Skip to main content
Log in

Separation and identification of trinucleotide–melphalan adducts from enzymatically digested DNA using HPLC–ESI–MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Melphalan is a bifunctional alkylating agent that covalently binds to the nucleophilic sites present in DNA. In this study we investigated oligonucleotides prepared enzymatically from DNA modified with melphalan. Calf thymus DNA was incubated in-vitro with melphalan and the resulting modifications were enzymatically cleaved by means of benzonase and nuclease S1. Efficient sample preconcentration was achieved by solid-phase extraction, in which phenyl phase cartridges resulted in better recovery of the modified species than C18. The applied enzymatic digestion time resulted in production of trinucleotide adducts which were efficiently separated and detected by use of reversed-phase HPLC coupled to an ion-trap mass spectrometer with electrospray ionization. It was assumed that melphalan could act as both a monofunctional and bifunctional alkylating agent. Mono-alkylated adducts were much more abundant, however, and the alkylation site was located on the nucleobases. On the other hand, we unequivocally identified cross-link formation in DNA, even though at low abundance and only a few adduct types were detected.

Different Alkylation reactions of Melphalan with DNA

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Blackburn GM, Gait MJ (1990) Nucleic acids in chemistry and biology. IRL Press at Oxford University Press, UK

    Google Scholar 

  2. Wilman DEV (1990) The chemistry of antitumor agents. Blackie, Glasgow, UK

    Google Scholar 

  3. Furner RL, Brown RK (1980) Cancer Treat Rep 64:559–574

    CAS  Google Scholar 

  4. Povirk LF, Shuker DE (1994) Mutat Res 318:205–226

    CAS  Google Scholar 

  5. Osborne MR, Lawley PD (1992) Chem Biol Interact 84:189–198

    Article  CAS  Google Scholar 

  6. Blackburn GM, Gait MJ (1996) Biological consequences of DNA alkylation. In: Nucleic acids in chemistry and biology. Oxford University Press, Hong Kong

  7. Hemminki K, Kallama S (1986) IARC Sci Publ 78:55–70

    Google Scholar 

  8. Balcome S, Park S, Quirk Dorr DR, Hafner L, Phillips L, Tretyakova N (2004) Chem Res Toxicol 17:950–962

    Article  CAS  Google Scholar 

  9. Wang P, Bauer GB, Bennett RAO, Povirk LF (1991) Biochemistry 30:11515–11521

    Article  CAS  Google Scholar 

  10. Rajski SR, Williams RM (1998) Chem Rev 98:2723–2796

    Article  CAS  Google Scholar 

  11. Bauer GB, Povirk LF (1997) Nucleic Acids Res 25:1211–1218

    Article  CAS  Google Scholar 

  12. Tilby MJ, Lawley PD, Farmer PB (1990) Chem Biol Interact 73:183–194

    Article  CAS  Google Scholar 

  13. Tilby MJ, McCartney H, Cordell J, Frank AJ, Dean CJ (1995) Carcinogenesis 16:1895–1901

    Article  CAS  Google Scholar 

  14. Tilby MJ, McCartney H, Gould KA, O’Hare CC, Hartley JA, Hall AG, Golding BT, Lawley PD (1998) Chem Res Toxicol 11:1162–1168

    Article  CAS  Google Scholar 

  15. Frank AJ, Proctor SJ, Tilby MJ (1996) Blood 88:977–984

    CAS  Google Scholar 

  16. Osborne MR, Lawley PD (1993) Chem Biol Interact 89:49–60

    Article  CAS  Google Scholar 

  17. Osborne MR, Lawley PD, Crofton-Sleigh C, Warren W (1995) Chem Biol Interact 97:287–296

    Article  CAS  Google Scholar 

  18. Hoes I, Lemiere F, Van Dongen W, Vanhoutte K, Esmans EL, Van Bockstaele D, Berneman Z, Deforce D, Van den Eeckhout EG (1999) J Chromatogr B 736:43–59

    Article  CAS  Google Scholar 

  19. Hoes I, Van Dongen W, Lemiere F, Esmans EL, Van Bockstaele D, Berneman ZN (2000) J Chromatogr B 748:197–212

    Article  CAS  Google Scholar 

  20. Van den Driessche B, Lemiere F, Van Dongen W, Esmans EL (2003) J Chromatogr B 785:21–37

    Article  Google Scholar 

  21. Van den Driessche B, Lemiere F, Van Dongen W, Van der Linden A, Esmans EL (2004) J Mass Spectrom 39:29–37

    Article  Google Scholar 

  22. Edler M, Jakubowski N, Linscheid M (2006) J Mass Spectrom 41:507–516

    Article  CAS  Google Scholar 

  23. Van den Driessche B, Esmans EL, Van der Linden A, Van Dongen W, Schaerlaken E, Lemiere F, Witters E, Berneman Z (2005) Rapid Commun Mass Spectrom 19:1999–2004

    Article  Google Scholar 

  24. Schrader W, Linscheid M (1997) Arch Toxicol 71:588–595

    Article  CAS  Google Scholar 

  25. Janning P, Schrader W, Linscheid M (1994) Rapid Commun Mass Spectrom 8:1035–1040

    Article  CAS  Google Scholar 

  26. Bartolini WP, Bentzley CM, Johnston MV, Larsen BS (1999) J Am Soc Mass Spectrom 10:521–528

    Article  CAS  Google Scholar 

  27. Mcluckey SA, Habibigoudarzi S (1993) J Am Chem Soc 115:12085–12095

    Article  CAS  Google Scholar 

  28. Iannitti P, Sheil MM, Wickham G (1997) J Am Chem Soc 119:1490–1491

    Article  CAS  Google Scholar 

  29. Rodgers MT, Campbell S, Marzluff EM, Beauchamp JL (1994) Inter J Mass Spectrom Ion Proc 137:121–149

    Article  CAS  Google Scholar 

  30. Vrkic AK, O’Hair RAJ, Foote S (2000) Aust J Chem 53:307–319

    Article  CAS  Google Scholar 

  31. Siethoff C, Feldmann I, Jakubowski N, Linscheid M (1999) J Mass Spectrom 34:421–426

    Article  CAS  Google Scholar 

  32. Liao Q, Chiu NH, Shen C, Chen Y, Vouros P (2007) Anal Chem 79:1907–1917

    Article  CAS  Google Scholar 

  33. Van den Driessche B, Lemiere F, van Dongen W, Esmans EL (2004) J Am Soc Mass Spectrom 15:568–579

    Article  Google Scholar 

  34. Neri N, Sindona G, Uccella N (1983) Gazz Chim Ital 113:197–202

    CAS  Google Scholar 

  35. Lawley PD, Brookes P (1965) Nature 206:480–483

    Article  CAS  Google Scholar 

  36. Lawley PD, Brookes P (1967) J Mol Biol 25:143–160

    Article  CAS  Google Scholar 

  37. Van den Driessche B, Lemiere F, Witters E, Van Dongen W, Esmans EL (2005) Rapid Commun Mass Spectrom 19:449–454

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Arab Republic of Egypt for a grant to D.M. and to the DFG for financial support of M.L.; Stefan Pieper’s expert technical assistance with the mass spectrometers is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Linscheid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, D., Linscheid, M. Separation and identification of trinucleotide–melphalan adducts from enzymatically digested DNA using HPLC–ESI–MS. Anal Bioanal Chem 392, 805–817 (2008). https://doi.org/10.1007/s00216-008-2236-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2236-0

Keywords

Navigation