Skip to main content
Log in

Is There an Increased Risk of Hepatotoxicity with Metamizole? A Comparative Cohort Study in Incident Users

  • Original Research Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Introduction

The analgesic metamizole, which has been withdrawn from the market in several countries due to the risk of agranulocytosis but is still available on the market in Germany and some other countries, has been associated with liver injury in published case reports; however, epidemiological studies on the risk of liver injury are limited.

Objective

The aim of this study was to compare the risk of liver injury up to 270 days after the first start of treatment with metamizole with the corresponding risk in patients starting treatment with paracetamol, using a retrospective cohort incident user design.

Methods

The first prescription for either metamizole or paracetamol in the Intercontinental Medical Statistics (IMS)® Disease Analyzer Germany database during the study period (2009–2018) was identified in patients with at least 365 days of observation and no prior diagnosis of liver events, cancer or HIV, or treatment within the last 6 months with hepatotoxic drugs typically administered for chronic conditions. Each patient was followed for specific liver events for 90 days after the prescription. In case of a new prescription within 90 days, a new 90-day observation period started, up to a maximum of 270 days. Cox regression was used to compare the risk of liver injury in the two groups.

Results

Metamizole was associated with a higher risk of liver injury compared with paracetamol (adjusted hazard ratio 1.69, 95% confidence interval 1.46–1.97). Sensitivity analyses were performed to evaluate the robustness of these findings. In all the sensitivity analyses, metamizole was still associated with a higher risk of liver injury, including an analysis where naproxen was used as a comparator instead of paracetamol.

Conclusions

Results from this study support previous studies suggesting that metamizole is associated with a significant risk of liver injury. Nevertheless, a possible impact of residual confounding cannot be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. European Medicines Agency. CHMP. Assessment report, Referral under Article 31 of Directive 2001/83/EC, metamizole-containing medicinal products. London: European Medicines Agency. 2021.

  2. Volz M, Kellner HM. Kinetics and metabolism of pyrazolones (propyphenazone, aminopyrine and dipyrone). Br J Clin Pharmacol. 1980;10(Suppl 2):299–308.

    Article  Google Scholar 

  3. Levy M, Zylber-Katz E, Rosenkranz B. Clinical pharmacokinetics of dipyrone and its metabolites. Clin Pharmacokinet. 1995;28(3):216–34.

    Article  CAS  PubMed  Google Scholar 

  4. Lutz M. Metamizole (dipyrone) and the liver: a review of the literature. J Clin Pharmacol. 2019;59(11):1433–42.

    Article  CAS  PubMed  Google Scholar 

  5. Okonek S. Intoxication with pyrazolones. Br J Clin Pharmacol. 1980;10(Suppl 2):385s-s390.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Monov A, Chernev K, Penkova S, Boshnakova T. Acute kidney failure and acute toxic cholestatic hepatitis caused by a large amount of analgin [in Bulgarian]. Vutr Boles. 1985;24(1):133–6.

    CAS  PubMed  Google Scholar 

  7. Gao Y, Yu K-J, Wang H-L, Liu H-T. Liver injury and acute renal failure following combined use of paracetamol and metamizole sodium. Adverse Drug React J. 2012;14(6):387–93.

    Google Scholar 

  8. Björnsson ES. Liver injury associated with the analgetic drug metamizole. Br J Clin Pharmacol. 2020;86(7):1248–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Weber S, Benesic A, Gerbes AL. Further evidence for the hepatotoxic potential of metamizole. Br J Clin Pharmacol. 2021;87(3):1587–8.

    Article  CAS  PubMed  Google Scholar 

  10. Federmann G, Becker EW, Tautorat H, Penschuck C, Berg PA. Demonstration by lymphocyte transformation test of the allergic genesis in a case of acute hepatitis [in German]. Deutsche medizinische Wochenschrift (1946). 1988;113(43):1676–9.

  11. Herdeg C, Hilt F, Buchtemann A, Bianchi L, Klein R. Allergic cholestatic hepatitis and exanthema induced by metamizole: verification by lymphocyte transformation test. Liver. 2002;22(6):507–13.

    Article  CAS  PubMed  Google Scholar 

  12. Douros A, Bronder E, Andersohn F, Klimpel A, Thomae M, Sarganas G, et al. Drug-induced liver injury: results from the hospital-based Berlin Case-Control Surveillance Study. Br J Clin Pharmacol. 2015;79(6):988–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Benesic A, Rotter I, Dragoi D, Weber S, Buchholtz M-L, Gerbes AL. Development and validation of a test to identify drugs that cause idiosyncratic drug-induced liver injury. Clin Gastroenterol Hepatol. 2018;16(9):1488-94.e5.

    Article  CAS  PubMed  Google Scholar 

  14. Krisai P, Rudin D, Grünig D, Scherer K, Pichler W, Terracciano L, et al. Acute liver failure in a patient treated with metamizole. Front Pharmacol. 2019;10:996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sebode M, Reike-Kunze M, Weidemann S, Zenouzi R, Hartl J, Peiseler M, et al. Metamizole: an underrated agent causing severe idiosyncratic drug-induced liver injury. Br J Clin Pharmacol. 2020;86(7):1406–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Teschke R, Eickhoff A, Brown AC, Neuman MG, Schulze J. Diagnostic biomarkers in liver injury by drugs, herbs, and alcohol: tricky dilemma after EMA correctly and officially retracted letter of support. Int J Mol Sci. 2019;21(1):212.

    Article  PubMed Central  CAS  Google Scholar 

  17. Teschke R, Danan G. Worldwide use of RUCAM for causality assessment in 81,856 idiosyncratic DILI and 14,029 HILI cases published 1993-Mid 2020: a comprehensive analysis. Med (Basel). 2020;7(10):62.

    CAS  Google Scholar 

  18. Sabate M, Ibanez L, Perez E, Vidal X, Buti M, Xiol X, et al. Risk of acute liver injury associated with the use of drugs: a multicentre population survey. Aliment Pharmacol Ther. 2007;25(12):1401–9.

    Article  CAS  PubMed  Google Scholar 

  19. Rotundo L, Pyrsopoulos N. Liver injury induced by paracetamol and challenges associated with intentional and unintentional use. World J Hepatol. 2020;12(4):125–36.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Watkins PB, Kaplowitz N, Slattery JT, Colonese CR, Colucci SV, Stewart PW, et al. Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. JAMA. 2006;296(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  21. Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015;25(8):416–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kurtovic J, Riordan SM. Paracetamol-induced hepatotoxicity at recommended dosage. J Intern Med. 2003;253(2):240–3.

    Article  CAS  PubMed  Google Scholar 

  23. Gulmez SE, Moore N, Pageaux GP, Lignot S, Horsmans Y, Stricker B, et al. Causality of drugs involved in acute liver failure leading to transplantation: results from the study of acute liver transplant (SALT). Drug Saf. 2013;36(9):757–64.

    Article  CAS  PubMed  Google Scholar 

  24. Gulmez SE, Larrey D, Pageaux G-P, Lignot S, Lassalle R, Jové J, et al. Transplantation for acute liver failure in patients exposed to NSAIDs or paracetamol (acetaminophen): the multinational case-population SALT study. Drug Saf. 2013;36(2):135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gulmez SE, Larrey D, Pageaux GP, Bernuau J, Bissoli F, Horsmans Y, et al. Liver transplant associated with paracetamol overdose: results from the seven-country SALT study. Br J Clin Pharmacol. 2015;80(3):599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moore N, Duret S, Grolleau A, Lassalle R, Barbet V, Duong M, et al. Previous drug exposure in patients hospitalised for acute liver injury: a case-population study in the french national healthcare data system. Drug Saf. 2011;42(4):559–72.

    Article  CAS  Google Scholar 

  27. Raza A, Chan V, Atiq MU. Idiosyncratic drug reaction: a rare mechanism of acute tylenol toxicity. Cureus. 2019;11(11):6099.

    Google Scholar 

  28. Guengerich FP. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs. Toxicol Res. 2020;37(1):1–23.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Kalsi SS, Dargan PI, Waring WS, Wood DM. A review of the evidence concerning hepatic glutathione depletion and susceptibility to hepatotoxicity after paracetamol overdose. Open Access Emerg Med. 2011;3:87–96.

    PubMed  PubMed Central  Google Scholar 

  30. Roth RA, Ganey PE. Intrinsic versus idiosyncratic drug-induced hepatotoxicity—two villains or one? J Pharmacol Exp Ther. 2010;332(3):692–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Donato M, Tolosa L. High-content screening for the detection of drug-induced oxidative stress in liver cells. Antioxidants (Basel). 2021;10(1):106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kullak-Ublick GA, Andrade RJ, Merz M, End P, Benesic A, Gerbes AL, et al. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut. 2017;66(6):1154.

    Article  CAS  PubMed  Google Scholar 

  33. Ye H, Nelson LJ, Gómez Del Moral M, Martínez-Naves E, Cubero FJ. Dissecting the molecular pathophysiology of drug-induced liver injury. World J Gastroenterol. 2018;24(13):1373–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Uetrecht J. Mechanistic studies of idiosyncratic DILI: clinical implications. Front Pharmacol. 2019;10:837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eakins R, Walsh J, Randle L, Jenkins RE, Schuppe-Koistinen I, Rowe C, et al. Adaptation to acetaminophen exposure elicits major changes in expression and distribution of the hepatic proteome. Sci Rep. 2015;5:16423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kane AE, Huizer-Pajkos A, Mach J, McKenzie C, Mitchell SJ, de Cabo R, et al. N-Acetyl cysteine does not prevent liver toxicity from chronic low-dose plus subacute high-dose paracetamol exposure in young or old mice. Fundam Clin Pharmacol. 2016;30(3):263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mishima-Iwai M, Takahashi K, Yokode M, Kimura Y, Sawai Y, Ueda Y, et al. Late-onset acetaminophen-induced allergic hepatitis with progression to chronicity. Hepatol Res. 2015;45(7):814–7.

    Article  PubMed  Google Scholar 

  38. Shinzawa H, Togashi H, Sugahara K, Ishibashi M, Terui Y, Aoki M, et al. Acute cholestatic hepatitis caused by a probable allergic reaction to paracetamol in an adolescent. Tohoku J Exp Med. 2001;193(3):255–8.

    Article  CAS  PubMed  Google Scholar 

  39. Hoffmann F, Bantel C, von Rosen FT, Jobski K. Regional differences in prescribing patterns of metamizole in germany based on data from 70 million persons. Int J Environ Res Public Health. 2020;17(11):3892.

    Article  CAS  PubMed Central  Google Scholar 

  40. Moride Y, Abenhaim L. Evidence of the depletion of susceptibles effect in non-experimental pharmacoepidemiologic research. J Clin Epidemiol. 1994;47(7):731–7.

    Article  CAS  PubMed  Google Scholar 

  41. Becher H, Kostev K, Schroder-Bernhardi D. Validity and representativeness of the “Disease Analyzer” patient database for use in pharmacoepidemiological and pharmacoeconomic studies. Int J Clin Pharmacol Ther. 2009;47(10):617–26.

    Article  CAS  PubMed  Google Scholar 

  42. Rathmann W, Bongaerts B, Carius HJ, Kruppert S, Kostev K. Basic characteristics and representativeness of the German Disease Analyzer database. Int J Clin Pharmacol Ther. 2018;56(10):459–66.

    Article  PubMed  Google Scholar 

  43. Hayashi PH. Overview of causality assessment in drug-induced liver injury. Clin Liver Dis. 2017;9(2):29–33.

    Article  Google Scholar 

  44. Roussel Uclaf Causality Assessment Method (RUCAM) in drug induced liver injury. LiverTox: clinical and research information on drug-induced liver injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases; 2019.

  45. Brockow K, Przybilla B, Aberer W, Bircher AJ, Brehler R, Dickel H, et al. Guideline for the diagnosis of drug hypersensitivity reactions: S2K-Guideline of the German Society for Allergology and Clinical Immunology (DGAKI) and the German Dermatological Society (DDG) in collaboration with the Association of German Allergologists (AeDA), the German Society for Pediatric Allergology and Environmental Medicine (GPA), the German Contact Dermatitis Research Group (DKG), the Swiss Society for Allergy and Immunology (SGAI), the Austrian Society for Allergology and Immunology (ÖGAI), the German Academy of Allergology and Environmental Medicine (DAAU), the German Center for Documentation of Severe Skin Reactions and the German Federal Institute for Drugs and Medical Products (BfArM). Allergo J Int. 2015;24(3):94–105.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fontana RJ, Hayashi PH, Gu J, Reddy KR, Barnhart H, Watkins PB, et al. Idiosyncratic drug-induced liver injury is associated with substantial morbidity and mortality within 6 months from onset. Gastroenterology. 2014;147(1):96-108.e4.

    Article  CAS  PubMed  Google Scholar 

  47. Johnson ES, Bartman BA, Briesacher BA, Fleming NS, Gerhard T, Kornegay CJ, et al. The incident user design in comparative effectiveness research. Pharmacoepidemiol Drug Saf. 2013;22(1):1–6.

    Article  PubMed  Google Scholar 

  48. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases; 2020.

  49. Björnsson ES, Hoofnagle JH. Categorization of drugs implicated in causing liver injury: critical assessment based on published case reports. Hepatology. 2016;63(2):590–603.

    Article  PubMed  Google Scholar 

  50. Björnsson ES. Hepatotoxicity by drugs: the most common implicated agents. Int J Mol Sci. 2016;17(2):224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Heinze G, Dunkler D. Five myths about variable selection. Transpl Int. 2017;30(1):6–10.

    Article  PubMed  Google Scholar 

  52. Sriuttha P, Sirichanchuen B, Permsuwan U. Hepatotoxicity of nonsteroidal anti-inflammatory drugs: a systematic review of randomized controlled trials. Int J Hepatol. 2018;2018:5253623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Schmeltzer PA, Kosinski AS, Kleiner DE, Hoofnagle JH, Stolz A, Fontana RJ, et al. Liver injury from nonsteroidal anti-inflammatory drugs in the United States. Liver Int. 2016;36(4):603–9.

    Article  CAS  PubMed  Google Scholar 

  54. Bessone F. Non-steroidal anti-inflammatory drugs: what is the actual risk of liver damage? World J Gastroenterol. 2010;16(45):5651–61.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Renoux C, Dell’Aniello S, Brenner B, Suissa S. Bias from depletion of susceptibles: the example of hormone replacement therapy and the risk of venous thromboembolism. Pharmacoepidemiol Drug Saf. 2017;26(5):554–60.

    Article  CAS  PubMed  Google Scholar 

  56. Lund JL, Richardson DB, Stürmer T. The active comparator, new user study design in pharmacoepidemiology: historical foundations and contemporary application. Curr Epidemiol Rep. 2015;2(4):221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Coleman CI, Antz M, Ehlken B, Evers T. REal-LIfe Evidence of stroke prevention in patients with atrial fibrillation—the RELIEF study. Int J Cardiol. 2016;203:882–4.

    Article  PubMed  Google Scholar 

  58. Coleman CI, Antz M. Real-world evidence with apixaban for stroke prevention in patients with nonvalvular atrial fibrillation in Germany: a retrospective study (REASSESS). Intern Emerg Med. 2017;12(3):419–22.

    Article  PubMed  Google Scholar 

  59. Forns J, Cainzos-Achirica M, Hellfritzsch M, Morros R, Poblador-Plou B, Hallas J, et al. Validity of ICD-9 and ICD-10 codes used to identify acute liver injury: a study in three European data sources. Pharmacoepidemiol Drug Saf. 2019;28(7):965–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N. Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol. 2016;4(2):131–42.

    PubMed  PubMed Central  Google Scholar 

  61. Amacher DE. Female gender as a susceptibility factor for drug-induced liver injury. Hum Exp Toxicol. 2014;33(9):928–39.

    Article  PubMed  CAS  Google Scholar 

  62. Buzzetti E, Parikh PM, Gerussi A, Tsochatzis E. Gender differences in liver disease and the drug-dose gender gap. Pharmacol Res. 2017;120:97–108.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Melinda Pálfi, Júlia Pallós, Gergő Merész, and Mátyás Szigeti for their critical review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Hedenmalm.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Karin Hedenmalm, Alexandra Pacurariu, Jim Slattery, Xavier Kurz, Gianmario Candore and Rob Flynn are employees of the European Medicines Agency and have no conflicts of interest to declare in relation to this article.

Ethics approval

This study was carried out using a deanonymized database (IMS® Disease Analyzer Germany), for which ethics approval was not required.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code Availability

Not applicable.

Availability of data and material

The analyses conducted in this study were performed by the authors based on the IMS® Disease Analyzer Germany database, version June 2019. The study has been registered in the EUPAS register (EUPAS 31864). Analytic data sets and custom codes can be made available upon request from the authors.

Author contributions

All authors contributed to the study design and analysis of results. Karin Hedenmalm drafted the manuscript with contributions from all other authors. All authors read and approved the final version.

Disclaimer

The views expressed in this article are the personal views of the authors and may not be understood or quoted as being made on behalf of, or reflecting the position of, the European Medicines Agency or one of its committees or working parties.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedenmalm, K., Pacurariu, A., Slattery, J. et al. Is There an Increased Risk of Hepatotoxicity with Metamizole? A Comparative Cohort Study in Incident Users. Drug Saf 44, 973–985 (2021). https://doi.org/10.1007/s40264-021-01087-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-021-01087-7

Navigation