article  Google Scholar 

  36. Hruska CB, Conners AL, Jones KN, Weinmann AL, Lingineni RK, Carter RE, Rhodes DJ, O’Connor MK (2014) Eur J Nucl Med Mol Imag Res 4(1):5–18

    Google Scholar 

  37. Hsia CC, Huang FL, Hung LH, Shen LH, Chen CL, Wang HE (2011) Appl Radiat Isot 69(4):649–655

    Article  CAS  Google Scholar 

  38. Ding R, He Y, Xu J, Liu H, Wang X, Feng M, Qi C, Zhang J, Peng C (2012) Med Chem Res 21(4):523–530

    Article  CAS  Google Scholar 

  39. Kuchar M, Oliveira MC, Gano L, Santos I, Kniess T (2012) Biorg Med Chem Lett 22(8):2850–2855

    Article  CAS  Google Scholar 

  40. Rinku B, Dipak KN, Nabanita C, Kamal KH, Sanmoy K, Mita CD (2014) Chem Biol Drug Des 83(1):58–70

    Article  Google Scholar 

  41. Breeman WAP, Hofland LJ, Bakker WH, Pluij M, Koetsveld PM, Jong M, Setyono-Han B, Kwekkeboom DJ, Visser TJ, Lamberts SWJ, Krenning EP (1993) Eur J Nucl Med 20(11):1089–1094

    Article  CAS  Google Scholar 

  42. Du C, Ying H, Zhou J, Jiang J, Liu C, Chen J, Wang X, Hu C (2014) Med Oncol 31(2):833–842

    Article  Google Scholar 

  43. Corsetti F, Chianelli M, Cornelissen B, Van de Wiele C, D’Alessandria C, Slegers G, Mather SJ, Di Mario U, Filetti S, Scopinaro F, Signore A (2004) Cancer Biother Radiopharm 19(1):57–63

    Article  CAS  Google Scholar 

  44. http://www.rxlist.com/arimidex-drug.htm

  45. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, Hoctin-Boes G, Houghton J, Locker GY, Tobias JS, Atac Trialists’ G (2005) The Lancet 365(9453):60–62

    Article  CAS  Google Scholar 

  46. Gallagher James (2013) BBC News.

  47. Simpson ER (2003) J Steroid Biochem Mol Biol 86(3–5):225–230

    Article  CAS  Google Scholar 

  48. Iwata H, Masuda N, Ohno S, Rai Y, Sato Y, Ohsumi S, Hashigaki S, Nishizawa Y, Hiraoka M, Morimoto T, Sasano H, Saeki T, Noguchi S (2013) Breast Cancer Res Treat 139(2):441–451

    Article  CAS  Google Scholar 

  49. Haque R, Ahmed SA, Fisher A, Avila CC, Shi J, Guo A, Craig Cheetham T, Schottinger JE (2012) Cancer Med 1(3):318–327

    Article  CAS  Google Scholar 

  50. Cuzick J (2005) Anastrozole Drugs Today (Barc.) Pubmed 41(4):227-239.

  51. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Pharmacol Rev 56(2):185–229

    Article  CAS  Google Scholar 

  52. Gewirtz D (1999) Biochem Pharmacol 57(7):727–741

    Article  CAS  Google Scholar 

  53. Yordanova G, Skrobanskab R, Evangelatovb A (2012) Colloids Surf B Biointerfaces 92:98–105

    Article  Google Scholar 

  54. Lettr´e R, Paweletz N, Werner D, Granzow C (1972) Die Naturwissenschaften 59(2):59–63

    Article  Google Scholar 

  55. Sheeja KR, Kuttan G, Kuttan R (1997) Amala Res Bull 17:73–76

    Google Scholar 

  56. Abu-Zeid M, Hori H, Nagasawa H, Uto Y, Inayama S (2000) Biol Pharm Bull 23(2):195–198

    Article  CAS  Google Scholar 

  57. Rhodes BA (1974) Semin Nucl Med 4(3):281–293

    Article  CAS  Google Scholar 

  58. Saha GB (2011) Fundamental of nuclear pharmacy, 5th edn. Springer, New York

    Google Scholar 

  59. Puttaswamy M, Sukhdev A, Shubha JP (2009) J Mol Cat A Chem 310(1–2):24–33

    Article  CAS  Google Scholar 

  60. Valkonen J, Pitkanen I, Pajunen A (1985) Acta Chemical Scandinavca A 39:711–716

    Article  Google Scholar 

  61. Adam MJ, Wilbur DS (2005) Chem Soc Rev 34(2):153–163

    Article  CAS  Google Scholar 

  62. Motaleb MA, El-Kolaly MT, Rashed HM, Abd El-Bary A (2011) J Radioanal Nucl Chem 10:1499–1507

    Google Scholar 

  63. El-Azony KM (2010) J Radioanal Nucl Chem 285:315–320

    Article  CAS  Google Scholar 

  64. Tolmachev V, Bruskin A, Sivaev I, Lundqvist H, Sjöberg S (2002) Radiochem Acta 90:229–235

    Article  CAS  Google Scholar 

  65. Hunter WM, Greenwood FC (1963) Biochem J 89:114–123

    Google Scholar 

  66. Puttaswamy M, Vaz N (2003) Trans Met Chem 28:409–417

    Article  Google Scholar 

  67. Ramalingaiah, Jagadeesh RV, Puttaswamy (2007) J Mol Cat A 265:70–79

    Article  CAS  Google Scholar 

  68. Cynthia BF, Roger KD, Kaumann AJ, Theodore LS, Lutz B (1979) J Mol Pharmacol 12:328–332

    Google Scholar 

  69. Rayudu GVS (1983) Radiotracers for medical appl., CRS series in Radiotracers in Biology and Medicine 11.

  70. Motaleb MA, Moustapha ME, Ibrahim IT (2011) J Radioanal Nucl Chem 10:1069–1076

    Google Scholar 

  71. Khalkhali I, Cutrone JA, Mena IG, Diggles LE, Venegas RJ, Vargas HI, Jackson BL, Khalkhali S, Moss JF, Klein SR (1995) Radiology 196(2):421–426

    Article  CAS  Google Scholar 

  72. Palmedo H, Grunwald F, Bender H, Schomburg A, Mallmann P, Krebs D, Biersack HJ (1996) Eur J Nucl Med 23(8):940–946

    Article  CAS  Google Scholar 

  73. Barbarics E, Kronauge JF, Davison A, Jones AG (1998) Nucl Med Biol 25(7):667–673

    Article  CAS  Google Scholar 

  74. Wackers FJ, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, Boucher CA, Picard M, Holman BL, Fridrich R, Eugemo I, Bernard D, Angelika BD, Leopoldo C, Kenneth M (1989) J Nucl Med 30(3):301–311

    CAS  Google Scholar 

  75. Vecchio SD, Ciarmiello A, Potena MI, Carriero MV, Mainolfi C, Botti G, Thomas R, Cerra M, D’Aiuto G, Tsuruo T, Salvatore M (1997) Eur J Nucl Med 24(2):150–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.B., Sakr, T.M., Khoweysa, O.M.A. et al. Radioiodinated anastrozole and epirubicin as potential targeting radiopharmaceuticals for solid tumor imaging. J Radioanal Nucl Chem 303, 967–975 (2015). https://doi.org/10.1007/s10967-014-3560-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3560-9

Keywords

Navigation