Skip to main content

Advertisement

Log in

Analysis of the association between Janus kinase inhibitors and malignant skin tumors using the Food and Drug Administration Adverse Event Reporting System

  • Research Article
  • Published:
International Journal of Clinical Pharmacy Aims and scope Submit manuscript

Abstract

Background

Malignant skin tumors are adverse events of concern regarding Janus kinase (JAK) inhibitors.

Aim

This study aimed to evaluate the association between JAK inhibitors and adverse events of malignant skin tumors, and to characterize the main features.

Method

Data (2012–2021) were collected using the US Food and Drug Administration Adverse Event Reporting System (FAERS). Adverse event cases of JAK inhibitors as the primary suspected drug were extracted for further analysis. Disproportionality analysis evaluated the association between JAK inhibitors and malignant skin tumor events by estimating the reporting odds ratio (ROR) and the information component (IC) with 95% confidence intervals (95% CI).

Results

A total of 142,673 cases with JAK inhibitors as a primary suspected drug were collected, including 1400 malignant skin tumor events. Ruxolitinib, upadacitinib, tofacitinib, and baricitinib were included in the disproportionality analysis. Three JAK inhibitors were associated with malignant skin tumor events, namely ruxolitinib (ROR 5.40, 95% CI 5.03–5.81; IC 2.39, 95% CI 2.14–2.62), upadacitinib (ROR 4.79, 95% CI 4.03–5.71; IC 2.24, 95% CI 1.62–2.77), and tofacitinib (ROR 1.67, 95% CI 1.53–1.83; IC 0.73, 95% CI 0.43–1.02). The median time to onset time was 378.5 days.

Conclusion

We found association between malignant skin tumors and ruxolitinib, upadacitinib, and tofacitinib. More attention should be paid to these events when prescribing JAK inhibitors in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baş S, Cakir S, Ertas Y, et al. Epidemiological evaluation of non-melanoma skin cancer ac- cording to body distribution. Turk Arch Dermatol Venerol/Turkderm. 2020;54:51–7.

    Google Scholar 

  2. MacFarlane LA, Todd DJ. Kinase inhibitors: the next generation of therapies in the treatment of rheumatoid arthritis. Int J Rheum Dis. 2014;17:359–68.

    CAS  PubMed  Google Scholar 

  3. Samadi A, Nasrollahi SA, Hashemi A, et al. Janus kinase (JAK) inhibitors for the treat- ment of skin and hair disorders: a review of literature. J Dermatol Treat. 2017;28(6):476–83.

    CAS  Google Scholar 

  4. Seif F, Khoshmirsafa M, Aazami H, et al. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal. 2017;15(1):23.

    PubMed  PubMed Central  Google Scholar 

  5. Charles-Schoeman C, Fleischmann R, Davignon J, et al. Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheumatol. 2015;67(3):616–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Charles-Schoeman C, Gonzalez-Gay MA, Kaplan I, et al. Effects of tofacitinib and other DMARDs on lipid profiles in rheumatoid arthritis: implications for the rheumatologist. Semin Arthritis Rheum. 2016;46(1):71–80.

    CAS  PubMed  Google Scholar 

  7. Xeljanz (tofacitinib): highlights of prescribing information. New York: Pfizer, 2020 (package insert).

  8. Bas S, Cakir S, Ertas Y, et al. Epidemiological evaluation of non-melanoma skin cancer according to body distribution. Turkderm-Turk Archiv Dermatol Venerol. 2020;54(2):51–7.

    Google Scholar 

  9. Diamond MS, Kinder M, Matsushita H, et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 2011;208(10):1989–2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ytterberg SR, Bhatt DL, Mikuls TR, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022;386(4):316–26.

    CAS  PubMed  Google Scholar 

  11. Winthrop KL, Cohen SB. Oral surveillance and JAK inhibitor safety: the theory of relativity. Nat Rev Rheumatol. 2022;18(5):301–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Malato A, Rossi E, Palumbo GA, et al. Drug-related cutaneous adverse events in Philadelphia chromosome-negative myeloproliferative neoplasms: a literature review. Int J Mol Sci. 2020;21(11):3990.

    Google Scholar 

  13. Fabiano A, Calzavara-Pinton P, Monari P, et al. Eruptive squamous cell carcinomas with keratoacanthoma-like features in a patient treated with ruxolitinib. Br J Dermatol. 2015;173(4):1098–9.

    CAS  PubMed  Google Scholar 

  14. Khanna U, Richardson V, Hexner E, et al. A photo-distributed papulopustular eruption and multiple squamous cell carcinomas in a patient on ruxolitinib. JAAD Case Rep. 2019;5(10):895–7.

    PubMed  PubMed Central  Google Scholar 

  15. Dunaway S, Yu Y, Neltner S. Development of aggressive squamous cell carcinoma with perineural invasion during ruxolitinib treatment. Dermatol Surg. 2019;45(5):734–6.

    CAS  PubMed  Google Scholar 

  16. Aboul-Fettouh N, Nijhawan RI. Aggressive squamous cell carcinoma in a patient on the Janus kinase inhibitor ruxolitinib. JAAD Case Rep. 2018;4(5):455–7.

    PubMed  PubMed Central  Google Scholar 

  17. Aleisa AI, Plante JG, Hsia LB. A case of aggressive squamous cell carcinoma with lymphovascular invasion during treatment with the Janus kinase inhibitor tofacitinib. JAAD Case Rep. 2020;6(8):727–30.

    PubMed  PubMed Central  Google Scholar 

  18. Burmester GR, Kremer JM, Van den Bosch F, et al. Safety and efficacy of upadacitinib in patients with rheumatoid arthritis and inadequate response to conventional synthetic disease-modifying anti-rheumatic drugs (SELECT-NEXT): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2018;391(10139):2503–12.

    CAS  PubMed  Google Scholar 

  19. Fleischmann RM, Genovese MC, Enejosa JV, et al. Safety and effectiveness of upadacitinib or adalimumab plus methotrexate in patients with rheumatoid arthritis over 48 weeks with switch to alternate therapy in patients with insufficient response. Ann Rheum Dis. 2019;78(11):1454–62.

    CAS  PubMed  Google Scholar 

  20. Genovese MC, Fleischmann R, Combe B, et al. Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): a double-blind, randomised controlled phase 3 trial. Lancet. 2018;391(10139):2513–24.

    CAS  PubMed  Google Scholar 

  21. Smolen JS, Pangan AL, Emery P, et al. Upadacitinib as monotherapy in patients with active rheumatoid arthritis and inadequate response to methotrexate (SELECT-MONOTHERAPY): a randomised, placebo-controlled, double-blind phase 3 study. Lancet. 2019;393(10188):2303–11.

    PubMed  Google Scholar 

  22. van Vollenhoven R, Takeuchi T, Pangan AL, et al. Efficacy and Safety of Upadacitinib Monotherapy in Methotrexate-Naive Patients With Moderately-to-Severely Active Rheumatoid Arthritis (SELECT-EARLY): A Multicenter, Multi-Country, Randomized, Double-Blind. Active Comparator-Controlled Trial Arthritis Rheumatol. 2020;72(10):1607–20.

    PubMed  Google Scholar 

  23. Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10(1):156.

    PubMed  PubMed Central  Google Scholar 

  24. Verstovsek S, Vannucchi AM, Griesshammer M, et al. Ruxolitinib versus best available therapy in patients with polycythemia vera: 80-week follow-up from the RESPONSE trial. Haematologica. 2016;101(7):821–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Papp KA, Menter MA, Abe M, et al. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: results from two randomized, placebo-controlled, phase III trials. Br J Dermatol. 2015;173(4):949–61.

    CAS  PubMed  Google Scholar 

  26. Greif CS, Srivastava D, Nijhawan RI. Janus Kinase inhibitors and non-melanoma skin cancer. Curr Treat Options Oncol. 2021;22(2):11.

    PubMed  Google Scholar 

  27. Olivera PA, Lasa JS, Bonovas S, et al. Safety of Janus Kinase inhibitors in patients with inflammatory bowel diseases or other immune-mediated diseases: a systematic review and meta-analysis. Gastroenterology. 2020;158(6):1554-1573.e12.

    CAS  PubMed  Google Scholar 

  28. Curtis JR, Lee EB, Martin G, et al. Analysis of non-melanoma skin cancer across the tofacitinib rheumatoid arthritis clinical programme. Clin Exp Rheumatol. 2017;35(4):614–22.

    PubMed  Google Scholar 

  29. Cohen SB, Tanaka Y, Mariette X, et al. Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: integrated analysis of data from the global clinical trials. Ann Rheum Dis. 2017;76(7):1253–62.

    CAS  PubMed  Google Scholar 

  30. Sandborn WJ, Panés J, D’Haens GR, et al. Safety of tofacitinib for treatment of ulcerative colitis, based on 4.4 years of data from global clinical trials. Clin Gastroenterol Hepatol. 2019;17(8):1541–50.

    CAS  PubMed  Google Scholar 

  31. Wollenhaupt J, Lee EB, Curtis JR, et al. Safety and efficacy of tofacitinib for up to 9.5 years in the treatment of rheumatoid arthritis: final results of a global, open-label, long-term extension study. Arthritis Res Ther. 2019;21(1):89.

    PubMed  PubMed Central  Google Scholar 

  32. Nash P, Coates LC, Kivitz AJ, et al. Safety and efficacy of tofacitinib in patients with active psoriatic arthritis: interim analysis of OPAL balance, an open-label. Long-Term Extension Study Rheumatol Ther. 2020;7(3):553–80.

    PubMed  Google Scholar 

  33. Genovese MC, Kalunian K, Gottenberg JE, et al. Effect of filgotinib vs placebo on clinical response in patients with moderate to severe rheumatoid arthritis refractory to disease-modifying antirheumatic drug therapy: the FINCH 2 randomized clinical trial. JAMA. 2019;322(4):315–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kavanaugh A, Kremer J, Ponce L, et al. Filgotinib (GLPG0634/GS-6034), an oral selective JAK1 inhibitor, is effective as monotherapy in patients with active rheumatoid arthritis: results from a randomised, dose-finding study (DARWIN 2). Ann Rheum Dis. 2017;76(6):1009–19.

    CAS  PubMed  Google Scholar 

  35. Westhovens R, Taylor PC, Alten R, et al. Filgotinib (GLPG0634/GS-6034), an oral JAK1 selective inhibitor, is effective in combination with methotrexate (MTX) in patients with active rheumatoid arthritis and insufficient response to MTX: results from a randomised, dose-finding study (DARWIN 1). Ann Rheum Dis. 2017;76(6):998–1008.

    CAS  PubMed  Google Scholar 

  36. Clarke B, Yates M, Adas M, et al. The safety of JAK-1 inhibitors. Rheumatology. 2021;60(Suppl 2):ii24–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu B, Luo M, Wu F, et al. Acute kidney injury associated with remdesivir: a comprehensive pharmacovigilance analysis of COVID-19 reports in FAERS. Front Pharmacol. 2022;13:692828.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu B, Hu Q, Tian F, et al. A pharmacovigilance study of association between proton pump inhibitor and dementia event based on FDA adverse event reporting system data. Sci Rep. 2021;11(1):10709.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu L, Ingle T, Liu Z, et al. Study of serious adverse drug reactions using FDA-approved drug labeling and MedDRA. BMC Bioinformatics. 2019;20(Suppl 2):97.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. van Puijenbroek EP, Bate A, Leufkens HG, et al. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf. 2002;11(1):3–10.

    PubMed  Google Scholar 

  41. Jedlowski PM. Association of non-melanoma skin cancers, melanoma and merkel cell carcinoma with dermatologic medications, a case control pharmacovigilance study of the FDA Adverse Events Reporting System. Dermatology. 2023 Apr 13.

  42. Leiter U, Keim U, Garbe C. Epidemiology of skin cancer: update 2019. Adv Exp Med Biol. 2020;1268:123–39.

    CAS  PubMed  Google Scholar 

  43. Herrera AP, Snipes SA, King DW, et al. Disparate inclusion of older adults in clinical trials: priorities and opportunities for policy and practice change. Am J Public Health. 2010;100(Suppl 1):S105-12.

    PubMed  PubMed Central  Google Scholar 

  44. Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):6–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Neha R, Subeesh V, Beulah E, et al. Existence of Notoriety Bias in FDA Adverse Event Reporting System Database and Its Impact on Signal Strength. Hosp Pharm. 2021;56(3):152–8.

    CAS  PubMed  Google Scholar 

  46. Taylor PC, Takeuchi T, Burmester GR, et al. Safety of baricitinib for the treatment of rheumatoid arthritis over a median of 4.6 and up to 9.3 years of treatment: final results from long-term extension study and integrated database. Ann Rheum Dis. 2022;81(3):335–43.

    CAS  PubMed  Google Scholar 

  47. Simon TA, Thompson A, Gandhi KK, et al. Incidence of malignancy in adult patients with rheumatoid arthritis: a meta-analysis. Arthritis Res Ther. 2015;17(1):212.

    PubMed  PubMed Central  Google Scholar 

  48. Tegtmeyer K, Ravi M, Zhao J, et al. Off-label studies on the use of ruxolitinib in dermatology. Dermatitis. 2021;32(3):164–72.

    PubMed  Google Scholar 

  49. Johnson NM, Prickett KA, Phillips MA. Systemic medications linked to an increased risk for skin malignancy. Cutis. 2019;104(4):E32-e36.

    PubMed  Google Scholar 

  50. Samadi A, Ahmad Nasrollahi S, Hashemi A, et al. Janus kinase (JAK) inhibitors for the treatment of skin and hair disorders: a review of literature. J Dermatolog Treat. 2017;28(6):476–83.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by National Key Clinical Specialties Construction Program.

Funding

This study was supported by the 1·3·5 projects for disciplines of excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University (2018HXFH050) of the National Key Clinical Specialties Construction Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wu.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Gao, R., Li, L. et al. Analysis of the association between Janus kinase inhibitors and malignant skin tumors using the Food and Drug Administration Adverse Event Reporting System. Int J Clin Pharm 45, 1483–1491 (2023). https://doi.org/10.1007/s11096-023-01634-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11096-023-01634-5

Keywords

Navigation